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SOFTWARE AND ITS IMPACT:
A QUANTITATIVE ASSESSMENT &

You software guys are too much like the weavers
in the story about the Emperor and his new clothes.
When I go out to check on a software development the
answers I get sound like, 'We're fantastically busy
weaving this magic cloth. Just wait a while and it'll
lock terrific.' But there's nothing I can see or touch,
no numbers I can relate to, no way to pick up signals
that things aren't really all that great. And there
are too many people I know who have come out at the
end wearing a bunch of expensive rags or nothing at all.

--An Air Force decisionmaker

INTRODUCTION

Recently the Air Force Systems Command completed a study,
"Information Processing/Data Automation Implications of Air
Force Command and Control Reguirements in the 1980s," or CCIP-85
for short. The study projected future Air Force command and con-
trol information processing requirements and likely future infor-
mation processing capabilities into the 1980s, and developed an
Air Force R&D plan to correct the mismatches found between
likely capabilities and needs.

Although many of the CCIP-85 conclusions are specific to
the Air Force, there are a number of points which hold at least
as well elsewhere. This article summarizes those transferable

facts and conclusijions.

*
To be published in Datamation. The views in this article
do not necessarily reflect those of the United States Air Force.



Basically, the study showed that for almost all applica-
tions, scftware (as opposed to computer hardware, displays,
architecture, etc.) was "the tall pole in the tent"--the
major source of difficult future problems and operational
performance penalties. However, we found it difficult to
convince people outside the software business of this.

This was primarily because of the scarcity of solid gquanti-
tative data to demonstrate the impact of software on opera-
tional performance or to provide perspective on R&D priorities.

The study did find and develop some data which helped
illuminate the problems and convince people that the problems
were significant. Surprisingly, though, we found that these
data are almost unknown even to software practitioners.

(You can test this assertion via the "Software Quiz" shown
in the Appendix.) The main purpose of this article is to

make these scanty but important data and their implications
better known, and to convince people to collect more of it.

Before reading further, though, please turn to the Ap-
pendix and try the Software Quiz. It's intended to help you
better appreciate the software issues which the article goes

on to discuss.

SOFTWARE IS BIG BUSINESS

One convincing impact of software is directly on the pocket-
-book. For the Air Force, the estimated dollars for FY 1972 are in
Fig. 5; an annual expenditure on software of between $1 billion
and $1.5 billion, about three times the annual expenditure on
computer hardware and about 4 to 5 percent of the total Air
Force budget. Similar figures hold elsewhere. The recent
World Wide Military Command and Control System (WWMCCS) com-
puter procurement was estimated to involve expenditures of
$50 to $100 million for hardware and $722 million for soft-
ware.l A recent estimate for NASA was an annual expenditure
of $100 million for hardware, and $200 million for software--

about 6 percent of the annual NASA budget.

lDatamation, March 1, 1971, p. 41l.






For some individual projects, here are some overall soft-

ware costs:

IBM 0S/360 $ 200,000,000§

SAGE 250,000,000

Manned Space Program, 3
1960-70 1,000,000,000

Overall software costs in the U.S. are probably over $10 bil-
lion per year, over one percent of the gross national product.

If the software-hardware cost ratio appears lopsided now,
consider what will happen in the years ahead, as hardware gets
cheaper and software (people) costs go up and up. Figure 6
shows the estimate for software expenditures in the Air Force
going to over 90 percent of total ADP system costs by 1985; this
trend is probably characteristic of other organizations, also.

One would expect that current information-processing re-
search and development projects would be strongly oriented
toward where the future problems are. However, according to
recent Congressional testimony by Dr. Ruth Davis of NBS on
federally-funded computing R&D projects:

...21 percent of the projects were concerned

with hardware design, 40 percent were concerned

with the needs of special interest communities such

as natural sciences, engineering, social and behav-

ioral sciences, humanities, and real-time systems,

14 percent were in the long-range payoff areas of

metatheory, while only 9 percent were oriented to

the highly agonizing software problems identified

by most customers as their major concern. 4

One result of the CCIP-85 Study has been to begin to re-
orient Air Force information processing R&D much more toward
software. Similar R&D trends are evident at DOD's Advanced
Research Projects Agency (ARPA), National Science Foundation,
and the National Bureau of Standards. But much remains to

be done.

2Alexander, T., “"Computers Can't Solve Everything,”
Fortune, May 1969.

3Boehm, B. W., "System Design," in Planning Community
Information Utilities, (eds.) H. Sackman and
B. W. Boehm, AFIPS Press, 1972.

4"Government Bureau Takes on Role of Public Protector
Against Computer Misuse," ACM Communications,
November 1972, p. 1018.
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INDIRECT COSTS DUE TO SOFTWARE ARE EVEN BIGGER

Big as the direct costs of software are, the indirect
costs are even bigger, because software generally is on the
critical path in overall system development. That is, any
slippages in the software schedule translate directly into
slippages in the overall delivery schedule of the system.

Let's see what this meant in a recent software develop-
ment for a large defense system. It was planned to have an
operational lifetime of seven years and a total cost of about
$1.4 billion--or about $200 million a year worth of capability.
However, a six-month software delay caused a six-month delay
in making the system available to the user, who thus lost
about $100 million worth of needed capability--about 50 times
the direct cost of $2 million for the additional software
effort. Moreover, in order to keep the software from causing
further delays, several important functions were not provided
in the initial delivery to the user.

Again, similar situations develop in domestic applications.
IBM's 0S/360 software was over a year late.2 The U.S. air
traffic control system currently operates much more expensively
and less effectively because of slippages of years in soft-
ware (and also hardware, in this case) development, which have
escalated direct software costs to over $100 million.5 Often,
organizations compensate for software development slippages by
switching to a new system before the software is adequately
tested, leading to such social costs as undelivered welfare
checks to families with dependent children, bad credit reports,
and even people losing their lives because of errors in medical

software.

