
Softgoal-based Plan Selection in Model-driven BDI Agents

Ingrid Nunes
Instituto de Informática

Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil

ingridnunes@inf.ufrgs.br

Michael Luck
Department of Informatics

King’s College London
London, UK

michael.luck@kcl.ac.uk

ABSTRACT

The belief-desire-intention (BDI) model is one of the most widely

used for developing agents. One of its benefits is the flexibility of

choosing among different plans to achieve a goal and, to leverage

this benefit, a particular algorithm that makes this choice must be

selected. Although many techniques have been proposed address-

ing the plan selection process — as well as other aspects of BDI

agents — they require many customisations and adaptations to be

used in particular applications, thus requiring expert knowledge to

be adopted, which is a real barrier to the large-scale adoption of this

kind of agent technology. We thus in this paper propose a model-

driven approach that allows modelling agents based on an extended

BDI model (inspired by the Tropos meta-model) and automatically

generating source code that implements agents with the ability of

selecting plans. As this plan selection process typically involves

analysing plan side effects, e.g. cost of execution, in the context

of current agent preferences, our approach uses a preference-based

plan selection process over what we refer to as softgoals. This pro-

cess relies on the multi-attribute utility theory, taking into account

the uncertainty of plan outcomes. We evaluate our approach exper-

imentally.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Intelligent agents; D.2.11

[Software Engineering]: Software Architectures—Domain-specific

architectures

General Terms

Design

Keywords

BDI Agent, Model-driven Development, Plan Selection

1. INTRODUCTION
The belief-desire-intention (BDI) model [19] is one of the most

widely used for developing agents, and is supported by very many

proposed methods and techniques that rely on it [3, 7, 14], and

platforms that implement it [2, 10, 16, 18]. A key benefit of the

BDI model is to provide a reasoning cycle that endows agents with

flexible behaviour due to explicit separation between system goals

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c⃝ 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and plans. However, this benefit is only obtained if a plan selection

algorithm is chosen to suit a specific application, selecting appro-

priate plans according to particular situations. BDI agents typically

use a plan library constructed at design time, so that at runtime

agents must choose a plan to be executed from a set of applicable

plans to achieve a goal, taking into account plan characteristics and

agent beliefs, including preferences.

Many plan selection techniques have been proposed in the liter-

ature (e.g., [4, 21]) — as well as techniques addressing other cus-

tomisable parts of BDI agents, such as belief revision and goal gen-

eration — but their direct use by mainstream software developers

is still problematic, since expert knowledge is still required to de-

velop BDI agents; this is a real barrier to the large-scale adoption of

this kind of agent technology. It is important therefore not only to

provide a conceptual basis for the development of BDI agents, but

also to show that it is realisable (and how) and can be effectively

used in real world applications. Without providing practical imple-

mentation, the use of proposed techniques can only be limited to a

small set of specialists, preventing its use by the broader develop-

ment community that could benefit from it. Yet this is crucial if we

are to address the increasing complexity of software applications

that must now be provided with flexible and intelligent behaviour.

A promising approach to raise the abstraction level of models

when developing applications, thus making the use of sophisti-

cated techniques easier through the abstraction of low-level details,

is Model-driven Development (MDD) [20], which has previously

been investigated to support the development of multi-agent sys-

tems (MASs) [5]. Such model-driven approaches use models as

first class citizens in the development process, rather than code,

and focus on building high-level models that can be used to eventu-

ally generate source code, with model compositions, and model-to-

model and model-to-text transformations. However, although there

has been much progress in the context of model-driven MASs, this

is still premature as it currently permits the modelling of only some

multi-agent concepts and only generates skeletons of source code.

Therefore, much (and perhaps most of the) effort is still required to

implement a MAS even after generating part of its code.

Our vision is to build model-driven MASs focusing on develop-

ing application-specific models and encoding MAS techniques into

code generators, promoting faster application development with

less expert knowledge about MAS techniques in order to effectively

use them. In this paper, therefore, we propose a model-driven ap-

proach that takes a step towards this vision focusing on the plan

selection process. Our approach consists of a meta-model that al-

lows agents to be modelled, based on an extended BDI model —

inspired by the Tropos [3] meta-model — and automatically gen-

erates source code that implements agents able to effectively select

plans. As this plan selection process typically involves analysing

749



plan side effects, e.g. time to achieve a goal or cost of execution,

in the context of current agent preferences, our approach uses a

preference-based plan selection process over what we refer to as

softgoals. This process relies on multi-attribute utility theory (MAUT)

[13], taking into account the uncertainty of plan outcomes. To eval-

uate our work, we conducted an empirical experiment, consisting

of a simulation of an agent built using our approach.

In summary, the contributions of this paper are: (i) a meta-model

that extends the BDI model to allow representation of the concepts

needed for agents able to select plans based on softgoals and pref-

erences; (ii) a simple but effective algorithm to select plans using

the concepts of our meta-model; and (iii) a technique to transform

instances of our meta-model into source code.

In the next section (Section 2), we introduce an example that

illustrates the scenario we are addressing. In Section 3, we present

an extension of the BDI model with a set of concepts, which is used

in the plan selection process. We then show in Section 5 how an

agent based on our extended BDI model has its code generated via

design models. In Section 6, we empirically evaluate our approach.

