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Abstract
Open vSwitch is a high-performance multi-layer virtual
switch that serves as a flexible foundation for building
virtualized, stateless Layer 2 and 3 network services in multi-
tenant datacenters. As workloads become more sophisticated,
providing tenants with virtualized middlebox services is an
increasingly important and recurring theme, yet it remains dif-
ficult to integrate these stateful services efficiently into Open
vSwitch and its OpenFlow forwarding model: middleboxes
perform complex operations that depend on internal state
and inspection of packet payloads – functionality which is
impossible to express in OpenFlow. In this paper, we present
SoftFlow, an extension of Open vSwitch that seamlessly inte-
grates middlebox functionality while maintaining the familiar
OpenFlow forwarding model and performing significantly
better than alternative techniques for middlebox integration.

1 Introduction
With the rise of network virtualization, the primary

provider of network services in virtualized clouds has
migrated from the physical datacenter fabric to the
hypervisor virtual switch. This trend demands virtual
switches implement virtual networks that faithfully
reproduce complex L2—L3 network topologies that were
once entirely the concern of network hardware.

As network virtualization systems mature and workloads
increase in sophistication and complexity, pressure continues
to mount on virtual switches to provide more advanced
features without sacrificing flexibility or performance. In par-
ticular, middleboxes – firewalls, NATs, load balancers, and
the like – that are ubiquitous in enterprise networks [32] have
begun to make their way into network virtualization systems.

Open vSwitch (OVS) – the open source virtual switch
utilized by a majority of these systems – is not immune
to this pressure. Its flow based forwarding model (based
on OpenFlow) makes it particularly well suited to stateless
L2—L3 forwarding, allowing it to achieve a high level of
generality without sacrificing performance [23]. However,
extending this model to middleboxes has proven difficult
due to three fundamental challenges:
• Open vSwitch (and OpenFlow) models packet processing

as a series of flow tables operating over packet headers.
Middleboxes, on the other hand, rely on per-connection
state and inspection of packet payloads that are hard to
express in this model.

• In order to achieve reasonable performance, Open
vSwitch uses a flow caching algorithm that depends

necessarily on the stateless nature of OpenFlow to produce
consistent results – packets with the exact same header
must be forwarded the exact same way every single time.
Middleboxes’ reliance on internal state and inspection of
packet payloads causes them to make different forwarding
decisions for packets with the same header. This breaks
the fundamental assumptions of the flow cache.

• Packet parsing and classification are elementary operations
among all network services that long complex service
chains must perform many times for a given packet.
While it is feasible to integrate middleboxes with Open
vSwitch using virtual machines, it’s unclear how to share
this work across middleboxes as Open vSwitch is able
to for stateless L2—L3 OpenFlow pipelines.
In this paper we design SoftFlow, a data plane forwarding

model with unified semantics for all types of packet
operations. SoftFlow is an extension of Open vSwitch
designed around three design principles:

Maintain the Open vSwitch forwarding model. Open
vSwitch is built on OpenFlow, which has arguably helped it
achieve the wide deployment it enjoys today and we see no
reason to abandon it. A great deal of traditional middlebox
functionality, e.g., L2, L3, and ACL processing, can be
implemented naturally as flows, leaving us with only a
small subset of functionality that needs special processing:
operations which require per-packet state and operations
which inspect packet payloads. These operations can be
handled with our SoftFlow extensions.

Reduce packet classifications. On general-purpose
processors algorithmic packet classification is expensive.
In our experience, it frequently consumes the majority of
datapath CPU time and experiments in §7 indicate the
same.1 We aim to extend the benefits of Open vSwitch flow
caching to middleboxes by designing for middlebox aware
flow caching to exploit localities across packets, and shared
packet classification between middlebox services to mitigate
redundant computation. In doing so, we reduce the overhead
of classification-heavy middleboxes like NATs and firewalls.

Increase processing locality. Running services outside of
the virtual switch on separate VMs or processes provides
strong isolation, both in terms of performance and memory.
However, this isolation comes at a cost – performance suffers

1There is a vast literature on the subject of algorithmic packet classifica-
tion [5,14,33–35]. However, we note that any of these complex algorithms
performed repeatedly per-packet is likely to dominate processing time.
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due to high virtual I/O overhead and CPU cache misses as
packets traverse multiple cores. While isolation is generally
assumed necessary in the NFV literature [7,19], in systems
where service implementations can be carefully vetted by
a single vendor, we believe it is less critical. We choose
to sacrifice isolation so we may adopt a run-to-completion
model in which packets are processed by a single core,
from reception, through various services, and finally to
transmission. This choice leads to a factor of 2 performance
boost over an NFV-style VM-based implementation.

We have implemented a prototype of SoftFlow on top of
the Open vSwitch port to DPDK [9] that we are currently
evaluating for inclusion in upstream Open vSwitch. In
addition to the SoftFlow extensions to Open vSwitch, we
have also implemented a number of service pipelines to
validate the generality of the design. In what follows:
• We provide the design and implementation of an

extension to Open vSwitch that supports generic L4–L7
middleboxes.

• We show how to integrate L4–L7 services with flow
caching and a run-to-completion forwarding model, and
provide evidence in §7 that the performance benefits of
an integrated approach are as much as a factor of 2 better
than VM-based middleboxes.

• We provide a design for integrating NIC hardware packet
classification offload with SoftFlow, without restricting
the generality of software packet processing. We show
in §7 this optimization could improve forwarding rates
a further 5%–90% for realistic workloads.

2 Background
While SoftFlow has broad applications, we designed

it specifically to solve challenges present in the network
virtualization systems [12, 16, 37]. These systems provide
virtual networking to a cloud of virtual machines (or
containers) running on thousands of hypervisors. Each
hypervisor runs a sophisticated virtual switch, typically OVS,
which is used to form an overlay of densely interconnected
tunnels. In addition to the hypervisors, each system has
a gateway which sits in between virtual networks and
legacy physical networks hosting non-virtualized workloads.
Gateways are typically implemented as a dedicated OVS
instance running on a commodity server.

These systems have proven successful for basic stateless
L2/L3 networking. However, as deployments mature and
more sophisticated workloads are migrated onto virtual
networks, the demand for more advanced service typical of
the ubiquitous middleboxes in enterprise networks emerges.
Firewalls, NATs, load-balancers, and the like are essential
components of modern networks, which administrators
expect to be available in their virtualized deployments.