GETTING SOFTWARE OFF THE CRITICAL PATH

Once software starts slipping along the critical path,

there are several more or less unattractive options. One option

5Hirsch, P., "What's Wrong With the Air Traffic Control
System," Datamation, August 1972, pp. 48-53.



is to add more people in hopes that a human wave of programmers
will guickly subdue the problem. However, Brooks' excellent
article6 effectively shows that software is virtually incom-
pressible with respect to elapsed time, and that such measures
more often make things worse rather than better. Some other
unhappy options are to skimp on testing, integration, or docu-
mentation. These usually cost much more in the long run.
Another is just to scrap the new system and make do with the
old one. Generally, the most attractive option is to reduce
the system to an austere but expandable initial capability.
For the future, however, several opportunities exist for
reducing software delays and getting software off the critical

path. These fall into three main categories:

Increasing each individual's software productivity
Improving project organization and management
3. Initiating software development earlier in the

system development cycle.

INCREASING SOFTWARE PRODUCTIVITY: DEFINITIONS

Figure 7 shows a simplistic view of likely future trends
in software productvity. It is probably realistic in maintain-
ing at least a factor-of-10 spread between the 10th and 90th
percentiles of software productivity, but it begs a few impor-
tant questions.

One is, "What is software?" Even the courts and
the Internal Revenue Service have not been able to define its
metes and bounds precisely. The figures above include computer
program documentation, but exclude operating procedures and
broad system analysis. Clearly, a different definition would

affect software productivity figures significantly.

6Brooks, F., "Why Is The Software Late?" Data Management,
August 1971.
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Another important gquestion is, "What constitutes soft-
ware production?" As early as the mid-1950s there were
general-purpose trajectory analysis systems with which an
analyst could put together a modular, 10,000-word applica-
tions program in about 10 minutes. Was this "software pro-
duction?" With time, more and more such general-purpose
packages as ICES (MIT's Integrated Civil Engineering System),
Programming-by-Questionnaire, RPG, MARK IV, and SCERT, have
made the creation of significant software capabilities so
easy that they tend to be eliminated from the category of
"software productivity," which continues to refer to those
portions of the software directly resulting from handwritten
strings of assembly or FORTRAN-level language statements.
Figure 8 is an attempt to characterize this trend in terms
of a "50 percent automation date:" the year in which most
of the incoming problems in an area could be "programmed"
in less than an hour by a user knowledgeable in his field,
with one day of specialized training.

Thus, if we want to speak objectively about software

productivity, we are faced with the dilemma of:

either redefining it in terms of source instruc-
tions rather than object instructions—-thereby further
debasing the unit of production (which isn't completely
objective even using object instructions as a base);

or, continuing to narrow the range of definition
of "software productivity" to the more and more diffi-
cult programs which can't be put together more or less

automatically.

The eventual result of ARPA's major "automatic program-

ming" effort will be to narrow this latter range even further.7

7Balzer, Robert M., Automatic Programming, Institute Tech-

nical Memorandum, University of Southern California,
Information Sciences Institute, September 1972,
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INCREASING SOFTWARE PRODUCTIVITY: FACTORS

However, the fact remains that software needs to be
constructed, that various factors significantly influence
the speed and effectiveness of producing it, and that we
have at least some measure of control over these factors.
Thus, the more we know about those factors, the more our
decisions will lead to improved rather than degraded soft-
ware productivity. What are the important factors?

One is computer system response time. Studies by

Sackman and others8 comparing batch versus on-line program-
ming have shown median improvements of 20 percent in pro-
gramming efficiency using on-line systems.

However, in these same studies, variations between in-

dividuals accounted for differences in productivity of

factors up to 26:1. Clearly, selecting the right people
provides more leverage than anything else in improving

software productivity. But this isn't so easy. Reinstedt9

and others have shown that none of the selection tests de-
veloped so far have an operationally-dependable correlation

with programmer performance. Weinberg, in his excellent book,lo
illustrates the complexity of the issue by citing two programmer
attributes for each letter of the alphabet (from age and agility
through zygosity and zodiacal sign), each of which might be a
plausible determinant of programmer performance. Still, the
potential payoffs are so large that further work in the areas

of personnel selection, training, and evaluation should be
closely followed. For example, the Berger Test of Programming
Proficiency has proved fairly reliable in assessing the pro-

gramming capability of experienced programmers.

8Sackman, H., Man-Computer Problem Solving,Auerbach

Publishers, Inc., 1970.

Reinstedt, R. N., "Results of a Programmer Performance
Prediction Study," IEEE Trans. Engineering Management,
December 1967, pp. 183-187.

Weinberg, G., The Psychology of Computer Programming,
Van Nostrand Reinhold, 1971.

9

10
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Other factors such as programming languages have made

significant differences in software productivity. Rubey's
PL/I study showed differences of up to 2:1 in development
time for the same program written in two different languages.
In a related effort, Kosy obtained a 3.5:1 productivity improve-
ment over one of the Rubey eamples by using ECSS, a special-
purpose language for simulating computer systems.

Weinberg has also shownlo’ll that the choice of soft-

ware development criteria exerts a significant influence on

software productivity. In one set of experiments, program-
mers were given the same program specification, but were told
either (Group P) to finish the job as promptly as possible,

or (Group E) to produce as efficient a program as possible.
The results were that Group E finished the job with an average
of over twice as many runs to completion, but with programs
running an average of 6 times faster.

Another important factor is the software learning curve.

