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1 Introduction

Effective Field Theories (EFT’s) describe the dynamics of light degrees of freedom at low-

energy via higher dimensional operators that incapsulate the effect of high-energy physics

which is kinematically inaccessible. Symmetries play a central role in the study of EFT’s

as the renormalization group flow from the ultraviolet (UV) to the infrared (IR) fixed

points respects them. As a matter of fact the converse is essentially true as well, and

operators that are not protected by a symmetry are expected to be generated along the

renormalisation group flow: “write down all terms allowed by the symmetries” is the mantra

of EFT practitioners. Symmetries, either approximate or exact, provide also an organising

principle, or power counting, that determines which operator is important and which one

is instead naturally suppressed by insertions of small spurions.

But besides symmetries there are other, perhaps more structural, conditions which an

EFT must rely upon, and that further constrain the structure of the low-energy theory.

– 1 –
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It is well known that not every EFT in the IR admits an UV completion consistent with

the fundamental S-matrix properties [1]. Crossing symmetry and the analytic structure

of scattering amplitudes of the underlying microscopic theory provide a link between the

UV- and the IR-theory in the form of dispersion relations for the elastic forward 2 → 2

scattering φX → φX [2]. These relations provide a UV-IR connection because the low-

energy amplitude in the deep IR is expressed as a dispersive integral of the discontinuity

across the branch cuts which extend to arbitrary high-energy in the complex s-plane.

Moreover, unitarity of the microscopic theory implies the optical theorem that insures

strictly positive discontinuities across the branch cuts at all energies, and in turn the

positivity constraints of the schematic form

∂2

∂s2
MEFT(φX → φX)

∣∣
s=t=0

> 0 (1.1)

on the low-energy amplitudes [1].

The positivity constraints do not depend on the specific dynamics of the UV comple-

tion, as they are obtained by fundamental requirements such as unitarity, crossing symme-

try and analyticity that are usually assumed in any scattering theory. This is why they have

found several applications ranging e.g. from the a-theorem [3] to the theory of pions [4–6],

from WW-scattering [1, 7, 8] to composite Higgs models [8–11], from quantum gravity [12]

to inflation [13, 14], from Galileons [15] to massive gravity [16], from the weak gravity

conjecture [17, 18] to the OPE coefficients [19], from the conformal blocks expansion [20]

to the Mellin amplitudes for CFTs at large-N [21]. Virtually all literature have focused on

positivity bounds for amplitudes of bosons with spin-0, -1 or -2; see [22] for an interesting

exception that studied dimension-6 4-fermi interactions, and e.g. [23–26] for pion-nucleon

scattering in QCD. And in fact, apart from e.g. [12, 16], most of the positivity bounds for

massive spin-1 or spin-2 bosons have actually focused on the “eaten” scalar modes, i.e. the

spin-0 Goldstone Bosons (GB) or the Galileon mode, respectively.

In this paper we close this gap and study in generality the positivity bounds for scat-

tering amplitudes M(χσ1ψσ2 → χσ1ψσ2) between particles χ and ψ of arbitrary spins (or

helicities) σi, including the case where they are both fermions with half-integer spins.

This task is non-trivial as the polarizations for spinning particles depend on the mo-

menta and carry themselves discontinuities in the complex s-plane that could affect the

analytic structure of the whole amplitude which is built out of the amputated correlators

dotted with the polarizations. Moreover, crossing symmetry for spinning particles is not, in

general, as simple as exchanging the Mandelstam’s variables s↔ u. Furthermore, crossing

fermions introduces an extra minus sign relative to the otherwise identical prescription for

bosons, and one must ensure that this sign does not propagate and spoil the positivity

of the integrand in the dispersion relation. In fact, we show that crossing symmetry and

the polarizations for spinning particles actually conspire together, but only in the special

kinematics of the forward limit, to cancel each other’s issues and yield again the positivity

bounds (1.1). The resulting positivity bounds can thus be elevated to universal statements

about scattering amplitudes.1

1Certain caveats apply; they are discussed in section 4.
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An interesting consequence of these positivity bounds is that scattering amplitudes

can not be arbitrarily soft. They can be as soft as O(p4), but not softer.2 In turn this

imposes a constraint on how quickly amplitudes can raise with energy within the validity

of the EFT. Particles that are highly boosted but with momenta below the cutoff of the

EFT, m � E � Λ, can be considered massless and soft compared to Λ. The leading

soft behavior tells us that amplitudes with energy above the IR thresholds, but within the

validity of the EFT, can be dominated at most by an O(p4)-behavior. The EFT contains

of course higher energy corrections that come from higher-dimensional operators but they

are always subleading because suppressed by positive powers of E/Λ � 1, relative to the

leading soft behavior. Those corrections would become important only at the cutoff E ∼ Λ

where the EFT breaks down. All in all, fundamental properties of scattering amplitudes

enforce the O(p4)-limit on the leading energy growth behavior of the amplitudes for particle

with arbitrary spin, and within the validity of the EFT.

In section 5 we discuss the example of a spin-1/2 chiral fermion that saturates this

soft behavior, reproducing essentially the structure of the theory of the Goldstino from

spontaneous breaking of N = 1 supersymmetry (SUSY).

Even though the amplitudes can not be strictly softer than O(p4) one may wonder

whether there exist a loose sense or an approximate limit in which they can effectively be

softer than that, i.e. supersoft. It is in principle conceivable a theory of massless particles

where the amplitudes are as soft as O(p6) and yet respect all our consistency requirements

whenever a tiny, in fact arbitrarily small, mass or any another IR scale ΛIR, is generated by

a less irrelevant perturbation than those responsible for the leading interactions suppressed

by the scale Λ that controls the derivatives expansion. The perturbation gives rise to a

tiny yet important correction of O(Λ2
IRp

4/Λ6) which allows the amplitudes to satisfy the

positivity constraints for arbitrarily small values of ΛIR. This happens e.g. for the theory

of massive gravity where the leading Galileon mode scales as O(p6) while the sub-leading

contributions go like m2
gp

4/Λ6 [16] and ΛIR is identified with the graviton mass mg.

We discuss similar theories in section 6 and make the non-decoupling between UV

and IR more manifest. As we remove the IR deformation, i.e. ΛIR → 0, we hold fixed the

coupling g∗ that is controlling the supersoft terms at a certain energy scale Λ that eventually

diverges, Λ → ∞, but arbitrarily slowly. In this way the supersoft O(p6)-terms fail to

dominate the amplitude at low-energy only in a tiny window in the deep IR, 0 < E < ΛIR,

that can be shrunk to zero much faster than the rate by which the amplitudes, sayM(χψ →
χψ) ∼ g2

∗(E/Λ)6, eventually vanish as Λ→∞. We can make the hierarchy of scales ΛIR �
Λ completely natural by a symmetry which is broken by a small spurion ε so that ΛIR ∼ εΛ.

Equivalently, we can consider hierarchical couplings g∗ and g = εg∗, which control the

supersoft and the O(p4)-behavior of the amplitudes respectively, because of an enhanced

symmetry for ε→ 0. Consistency with our positivity bounds is obtained when ε→ 0 (and

therefore ΛIR , g → 0) by demanding that Λ weakly depends on ε such that nevertheless

Λ→∞, eventually. This dependence is taken weak arbitrarily, say e.g. Λ ∼ log ε or Λ ∼ ε−n

2In this paper by soft it is meant that all external momenta in the scattering are sent to zero with the

same scaling factor.
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with n � 1. For any finite but small ε we get essentially a supersoft theory to almost all

energies below the cutoff. We argue in section 6.2 that, however, other obstructions may

forbid taking ε very small while the coupling g∗ of the UV completion is held finite.

We study in detail an example of fermionic supersoft theory: a spin-1/2 particle with

a fermionic shift symmetry χ→ χ+ξ which is perturbed by Goldstino-like (less) irrelevant

interactions that can be suppressed by the spurion ε associated with the breaking of the

shift symmetry. The IR scale ΛIR can be essentially identified with εΛ where Λ is the cutoff

that suppresses the interactions respecting the shift symmetry. The hierarchy between Λ

and ΛIR is naturally stable since it is controlled by approximate symmetries. This example

provides an even steeper energy growth than the one proposed with the “remedios” in [28].

The remedios, as well as the supersoft theories, are interesting because new-physics effects

that would become visible at high-energy disappear quickly going to lower energy. This

makes them consistent with the absence of new physics in the IR. Going to higher energy,

certain higher dimensional operators quickly overrun the amplitudes and dominate the

lower dimensional operators that are suppressed by the small spurions, while remaining

within the regime of validity of the EFT. In this sense, these theories run very fast while

the amplitude remains small. The relevance of unsuppressed higher dimensional operators

that produce such stronger dependence upon the energy scale, and may hence affect the

phenomenology at the Large Hadron Collider, has been recently emphasised e.g. in [29].

The paper is organised as follows: we first review crossing symmetry in section 2, we

study the analytic properties of the polarizations and their relation to crossing symmetry

in section 3, we derive the general positivity bounds in section 4, we study the maximally

soft theory of a spin-1/2 fermion in section 5, we discuss supersoft theories in section 6,

and we finally conclude in section 7.

2 Crossing symmetry

In this section we recall the basic properties of crossing symmetries and introduce the

notation used throughout the paper. The impatient reader may go directly to section 3.

2.1 Crossing one particle

Consider a scattering process in→ out represented by the transition

{kσii ai , p
σ
a} −→ {kσoo ao}

where a certain particle Ψ of 4-momentum p, little-group index σ (either the spin or the

helicity), and internal index a belongs to the initial initial state in = Ψ +X together with

other particles, that may or may not be of the same species of Ψ, which are collectively

called X, see figure 1. The in and out quantum numbers are collectively represented by

the set of quantum numbers {kσii ai , p
σ
a} and {kσoo ao} respectively.

The internal indexes aj label the species of the particles and, possibly, the elements

inside the representation rj of the symmetry group carried by the states. For massless

particles the index σ can be identified with the helicity, whereas for massive states it takes

the 2S + 1 values from −S to S, where S is the spin. It may be sometimes convenient to

– 4 –
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X
out

Ψ
�σ
a

in

kiσiai ko ao
σo

X

Ψ �

b

kiσiai ko ao
σo

σ

Figure 1. Scattering processes X + Ψ → out and X →
(
out + Ψ

)
which are related by crossing

symmetry according to eq. (2.1) and (2.5).

work with states of non-definite helicity or spin, such as e.g. photons with linearised rather

than circular polarizations. For the rest of this section we focus only on states of definite

spin or helicity, leaving the discussion of linear polarizations to appendix B.

The scattering amplitude takes the form

M({kσii ai , p
σ
a} → {kσoo ao}) = O`({kσii ai , k

σo
o ao}, p; a)uσ` (p) (2.1)

where we have singled out the polarization uσ` (p) of Ψ. The polarizations uσ` (vσ` ) for (anti-

)particles carry a little group index σ as well as a Lorentz or spinorial index `.3 Contracting

the polarizations with the Lorentz-covariant residues of the n-point correlation functions,

i.e. with the on-shell matrix elements amputated by the external propagators ∆``′(k),

schematically e.g.