Our primary motivation for developing SoftFlow is to
support these complex middlebox services in network
virtualization platforms. The system must perform well

both on hypervisors, where efficiency is paramount to
maximize resources available to VMs, and on gateways
where performance both in terms of throughput and ability
to scale to thousands of tenants, is highly valued. The
peculiarities of this environment have led us to a somewhat
different emphasis than is typical in the NFV literature.
• The environment is multi-tenant, but not necessarily multi-

vendor. We expect most middlebox functionality to be
developed specifically for Open vSwitch and carefully vet-
ted by the community. For these reasons, strong isolation
between services, while nice to have, is not critical.

• Hypervisors must balance performance and efficiency.
Cloud operators are typically willing to devote a core
or two to networking, but taking up the majority of
hypervisor CPU resources for networking is unacceptable.

• Network virtualization systems already rely heavily on
Open vSwitch and forcing them to migrate wholesale
to a foreign switch based on service chains of black-box
virtual machines would be, at best, burdensome.
In searching for a solution, we evaluated, attempted, and

ultimately rejected two common approaches to middlebox
development seen today. In the rest of the section, we discuss
both in turn: the black-box model which hides middlebox
complexity in virtual machines, and the “pure SDN” model
which attempts to build middleboxes on top of OpenFlow.

2.1 Black Boxes
Perhaps the most common approach to building

virtualized middleboxes in the literature is what we call
the black box model. In this approach, each middlebox
is a fully isolated virtual machine (or container) with a
series of virtual ports connecting it to the hypervisor virtual
switch. The appeal of this approach is obvious: it provides
a straightforward migration path to the cloud for middlebox
vendors. However, it comes with costs:
• Middlebox implementations tend to be developed and

managed completely independently of the rest of the
virtual network. This significantly complicates the
control plane design, which must manage (at least) two
completely separate systems.

• Packet transmission between cores (necessary to shuffle
packets between VMs and the hypervisor) is costly. Mod-
ern systems [7,17,19,23,24,28] mitigate this cost through
shared memory, sometimes even employing zero-copy
techniques. However, as we show in §7 for realistic work-
loads, the benefits of zero-copy I/O pale in comparison to
the performance of a run-to-completion forwarding model.

• Virtual machine instantiation and management has
significant overhead. In the systems that SoftFlow targets,
gateways often need to run per-tenant middleboxes. For
large clouds, this can add up to hundreds or thousands
of instances per gateway. For instance, the Network
Virtualization Platform (NVP) [16], a commercial software
defined network, used Linux network namespaces (which
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Figure 1: A conceptual model of the SoftFlow datapath. SoftFlow
actions offload their classification to OpenFlow tables.

are significantly lighter than VMs) as its gateway middle-
box implementation, but yet quickly encountered scale
issues as management of such heavyweight appliances
proved challenging. In SoftFlow, however, each middlebox
is a simple function pointer in the Open vSwitch process
address space – thousands can coexist trivially.

2.2 Pure OpenFlow Middleboxes
To a very limited extent, trivial middleboxes can be built

on top of OpenFlow. In our quest to support middleboxes
for NVP [22] we did just this with limited success. We
briefly survey the pure OpenFlow middleboxes techniques
we attempted, and why they fail to generalize beyond all but
the simplest use cases.

When one attempts to build a pure OpenFlow middlebox,
one must deal with the limitations of OpenFlow: its inability
to handle stateful operations and deep packet inspection. The
first attempted solution often involves a reactive OpenFlow
model, where packets needing middlebox processing are
punted to the controller for handling. It is not difficult to
achieve functionally “correct” behavior with this strategy, but
it is challenging to scale the approach to large networks with
thousands of middleboxes forwarding millions of packets
per second each.

The reactive model can be optimized by adopting a local
controller co-located with each switch to handle certain types
of packets. This approach scales well for services which
only need to inspect the occasional packet but, beyond that,
sending each packet through the Open vSwitch slow path
to the local controller is both more complex and expensive
than the black-box model.

Given the relatively high overhead of a local controller,
a further optimization employed by Open vSwitch allows
the switch itself to modify its own flow tables through the
learn action. While originally designed to do L2 learning,
one can implement primitive stateful services with it. For
instance, a simple stateful firewall can be built by “learning
a hole” (installing a new flow) for the reverse traffic of each
new connection. In fact, this approach has been adopted and
deployed in NVP as a primitive virtual firewall. However,
it can’t do true connection tracking which requires verifying
the TCP state machine, implement middleboxes which
require deep packet inspect, or even those that require fast
changing per-packet state.

SoftFlow models the datapath as a stateless processing
pipeline, implemented in OpenFlow, which forwards packets
through stateful processing modules we call SoftFlow actions.
These modules perform the complex processing which

OpenFlow TablesOVSDB

Slow
 Path

First Packet
Subsequent

Packets

Conntrack Balance

D
atapath

…
Megaflow Table

Figure 2: The components of Open vSwitch. The datapath
maintains a megaflow table and the implementations of all
SoftFlow actions. Packets not found in the cache are punted to the
OpenFlow tables above.

OpenFlow can’t support and, when finished, send packets to
the next OpenFlow table for further processing. This process
repeats as many times as necessary, allowing multiple
stateless and stateful stages to operate on each packet.

Unlike virtual machines operating under the black-box
model, SoftFlow actions can offload internal packet
classifications to OpenFlow tables. For example, a controller
may choose to build a firewall from an ACL table
implemented in OpenFlow and a SoftFlow action which im-
plements connection tracking. This ability to offload packet
classifications has two key design benefits: First, it simplifies
middleboxes by relieving them of the need to implement
their own packet classification algorithms. Second, it allows
middlebox packet classifications to participate in OVS flow
caching along with OpenFlow tables. As a result, multiple
steps from both OpenFlow tables and SoftFlow actions
can be combined into a single classification per packet
in the flow cache. This greatly reduces redundant packet
classifications in the datapath. Figure 1 depicts this model.

3 SoftFlow Design
3.1 Flow Caching and Services

SoftFlow builds on top of Open vSwitch and inherits
its flow caching architecture [25,31] that we briefly review
here. The architecture is split into two major components,
a slow path and a datapath, as illustrated in Figure 2. The
datapath is responsible for per-packet forwarding, which it
achieves using a megaflow table: a giant flat (priority-less)
classifier which supports bit-wise wildcarding.2 Each rule
in the megaflow table carries with it a list of actions (e.g.,
modify headers, forward) which are performed on each
packet that matches. Packets for which the datapath has no
matching megaflow are punted to the slow path where the
OpenFlow implementation resides. These “missed” packets
are forwarded through a series of OpenFlow tables that
generate a wildcard mask and action list making up a new
megaflow entry. This new megaflow entry is then installed
in the datapath, so that future packets can avoid the expense
of a slow path traversal.

