
Software Architecture: A Travelogue
David Garlan

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213 USA
garlan@cs.cmu.edu

ABSTRACT
Over the past two and a half decades software architecture has
emerged as an important subfield of software engineering. During
that time there has been considerable progress in developing the
technological and methodological base for treating architectural
design as an engineering discipline. However, much still remains
to be done to achieve that. Moreover, the changing face of
technology raises a number of challenges for software
architecture. This travelogue recounts the history of the field, its
current state of practice and research, and speculates on some of
the important emerging trends, challenges, and aspirations.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: domain-specific architectures,
languages, patterns.

General Terms
Documentation, Design, Standardization, Reliability

Keywords
Software architecture, software product lines, software frame-
works, architecture description languages, architecture styles,
architecture trends, architecture and agility.

1. INTRODUCTION
A critical issue in the design and construction of any complex
software system is its architecture: that is, its organization as a
collection of interacting elements – modules, components,
services, etc. A good architecture can help ensure that a system
will satisfy its key functional and quality requirements, including
performance, reliability, portability, scalability, and
interoperability. A bad architecture can be disastrous.
Over the past two and a half decades software architecture has
received increasing attention as an important subfield of software
engineering. Practitioners have come to realize that getting an
architecture right is a critical success factor for system design and
development. They have begun to recognize the value of making
explicit architectural choices, and leveraging past architectural
designs in the development of new products. Today there are
numerous books on architectural design, regular conferences and
workshops devoted specifically to software architecture, a
growing number of commercial tools to aid in aspects of

architectural design, courses in software architecture, major
government and industrial research projects centered on software
architecture, and an increasing number of formal architectural
standards. Codification of architectural principles, vocabulary,
methods, and practices has begun to lead to repeatable processes
of architectural design, criteria for making principled tradeoffs
among architectural decisions, and standards for documenting,
reviewing, and implementing architectures.

However, despite this progress, as engineering disciplines go, the
field of software architecture remains relatively immature. While
the foundations of an engineering basis for software architecture
are now clear, there remain numerous challenges and unknowns.
We can therefore expect to see major new developments in the
field over the next decade – both in research and practice. Some
of these developments will be natural extensions of the current
trajectory. But there are also a number of important new
opportunities, brought about by the changing face of technology
and its roles in society.
In 2000 I was invited to write an article, “Software architecture: a
roadmap” [28] in which I assessed the current state and future
prospects for architecture. This paper revises that article, now
with the hindsight of almost a decade and a half, and attempts to
provide a travelogue describing the conceptual terrain and its key
features: its history, its current state, and how it may evolve in the
future to address emerging challenges and opportunities. As we
will see, many of the challenges are similar to those described in
the 2000 paper, but with a somewhat different flavor today.

To provide a broader perspective than my own, and to hear from
some of the prominent people in the field, I asked a few
colleagues to contribute ideas and prose. I am grateful to Grady
Booch, Paul Clements, Philippe Kruchten, and Mary Shaw, who
agreed to help out, in part acting as “guides” for parts of
landscape that they know well.

2. WHAT IS SOFTWARE
ARCHITECTURE?
While there are numerous definitions of software architecture, at
the core of most of them is the notion that the architecture of a
system describes its gross structure. This structure illuminates the
top-level design decisions, including things such as how the
system is composed of interacting parts, what are the principal
pathways of interaction, and what are the key properties of the
parts and the system as a whole. Additionally, an architectural
description includes sufficient information to allow high-level
analysis and critical appraisal.
Software architecture typically plays a key role as a bridge
between requirements and implementation (see Figure 1). By
providing an abstract description of a system, the architecture
exposes certain properties, while hiding others. Ideally this
representation provides an intellectually tractable guide to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FOSE’14, may 31– June 7, 2014, Hyderabad, India.
Copyright 2014 ACM978-1-4503-2865-4/14/05...$15.00.

overall system, permits designers to reason about the ability of a
system to satisfy certain key requirements, explicitly captures the
intent and principles that govern its design, and prescribes a
blueprint for system construction and composition.