The table below shows the estimated and actual programming

effort involved in producing three successive FORTRAN compilers

by the same group.l2
Compiler Man Months
Effort No.| Estimated | Actual
il 36 72
2 24 36
3 12 14

Clearly, software estimation accuracy has a learning curve, also.

llWeinberg, G. F., "The Psychology of Improved Programming
Performance," Datamation, November 1972.

12McClure, R. M., "Projection vs Performance in Software

Production," in Software Engineering, (eds.) P. Naur,
and B. Randell, NATO, January 1969.
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But other factors in the programming environment make at
least as large a contribution on any given project. The most
exhaustive quantitative analysis done so far on the factors in-
fluencing software development was an SDC study done for the

13 which col-

Air Force Electronic Systems Division in 1965,
lected data on nearly 100 factors over 169 software projects
and performed extensive statistical analysis on the results.
The best fit to the data involved 13 factors, including sta-
bility of program design, percent mathematical instructions,
number of subprograms, concurrent hardware development, and
number of man-trips--but even that estimate had a standard

deviation (62 man-months) larger than the mean (40 man-months) .

INCREASING SOFTWARE PRODUCTIVITY: PRESCRIPTIONS

Does all this complexity mean that the prospect of in-

creasing software productivity is hopeless? Not at all.

In fact, some of the data provide good clues toward avenues

of improvement. For example, if you accurately answered ques-—
tion 1 on the Software Quiz, you can see that only 15 percent
of a typical software effort goes into coding. Clearly, then,
there is more potential payoff in improving the efficiency

of your analysis and validation efforts than in speeding up
your coding.

Significant opportunities exist for doing this. The
main one comes when each of us as individual programmers be-
comes aware of where his time is really going, and begins to
design, develop and use thoughtful test plans for the soft-
ware he produces, beginning in the earliest analysis phases.
Suppose that by doing so, we could save an average of one man-
day per man-month of testing effort. This would save about

2.5 percent of our total expenditure on software. Gilchrist

13Nelson, E. A., Management Handbook for the Estimation

of Computer Programming Costs, SDC, TM~3224, October
31, 1966.
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and Weber14 estimate about 360,000 software practitioners

in the U.S.; even at a somewhat conservative total cost quo-
tation of $30,000 per man-year, this is about $10.8 billien
annually spent on software, yielding a testing savings

of about $270 million per year.

Another opportunity lies in the area of programming langu-
ages. Except for a few experiments such as Floyd's "Verifying
Compiler," programming languages have been designed for people
to express programs with a minimum of redundancy, which tends
to expedite the coding process, but makes the testing phase
more difficult. Appropriate additional redundancy in a program
language, requiring a programmer to specify such items as al-
lowable limits on variables, inadmissible states and relations
between variables,15 would allow a compiler or operating sys-
tem to provide much more help in diagnosing programming errors
and reducing the time-consuming validation phase. For example,
of the 93 errors detected during execution in Rubey's PL/I
study, 52 could have been caught during compilation with a
validation-oriented programming language containing features
such as those above.

Another avenue to reducing the validation effort lies in
providing tools and technigues which get validation done more
efficiently during the analysis phase. This is the approach

taken in structured programming. This term has been used to

describe a variety of on-line programming tool boxes, program-
ming systems, and innovative structurings of the software pro-
duction effort. An example of the first is the Flexible Guid-
ance Software System, currently being developed for the Air
Force Space and Missile Systems Organization. The second is

exemplified by the Technische Hogeschool Eindhoven (THE)16

14Gilchrist, B., and K. E. Weber, "Employment of Trained
Computer Personnel--A Quantitative Survey," Proceed-
ings, 1972 SJCC, p. 641-648.

Kosy, D. W., Approaches to Improved Program Validation
Through Programming Language Design, The Rand Corpora-
tion, P-4865, July 1972.

Dijkstra, E. W., "The Structure of the 'THE' Multi-
programming System," ACM Comm, May 1968.

15

16
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and automated engineering design (AED) systems, while inno-
vative structuring may be seen in experiments such as the IBM
chief programmer team (CPT) effort.17 Although they are some-
what different, each concept represents an attempt to bring to
software production a "top-down" approach and to minimize
logical errors and inconsistencies through structural simpli-
fication of the development process. In the case of the THE
system, this is reinforced by requiring system coding free

of discontinuous program control ("GO-TO FREE"). In the chief
programmer approach, it is accomplished by choosing a single
individual to do the majority of actual design and programming
and tailoring a support staff around his function and talents.

As yet, none of the systems or concepts described has
been rigorously tested. Initial indications are, however,
that the structured approach can shorten the software develop-
ment process significantly, at least for some classes of pro-
grams and programmers. In one case, the use of RED reduced
the man-effort of a small system from an envisioned six man-
months to three man-weeks. A major experiment using the CPT
concept (on an 83,000-instruction system for the New York
Times) cut expected project costs by 50 percent and reduced
development time to 25 percent of the initial estimate.

The validation statistics on this project were particu-
larly impressive. After only a week's worth of system inte-
gration, the software went through five weeks of acceptance
testing by Times personnel. Only 21 errors were found, all of
which were fixed in one day. Since then during over a year's
worth of operational experience, only 25 additional errors have
been found in the 83,000-instruction package.

At this point, it's still not clear to what extent this
remarkable performance was a function of using remarkably

skilled programming talent, and to what extent the performance

l7Baker, F. T., "Chief Programmer Team," IBM Systems
Journal, Vol. II, No. 1, 1972, pp. 56-73.
18Baker, F. T., "System Quality Through Structured Pro-

gramming," Proceedings, 1972 FJCC, Pp- 339-344.
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gains could be matched by making a typical programming team
into a Chief Programmer Team. Yet the potential gains were

so large that further research, experimentation and training
in structured programming concepts was one of the top priority
recommendations of the CCIP-85 S8tudy.