∆−1
``′ (p)

∏
i,o

∆−1
`i`′i

(ki)∆
−1
`o`′o

(ko)

∫
d4x1 . . . d

4xe−ipx−i
∑
kixi+koxo〈0|TX{`′i`′o}({xi, xo})Ψ

†
`′ a(x)|0〉 ,

(2.2)

we extract the little-group covariant on-shell S-matrix elements [2]. This is nothing but

the standard LSZ reduction formula [2, 30, 31] where X{`i`o}({xi, x0}) is a shorthand for

the product of fields Φai `i(xi) which are Fourier transformed with momenta +ki if ingoing

and −ko if outgoing, and that have a non-vanishing overlap between the vacuum and the

one-particle states occurring in the scattering. We call Ψ` a(x) any field that annihilates

the particle Ψ

〈0|Ψ` b(x)|pσa〉 ∝ δabuσ` (p)e−ipx (2.3)

and that creates its anti-particles Ψ

〈pσā |Ψ` b(x)|0〉 ∝ δabvσ` (p)eipx . (2.4)

3For a generic representation of the Lorentz group, the index ` is actually a pair of indexes (a, b) that

labels the (2A + 1)(2B + 1) states in the irreducible representations (A,B) of SU(2) × SU(2) ∼ SO(3, 1)

identified by half-integers values for A and B. The (0, 0), (1/2, 0), (0, 1/2), (1/2, 0)⊕(0, 1/2), and (1/2, 1/2)

are the standard scalar, left-handed spinor, right-handed spinor, Dirac spinor, and vector representation

respectively. The Dirac and vector representations are often recast with a single index, ` = α for the

4-component Dirac spinors uσα and vσα, and ` = µ for the 4-vector polarizations εσµ and εσ ∗µ .

– 5 –
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The proportionality factor is an irrelevant constant that is removed by the LSZ reduction

formula.4 Anti-particles are denoted by a bar over the internal index which labels the the

states inside the complex conjugate representation r∗ carried by Ψ. For a U(1) a is the

charge and ā = −a.

The scattering amplitude (2.1) is related via crossing symmetry to another physical

process where the antiparticle Ψ of generic momentum p, helicity (or spin) σ, and internal

quantum number b belongs to the final state, while the other particles in the in and out

state have not been touched, i.e. X →
(
out + Ψ

)
, see figure 1. This crossed amplitude reads

M({kσii ai} → {k
σo
o ao , p

σ
b
}) = ±O`({kσii ai , k

σo
o ao},−p; b) v

σ
` (p) (2.5)

where O`({kσii ai , k
σo
o ao},−p; b) is the same function that appears in Eq. (2.1) but evaluated

at the unphysical momentum −p given that Ψ belongs to the final states. Equiva-

lently, the pole at p2 = m2
Ψ originates from the overlap (2.4) rather than (2.3). The

overall sign is determined by the statistics of Ψ: it’s + for a boson and (−1)n for a

fermion, where n is the number of fermion pairs exchanges we need to perform to move

Ψ`(x) through the fields Φai `i in X`1`2,...({xi, xo}) in order to reach the canonical form

〈0|T Ψ†` a(x)X`1`2,...({xi, xo})|0〉 in the amputated matrix element.

The polarization dotted with the amputated matrix element is now vσ` rather than uσ`
because the relevant overlap is given by eq. (2.4) as opposed to eq. (2.3). Crucially enough,

the particle/anti-particle polarizations are actually related by locality and causality that

enforce, via CPT invariance, the following relations

εσ ∗µ (p) = (−1)σε−σµ (p) , v±(p) = ∓γ5u∓(p) , v+
L (p) = u−L (p) , v−R(p) = u+

R(p) ,

(2.6)

for vector, Dirac, and left- or right-handed (massless) Weyl representation respectively.5

Therefore, simple relations emerge between the scattering amplitude and its crossed am-

plitude where the helicities of the crossed particles are reversed, σ̄ = −σ. Actually, mass-

less Weyl particle/anti-particles have opposite helicity anyway. The proof of eq. (2.6), as

well as its generalisation (A.3) to arbitrary representations (A,B) of the Lorentz group

SO(3, 1) ∼ SU(2)× SU(2), is discussed in appendix A.

2.2 Crossing two or more particles

It is clear now how to extend the action of crossing to more particles that swing side between

the in and the out state. For any particle with quantum numbers pσa in the initial state

which is replaced by its anti-particle of quantum numbers pσa in the final state6 we keep

the same amputated matrix element of the original process but evaluated at p → −p, we

4We are working with the relativistic normalization 〈pσ|kσ
′
〉 = δσσ

′
(2π)32Epδ

3(p− k).
5In order to avoid clutter of notation we display only the sign ± for the spin-1/2 label σ, which is

shorthand for the actual value equal to ±1/2. Moreover, the overall sign that relates uσ with v−σ in (2.6)

is conventional since it depends on the choice of the CPT phase. In contrast, the resulting relation (A.4)

for the density matrices ρσ = uσ(p)uσ †(p) and ρ̃−σ = v−σ(p)v−σ †(p) is physical and does not depend on

any conventional choice.
6Since the anti-particles are denoted by Ψ relative to the particles Ψ, their generic 4- and 3-momentum

are also called p and p̄, analogously to the notation for the charges and the spins.

– 6 –
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multiply it by an overall sign determined by the statistic, and we replace the polarizations

uσ(p) ↔ vσ̄(p̄). Of course, for (anti-)particles in the final (initial) state that move to

the other side of the scattering, the replacement is uσ†(p) ↔ vσ̄†(p̄). Notice that the

polarizations are always on-shell, i.e. p0 =
√

p2 +m2
Ψ and p̄0 =

√
p̄2 +m2

Ψ, i.e. their

4-momentum is not flipped under crossing.

For example, let us consider the scattering

Ψ(kσ1
1 a1

)X(kσii ai) −→ Ψ(kσ3
3 a3

)X(kσoo ao)

where particles 1 and 3 are of the same species. This scattering includes the simple 2 → 2

scattering as a special case where i = 2 and o = 4. We consider the crossed process

Ψ(k
σ1

1 a1
)X(kσii ai) −→ Ψ(k

σ3

3 a3
)X(kσoo ao)

where we have crossed particles 1 and 3. The scattering amplitudes are given by7

M(kσ1
1 a1

, kσ2
2 a2
→ kσ3

3 a3
, kσ4

4 a4
) =

[
. . . uσ3 ∗

`3
(k3)

]
(2.7)

×O`1...`3...
(k1, k3, . . . ; a1, a3 . . .)

[
uσ1
`1

(k1) . . .
]

M(k
σ1

1 a1
, kσ2

2 a2
→ k

σ3

3 a3
, kσ4

4 a4
, ) = ηΨ

[
. . . vσ̄1 ∗

`3
(k̄1)

]
(2.8)

×O`1...`3...
(−k3,−k1, . . . ; a3, a1 . . .)

[
vσ̄3
`1

(k̄3) . . .
]
.

where the . . . hides the irrelevant dependence on the spectators’ polarizations and quantum

numbers, that is the dependence on particles 2 and 4. The overall sign ηΨ = (−1)2SΨ is

+(−) for Ψ = boson(fermion), and it does not depend on the spectators X as the amplitude

must involve an even number of fermions and hence an odd number of fermion exchanges

while keeping the same ordering for the X ′s.

3 Forward scattering and crossing as s ↔ u

The 2→ 2 scattering amplitude of spin-0 particles

πa1(k1)πa2(k2) −→ πa3(k3)πa4(k4)

such as pions of QCD is a little-group singlet that transforms as a scalar under a Lorentz

transformation Λ, implyingM({pi}) =M({Λpi}). The amplitude is Lorentz invariant and

can be written in terms of Mandelstam’s variables alone, i.e. Ma1a2a3a4(s, t, u), where

s = (k1 + k2)2 , t = (k1 − k3)2 , u = (k1 − k4)2 , s+ t+ u =
4∑
i=1

m2
i . (3.1)

7It is customary for Dirac spinors to work with ūσ ≡ uσ †γ0 and v̄σ ≡ vσ †γ0 by absorbing an extra γ0

in the amputated matrix elements. For our purposes we find instead more convenient in the following to

work always with u† and v†.

– 7 –
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Since the polarizations for scalars are trivial, eq. (2.8) implies that the amplitude for the

crossed process

πa3(k1)πa2(k2)→ πa1(k3)πa4(k4)

can be obtained fromMa1a2a3a4(s, t, u) simply by sending k1 ↔ −k3 and a1,3 ↔ a3,1, which

corresponds to the familiar crossing relation in terms of Mandelstam’s variables

Ma3a2a1a4(s, t, u) =Ma1a2a3a4(u, t, s) . (3.2)

For particles with spin the polarizations are instead non-trivial, and exchanging s↔ u

(and a1,3 ↔ a3,1) is not equivalent, in general, to crossing symmetry. See e.g. [8, 36] for

an explicit example where crossing massive spin-1 particles does not yield the same result

of the transformation s ↔ u. Moreover, the amplitude is no longer an invariant scalar

since it transforms under Lorentz transformations as the tensor product of the little-group

(conjugate) representations L carried by the particles in the initial (final) state, i.e.

Lorentz : |pσa〉 → |(Λp)σ
′
a 〉 Lσ′σ(W (Λ, p)) . (3.3)

For massive particles L is a (2S+1)-dimensional representation of the little group SO(3) ∼
SU(2), and W (Λ, p) is the Wigner rotation. The little group for massless particles is instead

ISO(2), but the translations inside ISO(2) act trivially while the rotations give a phase,

Lσ′σ = δσ′σe
iσθ(W,p).

Nevertheless, the forward scattering where the kinematics of the initial state and the

final state are the same, kσii = kσoo , provides an exceptional configuration where special

relations emerge. The polarizations in (2.7) combine into the form of density matrices

(also known as spin projectors) of pure states

uσ` (k)uσ †`′ (k) ≡ ρσ``′(k) , vσ` (k)vσ †`′ (k) ≡ ρ̃σ``′(k) (3.4)

(no sum on σ) which are traced with the amputated matrix elements, e.g.

forward: M(kσ1
1 a1

, kσ2
2 a2
→ kσ1

1 a3
, kσ2

2 a4
) = ρσ1

`1`′1
(k1)

[
O`1`2
`′1`
′
2
(k1, k2; a1, a2, a3, a4)

]
ρσ2

`2`′2
(k2) .

(3.5)

Under crossing of 1 and 3 one has

crossed-forward: (3.6)

M(kσ1
1 a3

, kσ2
2 a2
→ kσ1

1 a1
, kσ2

2 a4
)=(−1)2S ρ̃σ̄1

`1`′1
(k1)

[
O`1`2
`′1`
′
2
(−k1, k2; a1, a2, a3, a4)

]
ρσ2

`2`′2
(k2) .

The properties of these density matrices will allow us to extend them off-shell as analytic

functions of the 4-momentum (but not necessarily of the Mandelstam variables), and prove

that the s ↔ u exchange together with a1,3 ↔ a3,1 and σ1 ↔ −σ1 is in fact equivalent, in

the forward limit, to the action of crossing.

Moreover, the use of a density matrix allows one to generalize the analysis to actual

mixed states which are described by density matrices ρ``′(k) =
∑

σ pσu
σ
` (k)uσ †`′ (k) and

ρ̃``′(k) =
∑

σ p̃σv
σ
` (k)vσ †`′ (k) where pσ and p̃σ are between 0 and 1. We discuss further this

point in appendix C.

Hereafter we restrict to pure states density matrices (3.4) and discuss in turn the

massless and massive case.

