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Abstract

Motivation: Epidemiological cohorts typically contain a diverse set of phenotypes such

that automation of phenome scans is non-trivial, because they require highly heteroge-

neous models. For this reason, phenome scans have to date tended to use a smaller

homogeneous set of phenotypes that can be analysed in a consistent fashion. We pre-

sent PHESANT (PHEnome Scan ANalysis Tool), a software package for performing com-

prehensive phenome scans in UK Biobank.

General features: PHESANT tests the association of a specified trait with all continuous,

integer and categorical variables in UK Biobank, or a specified subset. PHESANT uses a

novel rule-based algorithm to determine how to appropriately test each trait, then per-

forms the analyses and produces plots and summary tables.

Implementation: The PHESANT phenome scan is implemented in R. PHESANT includes

a novel Javascript D3.js visualization and accompanying Java code that converts the

phenome scan results to the required JavaScript Object Notation (JSON) format.

Availability: PHESANT is available on GitHub at [https://github.com/MRCIEU/PHESANT].

Git tag v0.5 corresponds to the version presented here.

Introduction

Phenome scans test the association of a trait of interest

with a comprehensive array of phenotypes (the ‘phe-

nome’). Types of phenome scans include phenome-wide

association studies (pheWAS),1 Mendelian randomization-

pheWAS (MR-pheWAS)2 and environment-wide associ-

ation studies (EnWAS).3,4 PheWAS seek to investigate the

association of a genetic variant with a set of phenotypic

traits.1,5 A recent extension to pheWAS, MR-pheWAS,

uses Mendelian randomization (MR) in a pheWAS frame-

work in order to search for the causal effects of a particular

exposure.2 EnWAS seek to test the associations of a trait of

interest with a set of other phenotypes.3

Epidemiological cohorts usually contain a large number

of diverse phenotypes, such that testing the association of

these phenotypes with another trait in an automated way
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is non-trivial. For this reason, researchers wishing to per-

form a phenome scan will typically specify a homogeneous

subset of traits, in order to automate the tests of associ-

ation across these traits in a consistent way. For instance,

pheWAS initially started using international classification

of disease (ICD) codes from electronic health records,

where each disease code could be treated as a binary vari-

able and a consistent test performed.5 However, restricting

the set of phenotypes provides only a partial view of associ-

ations with a trait of interest, and reduces the potential to

identify novel associations.

In this paper we present PHESANT (PHEnome Scan

ANalysis Tool), a parallelizable tool for phenome scans in

UK Biobank, a prospective cohort of over 500 000 men

and women in the UK aged between 37 and 73 years.6 This

cohort includes genetic data and a large and diverse range

of data from blood, analyses of urine and saliva samples,

clinical assessments, record linkage and health and lifestyle

questionnaires. The diversity of traits available, coupled

with the large sample size, provide an opportunity to iden-

tify novel associations with phenome scans.

Implementation

PHESANT is implemented in R and requires the following

R packages: optparse, MASS, lmtest, nnet, forestplot and

data.table (see GitHub repository for package versions).

PHESANT takes one data file as input containing the set of

phenotypes, the trait of interest [which may be a single nu-

cleotide polymorphism (SNP), a genetic score or a pheno-

typic trait depending on whether a pheWAS, MR-pheWAS

or EnWAS is being performed] and confounders (the trait

of interest and confounders can alternatively be provided

in separate files if this is preferred). PHESANT also makes

use of two data files (included in PHESANT) that contain

information about the variables in the UK Biobank cohort:

(i) a data coding information file, and (ii) a variable infor-

mation file. These files have been set up for the example

we describe in the usage section, but can be changed as

needed for each particular phenome scan. For more infor-

mation on the PHESANT data and information files, see

the documentation in the GitHub repository. In the rest of

this section we describe the variable processing flow used

in PHESANT.