IMPROVING SOFTWARE MANAGEMENT

Even though an individual's software productivity is im-
portant, the CCIP-85 Study found that the problems of software
productivity on medium or large projects are largely problems
of management: of thorough organization, good contingency
planning, thoughtful establishment of measurable project mile-
stones, continuous monitoring on whether the milestones are
properly passed, and prompt investigation and corrective
action in case they are not. In the software management area,
one of the major difficulties is the transfer of experience
from one project to the next. For example, many of the lessons
learned as far back as SAGE are often ignored in today's soft-
ware developments, although they were published over 10 years
ago in Hosier's excellent 1961 article on the value of milestones,
test plans, precise interface specifications, integrated meas-
urement capabilities, formatted debugging aids, early prototypes,
concurrent system development and performance analysis, etc.19

Beyond this, it is difficult to say anything concise about
software management that doesn't sound like motherhood. There-
fore, this article will simply cite some good references in which

the subject is explored in some detai1,20'21122

19Hosier, W. A., "Pitfalls and Safeguards in Real-Time
Digital Systems with Emphasis on Programming," IRE
Transactions on Engineering Management, Vol. EM-8,
June 1961, pp. 99-115.

Naur, P. and B. Randell (eds.) Software Enginecering,
NATO Science Committee, January 1969.

20

21Buxton, J. N. and B. Randell, (eds.) Software Engineering
Techniques, NATO Science Committee, April 1970.

22Weinwurm, G., (ed.) On the Management of Computer Fro-

gramming, Auerbach, 1970.
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GETTING AN EARLIER START: THE SOFTWARE-FIRST MACHINE

Even if software productivity never gets tremendously ef-
ficient, many of the most serious software agonies would be
alleviated if we could get software off the critical path
within an overall system development. In looking at the cur-
rent typical history of a large software project (Fig. 9) you
can see that the year (or often more) spent on hardware pro-
curement pushes software farther out onto the critical path,
since often the software effort has to wait at least until
the hardware source selection is completed.

One of the concepts developed in the CCIP-85 sStudy for
getting software more off the critical path was that of a
"Software-First Machine." This is a highly generalized com-
puter, capable of simulating the behavior of a wide range of
hardware configurations. Figure 10 provides a rough plan of
such a "software first" machine. It would have the capability
of configuring and exercising, through its microprogrammed
control, a range of computers, and could also simultaneously
provide some additional hardware aids to developing and test-
ing software.

Suppose a large organization such as the Air Force owned
such a machine. The following events could then take place:

a contractor who is trying to develop software for an airborne
computer could start with a need for a machine which is basically
the IBM 4PI, but with a faster memory and different interrupt
structure. This software contractor could develop, exercise,
store, and recall his software based on the microprogrammed
model of the machine. When it turned out that this architecture
was hampering the software developers, they could do some hard-
ware/software tradeoffs rather easily by changing the micro-
programmed machine representation; and when they were finished
or essentially finished with the software development, they
would have detailed design specifications for the hardware

that could be produced through competitive procurement in industry.
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Similarly, another contractor could be developing software
for interface message processors for communications systems,
based on variants of the Honeywell DDP 516; another could be
improving a real-time data processing capability based on an
upgrade of a CDC 3800 computer on another virtual machine.

The software-first machine could be of considerable value
in shortening the time from conception to implementation of
an integrated hardware/software system. In the usual pro-
curement process (Fig. 9), the hardware is chosen first, and
software development must await delivery of the hardware.

With the software-first machine, software development can
avoid this wait, as hardware procurement can be done during
the system test phase; the necessary hardware fabrication
will start from a detailed design and, with future fabrica-
tion technology, should not introduce delays. This saving
translates also into increased system operating life, as
the hardware installed in the field is based on more up-to-
date technology.

However, the software-first machine concept has some po-
tential drawbacks. For example, it might produce a "centri-
fugal tendency" in hardware development. Allowing designers
to tailor hardware to software might result in the prolifera-
tion of a variety of similar although critically different
computers, each used for a special purpose.

A final question concerning the software-first machine re-
mains moot: Can it be built, at any rate, at a "reasonable"
cost? Architectures such as the CDC STAR, Illiac IV, and
Goodyear STARAN IV would be virtually impossible to accommo-
date in a single machine. Thus, it is more likely that vari-
ous subsets of the Software-First Machine characteristics will
be developed for various ranges of applications.

One such variant is underway already. One Air Force or-
ganization, wishing to upgrade without a simultaneous hardware
and software discontinuity, acquired some Meta 4 microprogrammed

machines which will originally be installed to emulate the
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existing second-generation hardware. Once the new hardware
is in operation, they will proceed to upgrade the system
software using a different microprogrammed base. In this
way they can upgrade the system with a considerably reduced
risk of system down time.

Another existing approach is that of the microprogrammed
Burroughs B1700, which provides a number of the above character-
istics plus capabilities to support "direct" execution of

higher-level language programs.

OTHER HARDWARE-SOFTWARE TRADEOFFS

In addition, there are numerous other ways in which cheaper
hardware can be traded off to save on more expensive software
development costs. A most significant one stems from the
striking difference between "fdilklore" and "experience" in the
hardware-software curves shown in Fig. 2B of the Software
Quiz. This tradeoff opportunity involves buying enough hard-
ware capacity to keep away from the steep rise in software
costs occurring at about the 85 percent saturation point of CPU
and memory capacity.