– 8 –
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Massless particles. The little-group phases exp[iσθ(Λ, p)] that would arise from a

Lorentz transformation in (3.3) actually cancel out between the initial and final state,

in the forward scattering t→ 0, σ1 = σ3, σ2 = σ4. Hence, the forward amplitude for mass-

less particles is in fact an invariant scalar where the helicity behaves just as an external

label for the particles, on the same foot of the internal quantum numbers.

Consider a left-handed massless Weyl fermion: its pure state density matrix is a 2 by

2 spinor matrix which can be expressed in terms of the 4-momentum pµ as

ρ−(p) = u−(p)u−†(p) = v+(p)v+ †(p) = ρ̃+(p) = pµσ
µ (3.7)

where p0 = |p|, σµ = (1, σi) and we used (2.6). Expressed as a function of the 4-

momentum, it is analytic and odd under pµ → −pµ compensating the sign change for

crossing fermions, as well as the change in the polarizations u+ ↔ v− and u+ † ↔ v−† for

swapping particles/anti-particles of opposite helicities:

crossing massless spin-1/2: ρ−(p) −→ −ρ̃+(p) = ρ−(−p) . (3.8)

Therefore, crossing massless Weyl fermions in the forward limit acts on the whole ampli-

tude, expressed in terms of the 4-momenta including also the the density matrices, simply

as kσa ↔ −k−σa for the crossed particles

M(−k−σ1
1 a3

kσ2
2 a2
→ −k−σ1

1 a1
kσ2

2 a4
) =M(kσ1

1 a1
kσ2

2 a2
→ kσ1

1 a3
kσ2

2 a4
) . (3.9)

Equivalently, it acts as s ↔ −s, σ ↔ −σ and a ↔ a on the amplitude expressed with the

Mandelstam variable s:

M(1−σ1
a3

2σ2
a2
→ 1−σ1

a1
2σ2
a4
, s) =M(1σ1

a1
2σ2
a2
→ 1σ1

a3
2σ2
a4
,−s) . (3.10)

The analytic properties of the density matrix for a massless spin-1 particle associated

to a field Aµ that transforms like a Lorentz vector (up to gauge transformations) are fully

analogous. Indeed, using eq. (2.6), the polarizations of opposite helicity of particles/anti-

particles are in fact the same

ρ∓µν(p) = ε∓µ (p)ε∓∗ν (p) = ε±∗µ (p)ε±ν (p) = ρ̃±µν(p) . (3.11)

Moreover, up to irrelevant gauge transformations, the polarizations are actually functions

of the unit-vector p̂ = p/|p| through the rotation R(p̂) that sends the little-group reference

vector kr to p, namely εσµ(p) ≡ Rνµ(p̂)eσν (kr). The density matrix expressed as a function

of the 4-momentum p as ρσµν(p) ≡ ρσµν(p̂ = p/p0) is therefore invariant under p → −p.
Equivalently, we can pick a convenient frame where p is aligned with kr since the forward

amplitude depends only on s. Hence, the action of crossing spin-1 massless particles in

the forward limit is equivalent again to kσa ↔ −k−σa everywhere including the contribution

from the polarizations up to gauge transformations,

crossing massless spin-1: ρ±µ (p) −→ ρ̃∓µν(p) = ρ±µν(−p) , (3.12)

implying the relations (3.9) and (3.10).
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This result trivially extends to massless gravitons since their polarizations are ε±µν(p) =

ε±µ (p)ε±ν (p), or e.g. massless spin-3/2 with u±µα = ε±µ u
±
α . In fact, it extends to higher spins

associated to massless fields that can be chosen transforming as covariant representations

(S, 0) or (0, S) of the Lorentz group SO(3, 1) such as a self-dual field strength Fµν in the

(1, 0) or (0, 1) representation. Indeed, one can show [33, 34] that the density matrices

can be expressed as monomials in the 4-momentum pµ of order 2S. Together with CPT

invariance this implies

crossing massless spin-S: ρ±(p) −→ (−1)2S ρ̃∓(p) = ρ±(−p) (3.13)

and hence the crossing relations (3.9) and (3.10). These relations for the analytically

continued density matrices, ρσ(k) = ρ̃−σ(k) = (−1)2Sρσ(−k), are such to enforce locality

of the free theory i.e.

[Ψ`1(x1),Ψ†(x2)`2 ]±=ρ`1`2(i∂)

∫
d3k

2|k|(2π)3

(
e−ik(x1−x2)±(−1)2Seik(x1−x2)

)∣∣
(x1−x2)2<0

=0

(3.14)

at space-like distances, where [ , ]± is the commutator (−) or the anti-commutator (+).

This implies locality of the interacting theory (e.g. via Källén-Lehmann decomposition [2])

and hence causality [52]. Since the density matrices are nothing but the numerators of free

propagators, i.e.

〈TΨ`1(x1)Ψ†`2(x2)〉 =

∫
d4k

(2π)4
e−ik(x1−x2) i ρ`1`2(k)

k2 − iε
, (3.15)

they enforce as well the correct commutation or anti-commutation relations are required

by the spin-statistics theorem for the propagators continued analytically to the euclidean

signature.

Massive particles. Whenever a massive particle is involved in the scattering process,

the forward amplitude is no longer Lorentz invariant but transforms according to eq. (3.3).

This simply requires us to specify a reference frame: we pick the centre of mass frame and

orient the z−axis, that is the direction where the spins are measured, along the momentum

of the incoming particle 1, k1 = (k0
1, 0, 0, k

z
1)T . We are dealing i.e. with helicity amplitudes,

even though helicity itself is not Lorentz invariant. Boosts and rotations along the z-axis

transform the states but leave the forward amplitude invariant. Therefore, it must be a

function of the only non-vanishing invariant under the 2D Lorentz group in this special

kinematics, that is the Mandelstam variable s.

Let us start with a Dirac or Majorana fermion Ψ of mass mΨ: the density matrix is a

4 by 4 matrix with spinor indexes that can be expressed as

ρσ = uσ(k1)uσ †(k1) = ( /k1 +mΨ)
1 + γ5/aσ(k1)

2
γ0 (3.16)

where aσµ is the polarization 4-vector, see appendix A and e.g. [35]. In our kinematics it

takes the form

a±µ (k1) = ± 1

mΨ

(
kz1, 0, 0, k

0
1

)T
(3.17)
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obtained by boosting the rest-frame’s polarization vector a±(0) = (0, 0, 0,±1)T along the

z−direction with velocity β = −kz/k0, that is applying the Lorentz transformation Λν
µ(k1)

Λνµ(k1) =



k0
1

mΨ
0 0

kz1
mΨ

0 1 0 0

0 0 1 0
kz1
mΨ

0 0
k0

1

mΨ

 , (3.18)

which is linear in the 4-momentum k1. This allows us to analytically continue the polar-

ization vector in (3.17) to a function of the 4-momentum which is linear in k too,

a±µ (k)→ a±µ (k) = −a±µ (−k) . (3.19)

For an anti-particle moving in the same direction k1, using again eq. (2.6), we have

ρ̃σ = vσ(k1)vσ †(k1) = ( /k1 −mΨ)
1 + γ5/̃a

σ

2
γ0 ãσµ = −a−σµ . (3.20)

Note that for mΨ → 0 the polarization vector reduces to a±µ (k) → ±kµ/mΨ and one

smoothly recovers the massless relation (3.7) written in the 4-component notation, ρ±(k) =

P±/kγ
0 = ρ̃∓(k), where P± = (1±γ5)/2 are the projectors over the right and left chiralities

respectively.

Expressed in terms of the 4-momentum, the relation between particle/anti-particle

density matrix for spin-1/2 is ρ̃∓(k1) = −ρ±(−k1), implying once again eq. (3.9) and

M(1−σ1
a3

2σ2
a2
→ 1−σ1

a1
2σ2
a4
, s) =M(1σ1

a1
2σ2
a2
→ 1σ1

a3
2σ2
a4
, u) (3.21)

where t = 0 and u = −s+
∑

im
2
i .

The polarizations of spin-1/2 particles contain, for a finite mass, non-analyticities in the

Mandelstam variables that may or may not propagate to the whole amplitude. For example,

in the Ψψ → Ψψ scattering mediated by the P - and C−violating interaction Ψ̄γµγ5Ψψ̄γµψ

(where we assume for simplicity mψ = mΨ), the forward amplitude is proportional to

mΨa
σ1
µ (k1)kµ2 ∝

√
−us which has a tree-level branch-cuts in the complex s-plane from

s = 0 to s = 4m2
Ψ. We discuss in section 4 the role of this discontinuity on the dispersion

relations and the resulting positivity constraints.

Passing to massive spin-1 bosons in the vector representation, we can work directly

with an explicit basis obtained by boosting along the z−axis the eigenvectors of Sz in the

particle rest frame

ε±µ (k1) = ∓ 1√
2

(0, 1,±i, 0)T , ε0µ(k1) =
1

mΨ
(k3

1, 0, 0, k
0
1)T . (3.22)

Clearly, the particle/anti-particle density matrices expressed in terms of the 4-momentum

are related by ρ̃σ(k) = ρ−σ(k) = ρ−σ(−k). Therefore, the crossed scattering amplitudes

are again related as in eq. (3.9) and (3.21) simply by s ↔ u, and a → a for the internal

quantum numbers.
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These results extend to massive higher spins by taking suitable tensor products between

the polarizations that we have studied so far. Consider for example a tensor Ψµ1...µn that

destroys a particle with integer spin as in (2.3). Its polarizations u`(0) = uµ1...µn(0)

in the rest frame are boosted along the z-axis by acting on each index with Λν
µ(k1) of

eq. (3.18), which is linear in the 4-momentum k1, resulting again in ρ̃±(k) = ρ∓(k) =

ρ∓(−k) and hence eq. (3.21). Analogously, higher half-integer spins can be found in the

tensor product of vector and spin-1/2 representations. As example consider a massive

spin-3/2 with polarization uσµα =
∑

σ′σ′′ C
σ
σ′σ′′ε

σ′
µ · uσ

′′
α where Cσσ′σ′′ is the Clebsch-Gordan

coefficient 〈(1/2, σ′′)(1, σ′)|(3/2, σ)〉.

4 Unitarity constraints and positivity bounds

We consider now forward and elastic amplitudes where not only the kinematical variables

kσ but even the internal quantum numbers a are the same in the in and out states, namely

a1 = a3 and a2 = a4 together with kσ1
1 = kσ3

3 and kσ2
2 = kσ4

4 . Displaying fewer indexes for

convenience,

M(1σ1
a1

2σ2
a2
→ 1σ1

a1
2σ2
a2

; s) ≡Mσ1σ2
a1a2

(s) ,

we expand the amplitude around a point s = µ2 in the complex s-plane where it is analytic

Mσ1σ2
a1a2

(s) =Mσ1σ2
a1a2

(µ2) + (s− µ2)M′σ1σ2
a1a2

(µ2) +
1

2!
(s− µ2)2M′′σ1σ2

a1a2
(µ2) + . . . (4.1)

The primes ′’s represent derivatives with respect to s. The Taylor coefficients can be

extracted with the Cauchy integral formula, e.g.

M′′σ1σ2
a1a2

(µ2) =
2!