Automated processing flow to determine variable

coding

In order to test the association of the trait of interest with

the diverse range of phenotypes in UK Biobank in an auto-

mated manner, we developed a rule-based system to deter-

mine the appropriate coding of each variable and hence

test of association to use. These rules are shown in Figure 1

and described in full in Supplementary section S1 (avail-

able as Supplementary data at IJE online). The decision

rules start with the variable field type as specified by UK

Biobank at: [http://biobank.ctsu.ox.ac.uk/showcase/list.

cgi], either continuous, integer, categorical (single) or cat-

egorical (multiple), and categorize each variable as one of

four data types: continuous, ordered categorical, un-

ordered categorical and binary. The categorical (single)

field type refers to categorical fields (including binary)

where each participant can only have one value. For ex-

ample, by questionnaire participants were asked ‘How

would you describe your usual walking pace?’ with options

including ‘slow’, ‘average’ and ‘brisk’ (field ID¼ 924; see

Supplementary Figure 1, available as Supplementary data

at IJE online). In contrast, categorical (multiple) fields can

have multiple values per participant. For example, by ques-

tionnaire participants were asked what types of bread they

ate the previous day (field ID¼ 20091; see Supplementary

Figure 2, available as Supplementary data at IJE online)

and could, for instance, select both white and wholemeal

options. Where a field is measured at several time points

we use the first occurrence only (see Supplementary section

S2 for details, available as Supplementary data at IJE on-

line). Continuous and integer variables may have more

than one measurement at this first measured time point

(typically to improve the estimate of a measurement). For

instance, spirometry was measured two or three times a

few moments apart—see for example field 3062 [http://bio

bank.ctsu.ox.ac.uk/showcase/field.cgi?id¼3062]). When

this is the case we take the mean to create a single value

per participant (see Supplementary section S2 for details).

Variables with the continuous field type are usually as-

signed to the continuous data type. In this case, the variable

is transformed to a normal distribution using an inverse

normal rank transformation. In a minority of cases, con-

tinuous fields are assigned to the ordered categorical data

type (or binary if there are only two distinct values). For ex-

ample, field 100022 [http://biobank.ctsu.ox.ac.uk/show

case/field.cgi?id¼100022] contains the estimated alcohol

intake based on responses to the ‘diet by 24-hour recall’

questionnaire. A large proportion of the participants have a

zero value for this field, because they consume no alcohol.

It is not possible to inverse normal rank transform this vari-

able because, where a large number of participants have the

same value, the rank assigned in this transformation is

random among these, and this would add noise to the data.

Instead, we transform this variable into three categories

with roughly the same number of participants in each

(placing split points between distinct values), and treat it

as an ordered categorical variable (see algorithm in

Supplementary section S3, available as Supplementary data
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at IJE online). Variables with the integer field type are usu-

ally treated exactly the same as the continuous variables. In

a minority of cases, where there are 20 or fewer distinct val-

ues we treat this variable as ordered categorical (or binary

if there are only two distinct values).

Categorical (single) variables may be assigned to the bin-

ary, ordered categorical or unordered categorical data types.

UK Biobank consistently assigns negative values to categories

denoting missingness (such as ‘Preferred not to answer’ and

‘Do not know’), and so we recode negative values to ‘NA’.

UK Biobank defines ‘data codes’ to which one or more fields

are assigned, and these define the set of categorical values for

these fields and their corresponding numerical values. The

PHESANT data-coding information file specifies whether a

data code of a categorical (single) field defines an ordered or

unordered category structure, and we use this information to

assign each non-binary categorical (single) field as either an

ordered or an unordered categorical data type.

Each categorical (multiple) variable is converted to a set

of binary variables, each denoting whether a participant has

a given value of this variable. For example, for the variable

describing the bread eaten yesterday (field ID¼ 20091;

Supplementary Figure 2), with values ‘white’, ‘mixed’,

‘wholemeal’, ‘seeded’ and ‘other’, we generate five binary

variables: white¼ {true, false}, wholemeal¼ {true, false} and

so forth. Categorical (multiple) fields have an added com-

plexity because when a person has no value in this field, this

may be because: (i) the field values are incomplete—they do

not contain all possible values (e.g. a participant who does

not eat bread cannot choose any option above); or (ii) be-

cause the data are missing (e.g. because a participant did not

answer this particular question). This affects who we assign

as, for instance, white¼ false, either: (i) all people who se-

lected a value other than ‘white’; (ii) all people who re-

sponded to this questionnaire and did not select ‘white’; or

(iii) all people who did not select ‘white’ including those who

did not respond to the questionnaire (see Supplementary

Figure 3 for illustration, available as Supplementary data at

IJE online). In this case the second option might be preferred,

such that we are comparing those who ate white bread with

those who responded to the questionnaire but did not eat

white bread. This decision is variable-specific, and can be

specified in the PHESANT variable information file (the vari-

able information file we used for the example described in

the Usage section is available in the GitHub repository). For

more details see Supplementary material section S1, available

as Supplementary data at IJE online.