Thus, suppose that one has sized a data-processing task
and determined that a computer of one-unit capacity (with re-
spect to central processing unit speed and size) is required.
Figure 11 shows how the total data-processing system cost varies
with the amount of excess CFU capacity procured for various
estimates of the ratio of ideal software-to-hardware costs for
the system.* The calculations are based on the previous curve
of programming costs and two models of hardware cost: the
linear model assumes that cost increases linearly with increases
in CPU capacity; the "Grosch's Law" model assumes that cost in-
creases as the square root of CPU capacity. Sharpe's data23

indicates that most applications fall somewhere between these models.

* .
"Ideal software" costs are those that would be incurred
without any consideration of straining hardware capacity.

23Sharpe, W. F., The Economics of Computers, Columbia

University Press, 1969.
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It should be remembered that the curves are based on
imprecise observations; they clearly cannot be used in
"cookbook" fashion by system designers. But even their

general trends make the following points guite evident:

(1) oOverall system cost is generally minimized by
procuring computer hardware with at least 50
percent to 100 percent more capacity than is
absolutely necessary.

(2) The more the ratio of software-to-hardware
cost increases (as it will markedly during the
seventies), the more excess computing capacity

one should procure to minimize the total cost.

(3) It is far more risky to err by procuring a com-
puter that is too small than one that is too
large. This is especially important, since
one's initial sizing of the data-processing

job often tends to underestimate its magnitude.

Of course, buying extra hardware does not eliminate the
need for good software engineering thereafter. Careful con-
figuration control must be maintained to realize properly
the benefits of having extra hardware capability, as there
are always strong Parkinsonian tendencies to absorb excess

capacity with marginally useful tasks.

SOFTWARE RESPONSIVENESS

Another difficulty with software is its frequent unre-
sponsiveness to the actual needs of the organization it was
developed for. For example, the hospital information system
field has several current examples of "wallflower" systems
which were developed without adequately consulting and ana-
lyzing the information requirements of doctors, nurses, and
hospital administrators. After trying to live with these

systems for a while, several hospital administrators have
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reluctantly but firmly phased them out with such comments as,
"We know that computers are supposed to be the way to go for
the future, but this system just doesn't provide us any help,"
or, "Usage of the system began at a very low level--and dropped
off from there."

The main difficulties stem from a lack of easily trans-
ferable procedures to aid in the software requirements analysis
process. This process bears on all-too-striking resemblance
to the class of folktales in which a genie comes up to a man
and tells him he has three wishes and can ask for anything
in the world. Typically, he spends his first two wishes
asking for something like a golden castle and a princess,
and then when he discovers the operations, maintenance, and
compatibility implications of his new acquisitions, he is
happy to spend the third wish getting back to where he started.

Similarly, the computer is a sort of genie which says,
"I'11 give you any processed information you want. All you
need to do is ask--by writing the software to process it."
Often, though, we go the man in the folktale one better by
canvassing a number of users (or non-users) and putting their
combined wish lists into a software requirements analysis.

But our technology base for assessing the operations, mainten-
ance, and compatibility implications of the resulting software
system is just as inadeguate. Thus, large airline reserva-
tions software developments (Univac/United, Burroughs/TWA)
have reached the point that the customer preferred to wish
them out of existence rather than continue them--but only
after the investment of tens of millions of dollars. 1In

other cases, where no alternative was available, software
rewrites of up to 67 percent (and in one very large system,

95 percent) have taken place--after the "final" software
package had been delivered--in order to meet the user's

operational needs.
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Considering the major needs for better requirements
analysis techniques, the relative lack of available tech-
nigues, and the added fact (from Fig. 1B of the Software
Quiz) that about 35 percent of the total software effort
goes into analysis and design, it is not surprising that
the top-priority R&D recommendation made by the CCIP-85
Study was for better techniques for performing and vali-
dating information system requirements analyses, and for

generating and verifying the resulting information system

designs.
The recent Datamation articles on automated system
design24’25 indicated some promising initial developments

in this area such as Teichroew's ISDOS project, FOREM, and
IBM's TAG (Time-Automated Grid) system. Other significant
aids are being developed in the area of special languages
and packages such as SCERT, CASE, CsS, SaM, and ECSS to ac-
celerate the process of design verification by simulating
information-processing systems. Also, ARPA's major research
effort in automatic programming is focused strongly on

automating the analysis and design processes.

SOFTWARE RELIABILITY AND CERTIFICATION

Another major area in which the CCIP-85 Study identi-
fied a serious mismatch between future needs and likely soft-
ware capabilities was in the area of software certification:
of providing guirantees that the software will do what it is

supposed to do.

24Teichroew, D., and H. Sayari, "Automation of System

Building," Datamation, August 14, 1971, pp. 25-30.
25

Head, R. V., "Automated System Analysis, Datamation,

August 14, 1971, pp. 23-24.

*Other significant problem or opportunity areas identi-
fied by CCIP-85 included (in order) data security, airborne com-
puting power, multisource data fusion, data communications,
source data automation, image processing, performance analysis,
parallel processing, and software transferability.
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This is a significant concern right now, but it becomes
even more pressing when one extrapolates current trends
toward more complex software tasks and toward more and more
automated aids to decisionmaking. Just consider the trends
implicit in the results of the recent AFIPS/Time Survey26

which indicated that currently 30 percent of the labor force

must deal with computers in their daily work, but only 15

percent of the labor force is required to have any under-

standing of computers. Extrapolating this trend into the

1980s, as is done in Fig. 12, indicates that perhaps 40 per-
cent of the labor force will be trusting implicitly in the

results produced by computer software.