2πi

∮
C

ds

(s− µ2)3
Mσ1σ2

a1a2
(s) , (4.2)

where C is any contour in the complex s−plane that encloses s = µ2 but no other singularity,

see figure 2. Choosing µ2 in the IR, the taylor coefficients on the left-hand side of (4.2)

can be expressed in terms of the Wilson coefficients ci of the effective lagrangian

LEFT =
∑
i

ciOi , (4.3)

that describes the dynamics of the IR degrees of freedom at low-energy. The Wilson

coefficients and the EFT itself are indeed designed to match the full amplitude when

evaluated in the IR. On the right-hand side of (4.2), the contour can be deformed into C̃
running over the branch-cuts (and possibly poles on the real axis if any) and a big circle

eventually sent to infinity, see figure 2. The variable s under the integral along C̃ may

take very large values, well above the cutoff of the effective theory. Needless to say, one

should not use the EFT lagrangian (4.3) to evaluate the right-hand side of eq. (4.2). In

fact, we do not want to, and we would not be able to, calculate the contour integral.

It would be a herculean task that would require the knowledge of the underlying theory

up to arbitrary high-energy. We rather want to show that the integral is positive in any

underlying unitary theory that UV completes the effective lagrangian, yielding in turn a
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positivity constraints on the low-energy Wilson coefficients via eq. (4.2) and (4.3). To this

end we need to understand the analytic structure of the amplitude.

For massive particles, the scalar functions in the amputated matrix elements, such as

e.g. the functions ai(s) in the fermion-scalar scattering

M = Tr
{
ρ(k1)

[
as(s) + aA(s)Γ5 + aV (s)γµk2µ + aPV (s)γ5γµk2µ

]}
, (4.4)

are analytic on the real axis below the thresholds for the s-channel and u-channel branch-

cuts, except possibly for isolated poles of light particles that can be exchanged in the

scattering. As long as the contraction with the polarizations, i.e. the trace with the den-

sity matrix ρ(k1), does not introduce further branch-cuts below those thresholds, the full

elastic forward amplitude can be extended to a real function of the complex cut-plane of s

variable [38, 39]

Mσ1σ2 ∗
a1a2

(s) =Mσ1σ2
a1a2

(s∗) (4.5)

via the Schwarz reflection principle. This relation is important because it allows us to link

the discontinuity across the cuts to the imaginary part of the elastic forward amplitude,

and eventually to the total cross-sections via the optical theorem8

ImMσ1σ2
a1a2

(s+ iε) =
√

(s−m2
1 −m2

2)2 − 4m2
1m

2
2 × σ

tot(1σ1
a 2σ2

a2
→ anything)(s) (4.6)

that follows from unitarity of the S-matrix for ε → 0+ and s ≥ (m1 + m2)2. Of course,

inequalities are always understood with the restriction to s ∈ R.

The analytic structure we described so far represents the common situation for integer

spins. For example, scattering massive spin-1 particles the only discontinuity that could

possibly arise from the polarizations would come from the longitudinal polarizations via a

term εσ=0
µ (k1)kµ2 ∝

√
−su which, however, can only appear squared in the full amplitude

(see appendix A). Therefore, it does not change the analytic structure of the full amplitude

which still respects the reality condition of eq. (4.5).

The story for fermions is slightly more complicated but, nonetheless, eq. (4.5) still holds

true, as we discuss below. We have seen in the previous section that certain P -violating

interactions that involve half-integer spins can give rise to non-analyticities in the density

matrix which may in fact be transmitted to the full amplitude through the polarization

vectors aσµ(k) of eq. (3.16), e.g.

M⊃ a±µ (k1)kµ2 = ± 1

2m

√
−su+ (m2

1 −m2
2)2 . (4.7)

A 4-fermion interaction Ψ̄γµγ5Ψψ̄γµψ provides an example that gives rise to such a non-

analytic behavior due to the polarizations of Ψ. Another example from scattering spin-1/2

fermion off a longitudinally polarised spin-1 boson is a±µ (k1)ε0µ(k2) which is proportional

again to the same square-root (4.7).

Nevertheless, these discontinuities from the density matrices are of the square-root type

and have the branch-cuts of finite support on the real axis in the interval Iρ = (uIR, sIR),

8We follow the conventions of [40] where the scattering matrix is S = 1 + (2π)4δ4(
∑
pi)iM. We work

with the mostly minus’ signature (+,−,−,−) of spacetime.
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Re s

Im s

sIRuIR

μ2

C
˜

C

:Iρ

:IM

●●

●

Figure 2. Contours in the complex s-plane in the forward elastic scattering with t = 0. The branch-

cut of the square-root type represented by a cyan saw-like line in the interval Iρ = (uIR, sIR) may

arise only from the polarizations of massive half-integer spins, and only for certain parity violating

interactions, see main text and eq. (4.7). The standard discontinuities of the scattering amplitudes

are represented by a red saw-like lines IM; they come from the amputated correlation functions.

At the branch-points sIR = (m1+m2)2 and uIR = (m1−m2)2, associated with the 2-particle elastic

thresholds, the amplitude and the discontinuities vanish.

where sIR = (m1+m2)2 and uIR = (m1−m2)2. That is, the density matrices are continuous

and real for larger values of |s|, and can thus be extended to the whole cut-plane C \ Iρ.
Analogously, the scalar functions in the amputated matrix elements are non-analytic in a

(complementary) region IM, but they can be analytically extended to real functions of the

cut plane C \ IM, see figure 2. Therefore, the full amplitudes for fermions still satisfy the

reality condition (4.5) in C \ (Iρ ∪ IM). Note that the discontinuities at the branch-points

associated to the thresholds sIR and uIR vanish.

We stress once more that that this branch-cut Iρ, whenever present, comes entirely

from the density matrices, that is from the external polarizations. It is not there for the

scalar functions ai(s) of the type (4.4) that are usually considered, e.g., in π −N scatter-

ing [24]. Since we are interested in scattering arbitrary spins, it would be very inefficient,

if possible at all, to work with the analog of those scalar amplitudes ai(s) since one would

need to perform a Lorentz decomposition for any form factor for generic spins. The positiv-

ity conditions (4.13) and (4.14) show that splitting the amplitudes in the scalar functions

is neither needed nor useful in general: it suffices to work with the actual amplitudes whose

discontinuity are also readily expressed in terms of total cross-sections. Besides, in parity

preserving theories like QCD these discontinuities along Iρ are not generated anyway.

With the reality condition at hand, we can identify the imaginary part of the amplitude

with its discontinuity along the real axis

2i ImMσ1σ2
a1a2

(s+ iε) =
[
Mσ1σ2

a1a2
(s+ iε)−Mσ1σ2

a1a2
(s− iε)

]
s ∈ R , (4.8)

and we can thus split the contour along the branch-cuts into three integrals over the
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imaginary parts,

M′′σ1σ2
a1a2

(µ2) =
2!

π

(∫ ∞
sIR

ds

(s− µ2)3
+

∫ uIR

−∞

ds

(s− µ2)3

)
ImMσ1σ2

a1a2
(s+ iε) (4.9)

+
2!

π

∫ sIR

uIR

ds

(s− µ2)3
ImMσ1σ2

a1a2
(s+ iε) + C∞ ,

and the integral C∞ along the big circle whose radius is eventually sent to infinity. As-

suming that the asymptotic amplitude grows less than s2 for s →∞, which is always the

case for gapped theories thanks to the Froissart bound [41], we can drop the big circle’s

contribution which vanishes at infinity,

C∞ → 0 . (4.10)

Moreover, by changing variables s → u = −s + 2(m2
1 + m2

2) and using the crossing

relation (3.21) that we have proven for any spin, we can recast the integral over the

u-channel as an integral over the physical energies of the s-channel scattering where

particles 1 and 3 have been replaced by their antiparticles of opposite spins9 and internal

quantum numbers, namely∫ uIR

−∞

ds

(s− µ2)3
ImMσ1σ2

a1a2
(s+iε) =

∫ ∞
sIR

ds

(s− 2(m2
1 +m2

2) + µ2)3
ImM−σ1σ2

a1a2
(s+iε) . (4.11)

So far we have used only analyticity and crossing symmetry of the scattering amplitude.

Requiring the unitarity of the underlying UV theory, the optical theorem (4.6) implies

positive imaginary parts above thresholds s ≥ sIR, namely

ImMσ1σ2
a1a2

(s+ iε) ≥ 0 , ImM−σ1σ2
a1a2

(s+ iε) ≥ 0 , (4.12)

The inequality is saturated only for the trivial theory where particle 1 and 2 (and 1̄ and 2)

do not interact with each other so that σtot(1σ1
a 2σ2

a2
→ anything) = 0 and σtot(1̄−σ1

ā 2σ2
a2
→

anything) = 0. Analyticity, crossing symmetry and unitarity imply thus the following

positivity constraint on the IR scattering amplitude for an interacting theory

M′′σ1σ2
a1a2

(µ2)− 2!

π

∫ sIR

uIR

ds

(s− µ2)3
ImMσ1σ2

a1a2
(s+ iε) > 0 (4.13)

as long as µ2 is sent to the real axis from above and lies between (m1 ±m2)2, for example

at the crossing symmetric point µ2
c = m2

1 + m2
2. This relation simply states that the

contour integral encircling µ2 and the IR branch-cut Iρ from the density matrix (if any)

is positive.10 The most important point is that both µ2 and Iρ are in the IR and we can

9For self-conjugate particles one may prefer working with linear polarizations; in that case the index σ

labelling the linear polarizations would not be flipped under crossing, see appendix B.
10We have omitted so far, just for easy of presentation, the residues of other IR poles on the real axis

between sIR and uIR that would have appeared subtracted on the left-hand side of eq. (4.13) just like the

contribution from the IR branch-cut. They can be in fact shuffled inside that integral around the interval

Iρ. Analogously, the UV poles along IM can be shuffled inside the integral along IM; they just add another

positive contribution to the right-hand side of (4.13). Eq. (4.13) simply states that the contour integral

encircling µ2, the IR branch-cut Iρ, and the IR poles is positive.
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thus evaluate the left-hand side of (4.13) with the EFT Lagrangian (4.3). In turn, this

positivity condition enforces inequalities on the EFT Wilson coefficients.

As we have already remarked previously the IR branch cut is often absent. This

happens e.g. in any theory with only integer spins, or in parity preserving theories, or in

the massless limit (more on this limit below). The dispersion relation reduces in such cases

to the neat expression11

M′′σ1σ2
a1a2

(µ2) > 0 , (4.14)

where (m1 −m2)2 ≤ µ2 ≤ (m1 +m2)2. We stress that these inequalities are exact results

that hold non-perturbatively for particles of arbitrary spin as they are derived from first

principles of the S-matrix theory.12

Note that we could take even further subtractions, that is obtain positivity conditions

for higher derivatives of the amplitude, as long as the gap is open and µ2 6= 0 in order to

regulate possible IR divergences.

Massless limit. So far we assumed the spectrum was gapped, but what about a theory

with only massless particles? We can deform it by adding at least one mass m to regulate

the IR, open the gap, infer the reality condition, derive then the positivity bound (4.14) for

arbitrarily small m, and eventually take the limit m→ 0 while retaining the positivity of the

IR Wilson coefficients. There could be though three points that could spoil this program.

• First, adding a mass may require to add extra IR degrees of freedom. This happens

e.g. for the theory of massive gauge bosons and massive gravity where the gauge

bosons and the graviton eat Goldstone bosons and galileons modes, respectively. One

should carefully identify which degrees of freedom produce the leading s2 growth of

the amplitude before taking the zero mass limit. Should the s2 behavior be generated

instead by the extra degrees of freedom, one would obtain the positivity bound for

those modes rather than for the ones of interest.