Finally, Section 7 presents related work, followed by Section 8,

which concludes.

2. ILLUSTRATING EXAMPLE
In this section, we present a motivating example that is used sub-

sequently to explicate our approach. Consider the common prob-

lem of researchers in obtaining funding to attend conferences. Bob

is a researcher at a university, who has three different options (or

plans) to apply for and receive funding whenever he has a paper

accepted at a conference. The options are: (i) Plan A: to apply

for a continuous call for funding requests provided by the national

funding agencies; (ii) Plan B: to request financial support from his

department; and (iii) Plan C: to use the resources of his own re-

search projects. An agent BobA is able to automatically execute

these plans.

Although all these plans are a means of achieving the goal of

getting funding for attending a conference, each plan has differ-

ent characteristics. First, each plan is associated with a particu-

lar response time so that, for example, if Bob chooses Plan A, he

will be unsure whether and when he will receive approval of his

request, whereas if he chooses Plan C (assuming that he has his

own projects), he knows right away that he will be able to fund

his trip. Second, each plan requires a different amount of work;

e.g. requesting support to the department implies completing many

forms as part of the request process. Third, each plan has a differ-

ent impact on Bob’s goal of minimising expenditure. For instance,

if Bob uses his own resources, he will be unable to use them in the

future for emergency situations, yet this is the plan with the highest

probability of success. Therefore, all plans achieve a common goal,

but also impact on other softgoals, namely minimise time, minimise

amount of work, and saving money, which typically conflict, since

increasing the satisfaction of one softgoal may decrease the satis-

faction of another. Moreover, whenever Bob wants to achieve the

goal getting funding for attending a conference, he has different

preferences. For example, if he needs to confirm his attendance at

the conference quickly, the softgoal minimise time is more impor-

tant than others.

This scenario exposes the following problem: how can agent

BobA select the best plan to achieve its goal based on its current

preferences?

3. AN EXTENDED BDI AGENT MODEL
The example above illustrates the scenario we address in this

paper. Our goal is to build software agents that are able to: (i) rep-

resent the relationship between plans and (soft-)goals; (ii) represent

preferences over softgoals; and (iii) use this information to select

plans at runtime. Moreover, we aim to provide a solution by which,

with little information about the domain, a software agent’s source

code can almost completely be generated automatically, requiring

no expert knowledge of agent technology. As discussed in the in-

troduction, we propose a model-driven approach in order to achieve

our goal, which consists of the following parts:

• an agent representation meta-model, which extends the BDI

model, and is inspired by the Tropos meta-model (presented

in this section);

• algorithms to process models based on our meta-model and

to select plans (Section 4); and

• a means of automatically transforming a model of an agent

designed according to our meta-model into source code (Sec-

tion 5).

Here, we present our meta-model using a top-down approach.

We first introduce its top-level concepts, such as an agent, which is

composed of lower-level concepts. For space reasons, the concepts

of belief and goal are not detailed as they have the same meaning

as in the traditional BDI model.

As specified in Definition 1, an agent is an entity able to per-

form plans in order to achieve its goals, and such plans are selected

according to the agent’s softgoals and its preferences over them.

For example, agent BobA has the goal GetFunding and the plans

Plan A, Plan B, and Plan C.

Definition 1 (Agent). An agent is a tuple

⟨B,G,SG,P, P ref⟩

where B is a set of beliefs, G is a set of goals, SG is a set of soft-

goals, P is a set of plans, and Pref is a preference function.

Agent BobA also has other objectives in addition to the goal of

GetFunding, typically long-term, which impact on the choice for

one plan or another. We name these objectives softgoals, a term

already adopted in the Tropos meta-model [3]. This concept is also

used in the decision making literature, and is referred to as val-

ues [12], being defined as “principles used for evaluation. People

use them to evaluate the actual or potential consequences of action

and inaction, of proposed alternatives, and of decisions.” Agent

BobA has three softgoals, namely MinTime, MinWork, and

SaveMoney. A softgoal is defined as below.

Definition 2 (Softgoal). An agent softgoal sg ∈ SG is a broad

agent objective, which is not achieved by a plan but is more or less

satisfied due to the effect produced by agent actions that are part of

plans.

As stated above, an agent has a set of plans, where a plan is pri-

marily characterised by the goals it can achieve and a body, which

consists of a set of actions to be executed. When actions are per-

formed, they produce an effect, for instance completing forms de-

mands effort, which impacts on a softgoal. Each plan may con-

tribute (positively or negatively) to a softgoal, and is thus charac-

terised by a set of contributions to softgoals. We represent the val-

ues of contributions as a number between 0 and 1, inclusive, being

the worst and best contributions, respectively. However, this con-

tribution may be uncertain. For example, the department typically

(with 90% probability) processes requests in one day (contribution

value = 1.0), but when it is overloaded with such requests (with

10% probability), it may take up to three weeks to be processed

750



(contribution value = 0.6), which is acceptable when compared to

the two-month average processing time of national agencies. In

this way, each plan may have different contributions with different

probabilities for each softgoal. Definitions 3 and 4 formally specify

plans and contributions respectively.

