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ABSTRACT

With the proliferation of e-commerce, e-wallet, and e-health smart-
phone applications, the need for trusted mobile applications is
greater than ever. Unlike their desktop counterparts, many mo-
bile applications rely heavily on sensor inputs. As a result, trust
often requires authenticity and integrity of sensor readings. For ex-
ample, applications may need trusted readings from sensors such
as a GPS, camera, or microphone. Recent research has started to
recognize the need for “trusted sensors”, yet providing the right
programming abstractions and system support for building mobile
trusted applications is an open problem.

This paper proposes two software abstractions for offering
trusted sensors to mobile applications. We present the design and
implementation of these abstractions on both x86 and ARM plat-
forms. We implement a trusted GPS sensor on both platforms, and
we provide a privacy control for trusted location using differential
privacy. Our evaluation shows that implementing these abstractions
comes with moderate overhead on both x86 and ARM platforms.
We find these software abstractions to be versatile and practical
– using them we implement one novel enterprise mobile applica-
tion.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Security Kernels

Keywords

Mobile Computing, Sensors, Trusted Platform Module, ARM
TrustZone, Differential Privacy

1. INTRODUCTION
Sensor readings gathered from a smartphone have started to have

high value. For example, location information is harvested to build
maps of Wi-Fi access points at global scale [29]. Photos and videos
taken with a smartphone are used by news media to determine
abuse and human rights violations by various groups and govern-
ments [33, 17]. Blood sugar is being monitored by wireless sensors
that control insulin pumps [19]. Location (e.g. geo-fencing) is now
being used in mobile payment schemes [30].

As this value is rising, cloud services and mobile applications
require “trusted sensors” – the ability to produce sensor readings
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that instill a high degree of confidence about their integrity and au-
thenticity. Today, it is trivial to fabricate sensor readings by simply
making up GPS locations, camera shots, or health readings. As
long as fabricating sensor readings can be done by compromising a
smartphone’s software stack (e.g., deploying a piece of malware),
the familiar spectrum of security miscreants will rise to exploit the
value of sensor readings. Criminals will try to exploit financial
transactions, steal health information for later resale, and prevent
the use of sensors data for investigations or prosecutions. Recog-
nizing the need for attesting the authenticity of sensor readings, the
research community has started to describe the huge potential of
such technology [2, 5, 25, 34] and to propose frameworks able to
verify the authenticity of sensor readings captured and modified on
a smartphone [6].

Designing the “right” software abstractions for trusted sensors
is challenging and non-intuitive. For example, one way to detect
tampering is to simply sign the sensor readings. Although this ap-
proach meets the definition of trusted sensors (i.e., it protects the
integrity of sensor data from malicious applications), it is limited
because it does not enable a common scenario where sensor read-
ings are processed on the mobile device before uploading to the
cloud [6]. For example, cropping a photo before uploading it to
Facebook would invalidate the photo’s signature. Signed readings
is too rudimentary of an abstraction for trusted sensors because one
cannot distinguish malicious tampering from legitimate application
needs. Second, simply signing a sensor’s reading without seman-
tically understanding the sensor’s state is insufficient and can even
be insecure. For example, some GPS devices can be put in a “sim-
ulated mode” in which they simulate locations different than the
actual physical location of the sensor. Finally, mobile applications
might want to be able to reveal secrets based on a policy whose
input is sensor readings. For example, a geo-fencing security ap-
plication might want to implement access control based on GPS
locations. Unfortunately, simply signing GPS locations does not
meet the needs of such applications.

This paper’s goal is to present two software abstractions de-
signed to expose trusted sensors to mobile applications and cloud
services. The first abstraction is called sensor attestation and its
role is to protect the sensor reading’s integrity and authenticity.
This is done by attesting the code producing the reading as well
as the sensor configuration (i.e., the sensor’s state) when the read-
ing was made. The second abstraction is called sensor seal. Sensor
seal takes as input a secret, encrypts it, and binds it to a sensor pol-
icy. When an application calls sensor unseal, a sensor reading is
produced and the secret is revealed only if the reading obeys the
policy specified at seal time. For example, a geo-fencing appli-
cation might seal authentication credentials (i.e., a “secret”) to a
virtual perimeter. Unseal is successful only if the location read-
ings reveal that the smartphone is within the virtual perimeter. As
their names suggest, these abstractions have been inspired from the
two primitives used in trusted computing, software attestation and



sealed storage. Like their trusted computing counterparts, these
two primitives combined are sufficient for exposing trusted sensors
to mobile applications and cloud services.

We have implemented these two abstractions on both x86 and
ARM SoC platforms because we believe trusted sensors are needed
for both laptops (x86) and smartphones and tablets (ARM). The
two implementations are similar only at a very high-level – they
both implement a runtime environment protected from the OS and
the applications running on behalf of the user of the device. In-
side these environments, we build a software stack that implements
the two trusted sensor primitives – attestation and seal – and offers
them to the untrusted OS and applications. The mechanisms used
to build these isolated environments are different between the two
architectures. On x86, we leverage trusted computing hardware
and the Credo research hypervisor [21] that offers strong isolation
properties similar to CloudVisor [36], to build guest VMs that can
protect data integrity even if the management VM becomes com-
promised. On ARM, we leverage the ARM TrustZone extensions
that can protect sensor readings’ integrity from all other software
running on the platform. The hardware support on ARM makes our
system much simpler than its x86 counterpart.

Currently, both our implementations offer attestation and seal for
GPS only. To demonstrate the benefits of trusted GPS, we im-
plemented a new mobile application, called TrustedDrive. With
TrustedDrive, a user can protect a storage partition by defining a
geo-location policy. The storage partition is mounted only if the
current location returned by the trusted GPS satisfies the original
policy. Such an application is useful in an enterprise environment
because it ensures that sensitive partitions are available only if em-
ployees are on premise.

Trusted sensors also raise privacy concerns for two reasons: 1)
the digital signature that accompanies the sensor reading may iden-
tify who signed the reading, and 2) the content of the sensor reading
may reveal sensitive information about the device’s owner. In this
paper, we describe approaches to deal with both problems, and we
implement a differential privacy layer to address the latter problem.
Our first approach is based on cryptography constructs that change
the nature of the signature that accompanies a sensor reading when
sent to the cloud. These mechanisms can provide user anonymity
and sensor data non-transferability (e.g., while the cloud can verify
a sensor reading’s authenticity, the cloud cannot convince others of
the reading’s authenticity).

Our second approach aims to protect the information revealed by
the sensor data before it is signed. For this we leverage differen-
tial privacy [3, 4], a technique that provides a mathematical frame-
work for injecting “noise” into a query answer and measuring the
amount of privacy loss in answering the query. We show how dif-
ferential privacy can be added as a “privacy layer” to a trusted GPS
implementation. This layer handles incoming queries for GPS co-
ordinates and answers them in a differentially private-manner. The
answers remain trustworthy because they continue to carry a trusted
sensor attestation. Finally, because differential privacy introduces
errors in the sensor readings, such errors may affect the correctness
of mobile applications that depend on the GPS. We evaluate the
magnitude of such errors using a previously collected trace of GPS
locations [28], and show that certain classes of mobile applications
will not be affected by the noise introduced by differential privacy.

The contributions of our paper are:

• We design two trusted computing abstractions that fit the
needs of a growing class of mobile applications – those that
require increased assurance about the sensor data produced
by a mobile device.

• We demonstrate how to implement these abstractions in a vir-
tualized system. Using a serial port GPS device as an exam-
ple, we show how to hand over ownership of a sensor device
from the management VM to a separate VM whose respon-
sibility is to provide the trusted sensor stack.

• We demonstrate how to implement these abstractions using
trusted computing hardware extensions found in ARM-based
systems. In particular, we show how to leverage ARM Trust-
Zone to provide a lightweight trusted sensor stack with a
small trusted computing base (TCB).

• We take some initial steps toward overcoming the privacy
challenges posed by trusted sensors. We demonstrate how
differential privacy can be used with a GPS sensor to offer
systematic a way of reasoning about how to add noise to sen-
sor readings to improve privacy.