• Second, the forward limit t → 0, the massless limit mi → 0, and sending the big

circle to infinity may be singular limits and/or not commute with each other when

massless particles of spin S ≥ 1 are exchanged in the t-channel. Extra assumptions

11Such a simple and neat expression holds in full generality also when summing over the polarizations

of the half-integer spins, i.e.
∑
σ1,σ2

M′′σ1σ2a1a2 (µ2) > 0, since the averaged density matrix is analytic and

contains no IR branch-cut Iρ. Effectively, this is mathematically equivalent to consider fully unpolarized

half-integer particles.
12Should one be interested in a tree-level inequality, the (4.13) can be turned into a neat expression

similar to (4.14), even when IR branch-cut from the polarizations or other IR poles below threshold are

present, thanks to a simple trick from complex analysis. Because the tree-level EFT has no UV branch

cut, the left-hand side in (4.13) is nothing but (minus) the residue at infinity calculated with the tree-level

EFT:M′′σ1σ2a1a2 (m2
i � µ2 � Λ2)

∣∣
EFT,tree−level

> 0. In practice, the low-energy integral along the branch-cut

Iρ produced by the polarizations on the right-hand side of (4.13) appears just to remove the sensitivity to

the choice of the IR data, such as the particles’ masses m2
i , or any other IR scale. Of course, one should

never restrict to such a tree-level argument for EFTs that at tree-level go only like s. In such a case one

should perform loops to properly evaluate the contribution on the left-hand side of the inequality (4.13),

as e.g. done in [6] for the chiral lagrangian in QCD.
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may be required in this case,13 see e.g. [8, 12, 15]. Alternatively, one may simply

study the limit where these integer-spin massless modes in t-channel decouple while

assuming that the resulting theory remains consistent. This is e.g. what one implicitly

does when studying a non-gravitational theory and neglects gravity, i.e. he/she takes

the limit MPlanck → ∞. Analogously for the photon, one assumes that turning off

the weak gauging of a global U(1) symmetry does not back-react so strongly on the

system under study to destroy its consistency.

• Third, the positivity bound (4.14) on the leading s2-terms of the scattering matrix

of massless particles is valid only for sufficiently soft amplitudes, in order to ensure

the IR convergence in the limit mi → 0. For example, the interaction g2
∗(ψ̄ψ)2/Λ2

for massless fermions is not soft enough as it gives a total cross-section below any

other threshold σtot(s→ 0) = σelastic ∼ s · g4
∗/Λ

4 and thus ImM(s→ 0) ∼ s2 · g4
∗/Λ

4.

This behavior is not enough to grant the IR convergence of the dispersion relation

for M′′. Equivalently, the second derivative of the amplitude is going to be IR

divergent in s = t = 0 because of the dispersive integral that relates cross-sections and

amplitudes. In this case only a once-subtracted dispersion relation for M′ would be

IR convergent; one would need then to make extra assumptions about the high energy

behavior of the amplitude as in [8, 9], since the Froissart bound is not longer enough

to discard the big circle’s contribution C∞ with just one subtraction. Moreover,

the resulting expression would not necessarily imply a positivity constraint as the u-

and s-channel contribution enters with opposite signs under the dispersive integral

for an odd-number of subtractions. We come back to once-subtracted sum rules for

dimension-6 operators in appendix C.

Interestingly, neither the first nor the second problem described above arise for scat-

tering massless scalars and/or massless spin-1/2 fermions. The third point about the IR

convergence simply requires amplitudes as soft as sn, or finite masses, in order to place a

dispersion relation on the n-th derivative M(n). In the next section we study examples of

such a soft theories. Whether the amplitudes are sufficiently well behaving in the IR to

admit a massless limit can be established by direct inspection of the EFT at hand which,

by construction, reproduces the correct IR behavior of the underlying fundamental theory.

Should such a good IR behavior not be granted, one would need to work with one or more

massive states.

5 Soft limits

As it was stressed e.g. in [42, 43], it is often possible to reconstruct a theory and its sym-

metries by the leading IR behavior of the scattering amplitudes: the softer the amplitude

13We should also stress that, when scattering massless spins higher or equal than 1, the degree of the

polynomial bounding the elastic forward amplitude could be higher or equal than s2 [1]; in such a case one

should trivially take the smallest number of even derivatives that allow to discard the contribution to the

dispersion relation that comes from the big circle at infinity. Alternatively, one can work at tree-level only,

as e.g. in [1, 12].
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the more symmetry is required in order to cancel the would-be leading terms. Notori-

ous examples include gauge and gravity theories, non-linear sigma models, dilatons, and

galileons [27]. It is thus relevant to ask how soft the scattering amplitudes for fermions

can be, and which symmetries are associated with the enhanced soft-behavior of the am-

plitudes. Moreover, particles that are highly boosted but with energy below the cutoff Λ

can be considered both massless and soft compared to Λ . The leading soft behavior tells

us how fast the amplitude can raise with energy in such highly boosted regime but within

the validity of the EFT.

5.1 Soft limits for spin-1/2

We take a step in this direction by studying the low-energy theory of a massless spin-1/2

field χ. The mass term can be forbidden e.g. by chiral symmetry transformations

χ→ eiαχ , χ† → e−iαχ† (5.1)

but other symmetries that are discussed below can forbid it too. Up to field redefinitions

(and Fierz identities) there exists only one dimension-6 operator

O(6) = χ† 2χ2 (5.2)

which results in M∼ O(p2) . Spinor contractions are always understood, e.g. χ2 = χαχα,

χ† 2 = χα̇χ
† α̇. We can make the amplitude softer than p2 by forbidding the O(6) (and the

mass) by symmetries, e.g. a non-linearly realised SUSY transformation, or a fermionic shift

symmetry that we discuss below, see eq. (5.6). The next dimension-8 operators which affect

the soft elastic 2 → 2 scattering must involve 4-fermions and two derivatives, resulting in

the O(p4) soft behavior of the amplitude. For simplicity, we further reduce the number

of operators by demanding chiral symmetry (5.1), so that they must contain two χ’s, two

χ†’s, and two ∂’s. Up to field redefinitions there exists a unique such dimension-8 operator

O(8) = −αχ† 2�χ2 , (5.3)

where � ≡ ∂µ∂µ and α ∈ R. This term corresponds to the quartic term that appears

in the Goldstino lagrangian within the constrained superfield formalism [47, 48]. By the

field redefinition χ → χ − iα(σµχ†)∂µχ
2 and the Fierz identity (∂νχ

†σ̄ρχ)(∂µχ
†σ̄γχ) =

(∂νχ
†σ̄ρσγ∂µχ

†)χ2/2 we can map (5.3) and the kinetic term into the standard quartic

term of the Akulov-Volkov lagrangian [44] for the Goldstino, which is invariant under the

non-linearly realized SUSY transformation χ(x)→ χ′(x′)+ξ, with x′ = x+iθ†σ̄µξ−iξ†σ̄µθ.
The scattering amplitude for χ−χ− → χ−χ− and χ−χ+ → χ−χ+ in the forward elastic

limit reads

M(s) = 4αs2 (5.4)

and hence the positivity condition (4.14) translates into

α > 0 . (5.5)

Because of unitarity, crossing symmetry and analyticity, there is no non-trivial theory where

α ≤ 0 in (5.3). For the Goldstino, α is set by the (inverse) SUSY breaking scale F 2 which
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must indeed be positive given the positive norm of
∑

α ||Qα|0〉||2 = 4〈0|H|0〉 = 4F 2 = 1/α.

As expected, α→ 0 corresponds to the limit F →∞ where the Goldstino decouples.

Can we go further, i.e. forbid O(8) and result in a softer amplitude? One could envision,

a priori, a fermionic shift-symmetry

χ(x)→ χ(x) + ξ (5.6)

where ξ is anti-commuting constant 2-spinor, in order to forbid the O(6,8) operators and

enhance the soft behavior. Such a theory would produce an EFT that starts with various

dimension-10 operators, schematically of the type

O(10) ∼ ∂χ∂χ∂χ†∂χ† . (5.7)

The problem with this setup, and with theories that are softer than p4 in general, is

that a 2 → 2 amplitude M ∼ O(p6) clashes with the strict positivity of (4.14) in any

interacting theory satisfying crossing, analyticity and unitarity. Since the amplitude from

O(10) is of O(p6), there exists no UV completion where such a theory would be non-trivial

and respect those fundamental S-matrix properties. As the shift symmetry (5.6) is non-

linearly realised on the one-particle state generated by χ, we may think of χ as a Goldstone-

fermion, not dissimilar of the Goldstino. One consequence of this no-go theorem is that

an exact fermionic symmetry (5.6) can never be restored at higher energy. Vice versa, an

interacting theory in the UV which realises the fermionic symmetry linearly can not break

it spontaneously and generate the associated massless Goldstone-fermion χ in the IR.14

In spite of the previous argument against an exact fermionic shift symmetry (5.6),

it may still represent a meaningful approximate symmetry. In principle, an arbitrarily

small explicit breaking could heal the theory and make it consistent with our fundamental

requirements. It is enough that the otherwise forbidden lower-dimensional operators, such

as e.g. the mass term, turn on the subleading O(s2) coefficient in the amplitude with a

positive coefficient, say m2s2. This is the fermionic analog of the soft-healing mechanism

discussed for the longitudinal galileon modes of massive gravity in [16]. One can thus

look at the no-go theorem from a different perspective: in order to break the fermionic

symmetry in the UV, which delivers the Goldstone-fermion χ in the IR, one always needs

a small explicit breaking term ε that makes the amplitude slightly less soft. The small

parameter ε must be less irrelevant (or even relevant, e.g. a mass term) than the symmetric

terms of the type (5.7). Should the coefficients cn or the cutoff Λ of the higher dimensional

operators O(n) depend on the ε such that cn → 0 or Λ→∞ as we send ε→ 0, there would

be no contradiction as one would eventually recover the decoupled theory in that limit.

The most interesting case for a small but finite ε corresponds to Λ very large while the

Wilson coefficients respecting the symmetry are O(1), i.e. controlled by sizeable couplings

g∗ = O(1). This case corresponds to UV completions that enter at very large scales but are

themselves non-trivial, i.e. with g∗ non-necessarily small. We will return to this supersoft

behavior and possible obstructions in retaining a finite g∗ in section 6.

14One could arrive to the same conclusion that the symmetry is never linearly realised with a different

set of assumptions via the Haag-Lopuszanski-Sohnius theorem [45] which generalises the Coleman-Mandula

theorem [46], as our fermionic symmetry (5.6) is neither internal nor include spacetime translations.
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5.2 Coupling light fields and the Goldstino

We discuss now a neat applications of our positivity bound to the low-energy theory of

a massless spin-1/2 particle coupled to other (naturally) light degrees of freedom that we

may encounter in the IR: a Goldstone boson π, a gauge boson Aµ, and a massless fermion

ψ. We restrict to operators that enter in the elastic 2 → 2 scattering and follow the

classification of [28] and [48] inspired by the theory of a Goldstino which is the prototype

spin-1/2 fermion with maximally soft amplitudes.