Definition 3 (Plan). A plan p ∈ P is a tuple

⟨G′
, C,D, Body⟩

where G′ ⊂ G is a subset of goals that the plan can achieve, C is a

set of contributions, D is a set of dependencies and Body is a set

of actions performed when the plan is executed.

Definition 4 (Contribution). A contribution c ∈ C is a tuple

⟨sg, prob, val⟩

where sg ∈ SG is a softgoal, and prob ∈ [0, 1] is the probability

of a plan promote the contribution value val ∈ [0, 1] with respect

to sg, 0 and 1 being the lowest and highest possible contributions,

respectively. Moreover,
∑

ci∈C|ci[sg]=sg
ci[prob] = 1.

In some situations, a plan action consists of achieving a partic-

ular goal, e.g. while executing Plan A, agent BobA must achieve

the goal Elaborate Request, and this leads to a dependency be-

tween a plan and a goal. A plan may require that a goal or a set

of goals must be achieved during its execution (And Plan-Goal De-

pendency), or one goal of a set must be achieved (Or Plan-Goal

Dependency). In the latter case, the goal to be achieved is chosen

with a given probability. A plan is thus associated with a depen-

dency D = AndDep ∪ OrDep, where AndDep and OrDep are

plan-goal dependencies, defined next.

Definition 5 (And Plan-Goal Dependency). An and goal-plan de-

pendency, andDep ∈ AndDep, is a set of goals g ∈ G, on which

a plan depends.

Definition 6 (Or Plan-Goal Dependency). An or goal-plan depen-

dency orDep ∈ OrDep is a set of dependencies, such that each

orDep ∈ OrDep is a pair ⟨g, prob⟩, where g ∈ G is a goal on

which a plan may depend, and prob ∈ [0, 1] is the probability of the

plan need this goal to be achieved during its execution. Moreover,∑
orDepi∈OrDep

orDepi[prob] = 1.

Finally, agent BobA must take Bob’s preferences into account

to make a choice. We represent preferences quantitatively, as spec-

ified below.

Definition 7 (Preference). Pref : SG → [0, 1] is a function that

maps a softgoal sg ∈ SG to a value indicating the preferences for

softgoals. A preference is a value prefval ∈ [0, 1] that indicates

the importance of a softgoal sg ∈ SG, 0 and 1 being the lowest and

highest preference, respectively. Moreover,
∑

sg∈SG Pref(sg) =
1.

Such preferences express the trade-off between different soft-

goals. For instance, suppose Bob needs funding for an important

conference, he wants to receive a quick response, and does not care

too much about the effort it takes. However, as his own funds are

limited, he is somewhat concerned with saving money. Preferences

for softgoals that reflect this situation may be MinTime = 0.60,

MinWork = 0.1, and SaveMoney = 0.30.

The definition of preferences above completes the description of

our meta-model. We next describe how we use such concepts to

select plans.

4. PROCESSING AGENT MODELS
An instance of our meta-model specifies a set of agents with their

associated goals, plans, and other components, which are associ-

ated with a specific domain. Now, it is common for such agents is to

select plans to achieve goals at runtime, trying to optimise satisfac-

tion of softgoals (detailed in Section 4.1). In addition, as plans may

depend on achieving other goals, the contribution of these plans

may be derived from the plans executed to achieve those goals. In

Section 4.2, we detail how we perform this second task based on

our meta-model.

4.1 Selecting Plans
As discussed in the introduction, we aim to support the devel-

opment of agents with the ability to choose plans at runtime but

with little information provided at design time. In order to achieve

this, our approach includes an algorithm as part of the agents we

generate based on a design model, which chooses a plan according

to the current agent softgoals and preferences, and a set of plans to

achieve a goal. Our algorithm is based on MAUT [13].

Each plan has a different possible contribution to a softgoal,

which depends on what happens when executing the plan. Each

plan, with respect to each softgoal, is associated with an expected

contribution, which is a weighted average of all possible contribu-

tion values according to their probability. So, the expected contri-

bution of a plan p with respect to softgoal sg is given by

EC(p, sg) =
∑

ci∈C|ci[sg]=sg

ci[prob]× ci[val]

where C is the set of contributions of p to sg. For example, if there

are two plans that achieve the goal Elaborate Request, the first with

contributions ⟨MinWork, 0.8, 0.3⟩ and ⟨MinWork, 0.2, 0.8⟩, and

the second with contribution ⟨MinWork, 1.0, 0.6⟩, their respec-

tive expected contributions with respect to MinWork are 0.4 and

0.6. Moreover, when choosing a plan to achieve a goal, the agent

preferences should also be taken into account. Such preferences

establish a trade-off between softgoals. Thus, the plan utility of

a plan p for an agent with softgoals SG and preferences Pref is

given by

PU(p, Pref, SG) =
∑

sg∈SG

Pref(sg)× EC(p, sg)

where Pref(sg) is the preference for a softgoal sg.