2Below the megaflow table there is also an exact match cache in the
OVS DPDK implementation. Like Open vSwitch, SoftFlow takes advantage
of this cache, but we don’t describe it in detail here for brevity.
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The Open vSwitch cache hierarchy described above
was designed specifically to suit the needs of OpenFlow,
not to support complex stateful processing necessary to
implement middleboxes. In fact, as we developed SoftFlow,
we identified two key limitations which must be resolved
to support these workloads:
• The flow cache hierarchy is built on the assumption that

each packet (as defined by its header) will be processed
exactly the same way by a given set of OpenFlow tables
every time. This is why a long series of OpenFlow tables
can be compressed to a single packet classification in
the megaflow table. SoftFlow actions, on the other hand,
can make forwarding decisions based on internal state
and packet payload that, from the perspective of the flow
cache, are completely nondeterministic. This means that
the flow cache must be prepared to re-classify each packet
after every SoftFlow action invocation.

• The Open vSwitch slow path must know if an OpenFlow
action will modify a packet, so it can take this modification
into account when executing future OpenFlow lookups.
While quite practical for simple OpenFlow actions,
for complex SoftFlow actions this would require an
implementation of the action to live in both the slow path
and datapath. Furthermore, to behave correctly these two
implementations would have to synchronize their internal
state. While theoretically feasible, this would add a great
deal of avoidable complexity and overhead.
We now consider the implementation of SoftFlow on top

of Open vSwitch with these two challenges in mind. Our
solutions to these problems flow naturally from three key
design decisions:

Datapath Exclusive Actions. SoftFlow actions are
implemented entirely in the datapath, and as a result, the
slow path has no semantic understanding of SoftFlow
action behavior. A pipeline of OpenFlow tables cannot
continue after a SoftFlow action has executed as the slow
the path doesn’t know how to update the packet for the next
OpenFlow table. Instead, SoftFlow actions consume the
packets they operate on just as a VM does.

SoftFlow Stages. In order to continue a forwarding
pipeline after SoftFlow actions execute, we require the
controller to explicitly handle packets emerging from them
at the beginning of the OpenFlow pipeline just as if they had
emerged from a VM. Semantically, this requires a megaflow
lookup after each action invocation (which we will optimize
away shortly).

To achieve this we introduce the concept of a SoftFlow
stage. Each packet entering the system is tagged with a
stage id, sf_stage, initially set to 0. Immediately after a
SoftFlow action executes, sf_stage increments and the
packet is re-injected at the bottom of the cache hierarchy.
Crucially, sf_stage can be matched at all layers of the
cache hierarchy including the slow path, making it easy for

Metadata Description
sf_metadata Metadata register accessible by SoftFlow actions.

sf_action Name of the last executed SoftFlow action.

sf_stage Stage incremented after each action invocation.

sf_coalesce Boolean signalling whether it is ok to coalesce.

sf_argument Runtime configuration argument set by controller.

Figure 3: SoftFlow relies on a number of metadata values embedded
in each packet structure. These values, and what they’re for, are
briefly summarized in this table..

the controller to distinguish packets emerging from SoftFlow
actions from those emerging from VMs or NICs.

Stage Coalescing. The Open vSwitch flow cache requires
that all packets with a particular header be forwarded the
exact same way every single time. This invariant holds easily
for OpenFlow, but for SoftFlow actions, which can make
header modifications based on internal state and packet
payloads, two packets with the same header may be treated
very differently. The naïve solution to this problem requires a
full megaflow lookup after each SoftFlow action invocation,
however, this is often unnecessary: many common middle-
boxes do not modify packet headers at all (e.g., firewall, IDS,
IPS), or if they do, modifications are deterministic given the
input packet headers. On the other hand, some actions may
make packet modifications on a per packet basis and really
do require a megaflow lookup after each invocation.

If a SoftFlow action does not make any modifications that
would require an additional megaflow lookup for that packet
header, it can take advantage of a novel optimization called
stage coalescing to avoid it. After executing, the action
signals whether a new lookup is necessary by writing a
boolean into the sf_coalesce packet metadata. If true,
SoftFlow can skip the next megaflow lookup, instead, simply
executing the actions that follow the current SoftFlow action.

The optimization is set up at megaflow installation time.
If a new megaflow ends in a SoftFlow action that supports
coalescing, SoftFlow tracks the packet as it flows through
the stages ahead of it and appends the actions executed in
those stages to the original megaflow’s action list. Thus,
when future packets hit this megaflow, they have access
to all of the actions they’ll need without having to execute
additional megaflow lookups. Furthermore, if at any time
a particular SoftFlow action needs to, it can always set
sf_coalesce to false forcing a new megaflow lookup
after its execution.

3.2 SoftFlow and OpenFlow
We expect a controller to configure and instantiate Soft-

Flow actions out of band. In our prototype implementation
the set of available actions and their configuration is hard
coded, but it would be simple to dynamically load new
actions at runtime and configure them through OVSDB.

We used OpenFlow’s vendor extension mechanism, to
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add a new OpenFlow action, softflow, in which the
controller embeds the name of the SoftFlow action to be
executed, and an integer sf_argument.3 This argument,
used as a runtime configuration parameter, is passed to the
SoftFlow action on each invocation.

Additionally, we augment OpenFlow by adding a per
packet register, sf_metadata, which SoftFlow actions can
use to exchange information. On invocation, the current
value of the register is passed to the action which may be
read or written it at will. After invocation future SoftFlow
actions or OpenFlow tables can match on the new value
and alter their behavior accordingly. In addition to the
metadata register, the OpenFlow tables can also match on the
sf_stage, and sf_action, the name of the most recently
executed SoftFlow action.

3.3 Limitations
The tight integration of SoftFlow with the Open vSwitch

data plane is not without its limitations which we discuss
briefly below.

SoftFlow makes no attempt to isolate actions from each
other or the rest of the platform. Since all actions share
the same process address space, this implies that buggy
or malicious actions can crash the switch or, worse, read
from or write to other action’s memory. Additionally, even
if all actions are trusted and well implemented, SoftFlow
provides no mechanism to fairly allocate CPU or memory
resources to actions. Thus, SoftFlow is only suitable for
carefully vetted trusted actions. In effect, SoftFlow stakes out
an extreme position in the trade-off between strong isolation
(and thus the performance cost represented by process/VM
isolation) and a faster run-to-completion forwarding model.

SoftFlow is not well suited for middleboxes that rely
heavily on buffering packets – specifically systems that
participate in TCP connections like HTTP proxies, certain
types of Intrusion Detection Systems, and some WAN
optimizers. Such middleboxes require a SoftFlow action to
execute the majority of processing in separate background
threads, in effect preventing the run-to-completion
forwarding model. While this can be implemented, after all
SoftFlow actions do run arbitrary code, it would be simpler
to use a virtual machine or process instead.