Coupling to fermions. A generic theory of 2 chiral massless fermions χ and ψ whose

scattering amplitude is as soft as s2 is fully described, up to field redefinition and Fierz

identities, by two operators [48, 49]:

O8
χψ = −

aψ
F 2

(χ†ψ†)�(χψ) , Õ8
χψ =

ãψ
F 2

(∂νχ
†σ̄µ∂νχ)(ψ†σ̄µψ) , (5.8)

where F has mass dimension equal to two, [F ] = 2. The forward elastic amplitudes for

χ−ψ− → χ−ψ− and its crossed processes is independent of ãψ and reads

M(s) =
aψ
F 2

s2 , t→ 0 . (5.9)

Hence, the positivity constraints (4.14) enforced by unitarity of the underlying microscopic

theory in the UV demands

aψ > 0 (5.10)

but leaves ãψ unconstrained. For the specific case of the Goldstino, F is the SUSY breaking

scale and the non-linearly realized SUSY implies aψ = 1.

Coupling to Goldstone bosons. Let consider the coupling between χ and one Gold-

stone boson π which transforms as π → π + const:

O(8)
χπ =

iaπ
4F 2

∂µπ∂
νπ(χ†σ̄µ∂νχ) + h.c. (5.11)

The forward elastic amplitude for the scattering χ−π → χ−π reads

M(s) =
aπ

2F 2
s2 , t→ 0 . (5.12)

In turn, the positivity bound (4.14) implies

aπ > 0 . (5.13)

A slightly weaker bound, aπ ≥ 0, was derived in [50] by requiring luminal or subliminal

propagation of the fermion excitations in a certain Goldstone boson background, along the

lines of [1]. We stress however that superluminality in a preferred frame (as the one set

by the Goldstone boson background), as opposed to all frames, does not necessarily imply

acausal propagation or other inconsistencies like the existence of closed causal curve. See

e.g. [15] for an example with scalars where the unitarity constraint and the subluminality

constraint are different, and e.g. [51–54] for more general discussions on the difference

between acausality and superluminality. In contrast, a violation of our positivity bound

would signal unambiguously the breakdown of the rules of local and unitary quantum field

theories. It is reassuring to find aπ > 0 with our arguments that have put on a firm ground

this inequality and, in turn, the bound on the superpotential of [50].
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Coupling to gauge bosons. We finally consider the coupling between χ and a U(1)

gauge boson Aµ. As we are after O(s2) terms, we require χ to be neutral under the U(1)

so that Aµ and χ have only dipole or multipole interactions via the the field strength

Fµν = ∂µAν − ∂νAµ:

O(8)
ψA = − iaA

2F 2
(χ†σ̄µ∂νχ)FµρF

νρ + h.c. (5.14)

This operator gives rise to the following forward elastic scattering amplitude

M(s) =
aA
F 2

s2 (5.15)

for the process χ−A± → χ−A±, and hence

aA > 0 (5.16)

in any theory where χ and A interact with each other.

6 Supersoft amplitudes

We now look for unitary theories that are even softer than O(p4) and yet respect the

positivity (4.14). As we have seen in the previous section, such a supersoft behavior can

not be enforced in a strict sense in any interacting theory as the coefficient of s2 in the

amplitude would need to be strictly positive. However, since this constraint could be

satisfied for an arbitrarily small (and positive) coefficient, we may ask whether supersoft

theories can make sense as a limiting case of unitary theories where the O(p4)-terms in the

amplitude are taken smaller and smaller, say by a symmetry. As we will see, for certain class

of theories there exists an obstruction in retaining a non-trivial interacting UV completion

at the cutoff when the O(p4)-terms are made very small. In order to illustrate these points

we first study the case of a supersoft spin-1/2 fermion.

6.1 Fermionic shift symmetry

We consider a chiral spin-1/2 fermion field endowed with a shift symmetry

χ(x)→ χ(x) + ξ (6.1)

that forbids O(p4) term in the 2 → 2 scattering. We assume a one-scale (Λ) one-coupling

(g∗) power-counting scheme

L = χ†iσ̄µ∂µχ+
Λ4

g2
∗
L

[
g∗∂

nχ

Λ3/2+n
, ε
g∗χ

Λ3/2

]
(6.2)

where L is a dimensionless function and n ≥ 1. Terms that break the fermionic shift

symmetry cost the insertion of a small spurion ε� 115

L = χ†iσ̄µ∂µχ+ ε4c1
g2
∗

Λ2
χ† 2χ2 − ε2c2

g2
∗

Λ4
χ† 2�χ2 + c3

g2
∗

Λ6
(∂νχ

†∂νχ†)(∂µχ∂
µχ) + . . . (6.3)

15This power counting can be realized, e.g., by having ∂µχ linearly coupled to a spin-3/2 operators Oµα of

a strong sector, i.e. λ∂µψ
αOµα, which is eventually integrated out after it develops a mass gap, analogously

to the partial compositeness scenario. The terms with ε are generated instead by small corrections that

break the shift symmetry such as e.g. εχO, where O is a spin-1/2 operator of the strong sector like in

ordinary partial compositeness to generate χ’s mass. See e.g. [55, 56] for a review on partial compositeness.
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whereas the symmetric terms are not suppressed. We are not including the mass for simplic-

ity, as it can be forbidden e.g. by chiral symmetry (5.1) which has its own separate spurion

εm, set here to zero. Aside the shift symmetry, for g∗ = 4π one has the traditional power

counting, or näıve dimensional analysis (NDA) [57], of a full-fledged strongly coupled the-

ory at the scale Λ. In such a case, the only available expansion parameter is E/Λ and thus

ci = O(1). Smaller g∗ extends the NDA since the theory admits also a perturbative expan-

sions in g2
∗/(16π2) which counts the number of loops relative to the leading classical contri-

bution to the observables [58]. Under this latter assumption, it is meaningful to classify the

operators based on their size that can be either tree- or loop-level ci = O((g2
∗/16π2)`), cor-

responding to ` = 0 and ` ≥ 1 respectively. Note that g∗ corresponds to the coupling at the

scale m∗ and below; it does not represent the original microscopic coupling at higher energy

should the theory emerge in the IR from a strong sector. The scale Λ, which controls the

derivatives expansion, usually corresponds to an actual physical threshold, e.g. the mass of

a new particle exchanged in the χχ-scattering. If this is so, the EFT breaks down at E ∼ Λ,

independently on the size of g∗, since the new on-shell degree of freedom must be added

to the spectrum. The coupling g∗ tells us whether this new entry is strongly or weakly

coupled. We come back later to the exceptional case where Λ does not correspond to a

physical threshold, meaning that L is actually a finite polynomial in derivatives and fields.

The 2→ 2 scattering amplitude scales as

M∼ g2
∗

(
E

Λ

)6
[

(c3 + . . .) + c2

(
εΛ

E

)2

+ c1

(
εΛ

E

)4

+ o

(
E

Λ

)2
]

(6.4)

where E is the typical energy at hand. The ellipses . . . refer to other symmetric O(p6)-terms

that we have omitted for simplicity; hereafter c3 is a short-hand for all such contributions.

We take c2 > 0 to comply with the positivity bound for any finite ε. The supersoft term

c3 in (6.3) dominates over the other terms whenever

ΛIR ≡
(
c2

c3

)1/2

Λε� E � Λ . (6.5)

It fails to dominate only in the tiny window 0 < E < ΛIR that we could apparenly shrink

to zero arbitrarily as ε→ 0. For a fixed coupling g∗ one may even continuously reach ε = 0

by making Λ dependent on ε, Λ = Λ(ε), and requiring that it grows arbitrarily slowly for

ε→ 0, in order to recover the decoupled theory when the amplitude becomes strictly softer

than s2. Taking e.g. Λ ∼ log ε or Λ ∼ 1/εn with 0 < n � 1, we can treat the symmetry

breaking term as a small perturbation effectively to all energies

Λ→∞ while ΛIR → 0. (6.6)

For finite ε and Λ, with Λε� Λ, the symmetry-preserving terms are important in most of

the range of validity of the EFT. This setup realizes an even more extreme version of the

“remedios” power counting proposed in [28], as the leading amplitudes of O(p6) is generated

by dimension-10 operators that dominate the lower dimensional ones at low-energy, while

retaining a sensible EFT scheme.
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The fact that a small breaking ε can affect the cutoff Λ and thus heal the theory was

loosely inspired by the case of the dilaton where the scale of conformal symmetry breaking

f can be stabilised moving away from exact conformality, e.g. with an almost marginal

perturbation which delivers a decoupled dilaton, f → ∞, when ε → 0. For the dilaton,

however, the decoupling of f is exponentially fast, while here we demand logarithmic

sensitivity. More generally, one can imagine a barely stable/unstable configuration in the

UV that is stabilised in a healthy theory by a small perturbation which imprints itself in

the non-analytic dependence upon ε of the cutoff, and possibly of the amplitude.

6.2 Obstructions, loopholes and massive gravity

The picture described in section 6.1 seems to allow amplitudes that are practically, but not

exactly, as soft as O(p6) while respecting the positivity bound (4.14). In this subsection

we want to point out that it may actually exist an obstruction in taking ε arbitrarily small

while retaining a finite coupling g∗ at the scale Λ.

The dispersion relation (4.9), that in the case at hand reads

M′′(0) =
2

π

∫ ∞
0

ds

s2

[
σtot(χχ→ anything)(s) + σtot(χ̄χ→ anything)(s)

]
, (6.7)

can be used to set an upper limit on the value of the cutoff [15]. Indeed, one can use

the dispersion relation to determine the scale Λ∗ where the low-energy discontinuity on

the right-hand side of (6.7) can no longer match the value on left-hand side, that is the

ultimate scale where a new non-analyticity — i.e. the threshold of new degrees of freedom

— is required to kick-in. Assuming ε2 � 1, the consistency between the two sides of (6.7)

demands16 that ε2g2
∗/Λ

4 ∼ (g4
∗/16π2)Λ8

∗/Λ
12 and hence

Λ∗ ∼ Λ×
(

4πε

g∗

)1/4

. (6.8)

For ε � 1, the Λ∗ becomes much smaller than Λ (and yet bigger than ΛIR) which is

consistent with the way we performed this calculation. However this is not consistent

with our one-scale power counting where Λ was supposed to be controlling the derivatives

expansion in (6.3), setting its radius of convergence i.e. the threshold for the new states.

This power-counting does not tolerate hierarchically separated Λ and Λ∗ and this puts a

lower bound on ε. Requiring that Λ∗ ∼ Λ and using (6.8) one extracts the estimate

ε2 ∼
(

g2
∗

16π2

)
. (6.9)

That is, ε2 can not be much smaller than a one-loop factor (relative to c2
3/c2 should we

restore the Wilson’s coefficients dependence), and as ε→ 0 so does g∗. The UV completion

would thus appear weakly coupled, i.e. a perturbation of the free theory which is infinitely

soft and yet perfectly healthy.

16We are not showing the dependence on the ci just for easy of presentation. Including Wilson coefficients

ci results into multiplying the right-hand side of eq. (6.9) by the factor (c23/c2).
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This argument is quite generic but the resulting constraint (6.9) should be regarded

only as a näıve estimate: as Λ∗ approaches Λ from below, higher derivatives terms become

gradually more important for evaluating the low-energy contribution to the right-hand side

of the dispersion relation (6.7). One should thus replace the fractional powers in (6.8) with

even smaller ones, resulting in a poor sensitivity on the smallness of ε. For Λ∗ as large as Λ

or bigger we can not even make a reliable calculation nor present an argument for a lower

bound on ε.