Based on the plan utility, we select the plan with the highest

utility of a set of possible plans to achieve a goal. This approach

to selecting plans is implemented by Algorithm 1; the algorithm

has linear complexity, and is simple but effective, as discussed in

Section 6, which evaluates our approach.

Note that more than one plan may have the same plan utility,

and in this case a plan is selected randomly from those with the

maximum utility. In Algorithm 1, we select the first processed plan.

4.2 Deriving Plan Contributions
Our agent meta-model allows the modelling of domain-specific

information with respect to the satisfaction of softgoals, i.e. the

contribution of each plan to each softgoal. However, as the exe-

cution of certain plans may depend on achieving other goals, spec-

ifying contributions for each plan may be redundant. For exam-

ple, Plan A of our example is composed of a set of actions of

which some consist of the achievement of the goals: Elaborate

Request, Submit Request, and so on. Therefore, the contribution

of the Plan A may be computed based on the combination of the

contributions of the plans to achieve the goals that Plan A depends

751



Algorithm 1: SelectP lan(SG, P ref,P)

Input: SG: set of agent softgoals, Pref : map of agent preferences; P: set of

plans that can achieve a goal

Output: selectedP : plan that best satisfies agent preferences

1 selectedP ← null;

2 maxContrib← null;

3 foreach p ∈ P do

4 contrib← 0;

5 foreach sg ∈ SG do

6 possibleContribs← Contribution(p,sg);

7 expectedContrib← 0;

8 foreach ⟨prob, value⟩ ∈ possibleContribs do

9 expectedContrib← expectedContrib+prob×value;

10 contrib← contrib + Pref(sg)× expectedContrib;

11 if selectedP = null ∨maxContrib < contrib then

12 selectedP ← p;

13 maxContrib← contrib;

14 return selectedPlan;

on, if there are no contributions with respect to a particular softgoal

specified for Plan A.

As stated above, we have two types of dependency: and and or,

and they are treated differently. However, both dependencies share

a common feature: since plans depend on achieving goals, and a

goal may be achieved by different plans, we must first estimate the

satisfaction of softgoals when achieving a goal g, considering the

plans that may be executed to achieved it. As discussed above, each

plan can be associated with an expected contribution EC(p, sg).
Given that more than one plan may achieve g, the contribution of

g with respect to sg is the mean of the expected contributions of

each plan that may achieve it, with probability 1.0. We adopt the

mean because choosing a plan also depends on preferences, which

are not fixed, and vary at runtime. For example, the expected con-

tribution associated with the goal Elaborate Request — discussed

in the previous section — with respect to the softgoal MinWork

is ⟨MinWork, 1.0, 0.5⟩.
Now, we must combine the contributions of the goals on which

a plan depends, so that we can derive its contributions. An and

plan-goal dependency specifies a set of goals that must be achieved

during the execution of plan p. Therefore, the contributions of p

with respect to a softgoal sg is the sum of all expected contribu-

tions of goals for which p has an and dependency, normalised to

[0, 1], with probability 1.0. An or plan-goal dependency specifies

a set of goals of which one must be achieved, and this dependency

also specifies the probability of choosing each particular goal to

be achieved. Therefore, the contributions of p with respect to a

softgoal sg, in this case, are the expected contributions of goals on

which p has an or dependency, with the probability specified in this

dependency relationship.

5. MODEL-TO-CODE TRANSFORMATION
Thus far, we have presented our meta-model, with its concepts of

softgoal, contribution and preferences, and how to use them in the

plan selection process. We now focus on how to transform design

models based on our meta-model into implemented agents. Our

approach provides a meta-model together with production rules

that capture the knowledge to transform meta-model concepts into

code, running over our provided infrastructure. So, given a meta-

model instance (i.e. a model, of a particular application), we use a

code generator to perform a model-to-text transformation. During

this process we perform additional computations, such as calculat-

ing plan contributions based on dependencies. The implementation

of plan bodies is left to application developers.

However, since there is a gap between the concepts of our meta-

Production Rule Transformation

Agent name extends UtilityBasedBDIAgent

init()

ForEach goal→ AddGoal

add softgoals (in the Softgoals file)

initPreferences()

ForEach plan→ AddPlan

initPreferences()

ForEach softgoal→ SetPreference

ForEach plan→ Plan

ForEach goal→ Goal

Softgoals (generate Softgoals file)

AddPlan Add plan to library

AddGoal Add goal to agent

SetPreference Set preference belief value associated with the softgoal

Plan PlanDefinition

PlanBody

PlanDefinition name extends SimplePlan

Constructor()

get contribution metadata

ForEach contribution→ SGContribution

SGContribution Create softgoal contribution array

ForEach contribution→ Contribution

Add contributions to contribution metadata

Contribution Add plan contribution (pair of probability and value)

Table 1: Production Rules.

model and abstractions provided by existing agent platforms, we

first develop or extend a platform in which agents are executed

to make the transformation simpler. There are many existing BDI

platforms, such as JACK [10], Jadex [18], Jason [2], and BDI4JADE1

[16]. While extending most of these platforms requires changing

how XML or similar files are processed, in BDI4JADE agents are

developed solely with the constructions of a general purpose pro-

gramming language (Java), making it is easier to extend, so we

adopt this particular platform in our work.