2. THE NEED FOR TRUSTED SENSORS
Previous work [2, 5, 6], including our own workshop papers [25,

34], describes many mobile applications that benefit from the pres-
ence of trusted sensors, and the attacks that rise due to the lack of
them [31]. Rather than re-enumerating all trusted mobile applica-
tions in this paper, instead we classify them in a higher-level tax-
onomy. This classification helps to build a better intuition of why
these two software abstractions meet the needs of these trusted ap-
plications.

1. Applications that collect proofs. These applications need to
collect sensor readings and present them as “proofs” either imme-
diately after they are collected, or at some later time. Sometimes
these proofs are used to demonstrate the authenticity of content, as
is the case with validating that photos have not been photoshopped.
In other cases, such proofs are used to demonstrate a particular ac-
tion or behavioral pattern of the user, as is the case with offering
store discounts to loyal customers based on location proofs.

2. Participatory sensing/crowdsourcing applications. These
applications upload sensor readings to the cloud. The cloud often
combines readings from multiple users in a process referred to as
crowdsourcing, to build an aggregate view of data. This aggregate
view is then offered as a cloud service to all users.

This class of applications is subject to database manipulation at-
tacks [31], where an attacker uploads fake sensor readings to the
cloud. With sensor attestations, it is much harder for attackers to
fabricate or alter sensor readings without being detected.

3. Applications that use authentication. These applications
need to perform a security-sensitive operation based on a sensor
reading. For example, a user might get access to a secret file or
password only when present at a specific location. Sometimes the
secret might be revealed by the cloud, whereas in other cases the
secret might be revealed by the local smartphone. In both cases, the
secret is revealed based on the reading values of a trusted sensor.

The sensor seal abstraction makes it easy to build such applica-
tions. The secret data can be first sealed according to a particular
sensor-based policy. Any application that uses authentication can
just issue an unseal operation to receive the secret data.

3. THREAT MODEL
A mobile user can install malware (whether accidentally or in-

tentionally) on their mobile device, compromising the general pur-
pose operating system. While such malware can tamper with sensor
attestations, we enable detection of such tampering through signa-
ture verification. Malware may also modify all the software that



runs on the machine (even the persistent copy of the trusted soft-
ware), but such modifications will be detectable by using software
attestation [32]. To provide these guarantees, we require that the
trusted computing base (TCB) of our system cannot be compro-
mised. If our system’s TCB ever becomes compromised, we can-
not provide any guarantees. On x86, the system TCB consists of
the trusted sensors software stack plus the Credo hypervisor. On
ARM, this consists of all code that runs in the ARM TrustZone se-
cure world. Remember that, on both x86 and ARM, the general
purpose OS, system services, and all third party applications are
not part of the TCB.

Several classes of attacks are out of scope for our current sys-
tem. As mentioned in the previous paragraph, all attacks that com-
promise our system’s TCB are out of scope. Another class is side-
channel attacks that attempt to infer the secrets (e.g., the signing
key) of our trusted environment through covert channels. Another
class is tampering with the trusted computing hardware, such as the
TPM. TPMs were not designed to protect against physical attacks;
the TPM spec does not require tamper-proof manufacturing [32].
Finally, it is possible to manipulate the physical environment to
create false sensor readings. For example, keeping a lighter next
to a temperature sensor will produce artificially high temperature
readings.

As with all trusted computing systems, in addition to relying on
the software TCB being exploit free, we must also trust the manu-
facturer of the trusted computing hardware. There are two aspects
to this trust: 1) relying on a correct implementation of the TPM chip
or TrustZone feature, and 2) relying on a secure provisioning pro-
cess. To provision a TPM chip, the manufacturer injects a unique
identity, known as the endorsement key-pair, into the TPM chip.
The manufacturer then signs a certificate indicating that the public
key of the endorsement key-pair is an authentic TPM chip. The se-
curity guarantees rely on the manufacturer’s signing key remaining
secret, and the private key of the endorsement key-pair remaining
secret.

4. TRUSTED SENSORS ABSTRACTIONS
Trusted sensors are an important building block to building trust-

worthy systems in the mobile landscape. Although there is no pre-
cise definition, the term "trusted computing" often refers to systems
that build upon hardware primitives to provide code integrity pro-
tection and confidentiality for their secret data. While the meaning
of code integrity is well-understood, it is important to elucidate the
meaning of data confidentiality. Typically, trusted computing sys-
tems are capable of protecting a piece of data in such a way that
only a specific, pre-determined piece of code can access it. The
combination of these two properties allows a system to guarantee
that trusted code will run unmodified and will protect its secret data
from all untrusted code.

Based on these insights, we borrow abstractions from trusted
computing and map them to mobile sensing. The remainder of this
section describes our abstractions and how they meet the needs of
trusted mobile applications.

4.1 Abstraction #1: Sensor Attestation
A sensor attestation protects the sensor reading’s integrity and

demonstrates its authenticity. To offer these two properties, the sen-
sor reading is signed. The key used for signing is a Trusted Plat-
form Module (TPM)’s Attestation Identity Key (AIK) [32]. The
private portion of the AIK is non-migratable and protected by the
TPM. The underlying platform also binds the same AIK to the soft-
ware configuration of the platform’s TCB, and can use this AIK to
sign remote attestations. The combination of binding the AIK to a

trusted configuration and sharing the same AIK to sign both sensor
and remote attestations provides a notion of authenticity: this plat-

form with this specific configuration produced this sensor reading.
There is one additional practical requirement related to sensor

attestation. The sensor attestation must also incorporate a notion
of the sensor’s state to ensure that software can correctly interpret
how the reading was produced. In Section 5, we elaborate on this
requirement.

4.2 Abstraction #2: Sensor Seal
Sensor seal protects a secret by encrypting and binding it to a

policy that uses sensor readings. Unseal reads the sensors and eval-
uates a policy predicate to determine whether the sensor readings
satisfy the policy. If so, the secret is decrypted. The encryption
is performed using a secret storage key, similar to the storage root
key (SRK) used by the TPMs [32]. As with the AIK, the private
portion of the SRK is non-migratable and protected by the trusted
computing hardware.

The policies used for sealing can be quite complex and span the
readings of multiple sensors. We did not want to restrict application
developers in the types of policies they can use. As a result, in
our implementation, policies can be specified using a full-featured
scripting language (we use Python in our prototype).

4.3 Local Processing of Sensor Readings
In some cases, sensor readings need to be processed on the local

device before they can be uploaded to the cloud. For example,
photos might be needed to be shrunk, cropped, or re-encoded at a
lower resolution to reduce the bandwidth and energy costs of cloud
upload [6]. Such legitimate pre-processing needs will affect the
integrity of the sensor reading uploaded to the cloud.

To preserve the authenticity of these processed sensor readings,
the local application code manipulating them must be able to pro-
tect its integrity at runtime. This code will first validate the sensor
attestation, then process the sensor reading, and finally upload it to
the cloud, all without its code being modified by an attacker. With-
out code integrity, the sensor readings being uploaded to the cloud
could be modified by malware. Many systems for offering code in-
tegrity have been previously proposed [27, 14, 13, 26, 36] and they
can all be integrated with our sensor attestations to offer end-to-end
trust guarantees. In this paper, our x86 implementation supports lo-
cal sensor processing because of our use of Credo hypervisor [21],
as described in Sections 6 and 7.

5. TRUSTED SENSORS API
This section describes the API we use to provide the two soft-

ware abstractions for trusted sensors. The abstractions are imple-
mented by a runtime environment with strong isolation from the
rest of the system, including the OS. Even in the presence of a
compromised OS, applications can use our API to obtain sensor
readings that protect their integrity and authenticity. The imple-
mentation of this API is described in Sections 7 and 8; this section
focuses on describing the API design and how mobile applications
can use it.