Finally, we note that SoftFlow makes no particular
provisions for fault tolerance. In the event of failure, fail-over
to a backup switch must be handled by an out of band
mechanism, as is commonly done in OVS appliances today.
In SoftFlow this problem is complicated by the fact that
middleboxes often have internal state that must be migrated
to the backup copy for correct operation. SoftFlow leaves
this problem to the action implementation and makes no
attempt to solve it in the framework.

3In future, we expect to support multiple arguments and, perhaps, more
complex data types like strings. For now, however, the single argument has
proven sufficient.

4 Service Design
In this section we describe the design of two software for-

warding pipelines built on SoftFlow: a simple stateful firewall
and a load-balancer. Later we evaluate these pipelines in §7.

4.1 Stateful Firewall
Firewalls are built of two primary components: a packet

classifier that implements an Access Control List (ACL), and
a connection tracker that keeps track of transport connection
state. While ACLs are simple to express as OpenFlow tables,
the connection tracker is difficult to express in standard
OpenFlow. It’s designed to allow all packets from established
connections, while only allowing new connections which
satisfy the ACL. Depending on the sophistication of the fire-
wall, connection tracking may imply not only tracking TCP
connection state, but also validating TCP sequence numbers.

Our firewall implements its ACL table in OpenFlow,
which works cooperatively with a SoftFlow conntrack
action responsible for connection tracking. In our prototype
implementation conntrack’s internals are based on a
connection tracker designed for OVS-DPDK [2] that is itself
based on the BSD firewall.

Our firewall pipeline begins when packets are forwarded
to the ACL OpenFlow table. If any ACLs successfully
match a packet, it passes to the conntrack action with
sf_argument 1. This sf_argument value indicates to
the action that the packet successfully matched an “allow”
ACL and, if necessary, a new connection entry may be
created. The table also has a low-priority default rule for
those packets that don’t match any ACL. These packets are
still passed to the SoftFlow action, but with sf_argument
value 0, indicating that the packets failed to match the ACL
table, and should only be forwarded if they belong to an
existing connection.

The conntrack action executes and, in the process,
writes to the packet’s sf_metadata the value 1 if the
packet is allowed, or 0 if it should be dropped. When
finished, control returns back to the datapath which
increments sf_stage and passes the packet back into the
OpenFlow tables.

To avoid conflicts with other rules, the OpenFlow table
matches on sf_stage=1 and sf_action=conntrack
to catch packets received from the connection tracker. These
rules either drop failures or instruct successes to proceed
to the next table. Finally, the packet traverses L3 and L2
tables which determine the appropriate output port. Figure 4
depicts the resulting SoftFlow firewall pipeline as well as
its first flow table, both responsible for processing packets
incoming from the NIC and from the conntrack service.

Packet walkthrough. A packet entering the datapath is
first checked against the megaflow cache. If empty, the
packet enters the OpenFlow slow path, which is responsible
for compiling a datapath action list and a wildcard mask for
a new megaflow cache entry. The packet begins in the initial

5
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ACL Conntrack L2L3 L3 Balancer L2L3L2

Firewall Load-balancer

priority=100 sf_stage=1 sf_action=conntrack sf_metadata=1 -> goto L3 table
priority=100 sf_stage=1 sf_action=conntrack sf_metadata=0 -> drop
priority=100 sf_stage=0 ip_dst=10.0.0.3 tcp_src=80 -> softflow:conntrack:1
priority=0 sf_stage=0 -> softflow:conntrack:0

Figure 4: A simple pipeline for a firewall (left) and load-balancer (right). Below, a simple firewall ACL table that allows 10.0.0.3 to initiate
TCP connections on port 80 and allows all return traffic; all other traffic is dropped. The first two flow entries match traffic coming back
from the conntrack service. The contents of the firewall L2 and L3 forwarding tables, as well as LB forwarding tables, are omitted for brevity.

OpenFlow table, a packet classification is performed, and
a matching ACL is chosen.

The OpenFlow action corresponding to the matching
ACL indicates that the conntrack service should be invoked.
However, the slow path does not execute the service itself as
the actual implementation lives entirely in datapath. Instead,
the slow path simply appends the SoftFlow action, with some
additional metadata, to the action list gathered so far and
passes this list to the datapath as a new megaflow cache entry.

The datapath then executes the action list. The final item
in the list is a reference to the SoftFlow action along with a
function pointer and the sf_argument necessary to invoke
it. The datapath executes the action by making a simple
function call, passing along the packet and sf_argument.

The action executes, runs the packet through its connection
tracking logic, and sets sf_metadata to 1 meaning
“pass”. Since “pass” is the typical result, the action also
sets true to sf_coalesce meaning this packet may be
coalesced. Control returns to the SoftFlow datapath which in-
crements sf_stage, and sets sf_action to “conntrack”.

At this point, a normal Open vSwitch would install the
rule in its megaflow cache. However, since sf_coalesce
is true, coalescing is enabled for this packet. Therefore it
is passed back to the slow path once again.

Receiving the packet for the second time, the slow path
again runs the packet through the standard OpenFlow
pipeline starting at the first table. Since sf_stage is 1,
sf_action is “conntrack”, and sf_metadata is 1, the
first rule in the figure matches and the packet proceeds to
the L2/L3 tables.

Again, the slow path assembles a mask and action list,
and hands them to the datapath. The cache executes the
action list just as before, then appends the results to the
action list collected from the previous slow path invocation.
By doing so, the flow cache coalesces what would have been
two stages into a single megaflow, effectively reducing the
number of megaflow lookups for future packets to one.

Since no more SoftFlow actions are executed, the process
terminates and the cache entry is finally installed. Future
packets entering the system perform a megaflow lookup to

find this newly installed megaflow and execute the action
list without the overhead of a miss or several packet classi-
fications. In the common case, this megaflow lookup will be
handled by the exact-match cache, requiring just a single hash
table lookup in addition to the cost of connection tracking.

4.2 Load Balancer
We now detail a load balancer (evaluated in §7) which

balances TCP connections among a configurable number of
backends. The load balancer is constructed from two pieces:
an abstract balancer SoftFlow action and a controller-
provided OpenFlow table which acts on the action’s
decisions. The load balancer assigns each connection to one
of eight buckets and writes its choice to sf_metadata.

Just like the firewall, after the balancer action is
executed, the packet is passed back to the OpenFlow
table. In this table, a set of rules is installed that map each
sf_metadata value to a backend host. The OpenFlow table
transforms the packet accordingly (by setting the appropriate
destination MAC and IP) before forwarding it to the next
table for an L3 lookup, L2 lookup, and eventual transmission.