We illustrate how we implemented our approach by extending

BDI4JADE, in Figure 1 — our extensions are in white, while ex-

isting BDI4JADE components are in grey. The main extensions

are as follows. First, BDI agents have a set of softgoals. Sec-

ond, as BDI4JADE plans can have metadata, we store as their de-

fault metadata plan contributions and dependencies. Third, we

include a plan selection strategy (an extension of BDI4JADE) ac-

cording to our plan selection algorithm based on MAUT. Finally,

utility-based BDI agent is an extension of a BDI agent, whose

plan selection strategy is set to our algorithm and which also has

a belief named SoftgoalPreferences that stores preferences over

softgoals.

Given that this infrastructure provides a means of implementing

agents with our approach, we want to transform agents designed

based on our meta-model to an implemented agent. This trans-

formation is performed through the use of production rules, which

transform instantiated concepts of our meta-models to code pieces,

or to other production rules that will eventually produce code. Due

to space restrictions, we are not able to present all production rules

needed for our approach, but we present some of them as illustra-

tion in Table 1. Rules in italics in Table 1 have their transforma-

tion omitted. The production rule column indicates the rule name

which, when applied, is transformed into the content presented in

the transformation column. Each rule is applied in the context of

a concept of our meta-model, and consequently it may manipu-

late the concept properties, such as iterating using ForEach. The

transformation process begins by applying the Agent rule to all

agents instantiated in the model.

These production rules were implemented using the Xpand2 tem-

1http://www.inf.ufrgs.br/prosoft/bdi4jade/
2http://www.eclipse.org/modeling/m2t/

752



Figure 1: Extended BDI Agent Meta-model in the BDI4JADE.

Figure 2: Meta-model and Model.

plate language, part of the Model to Text (M2T) project of Eclipse.

We first implemented our meta-model using M2T as specified in

Section 3 — see Figure 2(A). Then, the rules were implemented

as templates as presented in Figure 3, which gives an example of

a part of the template that generates the agent softgoals, which are

declared in a class. This template corresponds to the Softgoals rule.

In order to generate agents based on our implementation, an

instance of the meta-model should be created, as shown in Fig-

ure 2(B). Then, a workflow must be executed, which first processes

plan-goal dependencies to derive plan contributions and then exe-

cutes production rules generating source code.

6. EVALUATION
Now that we have detailed how agents with the ability to select

plans can be automatically generated based on an instance of our

meta-model, we evaluate our approach with an empirical experi-

ment. Even though the use of preferences in plan selection [21]

?project=xpand

Figure 3: Code Template Example.

(discussed in the related work section) has previously been consid-

ered, it does not address probabilities, and expresses preferences in

a different way. However, its representation of expressing prefer-

ences can be mapped to ours without probability, so if this approach

[21] were adopted for our evaluation scenario, it would always se-

lect the same plan. In consequence, we compare our approach to

random plan selection, with the settings described in Section 6.1.

We then present our results in Section 6.2, and a discussion in Sec-

tion 6.3.

6.1 Experiment Settings
Our experiment consists of a simulation to compare the accu-

mulated satisfaction of an agent after executing a plan to achieve a

goal, when using our approach to select the plan and when select-

ing it randomly from a set of possible plans. The satisfaction of

an agent is calculated based on how softgoals are satisfied. As the

outcome of executing a plan is uncertain, the satisfaction of a plan

that has the best (expected) plan utility is not necessarily that plan

that promotes that highest satisfaction.

753



Bicycle Bus Car Moto

Softgoal Prob Val Prob Val Prob Val Prob Val

Safety 0.05 0.00 0.10 0.00 0.15 0.00 0.30 0.00

0.95 1.00 0.90 1.00 0.85 1.00 0.70 1.00

Security 0.20 0.00 0.18 0.00 0.15 0.00 0.20 0.00

0.80 1.00 0.82 1.00 0.85 1.00 0.80 1.00

Performance 0.05 0.00 0.10 0.00 0.15 0.00 0.30 0.00

0.475 0.00 0.45 0.33 0.425 0.61 0.35 0.77

0.475 0.04 0.45 0.45 0.425 0.77 0.35 0.88

Cost 0.05 0.00 1.00 0.65 0.15 0.00 0.30 0.00

0.95 0.90 0.85 0.10 0.70 0.45

Comfort 1.00 0.20 1.00 0.40 1.00 0.80 1.00 0.50

Table 2: Plan Contributions to Softgoals.

The simulation scenario is an agent whose goal is to go to work

from its home. This agent has four possible plans: (i) go by bicycle;

(ii) take a bus; (iii) drive a car; and drive a motorcycle. In addition,

this agent has five softgoals, detailed below.

Maximise Safety Maximising safety in this context is associated

with avoiding the possibility of crashing. While going to

work, the agent may crash, and the probability of crashing

depends on the type of transportation adopted. For instance,

the probability of crashing with a motorcycle is much higher

than crashing with a car.