5.1 Sensor Attestation API
At a high-level, a sensor attestation is a sensor reading signed

with an AIK [32]. To validate the reading’s integrity, a verifier
checks the signature using the public part of the AIK. To vali-
date its authenticity, a verifier requests a remote attestation from
the platform, using a standard remote attestation verification proto-
col. This last step attests the software configuration producing the
sensor reading.



enum flash_mode_t {flash_off, flash_on, flash_auto};

enum autofocus_mode_t {focus_normal, focus_macro};

enum white_balance_t {automatic, incandescent,

fluorescent, daylight, cloudy};

enum scale_t {min, low, medium, high, max};

enum iso_t {isoauto, iso50, iso100, iso200,

iso400, iso800};

enum metering_t {matrix, center_weighted, spot};

typedef struct camera_config {

int resolution_width;

int resolution_height;

flash_mode_t flash_mode;

autofocus_mode_t autofocus_mode;

white_balance_t whitebalance;

scale_t contrast;

scale_t saturation;

scale_t sharpness;

int exposure_value; // from -2 to +2

iso_t iso;

metering_t metering;

bool wide_dynamic_range;

bool anti_shake;

} camera_config_t;

CapturePhoto(camera_config_t *camera_config, // out

int *image_size, // out

unsigned char **image_bytes, // out

rsa_sig_t *signature) // out

Figure 1: Trusted Camera API. The settings available for this

camera device are based on the Samsung Focus Windows Phone.

We now describe how to design the API for a trusted sensor. The
goal of a trusted sensor is simply to associate a digital signature
with a sensor reading, to provide both authenticity and integrity for
the sensor reading. Thus, the trusted sensor API must ensure that
each call that returns sensor data also provides an additional out
parameter for the signature, and this signature should cover all of
the output data. We demonstrate the process using three example
APIs: 1) for trusted Wi-Fi scanning; 2) for a trusted GPS sensor;
and 3) for a trusted camera. We use three simple guidelines in
turning a traditional sensor API into a trusted sensor API.

1. The developer must identify the different types of readings
that a sensor can produce and the device-specific state needed to
correctly interpret each sensor reading. All this device-specific
state must be exposed through the trusted sensor API. For exam-
ple, Figure 1 shows the API for a trusted camera. In this example,
all of the camera settings that affect the resulting image, such as
the flash mode and the exposure, must be explicitly represented in
the API. The camera API allows a caller to read all of the relevant
camera configuration state.

2. All API calls should be separated into either read or write op-
erations – there should be no calls that mix both reads and writes
into a single call. While sensor devices are typically thought of as
read-only devices, most sensors support write operations in prac-
tice. A camera exposes operations that control its configuration
state. These write operations are used to configure the sensor in
ways that affect how the sensor readings should be interpreted.

As another example, many crowdsourced location systems use
Wi-Fi scanning to determine the approximate location of a mobile
device. In this example, the Wi-Fi radio acts as a sensor device,
and many configuration parameters can affect the scan results. The
list of channels the radio listens on, the listening duration, and the
802.11 band that the radio supports all affect which beacons will
be heard during the scan. Figure 2 shows an example of the trusted
sensor API that supports Wi-Fi passive scanning.

3. The signature provided with all read operations should cover

enum band_80211_t {80211a, 80211b, 80211g, 80211n};

typedef struct beacon_info {

char *ap_bssid,

char *ap_ssid,

int mean_rssi,

} beacon_info_t;

typedef struct sender_info {

char *sender_mac,

int channel,

int mean_rssi,

} sender_info_t;

GetWifiPassiveScan(band_80211_t *band, // out

int *num_channels, // out

int **channel_list, // out

int *scan_delay_ms, // out

int *num_beacons; // out

beacon_info_t **beacons, // out

int *num_senders; // out

sender_info_t **senders, // out

rsa_sig_t *signature) // out

Figure 2: Trusted Wi-Fi Scanning API.

both the sensor’s data and its configuration state that affects the
sensor reading. One alternative that we considered but decided
against was to have a separate API call to fetch the current config-
uration state along with a digital signature. The advantage of using
one signature is that it ensures that the configuration is always sent
along with the sensor reading. This ensures that configuration state
needed to interpret the semantics of the sensor reading is always
available to the software that needs it.

The API does not need to expose control of all device configu-
ration state. The Wi-Fi and camera devices allow calls to modify
the device state (elided from our examples), but the GPS example
shown in Figure 3 does not. The GPS device does not allow se-
lecting which satellites will be used to produce a location fix, but
it does allow for reading which satellites were used in producing a
given location fix.

5.2 Sensor Seal API
The API for sensor seal and unseal is shown in Figure 4. Seal

takes as inputs a secret and a Python script specifying a sealing
policy. For seal, the script’s source code is concatenated with the
secret and encrypted into a blob returned to the caller. To unseal,
the caller passes in the encrypted blob. The blob is first decrypted
using a storage key, similar to the TPM’s storage root key (SRK),
that never leaves the TCB of the system. Decryption produces both
the secret and the Python script. The policy script predicate uses
the API described above to obtain sensor readings and attestations.
The policy script contains a predicate function that obtains the ap-
propriate sensor readings, checks them against the policy, and if
those checks pass the predicate returns true. If the predicate returns
true, the system then decrypts the sealed blob and returns the secret
to the caller.

6. HIGH-LEVEL SYSTEM

ARCHITECTURE
The code implementing trusted sensors must be protected from

the OS and the applications running on the mobile device. The
code must be run in an isolated environment that offers (1) code
integrity to ensure that malware cannot modify the trusted sensors’
software stack, and (2) data confidentiality to protect the signing
and encryption keys. This code is part of the system’s TCB and



enum fix_t {no_fix, 2d_fix, 3d_fix};

enum fix_quality_t {invalid, gps_fix, dgps_fix,

pps_fix, rtk, float_rtk,

manual, simulation};

typedef struct sat_info {

int sat_prn,

int elevation_degrees,

int azimuth_degrees,

int snr,

} sat_info_t;

// combine output of GPGGA and GPGSA sentences to

// produce this data.

GetCurrentLocationFix(time *utc_time, // out

float *latitude, // out

float *longitude, // out

float *altitude_above_mean_sea_level, // out

fix_quality_t *fix_quality, // out

fix_t *fix_type; // out

int *num_satellites, // out

float *height_of_geoid, // out

float *dilution_of_position, // out

float *vertical_dop, // out

float *horizontal_dop, // out

rsa_sig_t *signature) // out

// use output of GPGSV sentences to produce this data

GetCurrentSatInfo(int *num_sats_in_view, // out

sat_info_t **sat_info, // out

rsa_sig_t *signature) // out

Figure 3: Trusted GPS API.

SensorSeal(int secret_length, // in

char *secret, // in

int script_length, // in

char *script, // in

int seal_length, // out

char *sealed_blob) // out

SensorUnseal(int seal_length, // in

char *sealed_blob, // in

int secret_length, // out

char *secret) // out

Figure 4: Sensor Seal/Unseal API.

implements the trusted sensor APIs, the drivers needed to access
the sensors, and a policy interpreter for the Python scripts needed
for sensor seal.

Figure 5 illustrates the high-level architecture of our trusted sen-
sors system. The TCB is presented at the bottom, while the OS and
mobile applications are running at the top of the stack. The middle
layer is used to run application code that needs to locally trans-
form the sensor readings before uploading them to the cloud. This
local processing needs to be isolated from the OS to preserve the
integrity of the readings once processed. This layer is not within
our system’s TCB because it contains app-specific code and bugs
in that code do not affect the security of our trusted sensor abstrac-
tions. However, the security of this layer is important to each appli-
cation that needs to perform app-specific post-processing of sensor
readings. As a result, our system needs to provide the ability to
produce attestations that can be used to demonstrate the integrity
of the application code used to perform this post-processing. The
implementation of this layer is not a contribution of this paper, even
though our system on the x86 platform does inherit this function-
ality from the Credo hypervisor. Instead, our system’s focus is on
the bottom layer of the figure – we present an implementation of
the trusted sensor abstractions that remains secure even in the face
of an OS compromise.
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Figure 5: High-level Architecture of Trusted Sensors.

6.1 Design goals
Based on the description of the abstractions and their APIs, our

system architecture has five goals.

1. Protect the integrity of the software producing the sensor at-
testation. Without integrity, our system cannot guarantee the
properties of sensor attestation.

2. Protect the confidentiality of the attestation signing key. If
the signing key for attestations were to be leaked, attackers
can create their own attestations, compromising our system.

3. Protect the integrity of the sensor. It is paramount that the
sensor produces correct readings and that it is not subject to
erroneous configurations by untrusted software.

4. Provide support for seal/unseal for applications. To unseal
successfully, the platform must check the sensor reading
against a policy supplied by an application. Such checks can
be complex and need to be expressed in a Turing-complete
language.