Packet walkthrough. Similar to the firewall, packets
entering the datapath traverse the cache hierarchy eventually
ending up in the slow path. The slow path compiles a new
megaflow for installation that references the balancer.
The datapath executes the action list, including balancer
which takes the following steps:
• Assuming the packet belongs to a new connection, the
balancer implementation creates a connection identifier
for the packet, and assigns it to the least loaded of eight4

available buckets.
• A map is updated noting which bucket this connection

is assigned to so that future packets are forwarded
consistently.

• The bucket’s byte count is incremented with the packet’s
size, so that future packets can make appropriate balancing
decisions.

• The packet’s sf_metadata register is updated with the

4Note that eight was chosen arbitrarily, any small number would do.
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ID of the chosen bucket.
• Finally, the balancer returns false to the SoftFlow

datapath indicating that the result cannot be coalesced.
From the perspective of OpenFlow, the load balancer’s

behavior is nondeterministic regarding L2–L4 input headers.
Its choice of bucket is based on internally maintained
load information that OpenFlow does not have access
to. Therefore, balancer always returns false to the
datapath indicating that coalescing should never occur. For
our packet, this means the megaflow is installed immediately,
just as it would have been with standard Open vSwitch.

After the megaflow is installed, the packet is re-injected at
the bottom of the cache hierarchy where it eventually finds
its way back to the slow path OpenFlow tables. The packet
traverses the OpenFlow tables, various transformations are
made, and again a new megaflow is created. This time the
megaflow is scoped to sf_stage=1, so that future packets
emerging from the balancer action that are assigned to the
same bucket, can skip the slow path entirely and need only
perform a packet classification in the datapath. Once enough
traffic has been processed to set up a megaflow per bucket,
future packets can be forwarded without involving the slow
path at all, but at the cost of two classifications: one to decide
that the packet requires load-balancing and one to decide
what actions to take based on the load-balancer’s decision.

5 Implementation
In this section, we discuss details of our prototype

SoftFlow implementation built on the Open vSwitch port to
DPDK, OVS DPDK. In our prototype, a configurable number
of cores are dedicated to forwarding, each of which runs a
dedicated polling thread. Each NIC has a dedicated receive
queue per thread over which packets are load balanced
using a simple hash over the 5-tuple. Polling threads process
packets using a run-to-completion model, meaning that the
core which receives a packet sees it through all the way to
transmission, never handing it to another thread for process-
ing. Our prototype implementation is built on top of OVS 2.4
with a series of patches totalling approximately 1800 lines
of code not including SoftFlow action implementations.

5.1 Service API
In our prototype, service implementations are directly com-

piled and linked to the Open vSwitch process, and statically
configured for simplicity. This prototype mechanism could
be replaced with a dynamic library loading of the services
through a stable ABI with configuration through OVSDB.

SoftFlow maintains a global list of all SoftFlow services
which, today, is simply hard-coded in the source (though
future versions will allow it to be dynamically loaded at
runtime). As Open vSwitch boots, it initializes each service
using their internal initialization functions, and makes the
services available to OpenFlow and the datapath for use.

In SoftFlow, services can form groups for their internal

state sharing purposes. Thus, the actual service registration
takes place at the group level: services are constructed as
groups of actions and the service group is registered through
a sf_group structure. In it, references to the service
element specific initialization structures are provided.

Each service element provides a sf_service structure
which specifies an instance initialization function (provided
with a reference to the group) as well as a function for the
SoftFlow datapath to invoke to process packets:

struct sf_service {
const char *name;

/* Construct and return a new instance. */
void *(*init)(struct sf_group *group);

/* Process a batch of packets. */
void (*ingress)(struct pkt **pkts, size_t n,

void *instance);
};

This is the entire interface an action has to implement.
Afterward, OpenFlow entries can refer to the action and the
SoftFlow datapath can invoke the ingress function to execute
batches of packets. The function’s arguments are a batch of
packets and an “instance” pointer to service internal state.
Packet metadata is held within the packet construct.

5.2 Datapath Integration
While at the OpenFlow protocol level SoftFlow actions

are quite similar to standard OpenFlow actions, their actual
implementation is completely different from these simple
procedures.

At OpenFlow rule install time, the SoftFlow action is
translated to an internal representation which directly holds
a pointer to the ingress() function and the metadata
necessary to call it. When the slow path encounters this
action, it in turn converts the packet to a flow cache specific
internal representation which then contains the necessary
information to invoke the action; that is, ingress function,
instance pointer, and sf_argument. Thus, the rest of the
flow cache can remain unaware of the intricacies of SoftFlow
action invocation, and instead simply call a function pointer.

Coalescing. When a megaflow cache miss occurs in the
standard Open vSwitch implementation, the packet is passed
to the slow path, a new megaflow entry is returned, the entry
is installed, and the packet is forwarded based on this new
entry. In SoftFlow, however, this simple process must be
enhanced to support stage coalescing. After receiving a new
megaflow from the slow path, if the last action is a SoftFlow
service, a different procedure is executed:
• The action list associated with the new megaflow is

executed, including the final SoftFlow action.
• The SoftFlow action updates the sf_metadata and

(let’s assume for this example) sets sf_coalesce to
true.
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• The sf_stage increments, and sf_action updates.
• The packet is passed back to the slow path which

generates a new megaflow.
• The new megaflow is merged with the previous megaflow,

and its actions are appended to the currently accumulating
list.

• The process repeats until a megaflow returns without a
SoftFlow action, or a loop detector triggers.

5.3 Actions
In addition to the SoftFlow datapath prototype, we

developed several SoftFlow actions in an effort to evaluate
both the efficacy of our design as well as to understand its
implications to a service developer. As shortly discussed in
the next section, these services range from a trivial packet
counter, to an AES payload transcoder, connection tracker,
and load balancer. There are several unique peculiarities to
SoftFlow action development:
• SoftFlow instances are fine-grained and specific to a

particular action configuration. A SoftFlow load-balancer,
for example, can assume an incoming packet is TCP, is
heading to a particular Virtual IP address, and runs over
an HTTP port, because the OpenFlow flow table will
guarantee it receives such packets. As a result, a service
can be broken into smaller, more manageable, modules
with simpler internals.

• SoftFlow services are based on the Open vSwitch code,
and inherit the internal packet representation used through-
out Open vSwitch. This internal representation contains
pointers to the L2, L3, and L4 header offsets, saving
SoftFlow actions the expense of re-parsing each packet.