Some categorical multiple fields include negative nu-

merical values for particular categories denoting missing-

ness (such as ‘Do not know’). We exclude all participants

with a missing value from the false value of the generated

binary variable, because we cannot know if they do or do

not pertain to the true value of this binary variable. For ex-

ample, consider field 41228 [http://biobank.ctsu.ox.ac.uk/

showcase/field.cgi?id¼41228] describing the type of

medical professional who conducted the delivery of a par-

ticipant’s child, and a participant who has given birth

twice and has values ‘midwife’ and ‘not known’ in this

field. The generated binary variable for midwife includes

this participant in the set of participants corresponding to

midwife¼ true because we know that on at least one

occasion a midwife conducted the delivery. However, we

cannot be certain that a hospital doctor did not conduct a

delivery for this participant because the ‘not known’ value

could refer to a ‘hospital doctor’. Hence, the generated

‘hospital doctor’ binary variable would not include this

participant in the set of participants corresponding to

hospital_doctor¼ false, because this is not known.

Tests of association with trait of interest

The association of each phenotype, having been appropri-

ately coded and assigned one of the four data types (continu-

ous, ordered categorical, unordered categorical and binary),

is tested with the trait of interest as follows. The phenotype

and the trait of interest are the dependent and independent

variables of the regression, respectively. All regressions are

adjusted for age at recruitment and sex (and also genotype

chip when the trait of interest is genetic, derived from the

genotype measurement batch), or for all variables in the con-

founder file if one is specified. We test the association with

the transformed variables of the continuous data type using

linear regression (lm R function). Ordered categorical, un-

ordered categorical and binary variables are tested using

ordered logistic regression (polr R function), multinomial lo-

gistic regression (multinom R function) and binomial regres-

sion (glm R function with family parameter as binomial),

respectively. We do not test phenotypes where the sample

size is fewer than 500, which typically occurs for a minority

of fields such as follow-up questions on a subsample (e.g.

field 22148 [http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?

id¼22148]). We do not test unordered categorical variables

with more than 1000 categories (above the default maximum

of the multinom function), which occurs once in our usage

example, field 132 [http://biobank.ctsu.ox.ac.uk/showcase/

field.cgi?id¼132].

Customizing a phenome scan with PHESANT

PHESANT allows researchers to easily customize the phe-

nome scan by changing settings in the data coding and

variable information files. This includes:

4 International Journal of Epidemiology, 2017, Vol. 0, No. 0
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• changing the numerical values underlying a variable

(such as recoding a value to missing) or the ordering of

values for ordered categorical variables;

• assigning a default value to categorical (single) variables

where this is not explicitly coded in the variable (see

Supplementary section S1);

• changing fields from the categorical (single) to the cat-

egorical (multiple) field type, as this may be more appro-

priate for a small number of fields;

• specifying which variables should be excluded a priori

from the phenome scan;

• specifying which fields in the phenome dataset are essen-

tially the same phenotype as the trait of interest [e.g.

weight and body mass index (BMI)] such that, after the

phenome scan is run, the results of association between

these fields and the trait of interest are used for valid-

ation only, rather than being included in the results and

adding to the multiple testing burden.

Further customization of a phenome scan using

PHESANT is possible in two ways.

i. A user can manipulate the data before running

PHESANT, for example aggregating continuous values

using the median rather than the mean or aggregating a

field across multiple time points.

ii. A user can save the derived phenotypes from

PHESANT and then perform their own customized

analysis with these variables.

Results output

PHESANT ranks the results by P-value and outputs a results

file, a QQ-plot, and forest plots for the continuous, ordered

categorical and binary results that are below the Bonferroni

corrected P-value threshold [a forest plot for the categorical

unordered results is not generated because we have no over-

all estimate (and confidence interval) for these models, as

we use a likelihood ratio test to generate a model P-value].