SOFTWARE RELIABILITY: PROBLEM SYMPTOMS

Will software be deserving of such trust? Not on its
past record. For example, some of the most thoroughly tested
software in the world is that of the Apollo manned spaceflight
efforts. Yet on Apollo 8, an unforeseen sequence of astronaut
actions destroyed the contents of a word in the computer's
erasable memory--fortunately, not a critical error in this
case. And on Apollo 11, the data flow from the rendezvous
radar was not diverted during the critical lunar landing se-
guence, causing a computer overload that required Astronaut
Armstrong to divert his attention from the process of landing
the spacecraft--fortunately again, without serious conseguences.
And during the ten-day flight of Apollo 14, there were 18 dis-
crepancies found in the software--again fortunately, without

serious conseguences.

26A National Survey of the Public's Attitudes Toward
Computers, AFIPS and Time, Inc., November 1971.
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Other space missions haven't been so fortunate. Recently
a software error aboard a French meteorological satellite
caused it to "emergency destruct" 72 out of 141 high-altitude
weather balloons, instead of interrogating them. An early U.S,.
Mariner interplanetary mission was lost due to a software er-
ror. And the Soviet Union has had missions fail because of
software errors.

Down on Earth, software reliability isn't any better.
Each new release of 05/360 contains roughly 1000 new software
errors. On one large real-time system containing about
2,700,000 instructions and undergoing continuous modifications,
an average of one software error per day is discovered. Errors
in medical software have caused people to lose their lives.
And software errors cause a constant stream of social disloca-
tions due to false arrests, incorrect bank balances or credit
records, lost travel reservations, or long-delayed payments
to needy families or small businesses. Also, lack of certi-
fication capabilities makes it virtually impossible to provide
strong guarantees on the security or privacy of sensitive or

personal information.

SOFTWARE RELIABILITY; TECHNICAL PROBLEMS

As the examples above should indicate, software certifi-
cation is not easy. Ideally, it means checking all possible
logical paths through a program; there may be a great many of
these. For example, Fig. 13 shows a rather simple program flow-
chart. Before looking at the accompanying text, try to esti-
mate how many different possible paths through the flowchart

exist.
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HOW MANY DIFFERENT PATHS THROUGH THIS FLOWCHART?

Loop (<12 times) Loop (<12 times)

NN .
/ ya

Even through this simple flowchart, the number of differ-
ent paths is about ten to the twentieth. If one had a computer

3 sec), and

that could check out one path per nanosecond (10
had started to check out the program at the beginning of the
Christian era (1 A.D.), the job would be about half done at

the present time.

So how does one certify a complex computer program that
has incredibly more possible paths than this simple example?
Fortunately, almost all of the probability mass in most pro-
grams goes into a relatively small number of paths that can be
checked out.

But the unchecked paths still have some probability of
occurring. And, furthermore, each time the software is modi-
fied, some portion of the testing must be repeated.

Figure 14 shows that, even for small software modifica-
tions, one should not expect error-free performance thereafter.
The data indicate that small modifications have a better chance
of working successfully than do large ones. However, even

after a small modification the chance of a successful f;pst
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run is, at best, about 50 percent.

In fact, there seems to be

a sort of complacency factor operating that makes a successful

first run less probable on modifications involving a single

statement than on those involving approximately five statements--

at least for this sampie.

At this point, it's not clear how representative this sample

is of other situations. One roughly comparable data point is in

Fig. 3B of the Software Quiz, in which only 7 percent of the

errors detected were those made in trying to correct previoss

errors. The difference in error rates is best explained by
both the criticality of the application and the fact that the

modifications were being made in a software validation rather

than a software maintenance environment.

In another analysis of software error data performed for

CCIP-85 by McGonagle,27 19 percent of the errors resulted from
"unexpected side effects to changes."
detected over three years of the development cycle of a 24,000-
instruction command and control program are shown in the table

below. These data are of particular interest because they pro-

Other sources of ermors

vide insights into the causes of software errors as well as

their variation with type of program.

DISTRIBUTION OF SOFTWARE ERROR CAUSES

Hardware User
Diagnostics Executive|Programs  Total
Causes of Error (%) (8) (%) (%)
Unexpected side effects to changes 5 25 10 19
Logical flaws in the design
Original design 5 10 2 8
Changes 5 15 8 12
Inconsistencies between design and
implementation 5 30 10 22
Clerical errors 40 20 50 28
Inconsistencies in hardware _40 == _20 11
100 100 100 100
Total errors detected, 3 yr sample 36 108 18 162
Number of instructions 4K 10K 10K 24K

27

McGonagle, J. D., A Study of a Software Development

Project, James P. Anderson, and Co., September 21, 1971.
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SOFTWARE CERTIFICATION TECHNOLOGY

Against the formidable software certification requirements
indicated above, the achievements of current technology leave
a great deal to be desired. One organization paid $750,000 to
test an 8,000-instruction program, and even then couldn't be
guaranteed that the software was perfect, because testing can
only determine the presence of errors, not their absence.
The largest program that has been mathematically proved correct
was a 433-statement Algol program to perform error-bounded
arithmetic; the proof required 46 pages of mathematical
reasoning.28

However, there are several encouraging trends. One is
the impressive reduction of errors achieved in the structured
programming activities discussed earlier in this article.
Another is the potential contribution of appropriately re-
dundant programming languages, also discussed earlier. A
third trend is the likely development of significant auto-
mated aids to the program-proving process, currently an ex-
tremely tedious manual process. Another is the evolutionary
development and dissemination of better software test pro-
cedures and techniques and the trend toward capitalizing on
economies of scale in validating similar software items, as
in the DOD COBOL Compiler Validation System. But even with
these trends, it will take a great deal of time, effort, and
research support to achieve commonly usable solutions to
such issues as the time and cost of analytic proof procedures,
the level of expertise required to use them, the difficulty
of providing a valid program specification to serve as a
certification standard, and the extent to which one can get

software efficiency and validability in the same package.