• SoftFlow provides packets to service instances in batches.
This allows implementations to utilize prefetching as
per the DPDK guidelines: first prefetching the necessary
internal state for a batch of packets into CPU cache, and
only after that processing packets using that internal state.
Such “staged” operation slightly complicates service
implementations but is effective in reducing latency due
to CPU cache misses.

6 Hardware Classification Offload
NIC vendors have a long history of introducing hardware

acceleration techniques, with mixed success. TCP checksum
and segmentation offload have proven useful, but a wide
range of other NIC functions have been commercial failures.
We contend this is due to an attempt to offload too much
functionality. For instance, SR-IOV bypasses the virtual
switch within hypervisors. While such an approach results
in good performance, hardware is inflexible, has limited
functionality, and has long update cycles that prevent
it from adapting to new use cases. In this section, we
discuss how, working cooperatively with the hardware,
OVS can leverage classification offloads, and SoftFlow can
take advantage of these offloads despite having general

middlebox actions. This approach allows SoftFlow to benefit
from the performance of hardware offload while maintaining
the generality and flexibility of software forwarding.

Current commercially available high-end NICs already
have a TCAM on-board, but its functionality is limited
to QoS and Receive Side Scaling (RSS). For these use
cases, the TCAM classification directs packets to different
priority queues based on incoming L2–L4 headers [10].
Next-generation NICs including Intel’s Boulder Rapids and
Broadcom’s BCM57300 NetXtreme C-Series [20] expand
on this capability capability by modeling the TCAM as a
generic OpenFlow-like switch.

While providing a programmable OpenFlow switch on
a NIC partially alleviates flexibility concerns, a complete of-
fload of switch functionality to the NIC presents challenges:
• TCAM capacity. TCAMs on NICs are quite limited in

size and support only a fixed set of protocol header fields.
This implies the maximum size of an offloaded OpenFlow
table may be too small for practical classification
offloading. Current NIC TCAMs have 16k entries or less,
depending on the number of fields matched on.

• Stateless operations only. Executing OpenFlow actions
on the NIC is enough for stateless L2–L4 operations, but
stateful L4–L7 cannot be offloaded.
In SoftFlow, instead of offloading all classification to the

NIC, we instead use the TCAM as a hardware flow cache
assisting the software flow cache. This allows SoftFlow
to offload the most active megaflows and leave the rest
to software making TCAM limitations less of a concern.
Similarly, since actions are performed by the CPU, limits
on the actions available on the NIC are of no consequence.

To accelerate classification, we assign each megaflow a
unique ID before pushing it into the NIC. Furthermore, we
configure the NIC actions associated with each megaflow
to write this unique ID into the metadata of each matching
packet. If the NIC finds a match, software classification
can be skipped, allowing SoftFlow to proceed to executing
OpenFlow actions and SoftFlow services. Similarly, to work
around matching limitations, SoftFlow can offload matches
over the limited headers supported by the NIC, leaving the
rest for software. We do not discuss this here further because
it is explored deeply in SAX-PAC [14] and we expect future
L2–L4 headers to be relatively well supported through more
programmable packet parsing capabilities in future NICs.

While in general guaranteeing consistency of TCAM
table updates is a potentially complicated topic [38], the
priority-less eventually consistent design of the megaflow
cache simplifies the problem. On reception of a packet
with a TCAM hint from the NIC, we simply verify that
the indicated megaflow still exists and the packet does,
indeed, match it. Thus if the megaflow table changes in a
way inconsistent with the NIC’s TCAM, affected packets
will simply fall back to software classification until the
NIC is updated. Similarly, if a megaflow matches on fields
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unsupported by the hardware, the discrepancy is resolved
in software for misclassified packets.

Finally, while the offloading remains completely
transparent to the service implementations – after all it is
completely the responsibility of the SoftFlow datapath –
the converse is not true. Services that cannot be coalesced
require re-classification after execution. In SoftFlow these
secondary classifications are not done at ingress, and
therefore must be done in software. That is, SoftFlow cannot
offload all packet classification to the NIC

7 Evaluation
In this section, we evaluate the benefits of SoftFlow’s

run-to-completion architecture, flow caching, and stage coa-
lescing for workloads requiring complex middlebox services.

7.1 Test Environment
Our testbed has two identical servers each running a pair

of 10-core Intel Haswell 2.6GHz CPUs with hyper-threading
disabled, 25MB of L3 cache and 128GB RAM. Each server
has an Intel 10Gb NIC with two ports for a total forwarding
capacity of 20Gbps. The ports of each server are patched
directly into the other with no switches or routers mediating
them. One server is configured as a packet generator running
Pktgen-DPDK [26], the other runs our SoftFlow prototype.
In all tests, the SoftFlow test server receives packets,
forwards them through a pipeline of OpenFlow tables and
SoftFlow services, and forwards them back out the port on
which they were received.

Except where noted, all experiments are run with a single
SoftFlow core (as would be typical on a hypervisor), with
coalescing enabled (for the actions that can take advantage
of it), the TCAM simulator disabled (as initially most
deployments won’t have TCAM accelerated NICs), and a
100% megaflow cache hit rate after a brief ramp up period.

Packet traces. We evaluate three traces, which the traffic
generator replays repeatedly at line rate on both ports for a
total throughput of 20Gbps. The first trace, T1, was collected
from a software network virtualization gateway appliance
running Open vSwitch that was deployed in a private,
production, multi-tenant datacenter servicing approximately
one thousand hypervisors. The trace is 44 seconds long,
contains 4.6 million packets, with an average packet size of
937 bytes, and average transmission rate of 795Mbps. We
replay the trace at line rate and, on each replay, we replace the
L4 source and destination ports with a consistent hash of their
previous values to defeat the exact match flow cache. The
trace contains 11k IP addresses participating in 100k distinct
TCP conversations and 75k distinct UDP conversations. The
maximum conversation length in our trace is 99k packets,
the mean is 42 packets, and the median is 10 packets.

To further stress the prototype, we stripped the payload of
T1 to simulate traffic with maximum packet size of 64 bytes.
In our tests, the resulting packet trace is called “T2”. In ad-

dition, to simulate ideal conditions, we generated a synthetic
trace called “T3” consisting of a few long-lived, high volume
connections– specifically, 32 transport connections, each in
turn sending a burst of 256 packets of 64 bytes each.

7.2 Pipelines
We implemented four prototype SoftFlow pipelines to

emulate use cases typical of network virtualization systems.