Figure 1: Software Architecture as a Bridge

For example, an architecture for a signal processing application
might be constructed as a dataflow network in which the nodes
read input streams of data, transform that data, and write to output
streams. Designers might use this decomposition, together with
estimated values for input data flows, computation costs, and
buffering capacities, to reason about possible bottlenecks,
resource requirements, and schedulability of the computations.
As another example, consider an application that provides
application services over the Internet. A typical architecture for
such a system will adopt an N-tiered organization, using a data
tier to store persistent information, one or more tiers to provide
application functionality, and a user interface tier. Given this
overall structure, an architect will need to decide which
capabilities to assign to each tier, how to provide adequate privacy
and security for communicated and stored data, how to guarantee
reasonable response times, how to ensure that the system will
scale gracefully as the number of clients increases over time, and
what technologies will be used to realize the design.
To elaborate, software architecture can play an important role in
at least six aspects of software development:

1. Understanding: Software architecture simplifies our
ability to comprehend large systems by presenting them at
a level of abstraction at which a system's high-level design
can be easily understood [57]. Moreover, at its best,
architectural description exposes the high-level constraints
on system design, as well as the rationale for making
specific architectural choices [37][15].

2. Reuse: Architectural design supports reuse of both
components and also frameworks into which components
can be integrated. Domain-specific software architectures,
frameworks, platforms and architectural patterns are
various enablers for reuse, together with libraries of plug-
ins, add-ins and apps [12][14].

3. Construction: An architectural description provides a
partial blueprint for development by indicating the major
components and dependencies between them. For
example, a layered view of an architecture typically
documents abstraction boundaries between parts of a
system's implementation, identifies the internal system

interfaces, and constrains what parts of a system may rely
on services provided by other parts [15].

4. Evolution: Architectural design can expose the dimensions
along which a system is expected to evolve. By making
explicit a system’s "load-bearing walls," maintainers can
better understand the ramifications of changes, and thereby
more accurately estimate costs of modifications [32]. In
many cases such evolution and variability constraints are
manifested in product lines, frameworks and platforms,
which dictate how the system can be instantiated or
adapted through the addition of application-specific
features and components [10][14].

5. Analysis: Architectural descriptions provide opportunities
for analysis, including system consistency checking [3][7],
conformance to constraints imposed by an architectural
style [1], satisfaction of quality attributes [16], and
domain-specific analyses for architectures built in specific
styles [23][31][44][47].

6. Management: For many companies the design of a viable
software architecture is a key milestone in an industrial
software development process. Critical evaluation of an
architecture typically leads to a much clearer under-
standing of requirements, implementation strategies, and
potential risks, reducing the amount of rework required to
address problems later in a system’s lifecycle [8][16].

3. THE PAST
In the early decades of software engineering, architecture was
largely an ad hoc affair.1 Descriptions typically relied on informal
box-and-line diagrams, which were rarely maintained once a
system was constructed. Architectural choices were made in an
idiosyncratic fashion – often by adapting some previous design,
whether or not it was appropriate. Good architects – even if they
were classified as such within their organizations – learned their
craft by hard experience in particular domains, and were unable to
teach others what they knew. It was usually impossible to analyze
an architectural description for consistency or to infer non-trivial
properties about it. Nor was there any way to check that a
system’s implementation faithfully represented its architectural
design.

However, despite their informality, even from the earliest days of
software development, architectural descriptions have been
central to system design. As people began to understand the
critical role that architectural design plays in determining system
success, they also began to recognize the need for a more
disciplined approach. Early authors began to observe certain
unifying principles in architectural design [52], to call out
architecture as a field in need of attention [51][58], and to
establish a more-formal working vocabulary for software
architects [57]. Tool vendors began thinking about explicit
support for architectural design. Language designers began to
consider notations for architectural representation [46]. Standards
organizations began to promote standardized languages and tools.

1 To be sure, there were some notable exceptions. Parnas recognized the

importance of system families [49], and architectural decomposition
principles based on information hiding [50]. Others, such as Dijkstra,
exposed certain system structuring principles [22].

Within industry, two trends highlighted the importance of
architecture. The first was the recognition of a shared repertoire
of methods, techniques, patterns and idioms for structuring
complex software systems. For example, the box-and-line-
diagrams and explanatory prose that typically accompany a high-
level system description often refer to such organizations as a
"pipeline,'' a "blackboard-oriented design,'' or a "client-server
system.'' Although these terms were rarely assigned precise
definitions, they permitted designers to describe complex systems
using abstractions that made the overall system intelligible.
Moreover, they provided significant semantic content about the
kinds of properties of concern, the expected paths of evolution,
the overall computational paradigm, and the relationship between
this system and other similar systems.

The second trend was the concern with exploiting commonalities
in specific domains to provide reusable frameworks for product
families. Such exploitation was based on the idea that common
aspects of a collection of related systems can be extracted so that
each new system can be built at relatively low cost by
"instantiating'' the shared design and reusing shared artifacts.
Familiar examples include the standard decomposition of a
compiler (which permits undergraduates to construct a new
compiler in a semester), standardized communication protocols
(which allow vendors to interoperate by providing interoperable
services), and customizable frameworks, platforms and product
lines.