There exist nonetheless an exceptional class of theories where the calculation can be

done in principle for Λ∗ � Λ (and even for Λ∗ > Λ but still below the strong coupling

scale Λstrong = Λ×(4π/g∗)
1/3). It is e.g. conceivable a derivatives series (6.3) whose leading

order operators terminate in a finite order polynomial, such that we do not need to identify

the parameter Λ with an actual physical threshold associated with non-analytic behaviour.

The Galileon [27] is one such a theory because it enjoys a non-renormalization theorem for

a finite set of operators L2,...,5. Higher derivatives are eventually generated but they are

suppressed relative to the non-renormalized terms by loop factors (g2
∗/16π2)`, for moderate

coupling g∗. In this class of theories, we can take ΛIR � Λ∗ � Λ without running into an

apparent inconsistency with the dispersion relation above.

These theories would look essentially supersoft in the window ΛIR � E � Λ∗ should

the lower end go to zero much faster than its upper end, as ε→ 0. But in fact, this can not

actually happen. Indeed, g∗ and Λ are no longer physical quantities in these exceptional

theories when ε� 1, since it makes no sense to extrapolate the EFT amplitudes at energies

above Λ∗. A more physical definition of coupling constant controlling the UV completion

is for example the value of the 2→ 2 amplitude at Λ∗,

M = g̃2
∗

(
E

Λ∗

)6
[
c3 + c2

(
g̃2
∗

16π2

)(
Λ∗
E

)2

+ c1

(
g̃2
∗

16π2

)2(
Λ∗
E

)4
]

(6.10)

where Λ/Λ∗ = g̃∗/(4πε) and we have defined g̃2
∗ = g2

∗(4πε/g∗)
3/2. One can see that the

ordinary soft terms c1,2 appear again with only a 1-loop suppression factor compared to

the supersoft c3, when we express the amplitude in terms of the physical coupling g̃∗.

Equivalently, the ratio ΛIR/Λ∗ = g̃∗/4π is not arbitrarily large when ε → 0. Again, this

argument holds only for Λ∗ < Λstrong, i.e. for UV completions that enter before the onset

of the fully strong coupling regime where calculability is completely lost. It does apply

though for strongish, O(1), couplings.

The Galileon [27] is an example of supersoft theory defined by a finite set of operators

that admit various perturbations, e.g. the conformal Galileon deformation [15, 27] or the

coupling to gravity [59, 60], that turn on the O(p4)-terms. In the ghost-free massive gravity

(see e.g. [61–63] and references therein), the Galileon describes the scalar polarization that

gives the O(p6)-behavior to the scattering amplitudes of massive gravitons. The finite

graviton mass mg generates a subleading O(p4)-term [16]. More specifically, the leading

Galileon amplitude scales as g2
∗(E/Λ)6 where Λ6 = g2

∗m
4
gM

2
Planck, while a finite graviton

soft mass generates a subleading g2
∗m

2
gE

4/Λ6 contribution. Making thus the identifications
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ε2 = m2
g/Λ

2, the ratio (
mg

g∗MPlanck

)2

∼
(

g2
∗

16π2

)3

(6.11)

is expected to be around three loops, given the general obstruction on the size of ε within our

power counting. This ratio can still be taken very small but only in the trivial way g∗ � 1,

too.17 This relation implies also that Λ is at most one-loop suppressed relative to g∗MPlanck.

7 Conclusions

In this paper we have studied how crossing symmetry, unitarity and analyticity of a mi-

croscopic theory translate into positivity bounds of the resulting EFT in the IR. We have

proved that those fundamental requirements imply the strict positivity of the leading O(s2)-

terms in the elastic forward scattering amplitudes for particles with arbitrary spin at low-

energy. In turn, we have shown that EFT’s that produce amplitudes strictly softer than

O(p4) do not admit UV completions that satisfy the basic set of assumptions of a scattering

theory. These results are based on the analytic continuation of the pure states’ density

matrices, i.e. the spin projectors, that are traced with the amputated correlators to provide

the elastic forward amplitudes.

For highly boosted particles with energy below the cutoff, one can reinterpret these

soft bounds as restrictions on the rate of growth in energy of scattering amplitudes, within

the validity of the EFT. We have studied in detail the example of a chiral spin-1/2 fermion

that saturates this limit, reproducing essentially the coupling structure of the Goldstino

from SUSY breaking. While the positivity constraints are trivially satisfied by the self-

interactions dictated by the Akulov-Volkov effective action, they impose non-trivial condi-

tions on the couplings to the other light degrees of freedom.

We have also shown how to make sense of theories with amplitudes that are loosely,

as opposed to strictly, softer than O(p4). They should be understood as the limiting case

of unitary theories where the operators that control O(p4)-terms in the amplitudes are

(possibly arbitrarily) suppressed by a symmetry, while the cutoff that controls even softer

corrections is taken (arbitrarily) large, but at a much slower rate. Since the supersoft terms

decouple much more slowly than the O(p4)-terms, one effectively obtains a supersoft theory

to almost all energies below the cutoff. For exceptional EFTs that contain only a finite

set of derivatives, such as e.g. the Galileon, we have argued there exists an obstruction in

having non-trivial, i.e. non-weakly-coupled, UV completions at the scale Λ.

We have discussed in detail the supersoft theory of a chiral spin-1/2 fermion with a

fermionic shift symmetry χ → χ + ξ that would forbid O(p4)-terms in the amplitudes,

but which is perturbed by naturally small Goldstino-like interactions, as well as by the

couplings to other massless particles. The positivity constraints can be satisfied requiring

that the cutoff itself grows slowly as the spurion associated to the breaking of the shift

symmetry is taken to arbitrary small values.

17The traditional decoupling limit in massive gravity corresponds to MPlanck → ∞ holding Λ3 =

Λ/g
1/3
∗ = (m2

gMPlanck)1/3 fixed. The relation (6.11) requires that g∗ is actually vanishing too, scaling

as g∗ ∼ (4πmg/Λ3)3/4. The O(p6)-term survives in this limit as it scales only with Λ−6
3 .
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A Polarizations

The polarizations u` and v` are defined by the overlaps (2.3) and (2.4) between a one

particle state |pσa〉 and Ψ†` a(x)|0〉, or between the anti-particle |pσā〉 and Ψ` a(x)|0〉. We

quickly review below their basic properties following [2]. As they are slightly different for

massive and massless particles, we discuss them in turn.

Massive fields. Under a Lorentz transformation Λ, a one particle massive state

transforms with an irreducible unitary representation L of the little group SU(2) ∼
SO(3), see eq. (3.3), whereas the field Ψ` transforms covariantly, i.e. U(Λ)Ψ(x)U †(Λ) =

D(Λ−1)``′Ψ`′(Λx), according to some (generically non-unitary) representation D ∈ (A,B)

of SU(2)A×SU(2)B ∼ SO(3, 1) where the index ` = (αβ) collectively labels the states in the

representation. The Wigner rotation W (Λ, p) = L(Λp)−1ΛL(p) ∈ SO(3) is defined in terms

of the standard Lorentz transformation L(p) that sends the little-group reference vector

kr = (m, 0, 0, 0)T to p. From the overlaps (2.3) and (2.4), wee see that the polarizations

are charged under Lorentz× (Little−Group),

D``′(Λ)uσ`′(p) = uσ
′
` (Λp)Lσ′σ(W (Λ, p)) , D``′(Λ)vσ`′(p) = vσ

′
` (Λp)L∗σ′σ(W (Λ, p)) . (A.1)

Lorentz is acting on the right-hand side while the little-group on the left-hand side. Clearly,

for a real representation D ∼ D∗ one can choose v` ∼ u∗` . For example, in the vectorial

spin-1 representation (1/2, 1/2) it is customary to choose εµ = uµ = v∗µ, the so-called

helicity basis. Analogously, the 4-component spinors (1/2, 0)⊕ (0, 1/2) with uα = v∗α define

the Majorana basis.

Locality implies that under a CPT transformation, which is realized by an anti-unitary

operator UCPT, we can always choose the overall phases such that

UCPT|pσa〉 = (−1)S+σ|p−σa 〉 , UCPTΨ`(x)U−1
CPT = (−1)2BΨ†`(−x) . (A.2)

Therefore, particles and anti-particles polarizations defined by the overlaps (2.3) and (2.4)

must be related by

uσ` (p) = (−1)2B+S+σv−σ` (p) . (A.3)

As σ runs from −S to S, the phase is always real i.e. either ±1. For the vector and Dirac

representation one recovers the relations given in eq. (2.6) that one can explicitly check

– 26 –



J
H
E
P
0
2
(
2
0
1
7
)
0
3
4

against eq. (A.9), eq. (A.12) and the literature, e.g. [37]. This implies that the massive

density matrices of particles and anti-particles are related:

uσ(p)uσ †(p) = v−σ(p)v−σ †(p) , (A.4)

that is ρσ = ρ̃−σ. The Dirac representation (1/2, 0)⊕ (0, 1/2) is reducible and the (−1)2B

factor in (A.3) gives rise to the γ5 of eq. (2.6), which in turn gives

uσ(p)uσ †(p) = γ5v−σ(p)v−σ †(p)γ5 (A.5)

for massive 4-component fermions, in agreement with (3.20). In terms of ū and v̄ it reads

uσ(p)ūσ(p) = −γ5v−σ(p)v̄−σ(p)γ5 as {γ0, γ5} = 0.

Eq. (A.1) provides also a constructive definition for the polarizations: by setting p = 0

and Λ equal to the Lorentz transformation L(p) we have W = 1, and the polarizations are

obtained by the ones in the rest frame of the particle with p = 0, namely

uσ` (p) = D``′(L(p))uσ`′(0) , vσ` (p) = D``′(L(p))vσ`′(0) . (A.6)

Moreover, under an arbitrary rotation Λ = R we have W = R for any p and

D``′(R)uσ`′(0) = uσ
′
` (0)Lσ′σ(R) . (A.7)

Since we are defining one particle states at rest with the definite spin along the z-axis,

that is Lσ′σ(R(ẑ)) = Exp[iσθ]δσ′σ, the uσ`′(0) can be look for studying the eigenvectors of

z−rotations generated by D(Jz)

D(Jz)``′ u
σ
`′(0) = σuσ` (0) . (A.8)

For example, a massive spin-1 state created by the vector (1/2, 1/2) has D(Jz)ij = −iε3ij
(and D(Jz)00 = D(Jz)i0 = D(Jz)i0 = 0); hence the following vectors are a valid choice of

polarizations

vector: ε±µ (p) = ∓R(p̂)


0

1/
√

2

±i/
√

2

0

 , ε0µ = R(p̂)


pz/m

0

0

E/m

 , (A.9)

where L(p) = R(p̂)B(|p|) with B(|p|) a boost on the z−axis (which has no effect on the

ε±µ (0)). R(p̂) is a rotation that aligns the z-axis along p. Note that

pµεσµ(p) = 0 , εσ ∗µ (p)εσ
′
µ (p) = −δσσ′ , εσ ∗µ (p) = (−1)σε−σµ (p) (A.10)

In fact, one could have used these relations as definition of vector polarizations.

Other useful contractions in the 2 → 2 scattering of identical spin-1 particles of mo-

menta p1,2 in the c.o.m frame and moving along the z-axis are

pµi ε
±
µ (pj)=0 , ε0µ(p1)ε0µ(p2)=−(s−2m2)

2m2
, ε0µ(p1)pµ2 =

√
−us
2m

, ε0µ(p1)ε±µ (p2)=0 .