5. The platform must offer adequate forms of privacy protection
for mobile users’ sensor data.

6.2 Design alternatives
Throughout the design of our systems (both x86 and ARM), we

faced several design choices. In the remainder of this section, we
describe three such choices we made and the design alternatives.
The choices we made were not obvious at the time, and we believe
that the alternatives are also interesting points in the trusted sensors
design space.

6.2.1 Hardware vs. Software

Trusted sensors can be built both in software and in hardware,
although each option presents a different set of challenges and
drawbacks. A software-only implementation uses a small piece of
trusted code to obtain a sensor reading and to sign that reading with
a secret key to detect any tampering with the data. To be secure, this
design must meet two requirements. First, the integrity of this code
and the confidentiality of its secret key must be protected from all
other software running on the machine. Second, the system must
protect the integrity of the sensor device during the reading. Oth-
erwise, malicious software could reprogram the sensor to cause its
reading to become meaningless. Making such systems secure is
challenging because the protection mechanisms must have a small
TCB. For example, one option would be to rely on the general pur-
pose OS to produce signed sensor readings. We believe such a
design is insecure because OSes have large TCBs and cannot offer
code integrity and data confidentiality. However, more secure de-
signs have been proposed; some rely on hypervisors[27, 13, 36] to



offer code integrity and data confidentiality, whereas others rely on
secure co-processors[14]. None of this previous work was aimed
at building trusted sensors and does not meet the sensor integrity
requirement.

The other alternative is building trusted sensors in hardware.
For this, sensor manufacturers need to equip their sensors with
additional logic to perform digital signatures. Such designs are
even more secure than software-only designs because their soft-
ware TCB is significantly smaller. The main drawback of building
trusted sensors in hardware is the added cost – building sensors
is a low margin business and adding logic to compute signatures
may increase the sensor’s cost. Thus, building hardware trusted
sensors at large-scale has a high barrier to deployment. To avoid
this barrier, we have chosen a software-only design for the systems
presented in this paper.

6.2.2 Isolation mechanisms

The software stack for producing trusted sensors must run in an
isolated environment to protect its code and data. Such an isolation
mechanism must not rely on an operating system, because OSes
have too large of a trusted computing base to provide adequate se-
curity. In practice, there are two mechanisms to build such isolated
environments – using hypervisors, and using hardware support for
trusted computing, such as Intel’s Trusted eXecution Technology
(TXT) or ARM TrustZone.

We regard using trusted computing hardware as a more secure
alternative over hypervisors. Building isolation mechanisms with
these features can be done with a much smaller TCB than that of
a hypervisor. Unfortunately, a pure TXT environment on x86 plat-
forms has serious performance shortcomings in practice. These
limitations are well-known [14] and led others to combine the use
of TXT with a hypervisor to build isolation on x86 platforms [27,
13]. In particular, the TXT environment is used to perform a mea-
sured launch of a hypervisor whose trustworthiness can be attested
by the TPM. The hypervisor then provides an isolation environment
whose trust is rooted in the hypervisor.

We use a similar combination of a hypervisor and Intel TXT for
our isolation mechanism on x86. On ARM however, we used the
ARM TrustZones, as this mechanism does not suffer from the per-
formance limitations of TXT. As a result, our ARM-based trusted
sensors system has a much smaller TCB than its x86 counterpart.

6.2.3 Privacy mechanisms

Attaching a digital signature to every sensor reading has the po-
tential to impact users’ privacy, because one must provide the cor-
responding public key to any entity that wants to validate the au-
thenticity of the sensor reading. At a high level, we see two general
approaches to addressing these privacy concerns: 1) using crypto-
graphic techniques to reintroduce anonymity, and 2) using differ-
ential privacy to provide statistical information about a sensor data
set. Each approach provides a very different kind of privacy – the
former hides the identity of the system that generates the sensor
readings, whereas the latter reduces the accuracy of individual sen-
sor readings to protect users’ privacy.

The first and simplest option is to allow selective disabling of
signing the sensor readings. To accomplish this, the system must
allow users to remove the attestation from the corresponding sensor
reading. With our implementation this is trivial because our trusted
sensing API provides the attestation as an extra field in the sensor
readings. Users can simply configure their systems to return null

in place of an attestation. While this approach is simple, users who
choose this approach will lose the benefits of trusted sensors.

Another option is to use cryptographic protocols that pro-

vide anonymity and information non-transferability. Our previous
work [25] advocated using group signatures [1] for anonymity com-
bined with zero-knowledge protocols [7] for non-transferability.
While these approaches continue to be viable, several reasons made
us not pursue a complete implementation of these approaches.
First, group signatures require setting up a trusted group man-
ager in charge of managing group members. Compromising the
group manager leads to anonymity compromises of group mem-
bers. In practice, setting up a trusted group manager appears expen-
sive and technically difficult. Second, providing non-transferability
has a high performance cost because these algorithms require high
computational power. In previous work, we implemented a zero-
knowledge protocol whose performance overhead was about 900
ms on a Pentium 1 GHz CPU. Adding an overhead of one second
to each sensor reading may be too much for certain applications.

The third option (and the one we take) is to use differential pri-
vacy – a mathematical approach to measuring the amount of pri-
vacy loss given a query and a “noise” constant. Users can design
policies that specify privacy budgets for each application or for the
entire system. Applications run their queries on a set of sensor
readings until the privacy budget is exhausted. The query results
are noisy – they are inaccurate so that the amount of privacy loss
due to the query stays within the budget. Section 10 describes how
we use differential privacy for a trusted GPS sensor.

7. IMPLEMENTATION ON X86

PLATFORMS
On x86, we use Credo to provide an isolated environment for

producing trusted sensor attestations. Credo is a research hyper-
visor, based on Microsoft’s Hyper-V, which provides guest VMs
additional protections from the Root VM. First, we provide a short
primer on Credo (more details can be found in [21]). Next, we
describe our modifications to Credo to enable trusted sensors.

7.1 Background on Credo
Credo is a hypervisor that leverages the TPM to establish trust in

hypervisor that is launched at boot time. The Credo hypervisor also
offers a new type of guest VM, called an emancipated VM. Eman-
cipated VMs differ from traditional guest VMs in two respects: 1)
the hypervisor provides stronger isolation, and 2) Credo enables
measurement of the software state of the emancipated VM. The
combination of these features ensures that as long as the hypervi-
sor and the TPM remain uncompromised, then: 1) an emancipated
VM can attest its configuration to external applications and ser-
vices, and 2) an emancipated VM can persist secrets in untrusted
storage that can only be decrypted by that same emancipated VM.
Unlike most commodity hypervisors, the trusted computing base
(TCB) of Credo’s emancipated VMs is only the hypervisor; the
Root VM (similar to Xen’s Dom0) cannot compromise the integrity
and confidentiality of an emancipated guest VM.

To verify the trustworthiness of the Credo hypervisor and to pro-
tect itself from attacks in the OS pre-boot environment, Credo uses
the dynamic root of trust measurement (DRTM) features available
on both Intel and AMD CPUs.

To support the emancipated guest VM features, Credo performs
the following two actions when booting an emancipated guest VM.
First, it isolates the memory and the virtual CPU state of the guest
VM from all other VMs. Credo restricts the Root VM from ac-
cessing the guest VM’s memory pages and from making any in-
tercepts that could change the guest’s virtual CPU state. Second,
when resuming an emancipated guest VM image, Credo records
a measurement to attest the software configuration of the emanci-
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pated guest VM. This enables software running inside this emanci-
pated guest VM to seal a secret to the measurement of emancipated
guest VM’s software configuration. Credo then ensures that only
the guest VM whose current measurement matches the specified
measurement that came with the seal operation can decrypt this se-
cret. A similar mechanism can be used by external cloud services:
they can also create secrets in way that only specific emancipated
VMs with a specific software stack can decrypt them.

7.2 Modifying Credo For Trusted Sensors
Credo provides a building block for two of the design require-

ments for trusted sensors – code integrity and data confidentiality.
We enable trusted sensors with Credo by placing the trusted sensor
software stack in an emancipated VM, thereby protecting it from
the Root VM which runs the general purpose OS and applications.
However, Credo leaves the Root VM in control of the physical I/O
devices, and uses encryption to protect data before handing it off
to the Root VM on its way to an I/O device. This ensures that the
Root VM is no longer part of the system’s TCB. However, we need
direct access to sensor I/O devices from the emancipated VM that
hosts the trusted sensor software stack. To support this, we mod-
ify Credo to support mapping certain I/O devices directly into an
emancipated guest VM. In particular, for our implementation we
enable one form of I/O support: our current implementation uses a
GPS sensor that attaches through a serial port, as a result we need
to enable serial port I/O from an emancipated guest VM.