Maximise Security Maximising security in this context is associ-

ated with avoiding the possibility of being robbed. For ex-

ample, if an agent stops at a traffic light on a motorcycle, a

robber may steal its backpack, or if on a bus, a robber may

enter and steal from all passengers.

Maximise Performance Maximising performance means spend-

ing less time to go to work. Motorcycles can ride at a high

speed and pass through traffic jams, so they are faster than

other transportation types. If the agent crashes while going

to work, it takes the worst possible time to arrive at work.

Minimise Cost Minimising cost means spending less money on

transportation. Using a bicycle is very cheap, as maintaining

it costs very little, while maintaining a car is very expensive.

However, if an agent crashes while going to work, it will

spend a lot of money to repair its bicycle, car or motorcycle

(which is not the case with a bus).

Maximise Comfort Maximising comfort means travelling in a more

comfortable way and with less effort. For example, a car is

more comfortable than a bus.

Using the rationale described above, each of the plans has dif-

ferent contributions (probability and value) to each softgoal, as de-

tailed in Table 2. For example, the probability of a motorcycle crash

is 0.3. Therefore, if the motorcycle plan is chosen, the contribution

of this plan with respect to safety is 0.0 (if the agent crashes) with

probability 0.3, and 1.0 (if the agent does not crash) with probabil-

ity 0.7. This is also the case with the probability of being robbed

and the security softgoal. In addition, crashing also promotes the

worst cost and performance. But if there is no crash, the value asso-

ciated with the cost softgoal is specific to each transportation type,

while that associated with the performance softgoal corresponds to

the minimum and maximum time taken to get to the destination on

a scale from 0 to the maximum possible time that can be taken. Fi-

nally, the value associated with the comfort softgoal corresponds to

how comfortable each transportation type is.

Our experiment consists of running a number of iterations in

which we perform the following steps.

Step 1 Randomly generate preferences for each softgoal.

Plan Selector M SD Min Max Cum Sat

Bicycle 0.57 0.16 0.004 0.97 2829.28

Bus 0.63 0.14 0.05 0.95 3136.73

Car 0.64 0.18 0.002 0.97 3197.90

Moto 0.58 0.24 0.0001 0.96 2904.73

Random 0.60 0.19 0.0002 0.95 3001.09

Utility-based 0.66 0.19 0.0001 0.97 3301.38

Table 3: Satisfaction by Plan Selector (n = 5000).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bike Bus Car Moto Random Utility−based

 S
at

is
fa

ct
io

n 

Figure 4: Analysis of Satisfaction by Plan Selector.

Step 2 Randomly instantiate a scenario for each plan, according to

the given probability of events (crashing, being robbed, time

taken, etc.).

Step 3 Compute the satisfaction for each such scenario.

Step 4 Select a plan for each plan selector (our algorithm and ran-

domly).

Step 5 Store the satisfaction of the scenario associated with the se-

lected plan.

6.2 Results and Analysis
In our experiment, we ran 5000 iterations of the steps described

above, each of which takes less than 1 second to run. As result, we

compared the average satisfaction and the accumulated satisfaction

of all iterations for each plan selector (random and utility-based).

Moreover, we also analysed constant plan selectors: those that al-

ways choose the same plan. The average satisfaction obtained, the

standard deviation and minimum and maximum values, and accu-

mulated satisfaction are detailed in Table 3, and we present the box

plot of the satisfaction by plan selector in Figure 4. In Table 3, the

highest values are in bold and the lowest values are in italics.

As can be seen in both Table 3 and Figure 4, the plan selector

with the best results is the utility-based plan selector, while the bi-

cycle plan selector has the worst results. Therefore, even with an

uncertain outcome when selecting a plan, our approach manages to

achieve the best average satisfaction for the agent. However, this

is not the case for every individual iteration, since the utility-based

plan selector chooses the plan with the best expected value, but an

undesired event, such as a crash or being robbed, could cause other

754



500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

500

1000

1500

2000

2500

3000

Iterations

A
cc

um
ul

at
ed

 S
at

is
fa

ct
io

n

Bike
Bus
Car
Moto
Random
Utility−based

Figure 5: Accumulated Satisfaction by Plan Selector.

plans to be more successful. This uncertainty is clearly seen in the

results of the the motorcycle plan selector, which is associated with

high standard deviation (0.24) that can also be observed in Figure 4.

As a consequence of choosing the motorcycle, the agent may get

very satisfied (very good performance and good costs) or very un-

satisfied (if the agent crashes). Even though using a car achieves the

highest average satisfaction, the utility-based plan selector chooses

the plan that best fits the agent preferences — an agent may want

to take the risk of crashing if this increases its chances of arriving

at its destination more quickly. Therefore, our plan selector selects

a different plan for a different set of preferences. The number of

times that each plan was chosen is as follows: (i) bicycle = 307; (ii)

Motorcycle = 1026; (iii) Car = 2903; and (iv) Bus = 764.

In order to consider the impact of using a plan selector over time,

we also show in Figure 5 the accumulated satisfaction obtained af-

ter running 5000 iterations. The difference increases over time, but

in the very first iterations this difference is small, due to the uncer-

tainty of the scenario that arises in the selection of a plan.