Pipeline A. Our first pipeline mimics a network
virtualization gateway as described in [16]. It consists of four
stages starting with 500 OpenFlow rules that match randomly
generated Ethernet destination addresses. From there, it
continues to an L3 table whose rules match 500 randomly
generated IP prefixes. (Random flow tables like these are a
worst case for Open vSwitch because they result in the most
specific flow masks used in the flow cache [25].) Next is
a SoftFlow firewall consisting of 500 ACLs and a SoftFlow
conntrack action, as described in §4. The firewall is quite
sophisticated as it maintains per-connection state, tracks
TCP sequence numbers, and supports multiple protocols
beyond TCP. The ACLs are a randomly chosen subset of
a cloud provider’s production firewall rule set. The firewall
is followed by an L2 table, after which packets egress.

Pipeline B. The second pipeline demonstrates SoftFlow
performance for a complex service chain of actions. The
first stages are identical to Pipeline A: an L2/L3 lookup and
stateful firewall. Following the firewall, we execute a content
transcoder which encrypts the transport payload of each
packet using AES-128 in CBC mode (similar to IPsec [13]).
Like the firewall and load balancer, the content transcoder
is implemented as a SoftFlow action. Finally, a stateless
OpenFlow NAT moves the IP destination of the packets into
the 10.0.0.0/8 prefix.

Pipeline C. The third pipeline demonstrates the additional
cost of making forwarding decisions based on internal state.
It is identical to Pipeline A except an implementation of the
load balancer described in §4 is inserted just after the firewall.
As discussed earlier, the load balancer defeats coalescing and
therefore requires a megaflow lookup after each invocation.
(In contrast, Pipelines A and B use coalescing.)

Pipeline D. Our final pipeline, D, is a configurable number
of “no-op” SoftFlow actions designed to isolate action invo-
cation overhead. For brevity, we only present results for this
pipeline in a couple of cases that are particularly interesting.

7.3 Measurements
Run-to-Completion. A common approach to virtualizing
middleboxes, both in practice and in the literature [7,19,24]
is to allocate a dedicated virtual machine to each
middlebox. This approach provides strong isolation between
middleboxes, and a simple migration path from legacy
implementations, but as we show in Figure 5, it comes at
significant performance cost.

9



24 2016 USENIX Annual Technical Conference USENIX Association

Figure 5: Comparison of forwarding rates (on a log scale) between
SoftFlow and KVM virtual machines running one of two virtual
NIC implementations: IVSHMEM and vhost-user.

We evaluate each of our test pipelines against equivalent
virtual machine implementations in which each middlebox
(i.e., a SoftFlow action and its associated OpenFlow tables)
is allocated its own dedicated SoftFlow VM: one for Pipeline
A’s firewall, two for Pipeline B (firewall and AES), two for
Pipeline C (firewall and load balancer), and one for Pipeline
D’s noop action. The stateless L2 and L3 lookups not asso-
ciated with a middlebox are implemented in the hypervisor
vswitch (running the same SoftFlow implementation but
without any SoftFlow actions). The hypervisor vswitch and
the virtual machines are each allocated a dedicated CPU core
for forwarding so, in total, Pipeline A runs 2 cores, Pipeline
B runs 3, and Pipeline C runs 3.

We compare the VM implementation to a pure SoftFlow
stack configured using run-to-completion forwarding.
For each pipeline, the SoftFlow switch is allocated the
same number of cores as the equivalent VM test so that
performance comparisons are fair.

Conventional wisdom suggests that forwarding
performance is determined by the virtual NIC. Therefore, we
compare SoftFlow against two competitive DPDK virtual
NIC drivers, IVSHMEM [11] and vhost-user [36]:
• IVSHMEM: a zero-copy implementation not dissimilar

from the approach taken by NetVM [7]. This implementa-
tion relies on a shared memory region between hypervisor
and guest over which pointers to packets are transferred.
Note that the putative advantage of this approach is speed
at the cost of isolation as virtual machines have read and
write access to all packets on the hypervisor.

• vhost-user: the virtual NIC implementation officially rec-
ommended by Open vSwitch was developed in response
to the limitations of IVSHMEM. The approach is similar
to that taken by ClickOS [19] – packets are copied into
and out of a shared memory region in the virtual machine
address space. The overhead of each packet IO is the
same as IVSHMEM except for an additional packet copy.

Figure 6: Percent improvement in single core forwarding
throughput with stage coalescing enabled.
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Figure 7: Single core forwarding rates (mpps) as a function of the
number of noop service elements in Pipeline D. For each trace
we test with coalescing enabled and disabled.

In return for this copy, vhost-user achieves true isolation
making it a suitable choice for untrusted virtual machines.
These two approaches represent a baseline similar to VM

based NFV proposals like NetVM and ClickOS with their
highly efficient virtual NIC implementations. IVSHMEM
and vhost-user, are analogous to these approaches, but using
OVS, thus allowing our results to isolate the cost of VM
traversal versus the SoftFlow run-to-completion forwarding
model.

As shown in Figure 5, SoftFlow consistently outperforms
virtual machines by 2x or more. Also, interestingly, the
difference between IVSHMEM and vhost-user is less than
we expected in many cases. For these cases, we believe the
cost of VM traversal, (CPU cache misses, packet re-parsing,
additional classification) outweights packet copies.

Stage coalescing. Figure 6 shows the percent improvement
in forwarding rate caused by enabling classification
coalescing for each pipeline and traffic pattern. While all
cases benefit somewhat, the degree of the benefit is highly
dependent on the pipeline and traffic pattern. Pipeline B,
for instance, does AES encryption on the payload which
mitigates the benefits of coalescing for T1’s large packets,
while for the small packets of T2 and T3, encryption is less
dominant allowing coalescing to help more. Also, Pipeline
C implements the balancer action which never coalesces
packets, limiting the overall benefit. We also note that we
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Figure 8: Performance as number of CPUs increases.

measured performance of coalescing as decreasing fractions
of traffic were allowed to benefit, we’ve omitted the graph
for brevity, but report that the benefit scales smoothly.

We additionally measure the effect of stage coalescing on
Pipeline D. Figure 7 shows the packets per second forwarded
with coalescing both enabled and disabled as the number
of noop actions in the pipeline increases. Note that even
for this trivial pipeline, traversing the cache hierarchy has
real cost that can be avoided with stage coalescing.