7.3 Enabling Serial Port Trusted Sensors on
Credo

We begin our implementation description by presenting how the
serial port is handled by Credo. Note that for the features described
is this discussion, Credo is identical to Hyper-V. Also, the architec-
ture described here is very similar to other commodity hypervisors
such as VMware or Xen. The goal of our modifications to Hyper-
V/Credo is to take away ownership of the serial port from the Root
VM and enable the emancipated guest VM to own the serial port.
To accomplish this, we first enable mapping the serial port into an
emancipated guest VM (rather than to the Root VM), and then we
remove the Root VM’s ability to communicate with that serial port.

7.3.1 Serial Port Interrupt Handling in Credo

X86 hardware uses an universal asynchronous receiver/transmit-
ter (UART) to control the serial (COM) port. Whenever data is

available on the COM port, the UART sends an interrupt request
(IRQ4) to the I/O advanced programmable interrupt controller (IO
APIC). The IO APIC translates this interrupt into IRQ 178, which
it then sends on the APIC bus to which all CPUs are connected. All
interrupts sent on the APIC bus are handled by the local APICs,
interrupt controllers within each CPU core which handle delivery
of the interrupt to the CPU. Each local APIC is programmed to
control which IRQ messages should be delivered to the local CPU.
The hypervisor configures one CPU, designated at boot time as the
master, to handle all interrupts from I/O devices that arrive on the
APIC bus. This master CPU also happens to be the CPU that runs
the Root VM, and therefore the full virtualization stack. While
the hypervisor is handling an interrupt, lower priority interrupts are
masked (blocked) until the current handler completes. When the
hypervisor interrupt handler finishes, it clears the interrupt signal-
ing that the CPU is ready to receive additional interrupts.

When the local APIC interrupts the CPU to execute the appro-
priate interrupt handler, the hypervisor transforms this hardware
interrupt into a message sent on the virtual APIC bus inside the hy-
pervisor. Each virtual core has a virtual local APIC which receives
these message and passes them on to the corresponding virtual core.
For each VM, the hypervisor maintains a mapping of which virtual
processors are hosted on which physical cores. Interrupts destined
for a particular VM are always sent to the first virtual processor
for that VM. Synthetic interrupts sent on the virtual APIC bus are
implemented in two ways: if the destination virtual processor is
hosted on the same physical core, the corresponding virtual local
APIC can be manipulated directly, and if not then the interrupt is
sent using an inter-processor interrupt (IPI) sent over the physical
APIC bus. Upon receipt of an interrupt destined for the local vir-
tual processor, the virtual local APIC delivers the interrupt to the
hypervisor, which then dispatches it to the first virtual processor of
the destination guest VM. By default, all I/O devices, including the
serial port, are always owned by Root VM. On the left, the figure 6
shows a diagram of the standard serial port interrupt handling in
Credo.

7.3.2 Interrupt Handling for Trusted Sensors

We modified the interrupt handling in Credo to enable mapping
the serial port into an emancipated guest VM, rather than the Root
VM. The reason for this is that we want to take away ownership of
the serial port from the Root VM, and enable an emancipated guest
VM to own the serial port. To accomplish this, we modified the



virtual local APIC implementation in the Credo hypervisor. When
an interrupt arrives, the hypervisor looks up which physical proces-
sor hosts the virtual processor 1 for the emancipated guest VM. It
then uses the synthetic interrupt mechanism described in the previ-
ous section to deliver the interrupt to the correct virtual processor.
The hypervisor then forwards the serial port interrupt up into the
emancipated VM whose serial port driver handles it. In summary,
we simply implement a bypass mechanism whereby interrupts for
trusted sensor devices are delivered to the emancipated VM rather
than the Root VM. The modifications to the hypervisor to enable
this are quite simple, requiring less than 100 lines of code to imple-
ment.

7.3.3 Handling Serial Port I/O in Credo

The Root VM uses port-mapped I/O to configure the serial port
and to perform actual I/O operations on the serial port. To enable
port-mapped I/O from VMs, the hypervisor maintains an IO in-
tercept bitmap that determines which of the port-mapped I/O ad-
dresses are trapped for each VM. These intercepts occur when the
a VM executes any CPU instruction (such as IN or OUT) that ac-
cesses a port. By default, all port-mapped IO addresses are trapped
for normal guest VMs, but for the Root VM only the address range
corresponding to keyboard controller is trapped. As a result, the
Root VM can use IN and OUT instructions to directly access the
serial port UART.

7.3.4 Serial Port I/O for Trusted Sensors

To disable access to the serial port from the Root VM, we modify
the IO intercept bitmap in the hypervisor so that the COM port IO
addresses (0x3F8 to 0x3FF) are added to the Root VM’s intercept
bitmap. When the hypervisor traps these instructions, we mod-
ify the hypervisor so that all reads on these ports return 0xFF, and
all writes are simply discarded. We chose this behavior because it
matches the behavior of a serial port when no device is attached,
and as a result this tells the Root VM that no device is present.

The final step is to enable the emancipated guest VM to access
the serial port. To enable this, we modify the hypervisor to emulate
all the IN, OUT, and OUTS instructions. We did not need to emu-
late the INS instruction because the serial port driver does not use
that instruction. We chose to emulate, rather than modifying the
guest VM IO intercept bitmap because it made our implementation
simpler and because the overhead of emulation is not a problem at
the low bitrates supported by the serial port.

7.4 Building Sensor Attestation and Seal
We use an emancipated guest VM to host the software that con-

trols the sensor device and produces signed readings. Inside this
VM, we run a 64-bit version of the Windows Preinstallation En-
vironment (WinPE) created with the Windows Automated Installa-
tion Kit. WinPE is a minimal but fully functional Windows 7 envi-
ronment with the full set of standard Windows 7 libraries. Because
the software that runs in the emancipated guest VM is part of our
TCB, it is critical to make the size of these components as small as
possible. While WinPE has a much smaller TCB than a full instal-
lation of Windows 7, the TCB is still relatively large. In the future
we could replace this with a much smaller software stack that is
similar to the one we use for our ARM TrustZone implementation
described in Section 8. The initial image for the emancipated VM
that contains the trusted sensor software stack (and the measure-
ment of that image) is created in a trusted environment to ensure
that malware does not enter into the emancipated VM.

When the emancipated VM boots for the very first time, it cre-
ates a new RSA-1024 key-pair for signing, and uses the TPM’s

AIK to produce a quote for the public key of that key-pair. The
reason for this step, rather than just directly using the TPM’s AIK,
is that it improves the performance of our sensor attestation opera-
tions. This is because RSA crypto operations on the main CPU are
much faster than using the TPM for these operations. Further, the
TPM quote includes relevant platform state which can be used to
remotely attest that the Credo hypervisor has been launched using
TXT, and that the VM is executing in emancipated mode. We also
create a new symmetric storage key (an AES key) that will be used
to implement sensor seal and unseal. We use the TPM’s seal oper-
ation to protect this storage key and the private half of the signing
key-pair. Finally, we save these items together on external storage:
the sealed blob of keys, the TPM’s AIK certificate, and the quote
of the key-pair’s public key.

Each time the emancipated VM boots, we initialize the network,
and start the trusted sensors service. To support sensor seal and
unseal, we also initialize a python interpreter inside the emanci-
pated VM. Next, the trusted sensor service uses the TPM to unseal
the blob of keys. Because the TPM seal operation includes the
platform state (in a manner similar to the TPM quote), when the
unseal is successful this ensures that: 1) the Credo hypervisor is
running securely, 2) the VM is running emancipated, and 3) this

emancipated VM performed the original seal operation. Finally,
our trusted sensors service starts listening on a TCP port for re-
quests to read a trusted sensor.