After testing for normality, a one-way ANOVA was used to test

for preference differences among satisfaction of each plan selector.

Satisfaction of plan selectors differed significantly across the six

selectors, F (5, 29994) = 190.7, p ≪ .05. Post-hoc Tukey’s HSD

tests showed that all comparisons were significantly different at .05
level of significance.

6.3 Discussion
As discussed above, our plan selector significantly increases an

agent’s satisfaction in comparison to other plan selectors. The cases

where our plan selector had worse results are associated with the

uncertainty of events that may arise while executing a plan, such as

the occurrence of a crash.

Our experiment allowed us to identify a limitation of our ap-

proach: the representation of dependent probabilities. For almost

all plans, the expected outcome depends on the occurrence of a

crash, and its probability is used to set up the contributions of the

safety, cost and performance softgoals. However, this dependency

is not captured in our meta-model, which may facilitate the domain

modelling. We also assume that each plan given as input to our

plan selection algorithm has the same set of contributions, i.e. con-

tributions associated with the same set of softgoals. Therefore, we

currently do not deal with unknown information.

Another limitation of our approach is the use of quantitative val-

ues for preferences and contributions. This is a widely known issue

in the context of preference reasoning, and existing preference elic-

itation algorithms can be adopted to obtain such values. Although

there is no restriction to set up and change plan contributions at

runtime, we assume that they are set up at design time, so that the

effort of specifying these values is performed just once.

7. RELATED WORK
In this section, we discuss work related to our approach, divided

into three categories. First, we discuss work to adopt a model-

driven approach to develop MASs. Second, we present approaches

that use the concepts also used in our own work. Finally, we de-

tail and compare our approach to work on preference-based plan

selection. The adoption of Model-driven Development (MDD) for

building MASs has been investigated by the Agent-Oriented Soft-

ware Engineering (AOSE) community in recent years [5, 6, 8].

MDD considers models as first class citizens in software develop-

ment, and aims to automatically generate code for software appli-

cations by transforming and composing models. Note that this idea

is only effective when the level of abstraction used in models is

higher than that used in the source code. On some occasions, the

focus is to achieve platform independence, which is the case with

Model-driven Architecture (MDA),3 which separates the business

and application logic from the underlying platform technology. Ac-

cording to MDA, a platform-independent model (PIM) is translated

to platform-specific models (PSMs), based on a Computation Inde-

pendent Model (CIM). Although model-driven approaches for de-

veloping MASs have made substantial progress in achieving plat-

form independence as they are based on MDA, they have made

little progress in generating source code that goes beyond skele-

tons of key MAS concepts [15]. Our approach, on the other hand,

produces agents that are provided with the ability to select plans.

With respect to the concepts used in our approach, as discussed

previously, the components of our meta-model are inspired by the

Tropos agent methodology [3]. Many agent methodologies based

on the BDI model have been proposed [9], but they typically rep-

resent solely the BDI concepts, without detailing properly their re-

lationships. Tropos, derived from the i* [22] framework (used to

model functional and non-functional requirements), differs from

most other methodologies by explicitly modelling, for example,

the relationship between plans and goals and goal decomposition.

Furthermore, it includes the concept of softgoals. In addition to

adopting the concept of softgoals, our approach considers different

dependency relationships (to be able to derive plan contributions),

preferences over softgoals and uncertain plan contributions. More-

over, we also provide a means of using this information at runtime

to select plans. Our approach does not address goal decomposition,

because it is neither used in the plan selection process nor to gen-

erate agent code. At the implementation level, the Jadex platform

[18] implements the concept of meta-goal, which is a goal to select

a plan and is achieved by meta-plans. This is equivalent to the plan

selection strategy of BDI4JADE, and is just an extension point of

the platform, but the plan selection itself should be implemented

for specific applications.

Finally, a recent approach has proposed using preferences for se-

3http://www.omg.org/mda/

755



lecting plans [21]. This approach extended a language for preference-

based planning [1], to use it with agents that have a pre-determined

plan library, as in our case. This approach expresses preferences

over individual plan characteristics, and not over a broader general

goal, our softgoals, which may affect reuse negatively. If we ex-

pressed the case of our empirical experiment with this approach, the

plans would be characterised by the attributes crashed, robbed, time

and so on, and preferences would be over possible values of these

attributes. Therefore, by expressing preferences as plan contribu-

tions, we abstract a very specific plan description, which requires

domain knowledge. Moreover, the preferences of our approach ex-

press trade-offs between softgoals, which cannot be modelled with

the Visser et al.’s approach, as is the case for the uncertainty con-

sidered in our approach. By using the semantics of the extended

language proposed by Visser et al. and translating the plan contri-

butions of our simulation to their approach, the car and motorcycle

plans would be (equally) the most preferred plans and thus always

selected,4 which are the plans that have the first and third best aver-

age satisfaction, respectively — but our approach has an even bet-

ter result. The advantage of this approach [21] is that our notion of

contributions can be derived from their preferences so that, depend-

ing on the information available about the domain being modelled,

both approaches may be used in a complementary way.