WHERE'S THE SOFTWARE ENGINEERING DATA BASE?

One of the major problems the CCIP-85 Study found was
the dearth of hard data available on software efforts which
would allow us to analyze the nature of software problems,

to convince people unfamiliar with software that the problems

28Good, D. I., and R. L. London, "Computer Interval Arith-

metic: Definition and Proof of Correct Implementation,'

ACM Journal, October 1970, pp. 603-612.
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were significant, or to get clues on how best to improve the
situation. Not having such a data base forces us to rely on
intuition when making crucial decisions on software, and I
expect, for many readers, your success on the Software Quiz
was sufficiently poor to convince you that software phenomena
often tend to be counterintuitive. Given the magnitude of

the risks of basing major software decisions on fallible in-
tuition, and the opportunities for ensuring more responsive
software by providing designers with usage data, it is sur-
prising how little effort has gone into endeavors to collect
and analyze such data. Only after a decade of R&D on heuristic
compilers, optimizing compilers, self-compiling compilers

and the like, has there been an R&D effort to develop a usage-
measuring compiler. Similar usage-measuring tools could be
developed for keeping track of error rates and other software
phenomena.

One of the reasons progress has been slow is that it's
just plain difficult to collect good software data--as we
found on three contract efforts to do so for the CCIP-85
Study. These difficulties included:

o Deciding which of the thousands of possibilities
to measure;
o Establishing standard definitions for "error,"

"test phase," etc.;

o Establishing what had been the development performance
criteria;

o Assessing subjective inputs such as "degree of dif-

ficulty," "programmer expertise," etc.;
Assessing the accuracy of post facto data;
Reconciling sets of data collected in differently

defined categories.

Clearly, more work on these factors is necessary to insure
that future software data collection efforts produce at least

roughly comparable results. However, because the data collection
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problem is difficult doesn't mean we should avoid it. Until
we establish a firm data base, the phrase "software engineer-
ing" will be largely a contradiction in terms. And the soft-

ware components of what is now called "computer science"

will remain far from Lord Kelvin's standard:
When you can measure what you are speaking

about, and express it in numbers, you know some-

thing about it; but when you cannot measure it,

when you cannot express it in numbers, your

knowledge is of a meager and unsatisfactory kind:

it may be the beginning of knowledge, but you

have scarcely, in your thoughts, advanced to the

stage of science.

But, in closing, I'd like to suggest that people should
collect data on their software efforts because it's really
in their direct best interest. Currently, the general un-
availability of such software data means that whoever first
provides system designers with quantitative software char-
acteristics will find that the resulting system design tends
to be oriented around his characteristics.

For example, part of the initial design sizing of the
ARPA Network was based on two statistical samples of user
response, on Rand's JOSS system and on MIT's Project MAC.
This was not because these were thought to be particularly
representative of future Network users; rather, they were
simply the only relevant data the ARPA working group could
find.

Another example involves the small CCIP-85 study con-
tracts to gather guantitative software data. Since their
completion, several local software designers and managers
have expressed a marked interest in the data. Simply having
a set of well-defined distributions of program and data
module sizes is useful for designers of compilers and oper-

ating systems, and chronological distributions of software
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errors are useful for software management perspective. Knuth's
FORTRAN data, excerpted in Fig. 4B of the Software Quiz, have
also attracted considerable designer interest.

Thus, if you're among the first to measure and disseminate
your own software usage characteristics, you're more likely to
get next-generation software that's more responsive to your
needs. Also, in the process, there's a good chance that you'll
pick up some additional clues which begin to help you produce

software better and faster right away.
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Appendix

A SOFTWARE QUIZ

Very little in the way of quantitative data has been col-
lected about software. But there is some which deserves to be
better known than it is. Because otherwise, we have nothing
but our intuition to guide us in making critical decisions
about software, and often our intuition can be quite fallible.
The four questions below give you a chance to test how infal-
lible your software intuition is. Answers follow each guestion

and its related figure.

1A. Where Does the Software Effort Goz

If you're involved in planning, staffing, scheduling or
integrating a large software effort, you should have a good
idea of how much of the effort will be spent on Analysis and
Design (after the functional specification for the system has
been completed), on Coding and Auditing (including desk checking
and software module unit testing), and on Checkout and Test.
See how well you do in estimating the effort on a percentage
basis for the three phases. The results for such different
large systems as SAGE, 0S/360, and the Gemini space shots have

been strikingly similar.
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1B. Where Does the Software Effort Go?

How close did you come to that large 45-50 percent for
checkout? Whatever you estimated, it was probably better
than the planning done on one recent multimillion dollar,
multiyear (non-defense) software project by a major software
contractor which allowed two weeks for acceptance testing
and six weeks for operational testing, preceded by a two
man-month test plan effort. Fortunately, this project was
scrapped in midstream before the testing inadequacies could
show up. But similar schedules have been established for
other projects, generally leading to expensive slippages in
phasing over to new systems, and prematurely delivered, bug-
ridden software.

Another major mismatch appears when you compare the rela-
tive amount of effort that goes into the three phases with
the relative magnitude of R&D expenditures on technigues to
improve effectiveness in each of the phases. Relatively little
R&D support has been going toward improving software analysis,
design, and validation capabilities.

The difference in the later TRW data probably reflects
another insight: that more thorough analysis and design more
than pays for itself in reduced testing costs.

(Refs.: Boehm, B. W., "Some Information Processing Im-
plications of Air Force Space Missions: 1970-1980," Astro-
nautics and Aeronautics, January 1971.