To handle incoming requests, our trusted sensor service reads
from the specified sensor hardware, signs the readings with the pri-
vate signing key, and replies with the signed data. We sign a SHA-1
hash of the data using the private RSA key. While the private sign-
ing key is kept confidential, the public key, the TPM’s AIK cer-
tificate, and the TPM quote of the public key, are all exported to
callers. This enables external programs to verify the integrity and
authenticity of sensor readings produced by this VM.

8. IMPLEMENTATION ON ARM

PLATFORMS
ARM TrustZone is ARM’s hardware support for trusted comput-

ing. It is a set of security extensions found in many recent ARM
processors (including Cortex A8 and Cortex A9). ARM TrustZone
provides two virtual processors backed by hardware access con-
trol. The software stack can switch between the two states, referred
to as “worlds”. One world is called secure world (SW), and the
other normal world (NW). With TrustZone, the entire OS and all
applications run in the normal world, whereas a small trusted ker-
nel runs in the secure world. The secure world provides code and
data integrity and confidentiality because untrusted code running
in the normal world cannot access the protected resources, such as
memory pages and peripheral registers of the secure world.

An ARM platform first boots into the secure world. Here, the
system firmware provisions the entire runtime environment of the
secure world. Once provisioning is complete, the secure world
yields to the normal world where the firmware loads up the boot-
loader which then loads the OS. The normal world must use a spe-
cial ARM instruction called smc (secure monitor call), to call back
into the secure world. When the CPU executes the smc instruction,
the hardware switches into the secure monitor, which performs a
secure context switch into the secure world.

Hardware interrupts can trap directly into the secure monitor
code, which enables flexible routing of those interrupts to either
world. This allows sensors (or other I/O devices) to map all their
interrupts to the secure world and to protect the integrity of those
sensors from untrusted code. However, this step is not sufficient
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Figure 7: Architecture of handling the serial port on ARM.

Overview of how the serial port interrupts are handled on the

ARM platform.

to fully protect I/O devices, because untrusted code executing in
the normal world could potentially reprogram the device to disable
it from generating interrupts, even if those interrupts are routed to
the secure world. This is possible only if the normal world can
memory-map the device and therefore access its control registers.

In this context, there are two approaches to secure access to
a sensor device. One approach uses hardware configuration: the
AXI-to-APB bridge reads an input signal that indicates which de-
vices attached to the APB bus are only accessible from secure
world, and these devices cannot be memory-mapped by the normal
world. For the other approach, the device can be memory-mapped
into both worlds. Thus, when the secure world starts executing, it
must reset the device to a known good state, and then it must not
relinquish control to the normal world until the sensor reading is
complete.

8.1 Trusted GPS on ARM TrustZone
Before we describe the Trusted GPS implementation, we provide

a brief description of the software stack we developed for the ARM
TrustZone secure world, which we call the Secure-world Execution
Environment (SEE). SEE is composed of three parts - a kernel, a
runtime environment, and secure services. Trusted GPS is imple-
mented as one secure service inside SEE.

Our kernel, which includes the secure monitor mentioned above,
implements context switching between normal world and secure
world, and dispatching of secure service requests from the NW to
the appropriate service. Service requests are made via the smc in-
struction. The kernel also implements interrupt handling – for non-
secure interrupts, the context is switched back to NW where they
are handled by the NW operating system. This mechanism is also
used to make the kernel and secure services preemptible. However,
any time a secure service is preempted it returns to the NW with a
special continue status. The NW is responsible for retrying the smc
instruction to let the service continue execution. Since the SEE
currently supports only a single context, the NW must serialize ac-
cess to the SW among multiple secure service calls - it must ensure
that a single secure service call finishes execution before allowing
a new secure service call to start.

The SEE provides minimal runtime support in form of libraries
to build secure services - in particular, it provides: platform sup-

port, such as a dynamic memory allocator, a clock, and secure
storage; and crypto support, realized via a port of the OpenSSL
library to the SEE.

Each secure service is uniquely identified using a 32-bit ser-
vice identifier (SID). All secure services implement well defined
entry points that are uniquely identified by 32-bit method identi-
fiers (MID). These methods are used as callback routines by the

dispatcher. Every secure service call from the NW identifies the
SID and the MID as parameters. These parameters are passed in
CPU registers r0 and r1, respectively. A secure service call can
pass two additional service specific parameters using registers r2
and r3. The return code from the service call is returned in register
r0. This calling convention matches the C calling convention for
ARM, and allows the NW to wrap the smc assembly instruction
with the following signature.

int SecureCall (int SID, int MID, int param0, int param1)

Besides registers, secure services use shared memory to commu-
nicate with the caller in the NW. To facilitate this communication,
all of the NW memory is mapped in the SW with identity mapping
(virtual address is same as physical address).

The trusted GPS secure service implements the trusted GPS API
described earlier. For both functions, param0 provides the physical
address of a shared memory buffer, and param1 provides the size
of this buffer. The GetCurrentLocationFix secure service call re-
turns a signed marshalled LocationFix structure in the buffer; the
SatelliteInfo secure service call returns a signed marshalled SatInfo
structure in the buffer.

Our SEE implementation is based on the Tianocore UEFI
firmware [10]. We added the SEE functionality (the kernel and
secure services) to the UEFI initialization “Security” phase that ex-
ecutes in the SW, and we implemented a trampoline to execute the
remaining the UEFI phases (the Pre-EFI phase, the Driver Execu-
tion Environment (DXE), and the UEFI applications) in the NW.
An example of a UEFI application is a bootloader that boots the
normal world OS. Once the system starts executing in the NW, it
can only interact with the SW by using the smc instruction.

Our SEE implementation provides an embedded model of se-
cure service development, where services and the SEE kernel are
compiled together to form a single binary executable image for the
firmware. This firmware image is copied to the flash storage via a
platform specific firmware utility. To ensure SEE integrity, the SEE
firmware image is signed. Upon platform reboot, the first stage
firmware loader verifies this signature before starting the SEE.

Figure 7 shows an overview of how serial port I/O and interrupts
for the trusted GPS sensor are handled on the ARM platform. As
with the x86 implementation, our GPS device is connected to the
ARM system through a UART. Because our ARM development
board does not setup the UART device as a secure-world only pe-
ripheral, this means that software running in the NW can access
the UART’s control registers and disable it generating interrupts.
Therefore, we cannot rely on interrupts being delivered to the se-
cure world. As a result, to protect the UART we must use the sec-
ond approach we described in the previous section: our trusted GPS
secure service uses polling to obtain a complete GPS reading, dur-
ing which time the SW never yields to the NW.

9. EVALUATION
In this section, we present performance results from the proto-

type trusted sensor systems we have built. This includes our pro-
totype running on an x86 system with a TPM chip, and our pro-
totype running on an ARM SoC using ARM TrustZone. We also
present performance results from the Trusted Drive application that
we have built. Overall, our goal is simply to demonstrate that the
performance overhead of the trusted sensor mechanisms do not in-
troduce overhead that would be a significant barrier to deployment.

9.1 Experiment Platforms
We perform our x86 experiments on a system with an Intel

Core2Duo E6850 CPU running at 3.0 GHz, with 4 GB of RAM.
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sizes of sensor readings.

Our Intel machine uses a Broadcom TPM 1.2 chip. Our ARM SoC
platform prototype is built on an ARM SoC development board.
This system contains 4 ARM Cortex A9 cores running at 1.2 GHz,
with 2 GB of RAM. Our secure execution environment in the ARM
TrustZone implementation uses only a single Cortex A9 core run-
ning in the TrustZone secure world, with 32 MB of RAM dedicated
to the secure world. All of the individual points plotted in Figures 8
through 11 are the mean of 10 individual experiments.

9.2 Trusted Sensor Overhead
We look at three different aspects of trusted sensor overhead:

the latency of each step in sensor attestation, the relationship be-
tween the size of the sensor reading and the performance overhead
of signing, and the throughput of sensor-based seal and unseal.

In Figure 8, we break down the latency overhead of sensor at-
testation into the overhead of reading and parsing the sensor output
and the overhead of hashing, signing, and copying the data back
to the application. For these experiments, the reading is a 48 byte
reading from the GPS sensor. We perform this experiment on both
x86 and ARM, and our results demonstrate that the signing over-
head is reasonable compared to the overhead of reading the sensor.
Note that the overhead of signing on the ARM platform is surpris-
ingly large (46 ms), but this is due to an unoptimized RSA im-
plementation and the fact that our L2 cache controller is currently
disabled in the SEE environment. We tested an optimized imple-
mentation of RSA in the general purpose OS on the same hardware,
and it improved signing performance by more than a factor of 4.