(A.11)
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One could repeat the same derivation for a massive spin-1/2 in the (1/2, 0)⊕ (0, 1/2)

but it is faster to start from the Dirac equations, (/p−m)uσ(p) = (/p+m)vσ(p) = 0, that are

easily solved in the rest frame, i.e. uσ(0) =
√
m(ξσ, ξσ)T and v±(0) =

√
m(±ξ∓,∓ξ∓)T ,

and then boosted to

Dirac spinor: uσ(p) =

(√
p · σξσ√
p · σ̄ξσ

)
, vσ(p) =

( √
p · σησ

−
√
p · σ̄ησ

)
, (A.12)

where ξσ and ησ are a 2-component spinor, ξσ = (1, 0)T , ξ− = (0, 1)T and ησ = −iσ2ξσ ∗.

All the independent traces that one takes with the density matrix ρσ(p) = uσ(p)uσ †(p)

(as well as with ρ̃ for the anti-particles) can be recast in terms of the 4-momentum kµ
and the polarization 4-vector aµ(k) that appears in eq. (3.16). Indeed, each trace in

Tr
[
ρσ(p)γ0 · {1, γ5, γµ, γµγ5, [γµ, γν ]}

]
corresponds to one of the following bilinears

ūσ(k)γµuσ(k)=2kµ , ūσ(k)γµγ
5uσ(k)=2maσµ(k) , (A.13)

ūσ(k)uσ(k)=2m, ūσ(k)γ5uσ(k)=0 , ūσ(k)[γµ, γν ]uσ(k)=4iεµναβkαa
σ
β(k) . (A.14)

One can actually use the right-most expression in eq. (A.13) as definition of aσµ, which thus

implies the general parametrization (3.16) for the density matrix. In the rest frame, the

polarization 4-vector of pure states reduces to a±µ = (0, 0, 0,±1)µ as one can check directly

using u(0) given above. Boosted along the z−direction by velocity β = −kz/k0 it becomes

a±µ (k) = ± 1
mΨ

(kz, 0, 0, k0)T . In any frame aµa
µ = −1 (for pure states) and aµk

µ = 0.

Since the rotations are the diagonal subgroup SU(2)A+B of SU(2)A×SUB(2), they are

generated by J = JA + JB, meaning that eq. (A.7) implies

D(JA)αα′u
σ
α′β(0) +D(JB)ββ′u

σ
αβ′(0) = L(JS)σ′σu

σ′
αβ(0) (A.15)

and analogous for vσαβ up to sending L(JS)σ′σ → −L∗(JS)σ′σ . In other words, uσαβ is

proportional to the SU(2) Clebsch-Gordan coefficient for the spin J = S inside rA ⊗ rB =⊕J=A+B
J=|A−B| rJ

uσαβ(0) ∝ C(S)σ
(AB)αβ , (A.16)

and analogous for vσαβ . The Clebsch-Gordan coefficients are unitary, i.e.∑
σ C

(S)σ
(AB)αβC

(S)σ ∗
(AB)γδ = δαγδβδ and

∑
αβ C

(S′)σ′ ∗
(AB)αβC

(S)σ
(AB)αβ = δSS′δ

σσ′ . Thus, the sum over

σ of the density matrix in the particle’s rest frame
∑

σ u
σ
αβ(0)uσ ∗γδ (0) is nothing but the

projector on the spin S in the basis labeled by the pair of indexes α and β (up to an overall

constant). For example, in the vector representation Πµν(0) =
∑

σ ρ
σ
µν(0) is proportional

to projector ηµν −kµkν/M2 orthogonal to k = (M, 0, 0, 0)T in the 4-vector space where the

time direction is a 3D scalar, while Πµν(p) =
∑

σ ρ
σ
µν(p) is proportional to the projector

ηµν − pµpν/M2 orthogonal to p = L(p)k.

The sum over σ of the density matrices, which is nothing but the numerator of the

propagator of Ψ` in Fourier space, can be written for irreducible representations as a

polynomial P (p) of the whole 4-momentum p of order 2S, with P (−p) = (−1)2SP (p) [2,

32, 34]. This relation ensures causality, i.e. vanishing (anti-)commutator between spacelike

asymptotic free fields with (half-)integer spins. For the Dirac representations, which is
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reducible, it becomes P (−p) = −P̃ (p) where P̃ is the sum over the polarizations of the

anti-particle. In section 3 we proved that this property actually hold spin by spin, i.e.

without even summing over the σ.

Massless fields. Massless fields need somewhat more care as one has to extend the no-

tion of ordinary Lorentz representations to the case of gauge fields which realise Lorentz up

to a gauge transformation. The little-group representation L for massless particles realises

non-trivially only the SO(2) rotations R(θ) inside the Euclidean group ISO(2) that leaves in-

variant the reference vector kr = (E, 0, 0, E)T (in order to have finite dimensional represen-

tations). This is possible iff σ = B−A [2, 33]. For example, left- and right-handed Weyl rep-

resentations (1/2, 0) and (0, 1/2) annihilate only particles of helicity −1/2 and +1/2 respec-

tively, and create only anti-particles of helicity 1/2 and −1/2 by CPT . Analogously, (1, 0)

or (0, 1) (anti-symmetric self-dual tensors with two indexes) represent ordinary spin-1 fields,

while the vector representation can not. In fact, any ordinary symmetric traceless represen-

tation (A,A) for massless fields corresponds to spin-0 only. The density matrices of ordinary

massless fields (S, 0) or (0, S) can be written as monomials P (p) of the 4-momentum p of or-

der 2S with P (−p) = (−1)2SP (p) [33]. Under CPT the polarizations of particles and anti-

particles map into each-other up to a sign as it happens in eq. (A.3) for the massive case.

In order to consider more general massless fields, such as the spin-1 photon field Aµ ∼
(1/2, 1/2), or the massless spin-2 graviton field hµν ∼ (1, 1), the notion of covariance

must be extended by allowing gauge transformations, such as e.g. U(Λ)Aµ(x)U †(Λ) =

(Λ−1)νµAν(Λx) + ∂µω(x,Λ). Indeed, the polarizations in the helicity basis are defined with

respect to the little-group reference vector kr = (k, 0, 0, k) as the eigenvectors with largest

eigenvalue, σ = ±S, with respect to rotations around the z-axis. Thus, under the little-

group, the analog of eq. (A.6) for a massless spin-1 tells us that εµ(kr) shifts proportionally

to the momentum, i.e. Tµα (α, β)Rαν (θ)εν σ(kr) = e±iσθ [εµσ(kr)− (α± iβ)kµr ], where the

generic little-group transformation W = T (α, β)R(θ) of ISO(2) has been decomposed in a

2D translation T (α, β) and a 1D rotation R(θ).

B Linear polarizations and crossing symmetric amplitudes

A crossing symmetric amplitude can be written as the linear combination of amplitudes

for particles/anti-particles of definite helicities, e.g. M(1σ1
a1

2σ2
a2
→ 1σ1

a3
2σ2
a2

) +M(1−σ1
a3

2σ2
a2
→

1−σ1
a1

2σ2
a2

). For self-conjugate particles that are i.e. their own anti-particles, it may be useful

to work instead with linear polarizations that give rise to neat relations under crossing [12,

16]. Consider for example a spin-1 particle described by a vector and define the linear basis

of polarizations by the real 4-vectors uA` = εAµ (kr) = δAµ , that is

ε1µ(k) = (0, 1, 0, 0)T , ε2µ(k) = (0, 0, 1, 0)T , ε3µ(k) =
1

m
(k3, 0, 0, k0)T . (B.1)

The main advantage of this basis is that the polarizations are real and the same for creation

and annihilation, vA` = εA ∗µ = u`. Therefore, it is the amplitude of the crossed process with

the same linear polarization that is now related to the original scattering amplitude by
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exchanging k → −k:

M(1̄A1
a3

2A2
a2
→ 1̄A1

a1
2A2
a4
, s) =M(1A1

a1
2A2
a2
→ 1A1

a3
2A2
a4
, u) . (B.2)

In turn, a single amplitude for self-conjugate particles (carrying real representations of

any internal symmetry group) with linear polarizations is itself, alone, already crossing

symmetric in the forward elastic limit

MCS =M(1A1
a1

2A2
a2
→ 1A1

a1
2A2
a2
, s) (B.3)

where we have chosen a real basis for the internal quantum number, ai = ai.

The linear basis exists for any integer spin created/annihilated by a tensor represen-

tation with n indexes: one can explicitly build the linearly polarizations by taking the the

tensor product of n copies of the εAµ in (B.1), and then decompose into the irreducible repre-

sentations by symmetrization/anti-symmetrization and removing the traces. For spin-1/2

fermions, the Majorana basis of the γ-matrices is completely imaginary and one has v = u∗.

From the Dirac equations, (/p−m)u(p) = (/p+m)v(p) = 0, the resulting polarizations can

be taken real for m = 0: the Majorana basis for massless particles is nothing but the linear

basis for the spin-1/2 polarizations that gives rise to crossing symmetric amplitudes.

C Sum rules, lower subtractions and mixed states

In order to study O(p2) terms in the EFT one may be interested in the dispersion relations

for M′:

M′σ1σ2
a1a2

(Λ2�µ2�m2
i )
∣∣
EFT

=
1

π

(∫ ∞
sIR

ds

(s−µ2)2
+

∫ uIR

−∞

ds

(s−µ2)2

)
ImMσ1σ2

a1a2
(s+ iε) + C∞

(C.1)

As the Froissart bound [41] is no longer enough to discard C∞, one needs to make extra

assumption about the UV behavior of the amplitude, see e.g. [8]. But even discarding C∞
(or claiming its finiteness and positivity), the extra assumptions are required also to derive

positivity from the sum rules

M′σ1σ2
a1a2

(Λ2 � µ2 � m2
i )
∣∣
EFT

= (C.2)

=
1

π

∫ ∞
sIR

ds

(s−µ2)2
Π(s)σtot(1σ1

a 2σ2
a2

)(s)− 1

π

∫ ∞
sIR

ds

(s−2(m2
1+m2

2)+µ2)3
Π(s)σtot(1̄−σ1

ā 2σ2
a2

)(s)

implied by unitarity and crossing symmetry because the two contributions from s- and

u-channel enter with opposite sign. The function Π(s), which asymptotically goes like s, is

the square-root that shows up in the optical theorem (4.6). With these extra assumptions

the sum rules allow to obtain interesting results e.g. in composite Higgs models [8–11] as

well as on dimension-6 four-Fermi operators with no derivatives [22].

Alternatively, one could take the point of view where the sum rules are checked against

the calculable contribution on the right-hand side due to the observed (or possibly observ-

able) resonances exchanged in the scattering. This is e.g. one way to use the sum rules

for the pions in low-energy QCD. In this logic, it may prove useful to work with density
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matrices for actual mixed states since the polarizations are not always known or measur-

able in practice. Multiplying the pure states density matrices with the distributions pσ1

and p′σ2
for the polarizations one gets sum rules for the total cross-sections σtot(1a2a2) and

σtot(1̄ā2a2) which are averaged over the initial state polarizations:∑
σ1 σ2

pσ1p
′
σ2
M′σ1σ2

a1a2
(Λ2 � µ2 � m2

i )
∣∣
EFT

= (C.3)

=
1

π

∫ ∞
sIR

ds

(s−µ2)2
Π(s)σtot(1a2a2)(s)− 1

π

∫ ∞
sIR

ds

(s−2(m2
1+m2

2)+µ2)3
Π(s)σtot(1̄ā2a2)(s)
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