PHESANT-viz: a web-based visualization for phenome

scans

Reviewing the results from phenome scans can be challeng-

ing due to the number and complexity of phenotypes. As

part of PHESANT we have also developed PHESANT-viz, a

D3 Javascript visualization that displays phenome scan re-

sults as an interactive graph, using the hierarchical field cat-

egory structure defined by UK Biobank and available at

[http://biobank.ctsu.ox.ac.uk/showcase/label.cgi]. PHESANT

includes a Java program to convert the phenome scan results

to the JavaScript Object Notation (JSON) format required

for PHESANT-viz. We provide the PHESANT-viz of our

usage example below.

Usage

To demonstrate PHESANT, we have performed a MR-

pheWAS to search for the causal effects of BMI in UK

Biobank (previously performed in a smaller cohort with

continuous phenotypes only).2 Such an analysis is predi-

cated on the Mendelian randomization principle that gen-

etic variants can be used as instrumental variables to

estimate causal effects of the phenotype they proxy for on

downstream outcomes.7 In the current context this would

be a screening exercise to identify associations for detailed

follow-up. This analysis is preliminary and for example

only, having been run on a non-random subsample of 114

963 participants (containing the UK BILEVE samples se-

lected on smoking status; see Supplementary section S4 for

details, available as Supplementary data at IJE online) for

which genetic data are currently available in UK Biobank

(a final analysis will be subsequently published upon re-

lease of the full 500 000 sample with genetic data).

We created an allele score from 96 genetic variants pre-

viously found to be associated with BMI, in a recent

genome-wide association study (GWAS) meta-analysis.8

The score was calculated as a sum of the number of BMI-

increasing alleles, weighted by the effect size as reported in8

(see Supplementary table 1, available as Supplementary

data at IJE online). Hence, a higher genetic score corres-

ponds to a tendency towards higher BMI (F-statis-

tic¼ 1979). We used PHESANT to test the association of

the BMI genetic score with the 290 integer, 1030 continu-

ous, 658 categorical (single) and 99 categorical (multiple)

fields available in UK Biobank at the current time (exclud-

ing 66 fields a priori, see Supplementary Table 2, available

as Supplementary data at IJE online). Supplementary

Figure 4 shows the number of variables reaching each stage

of our variable processing flow (available as Supplementary

data at IJE online).

Figure 2 shows the QQ plot of our MR-pheWAS results

(see full results ranking in Supplementary Data File, and for-

est plots in Supplementary Figure 5, available as

Supplementary data at IJE online). Of the 10 624 tests per-

formed (excluding 87 phenotypes tested but specified a priori

as being aspects of the same essential phenotype as BMI), 87

were associated at a Bonferroni corrected P-value threshold

of 4.71 � 10�6 (0.05/10624). We detected several known ef-

fects of BMI, for example with hypertension9 (fields 41204

value I10, and 4079), diabetes10 (field 2443) and age at pu-

berty in both sexes11 (fields 2714, 2375 and 2385). For in-

stance, a one standard deviation (SD) increase in BMI allele

score was associated with a 1.08-fold [95% confidence inter-

val (CI): 1.06, 1.11] higher odds of being diagnosed with

hypertension in hospital (field 41204 value I10), and a 0.015

SD (95% CI: 0.010, 0.021) higher diastolic blood pressure

(field 4079). We also detected a number of potentially causal
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associations that were previously unknown. For example,

participants with a genetic propensity to higher BMI were

less likely to perceive themselves as a nervous person (field

1970) or to call themselves tense or ‘highly strung’ (field

1990).

The PHESANT-viz of these preliminary results can be

found at [http://datamining.org.uk/PHESANT/] or within

the PHESANT package. When this analysis is performed

using the full 500 000 sample, the power to detect associ-

ations will increase, and it is also likely that the number of

tests will increase as fewer variables will be filtered out in

the variable processing steps (due to a small sample size).

This preliminary analysis took approximately 105 h (using

a 1 core Intel E5–2670).