8. CONCLUSION
Model-driven Development is a promising approach for building

applications based on high-level models that, with transformations

and compositions, may eventually produce an implemented system,

and successful industry projects provide evidence of the potential

of this direction [11]. It has also been investigated in the context of

multi-agent system (MAS), but current work is still premature.

In this paper, we proposed a model-driven approach to develop

BDI agents able to select plans based on softgoals and preferences.

Our approach consists of a meta-model that specifies concepts that

allow representation of the information needed for the plan selec-

tion process, such as plans, their dependencies, and their contribu-

tion to softgoals. We also proposed a simple but effective algorithm

based on MAUT that selects a plan based on plan contributions and

agent preferences, considering an uncertain outcome of the plan

executing. Finally, we described how to transform a model of an

agent designed with our meta-model into source code. The effec-

tiveness of our approach was shown with an empirical evaluation.

As future work, we will extend this approach to represent depen-

dent probabilities in plan contributions, and also to use languages

and algorithms [17] to represent and reason about qualitative pref-

erences. Moreover, we aim to address other issues of BDI agents,

such as goal generation and selection, and incorporate them into

our model-driven approach.

9. ACKNOWLEDGMENTS
Work supported by FAPERGS PRONEX 10/0049-7.

10. REFERENCES
[1] M. Bienvenu, C. Fritz, and S. A. McIlraith. Planning with

qualitative temporal preferences. In KR, pages 134–144.

AAAI Press, 2006.

[2] R. H. Bordini, M. Wooldridge, and J. F. Hübner.

Programming Multi-Agent Systems in AgentSpeak using

Jason. John Wiley & Sons, 2007.

4This approach requires choosing a parameter (k-estimate) of the
resource usage, and we choose average values taking probabilities
into account.

[3] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and

J. Mylopoulos. Tropos: An agent-oriented software

development methodology. Autonomous Agents and

Multi-Agent Systems, 8(3):203–236, 2004.

[4] A. Dasgupta and A. K. Ghose. Implementing reactive bdi

agents with user-given constraints and objectives. Int. J.

Agent-Oriented Softw. Eng., 4(2):141–154, 2010.

[5] K. Fischer, C. Hahn, and C. Madrigal-Mora. Agent-oriented

software engineering: a model-driven approach. IJAOSE,

1(3/4):334–369, Dec 2007.

[6] I. García-Magariño, J. Gómez-Sanz, and

R. Fuentes-Fernández. Model transformations for improving

multi-agent system development in ingenias. In AOSE’10,

pages 51–65. Springer, 2011.

[7] P. Giorgini, J. Mylopoulos, and R. Sebastiani. Goal-oriented

requirements analysis and reasoning in the tropos

methodology. EAAI, 18(2):159–171, 2005.

[8] C. Hahn, C. Madrigal-Mora, and K. Fischer. A

platform-independent metamodel for multiagent systems.

Autonomous Agents and Multi-Agent Systems,

18(2):239–266, 2009.

[9] B. Henderson-Sellers and P. Giorgini. Agent-oriented

Methodologies. Idea Group Publishing, 2005.

[10] N. Howden, R. Rönnquista, A. Hodgson, and A. Lucas. Jack

intelligent agentsTM: Summary of an agent infrastructure. In

Autonomous Agents, 2001.

[11] J. Hutchinson, J. Whittle, M. Rouncefield, and

S. Kristoffersen. Empirical assessment of mde in industry. In

ICSE ’11, pages 471–480. ACM, 2011.

[12] R. L. Keeney. Value-focused thinking – A Path to Creative

Decisionmaking. Harvard University, 1944.

[13] R. L. Keeney and H. Raiffa. Decisions with Multiple

Objectives: Preferences and Value Tradeoffs. John Wiley &

Sons, Inc, New York, 1976.

[14] F. Meneguzzi and L. De Silva. Planning in bdi agents: a

survey of the integration of planning algorithms and agent

reasoning. The Knowledge Engineering Review,

FirstView:1–44, 9 2013.

[15] I. Nunes, D. Cowan, E. Cirilo, and C. Lucena. A case for

new directions in agent-oriented software engineering. In

AOSE’10, pages 37–61. Springer, 2011.

[16] I. Nunes, C. Lucena, and M. Luck. Bdi4jade: a bdi layer on

top of jade. In ProMAS 2011, pages 88–103, Taiwan, 2011.

[17] I. Nunes, S. Miles, M. Luck, and C. Lucena. User-centric

principles in automated decision making. In SBIA 2012,

volume 7589 of LNCS, pages 42–51. Springer-Verlag, 2012.

[18] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A bdi

reasoning engine. In Multi-Agent Programming, pages

149–174. Springer, 9 2005.

[19] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to

practice. In First Intl. Conf. on Multiagent Systems, 1995.

[20] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven

Software Development: Technology, Engineering,

Management. John Wiley & Sons, 2006.

[21] S. Visser, J. Thangarajah, and J. Harland. Reasoning about

preferences in intelligent agent systems. In IJCAI’11, pages

426–431. AAAI Press, 2011.

[22] E. S. K. Yu. Towards modeling and reasoning support for

early-phase requirements engineering. In RE ’97, pages

226–235. IEEE Computer Society, 1997.

756