Wolverton, R., The Cost of Developing Large-
Scale Software, TRW Paper, March 1972.)
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WHERE DOES THE SOFTWARE EFFORT GO?

Analysis Coding Checkout
and and and
Design Auditing Test
SAGE 39% 14 % 47 %
NTDS 30 20 50
GEMINI 36 17 47
SATURN V 32 24 44
0S/ 360 33 17 50
TRW Survey 46 20 34
Fig. 1B
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2A. How Do Hardware Constraints Affect Software
Productivity?

Another useful factor to know in planning software develop-
ment is the extent to which hardware constraints affect soft-
ware productivity. As you approach complete utilization of
hardware speed and memory capacity, what happens to your
software costs? Do they stay relatively constant or do they
begin to bulge upward somewhat? The data here represent 34
software projects at North American Rockwell's Autonetics Divi-

sion with some corroborative data points determined at Mitre.
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2B. How Do Hardware Costs Affect Boftware?

Hopefully, your estimate was closer to the "experience"
curve than the "folklore" one. Yet, particularly in hardware
procurements, people make decisions as if the folklore curve
were true. Typically, after a software job is sized, hard-
ware is procured with only about 15 percent extra capabity
over that determined by the sizing, presenting the software
developers with an 85 percent saturated machine just to begin
with. How uneconomic this is will be explained by Fig. 11
in the text.

Those data also make an attractive case for virtual
memory systems as ways to reduce software costs by elimin-
ating memory constraints. However, the strength of this
case is reduced to the extent that virtual memory system
inefficiencies tighten speed constraints.

(Ref.: Williman, A. O., and C. O'Donnell, "Through
the Central 'Multiprocessor' Avionics Enters the Computer

Era," Astronautics and Aeronautics, July 1970.
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3A. Where are Software Errors Made?

If you're setting test plan schedules and priorities,
designing diagnostic aids for compilers and operating sys-
tems, or contemplating new language features (e.g., GOTO-free)
to eliminate sources of software errors, it would be very
useful to know how such errors are distributed over the vari-
ous software functions. See how well you do in estimating
the distribution of errors for typical batch programs and

for the final validation of a critical real-time program.



-4 5~

WHERE ARE SOFTWARE ERRORS MADE?
(What percentage in each category)

Batch Real - time
(all errors) (final validation
phase only)
Computation and assignment ? ?
Sequencing and control ? ?
Input = output ? ?
Declarations ? ?
Punctuation ? Not available
Correction to errors Not available ?
Total 100 % 100 %

Fig.3A
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3B. Where Are Software Errors Made?

Several points seem fairly clear from the data. One is
that GOTO-free programming is not a panacea for software er-
rors, as it will eliminate only some fraction of sequence and
control errors. However, as Column 4 shows, the seguence and
control errors are the most important ones to eliminate, as
they currently tend to persist until the later, more difficult
stages of validation on critical real-time programs. Another
point is that language features can make a difference, as
seen by comparing error sources and totals in PL/I with the
other languages (FORTRAN, COBOL, and JOVIAL), although in this
case an additional factor of less programmer familiarity with
PL/I also influences the results.

(Refs.: Rubey, R.J., et al, Comparative Evaluation of
PL/I, United States Air Force Report, ESD-TR-68-150, April 1968.

Rubey, R. J., Study of Software Quantitative
Adspects, United States Air Force Report, CS-7150-R0840, October
1971.)
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4A. How Do Compilers Spend Their Time?

Recently, Donald Knuth and others at Stanford performed
a study on the distribution of complexity of FORTRAN state-
ments. Try to estimate what percentage of their sample of
250,000 FORTRAN statements were of the simple form A=B, how
many had two operands on the right-hand side, etec. If you're
a compiler designer, this should be very important, because
it would tell you how to optimize your compiler--whether it
should do simple things well or whether it should do complex
things well. Here the results refer to aerospace application
programs at Lockheed; however, a sample of Stanford student

programs showed roughly similar results.



WHERE DO COMPILERS SPEND THEIR TIME?
(Knuth study: 440 Lockheed programs: 250,000 statements)

Number of operands %
] (A = B) ?
2 (A=B @® Q) ?
3 (A=B ® C ® D) ?
>3 ?

Fig.4A
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4B. How Do Compilers Spend Their Time?

It's evident from the data that most FORTRAN statements
used in practice are guite simple in form. For example, 68
percent of these 250,000 statements were of the simple form
A=B. When Knuth saw this and similar distributions on the
dimensionality of arrays (58 percent unindexed, 30.5 percent
with one index), the length of DO loops (39 percent with just
one statement), and the nesting of DO loops (53.5 percent of
depth 1, 23 percent of depth 2), here was his reaction:

The author once found.....great significance

in the fact that a certain complicated method was
able to translate the statement

C(I*N+J) :=((A+X)*Y)+2.768 ((L-M)* (-K))/Z

into only 19 machine instructions compared with the

21 instructions obtained by a previously published

method....The fact that arithmetic expressions usually

have an average length of only two operands, in prac-

tice, would have been a great shock to the author at

that time.
Thus, evidence indicates that batch compilers generally do very
simple things and one should really be optimizing batch compilers
to do simple things. This could be similarly the case with com-
pilers and interpreters for on-line systems; however, nobody has
collected the data for those.

(Ref.: Knuth, D.E., "An Empirical Study of FORTRAN

Programs," Software Practice and Experience, Vol. 1, 1971, p. 105.)
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NUMBER OF OPERANDS IN FORTRAN STATEMENTS
(Knuth study: 440 Lockheed Programs, 250,000 statements)

N=2

(A=B® C)
24 %

N =1 operands
(A=8)
68 %

Fig.4B
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