We also observe that the overhead of reading the GPS device is
noticeably larger on the x86 platform. This is because of our use of
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virtualization on the x86 platform. This additional overhead arises
from instruction emulation that occurs for all port-mapped I/O, as
well as higher interrupt latency.

In Figure 9, we show the overhead of hashing the sensor reading,
signing the hash, and copying the data as a function of the size of
the sensor reading. In this graph, we omit the cost of reading the
GPS sensor because we want to demonstrate the overhead of trusted
sensors for high data rate sensors. Our GPS is a low data rate sensor
that uses a UART interface which does not support DMA transfers.
Such an interface is inappropriate for high data rate sensors. On
both platforms, we see that the performance scales well because
only the hashing and copying steps incur additional overhead as
the size of the data grows.

Finally, in Figure 10, we show the performance overhead of
sensor-based seal and unseal. The results in this graph show dif-
ferent components for our x86 and ARM implementation. On x86,
as described in Section 7.4, our benchmark application runs in the
Root VM and it communicates with the trusted sensor environment
in the emancipated guest VM using a TCP connection. On ARM,
as described in Section 8, our benchmark application runs in the
normal world, and it communicates with the trusted sensor envi-
ronment using a shared memory interface.

On both platforms, the overhead includes the performance over-
head of copying combined with either AES encryption or decryp-
tion. Our results are already reasonably fast, and newer x86 plat-
forms include AES CPU instructions which will improve perfor-
mance even more. ARM SoC platforms often include custom hard-
ware accelerators for AES, but our currently implementation does
not yet take advantage of such improvements. In Figure 10, the
ARM performance results show higher throughput when the size
of the data is less than the L1 cache size of 32 KB, and slightly
lower throughput for sizes greater than 32 KB. The x86 perfor-
mance results show increasing throughput (due to TCP slow start)
from 128 bytes up to 64 KB, and then the throughput flattens out at
sizes larger than 64 KB.

9.3 Trusted Drive Application
The trusted drive is a trusted sensor application that manages an

encrypted disk drive. The goal of this application is to avoid ac-
cidental disclosure of sensitive data, such as customers’ personal
information. To accomplish this, the trusted drive application en-
sures that the drive is only accessible (mounted) when the user’s
mobile device is in a trusted location, such as when the user is on
the campus of a large enterprise. This provides a geo-fenced file
system: the file-system is automatically mounted when the user is
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inside the fence, and automatically unmounted when the user ven-
tures outside the fence.

Our scenario for this application makes two assumptions. First,
we assume that users are much more likely to acquire malware out-
side of the trusted location. If malware infects the system while
the trusted drive is mounted, our application offers little protection
because the general purpose operating system can read data from
the decrytped drive. Second, we assume that the mobile device
implements an automatic anti-malware check whenever the device
re-enters the trusted location. This ensures that the disk is not re-
mounted if malware has infected the system.

To implement trusted drive, we use our trusted GPS sensor and
the sensor seal abstraction. To ensure that the drive can only be
accessed when the sensor reading shows the correct location, it
utilizes the sensor seal and unseal abstraction to encrypt and de-
crypt the trusted drive. A sensor policy script is used to specify
the set of locations where the drive should be enabled. This policy
script is evaluated within the emancipated VM, and the drive will
be unsealed if the script determines that the location falls within the
specified boundaries.

The trusted drive application consists of a service that runs in the
Root VM and manages mounting and unmounting the trusted drive.
When the drive is not mounted, the trusted drive service attempts
to mount the drive when the user attempts to access the drive. To
mount the drive, the app calls unseal which will decrypt the drive as
long as the policy allows it based on the current location. When the
drive is mounted, the service periodically checks the sensor read-
ings, and immediately unmounts and seals the drive when the user
leaves the trusted location. Figure 11 shows the performance of
mounting and unmounting the trusted drive as a function of the
drive size. Our results show that all mount and unmount operations
complete in less than 100 seconds.

10. DIFFERENTIAL PRIVACY
Attaching signatures to sensor data has the potential to negatively

impact users’ privacy, because the sensor readings produced by a
device are signed by the same entity. Previous research [8] has
shown that manipulating sensor readings (e.g., making a GPS loca-
tion more coarse-grained) can be used to offset some of this privacy
loss. With trusted sensors, any manipulation of sensor readings
must occur before the readings are signed. In this section, we exam-
ine the potential of implementing a differential privacy layer inside
the trusted sensors stack. Differential privacy offers a principled

approach to manipulating sensor readings in a way that allows the
system to measure how much information is revealed, and therefore
how much privacy is lost, in answering a given query. Our initial
work on differential privacy is limited to the GPS location sensor.
We do not address how to apply differential privacy to all sensors:
similar techniques may work well for an accelerometer, but it is
not obvious how to apply differential privacy to the sensor readings
produced by a smartphone camera.

10.1 Brief Primer
Differential privacy [3, 4] provides an intuitive formalization of

privacy. Given a dataset and a query, differential privacy measures
how much information is revealed by answering the query. Infor-
mation is revealed when an attacker who knows the query answer
is more likely to guess the existence of a data item in the dataset.
Any query answered on the dataset leaks some information, how-
ever certain queries leak more information than others.

The amount of privacy loss is controlled by injecting noise in
the query answer. Differential privacy frameworks expose a noise

knob – if set to “high”, the query answer has low privacy loss, but
it is also more inaccurate, and vice-versa. Noise is generated dy-
namically for each query answer; if the same query is repeated, the
answer changes from one run to another based on the random noise.
Answering the same query twice increases the amount of privacy
lost. To see why this is true, consider answering the same query
repeatedly. Eventually, the attacker could infer the true query an-
swer by looking at the distribution of query answers and factoring
out the noise. Caching provides a practical way to answer repeated
queries without losing more privacy. With caching, the query is
not re-executed on the dataset, and as a result there is no additional
privacy loss by returning the cached result. An attacker is no more
likely to guess anything about the original dataset through caching.

10.2 Setting Up Differential Privacy
in a System

Differential privacy is used as a privacy layer on top of the sen-
sitive data. This layer’s role is to manage the data produced by a
sensor and answer incoming queries using differential privacy. Mo-
bile applications must now issue queries to this privacy layer when
making sensor readings. For example, a mobile application might
ask for the user’s average GPS location over the last hour. When-
ever a query is issued to the system, this layer measures the degree
of privacy lost by answering the query and decides whether to exe-
cute the query on the data. In this context, an implementation of a
differential privacy layer requires three parameters.

The first parameter is P , the privacy budget of the entire dataset.
The privacy lost by each query answer is deducted from this privacy
budget. Once it reaches zero, the system refuses to answer any
additional queries on this particular dataset. The data owner must
set the value of P .

The second parameter is ǫ, the noise knob of a query. If set to
“low”, the query might disclose a lot of information and thus be
rejected by the privacy layer because there is not enough budget.
By changing ǫ to high, the query may be answered because there is
enough privacy budget left for it. The issuer of the query controls
setting this parameter. There is nothing security sensitive about
controlling this parameter; it merely reflects how “interested” the
query issuer is in a more “correct” query answer in exchange for
spending more of the budget.

The final parameter is ∆, the epoch duration. After the privacy
budget of a dataset has been exhausted, no future queries can be
answered (except for the cached queries), putting the system into
live-lock. A system in which new data is continually produced, as



is the case for sensors, can overcome this situation by partitioning
the data into epochs and assigning a separate privacy budget to each
epoch.

10.3 Differential Privacy for Trusted Sensors
Differential privacy can be added to the sensor attestation ab-

straction. Although differential privacy makes the sensor readings
“noisy”, the readings’ integrity remains protected by our system.
This means that applications receive trusted sensor readings whose
values are altered due to differential privacy alone, and not due to

malware. With differential privacy, upon an application call, the
trusted API cannot return raw sensor readings anymore because
they are blocked by the privacy layer. Instead, applications can
submit queries over the sensor readings which are then evaluated
and executed by the differential privacy layer. Query results are
returned together with attestations that validate their integrity. The
privacy layer implementation must be part of the system’s TCB. For
illustration, our privacy layer is implemented as part of the Policy
Object Interpreter module shown in Figure 5.