Hardware offload. We do not yet have an engineering
sample of a NIC with a programmable TCAM, so instead we
emulated 1k TCAM entries in our existing testbed. Megaflow
cache sizes witnessed with the above tests were rationale for
this TCAM size: for instance, Pipelines A, B, and C resulted
in 258, 21,335 and 256 active megaflows in coalesced tests
with Trace 2. Tests in hypervisor virtual switch environments
similarly suggest that a few hundred megaflows is sufficient
for high hit rates [25]. We preprocessed the traces, encoding
a rule ID for each connection in the IP ID field. Then we
forwarded the packets through the prototype, and checked
the field to choose a matching megaflow, thus allowing us to
skip the megaflow classification. Figure 9 shows the percent
improvement this feature provides. Note that the test was
performed with stage coalescing enabled, so this benefit is
on top of what coalescing can provide. The benefit depends
highly on the pipeline and traffic pattern, ranging from 5%
for Pipeline B (AES on large packets dominates), to 90%
for the synthetic traces. We also measured fractional TCAM
offload rates, and found the benefit to scale smoothly as
offload rates approach 100%. We omit the graph for brevity.

Multi-core parallelism. The Open vSwitch datapath is
designed to scale easily as NICs load-balance traffic across
CPU cores, sharing little state. For this reason, and our focus
on hypervisors where low CPU utilization is paramount,
the majority of this evaluation has focused on single-core
performance. However, in Figure 8, we did measure the

Figure 9: Percent improvement in single core forwarding throughput
with TCAM offload and full stage coalescing enabled (see Figure 6).
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Figure 10: Single core forwarding rates when a service reads
increasingly many random bytes of a 1GB block. See Figure 8 for
the legend.

affect of additional CPUs on performance. Both Pipeline
A T1 and Pipeline C T1 quickly hit the limits of our 20Gbps
test bed. The rest of the lines scale well, though sometimes
hitting points of diminishing returns due to inefficiencies
within the SoftFlow actions, or Open vSwitch itself.

Action Complexity. Packet processing on modern general-
purpose processors is highly sensitive to memory access
patterns. In an attempt to quantify the performance of com-
plex SoftFlow actions which require traversing large complex
data structures, we injected additional, synthetic memory load
to the pipelines by introducing a service element that does
nothing but make a series of random prefetched memory
accesses. In Figure 10 we see how, regardless of successful
flow caching, the throughput quickly drops as more random
memory locations are accessed per packet.

Cache miss rate. Maintaining high flow cache hit rates is
also critical for optimal throughput. While effective caching
is the task of Open vSwitch flow cache architecture, we tested
the overall impact of lowering cache hit rates for SoftFlow
pipelines with L4–L7 services by synthetically introducing
flow cache misses. Figure 11 validates the criticality of main-
taining high cache hit rates for overall forwarding throughput.

CPU. Finally, we analyzed how the breakdown of CPU
usage evolves if classification coalescing and TCAM
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Figure 11: Single core forwarding rates as flow cache hit rate
improves. At 0% the slow path handles all packets. See Figure 8
for the legend.

offloading are enabled with the Pipeline A and T2. In
Figure 12, we see how both stage coalescing and hardware
offloading reduce the portion of CPU used for megaflow
lookup (the “Megaflow” column in the table), thus leaving
more CPU resources for service execution. This naturally
implies that the share of packet parsing and I/O grows.

8 Related Work
We now consider the related work in addition to the

high-level approaches discussed in §2. First, we note that the
interest in software forwarding was revived by the low-level
hardware and software I/O optimizations that were identified
to be necessary to substantially improve the ability of x86
to forward small packets at high rates [3,8,9,27]. SoftFlow
builds on the results of these efforts.

NFV and the requirements of datacenter workloads calling
for high throughput networking capacity (both in packet rates
and volume) have resulted in many privately and publicly
documented optimizations in the virtual NIC I/O interface
hypervisors provide for the VMs [7,19,28,29]. Contrary to
some of these efforts being used to integrate services as VMs,
SoftFlow builds on tighter integration of packet processing
across different service elements. As a result, while an unfair
and incomplete comparison, SoftFlow is often able to reach
line rate of 10Gbps even with one or two CPU cores, whereas
VM based approaches use all the cores a server has to offer
to accomplish the same with multi-stage pipelines [7,19].

Perhaps the most closely related work is, therefore,
the recent proposals arguing for the benefits of vertical
integration of protocol stacks in userspace, to both improve
performance [18] and accelerate innovation [6]. In SoftFlow,
we take the integration a step further and demonstrate that
also horizontal integration across all packet processing
elements (L2–L7) can improve the overall performance.

An important alternative to the SoftFlow forwarding
model was first proposed by Click [15], and adapted
by ClickOS [19] for NFV workloads. This approach
models switch processing as a graph of composable packet

Megaflow Services Parsing I/O
Base 57% 8% 6% 3%
Coalesce 44% 15% 5% 11%
TCAM 18% 28% 9% 20%

Figure 12: Approximate CPU utilization of various components for
Pipeline A T2 with coalescing off, coalescing on, and coalescing
combined with TCAM offload. Functions which could not be
accounted to a particular column (e.g., memcmp()) or which took
less than 2% of CPU are omitted from the table.

processing elements. SoftFlow actions are analogous to
Click elements, yet they operate in a very different context.
SoftFlow only uses these actions for stateful processing,
falling back to OpenFlow style match-action tables for
everything else. This allows SoftFlow to take advantage of
global flow caching, and classification coalescing, both of
which would be impossible in the Click forwarding model.
For packet classification heavy workloads, like network
virtualization, this makes SoftFlow an ideal fit.

Open vSwitch has taken some steps to add common
middlebox functionality, most notably with the addition
of the conntrack action that allows packets to access a
connection tracker within the datapath. Due to the lack of
a framework like SoftFlow, this work requires significant
manual development effort for each new action touching all
parts of the OVS code base. Additionally, these efforts do
not take advantage of SoftFlow classification coalescing and,
thus, require unnecessary megaflow lookups.

There has been some work offloading the entire Open
vSwitch datapath to an NPU accelerated NIC [21]. This
design does not work in cooperation with middleboxes as
SoftFlow does. On the other hand, the SoftFlow hardware
offload design only offloads expensive packet classification,
leaving complex action processing to the CPU.

While, there has been significant work building integrated
middleboxes on commodity systems [1, 4, 24, 30], we are
the first system to specifically target the vast deployment
of OpenFlow based network virtualization platforms with
an architecture that’s practically deploy-able, and tightly
integrated with stateless L2–L3 services.

9 Conclusion
In this paper we described the design of SoftFlow, an ex-

tension of Open vSwitch designed to bring tightly integrated
middleboxes to network virtualization platforms. Contrary
to traditional software datapath designs, SoftFlow integrates
network services tightly together to facilitate pervasive flow
caching, removal of redundant packet classifications through
stage coalescing, and the use of hardware classification
offloads. These advantages coupled with SoftFlow’s
run-to-completion forwarding model allow it to significantly
outperform virtual machine based alternatives, while being
a better fit for existing Open vSwitch deployments.
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