Discussion

PHESANT enables researchers to perform a comprehen-

sive phenome scan in UK Biobank, including a pheWAS,

MR-pheWAS or EnWAS. Whereas GWAS have been

highly successful at identifying novel associations, we are

currently only just beginning to explore the phenome in a

hypothesis-free manner.1,2,12 In contrast to hypothesis-

driven analyses, phenome scans allow exploration across

hypotheses without strong priors, and should help to avoid

publication bias as analyses are pre-specified and all re-

sults, not just the most ‘statistically significant’, are pub-

lished together.

When undertaking a phenome scan there are several im-

portant considerations. First, phenome scans are a screen-

ing exercise to identify potentially interesting associations

that should then be analysed more rigorously—and as such

the association estimates should be interpreted with cau-

tion. The strength of the strongest associations identified

may be inflated due to the winner’s curse. Second, it is im-

portant to consider the number of tests performed when

examining the strength of identified associations. In our

usage example we used a conservative Bonferroni cor-

rected threshold to identify potentially interesting associ-

ations, which, although reducing the type I error rate, is

likely to increase the type II error rate. Third, interpret-

ation of potentially hundreds of results is challenging be-

cause the correlated structure of phenotypes means that

associations between the trait of interest and each pheno-

type are not independent. The strongest associations

should not be viewed in isolation but alongside the results

of related variables for which an association may not have

been identified, and to do this we provide a novel visualiza-

tion approach, PHESANT-viz.

We note the following limitations and areas of future

work. It is possible that in some cases our automated rule-

based method may deal with variables inappropriately. For

example, field 132 [http://biobank.ctsu.ox.ac.uk/showcase/

field.cgi?id¼132], which describes participant’s jobs, is

treated as an unordered categorical variable but was

removed from our phenome scan because it has more than

1000 categories. In this case, it may be preferable to use

the hierarchical structure defined by UK Biobank to com-

bine categories of related jobs. The aim of PHESANT is to

provide a ‘broad-brush’ approach for phenome scans, such

that users should follow up their phenome scan with a

comprehensive analysis of the identified associations, using

the most appropriate representation and regression model

for each particular trait. For example, instead of using an

inverse normal rank transformation for continuous fields

(as performed by PHESANT), a multivariable linear re-

gression model, or other model with appropriate error dis-

tribution for non-normal variables (such as zero-inflated

models), can be used.

PHESANT uses the first time point of a field where mul-

tiple time points are available. In future work we will in-

vestigate how to automate the analysis including data from

multiple time points, and the potential gains that this

would give.13 Currently, when continuous variables are

converted to the ordered categorical data type we arbitrar-

ily chose to generate three categories, and in future work

will investigate whether a larger number of categories are

beneficial, and whether the optimal number of categories

can be calculated from the distribution of the variable.

PHESANT is specifically designed for use in UK Biobank,

but a cohort-independent tool for phenome scans would be

highly valuable. Hence, in the future we will aim to adapt

PHESANT for use in a general setting. Finally, we intend

Figure 2. QQ plot of preliminary MR-pheWAS analysis seeking to iden-

tify the causal effects of BMI. Dashed line: Bonferroni corrected thresh-

old P¼ 4.71 � 10�6 (P¼ 0.05 corrected for 10 624 tests). Dotted line:

actual¼ expected.
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to integrate PHESANT with MR-base14 to enable auto-

mated construction of genetic instrumental variables to use

in MR-pheWAS.

The large number of participants combined with the ex-

tensive range of phenotypes available in UK Biobank pro-

vide a great opportunity to comprehensively search for

novel (potentially causal) associations in a hypothesis-free

manner. We are aware of only one very small phenome

scan that has been performed in UK Biobank to date,15

and a recent novel Bayesian approach of self-reported diag-

noses and hospital episodes.16 PHESANT allows users to

initiate multiple ‘jobs’ where each scans a subset of pheno-

types, such that phenome scans are easily parallelizable

whether running on a single multi-core machine or a multi-

node high performance computing cluster. To our know-

ledge, PHESANT is the first open-source package to auto-

mate phenome scans across diverse sets of phenotypes.

Supplementary Data

Supplementary data are available at IJE online.
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