Our differential privacy layer is based on the Privacy Integrated
Queries (PINQ) [15] language for writing differentially-private
queries. PINQ supports a number of LINQ-based aggregators
Count, Sum, Average, Median and transformations Where, Select,

Distinct, GroupBy, Join, Concat, Intersect, and Partition. Any
query expressed in terms of these LINQ-based aggregators can be
answered by our privacy layer. Although less complete than the full
SQL language, the combination of these aggregators and transfor-
mations is quite versatile.

The differentially private trusted sensor API is extended to pro-
vide an interface for PINQ queries. For example, suppose an ap-
plication wants to know how often a user was at a particular geo-
fenced location, say latitude between "-95.2" and "-95.1" and lon-
gitude between "29.29" and "29.30". This computation can be ex-
pressed as a PINQ query as shown below. Parameters in the body
of the query, such as GetCurrentLocationFix in this example, corre-
spond to the types of the output parameters defined by the original
trusted API. In this example, the amount of the privacy budget to
spend on this query is epsilon.

locFixes = new PINQueryable<GetCurrentLocationFix>();

locFixes.Where(fix => fix.latitude > -95.2 &&

fix.latitude < -95.1 &&

fix.longitude > 29.29 &&

fix.longitude < 29.3)

.Count(epsilon);

10.4 Evaluation
Applying differential privacy to mobile sensor applications cre-

ates a trade-off between privacy and accuracy loss. Here, we look
at whether mobile applications can continue to offer their function-
ality when their sensor inputs are subject to differential privacy.
We examine two mobile applications that use GPS location. Our
first application is centered on people’s commute and measures the
distance mobile users travel during a day. The second application
applies clustering to users’ locations, a common building block for
context-based systems [35]. We use a real GPS dataset to drive
these applications, both with and without differential privacy, and
we compare the accuracy losses.

10.4.1 Methodology

The GPS traces used were gathered by a different research
group [28]. They were obtained from 34 iPhone 3GS users over the
course of one year for 24 of them, and half a year for the remain-
ing 10. The GPS reads were gathered every 15 minutes as long as
the phone was not turned off (the logging process was continuously
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Figure 12: CDFs of error introduced by differential privacy.

On the left, the graph shows the error for the commuting distance

application; on the right, the graph shows the error for inferring

places of interest.

run in the background). Each experiment was run with three dif-
ferent settings for ǫ of 0.1, 1.0, and 10.0, settings commonly used
in other systems [16]. A setting lower than 0.1 is considered very
strong privacy-wise, whereas a setting higher than 10 is considered
weak. We are not advocating specific levels of differential privacy
as sufficient, but are instead interested in understanding the trade-
off between accuracy and privacy.

10.4.2 Results

For each user, we measure their daily commute by summing up
the distances between each successive GPS reading in the trace, and
computing the average daily commuting distance. We ignore all
days with less than two GPS readings because we cannot compute
a distance. On the left, Figure 12 shows the cumulative distribution
function of the error in the average commute distance of all users
measured in miles as a function of ǫ. With high levels of noise
(ǫ = 0.1), half of the users’ commutes have an error higher than
10 miles. However, even with a moderate setting of noise levels
(ǫ = 1), the error never becomes greater than one mile.

To infer places of interest, we applied 2-means clustering to each
user’s GPS location history. Each cluster is likely to be centered
around a place of interest for that user, such as their home, work-
place, or school. We then compute the error in the location of the
cluster center introduced by running this algorithm with differential
privacy. On the right, Figure 12 shows the cumulative distribution
function of these errors measured in miles as a function of ǫ. With
high levels of noise (ǫ = 0.1), 40% of cluster centers have an error
of more than 80 miles, whereas with ǫ = 1, the error introduced
by differential privacy is always less than 3 miles. With a setting of
ǫ = 1, the error is within 16 miles 80% of the time, with a worst-
case error of 46 miles. Such errors are tolerable if the application
is trying to infer the city or town for the place of interest. On the
other hand, if a more precise location is needed, then a lower level
of noise must be used (ǫ = 10).

Our preliminary results indicate that differential privacy has po-
tential for protecting users’ privacy with a trusted location sen-
sor. Moderate noise does not appear to be a hindrance for the
distance-based mobile application, and for coarse-grained infer-
ence of places-of-interest. Our analysis, however, is only the first
step in understanding the potential of differential privacy, and the
key question is how to apply it to a broad range of sensors.

11. RELATED WORK
1. Trusted sensors. Much recent work motivates the need of

mobile applications to obtain sensor readings with a high degree
of integrity and authenticity. Some sensors, such as GPS or Wi-
Fi scanning, produce their readings by contacting an infrastructure,



such as GPS satellites or Wi-Fi access points. In these cases, one
alternative is for the infrastructure to sign the sensor readings, a
technique sometimes referred to as “location proofs” [11, 24]. On
the surface, such an approach seems to not require any changes
on the client-side; as long as the infrastructure can sign its read-
ings, mobile devices can collect them as proofs. However, such a
design makes these proofs easily transferable from one device to
another. A transferable proof has little value because it is unclear
which device obtained the proof. Making proofs non-transferable
requires devices to run client-side software that manages device
identities; the infrastructure can then issue the proof to a specific
device identity. Also, the presence of identities escalates the pri-
vacy concerns [12, 20].

The other approach is to rely on client-side mechanisms to in-
crease the security of sensor readings. Most of this previous work
only motivates the need for trusted sensors without describing an
implementation [2, 5, 25, 34]. The piece of work closest to ours is
YouProve [6]. YouProve generates a fidelity certificate for a sensor
reading that has been manipulated by an untrusted application. A
fidelity certificate describes how “close” the post-processed sensor
reading is to the original one. One of YouProve’s main challenges
is coming up with a robust and complete set of techniques to char-
acterize the loss of fidelity when applying any arbitrary transfor-
mation to a sensor reading. Furthermore, the set of techniques used
for measuring fidelity loss is different from one sensor to another.
Instead, our abstractions attest the code manipulating the readings
and leave it up to the verifier to decide what pieces of code it trusts.
Such a verification model is more closely aligned with the tech-
niques used by trusted computing.

2. Trusted computing systems. Another area of related work is
building systems that offer code integrity and data confidentiality
for applications. Many of these systems can be extended to incor-
porate sensor I/O in their TCB. With such extensions, these systems
could build and offer our two trusted sensor abstractions. Although
we could have used a number of these systems in our x86 imple-
mentation, we chose to use Credo for several reasons. First, Credo
offers an entire virtual machine as a secure runtime environment
rather than just a hypervisor (e.g., TrustVisor [13]), a barebones
TXT environment (e.g., Flicker [14]), or a new operating system
(e.g., Nexus [26]). This makes programming in Credo much sim-
pler. Credo’s properties are similar to those of CloudVisor [36], but
CloudVisor does not appear to be available for download.

On ARM, the Trusted Language Runtime (TLR) [23] runs parts
of a mobile application inside the ARM TrustZone. We did not
use TLR because its implementation is only partly done, and it has
no support for I/O. Another related project implemented remote
attestation on an Android platform [18]; however, this system does
not appear to support running code in an isolated environment.

3. Differential privacy. Differential privacy is relatively new [3,
4] and a few recent systems have started to adopt it [22, 16]. De-
spite its theoretical guarantees, recently it has been shown that cur-
rent implementations of differential privacy [22, 15] are subject to
side-channel attacks [9]. While it is believed to be difficult for these
attacks to reveal secrets, it appears possible to consume more than
the pre-allocated privacy budget.

12. CONCLUSIONS
This paper presents two software abstractions for offering sensor

readings to trusted mobile applications. With these abstractions,
mobile applications can verify the integrity and authenticity of data
produced by sensors. The paper presents two implementations of
these abstractions one for x86, and one for ARM. Each of these
implementations leverage the trusted computing mechanisms ap-

propriate for each hardware platform, TPMs and hypervisors for
x86, and ARM TrustZone for ARM. Finally, the paper presents
a performance evaluation of these two implementations, and starts
examining the potential of using differential privacy for trusted mo-
bile applications.
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