During the 1990s and 2000s these trends, and others, led to an
explosion of interest in software architecture. Sometimes referred
to as the “Golden Age of Software Architecture” [56], during this
period the field matured rapidly, producing many books on
software architecture, improved theories and formalisms for
reasoning about architecture, tools to automate their construction
and implementation, and methods for integrating architecture into
mainstream software development. The next section surveys some
of the more important of these.

4. SOFTWARE ARCHITECTURE TODAY
Although there is considerable variation in the state of the
practice, today software architecture is widely visible as an
important and explicit design activity in software development.
Job titles now routinely reflect the role of software architect;
companies rely on architectural design reviews as critical staging
points; and architects recognize the importance of making explicit
tradeoffs within the architectural design space [42].

In addition, the technological and methodological basis for
architectural design has improved dramatically. Four important
advances have been (1) the codification and dissemination of
architectural design expertise; (2) the emergence of platforms and
product lines, and their associated ecosystems; (3) the
development of principles, languages and tools for architecture
description; and (4) the integration of architectural design into the
broader processes of software development, and, in particular the
relationship between architecture and agility.

4.1 Codification and Dissemination
One early impediment to the emergence of architectural design as
an engineering discipline was the lack of a shared body of
knowledge about architectures and techniques for developing
good ones. Today the situation has improved dramatically, due in

part to the publication of books on architectural design
[7][12][23][43][57][60] and courses [37].

An important common theme in these is the use of standard
architectural styles.2 An architectural style typically specifies a
design vocabulary, constraints on how that vocabulary is used,
and semantic assumptions about that vocabulary. For example, a
pipe-and-filter style might specify vocabulary in which the
processing components are data transformers (filters), and the
interactions are via order-preserving streams (pipes). Constraints
might include the prohibition of cycles. Semantic assumptions
might include the fact that pipes are lossless and preserve the
order of data written to them.

Other common styles include blackboard architectures, client-
server architectures, repository-centered architectures, event-
based architectures, N-tiered architectures, and service-oriented
architectures. Each style is appropriate for certain purposes, but
not for others [55]. For example, a pipe-and-filter style would
likely be appropriate for a signal processing application, but not
for an application in which there is a significant requirement for
concurrent access to shared data. Moreover, each style is typically
comes with a set of analyses that can be performed on systems in
that style. For example, it makes sense to analyze a pipe-and-filter
system for end-to-end latency, whereas transaction rates would be
a more appropriate analysis for a repository-oriented style.

The identification and documentation of such styles (as well as
their more domain-specific variants) enables others to adopt
previous architectural structures as a starting point. In that respect,
the architectural community has paralleled other communities in
recognizing the value of established, well-documented design
patterns, such as those found in [25].

Although styles are often a good starting point for architectural
design, in practice they need to be complemented by techniques
for improving specific quality attributes of a system. Examples
include the use of redundancy to improve availability, caching to
improve performance, and authentication to improve security.
Such techniques are sometimes referred to as architectural tactics.
Books on software architecture now survey many of these [7], and
entire books have been written on tactics for specific quality
attributes such as performance and security [53].

Additionally, the realities of software construction often force one
to compose systems from components and frameworks that were
not architected in a uniform fashion. For example, one might
combine a database from one vendor, with middleware from
another, and a user interface framework from a third. In such
cases the parts do not always work well together – in large
measure because they make conflicting assumptions about the
environments in which they were designed to work [29][30]. This
has led to the need to identify architectural strategies for bridging
mismatches. Although, we are far from having well understood
ways of systematically detecting and repairing such mismatch, a
number of tactics have been developed to deal with this problem,
and we are starting to see the introduction of automated mismatch
repair tools.

2 Some treatments of software architecture use the term “pattern”

in place of “style”. For a discussion of this terminology, see
[15] pages 32-36.

4.2 Platforms and Product Lines
As noted earlier, one of the important trends in software
engineering has been exploitation of commonality across multiple
products in order to reduce development costs for new systems
through customization of a shared asset base [10][14]. Two
specific manifestations of that trend are improvements in our
ability to create product lines within an organization and the
emergence of cross-vendor platforms. At the heart of such efforts
is an architectural design that determines what parts of a system
are shared, and how those parts can be extended to provide the
capabilities needed for a specific system.

Like architectural styles, the architectures underlying platforms
and product lines take advantage of common architectural
structures, but do so in a domain-specific way. By narrowing the
domain over which they apply, they trade off generality for power
– for example, in the form of opportunities for code reuse and the
ability to perform specialized analyses. Figure 2 illustrates this
point.

Figure 2: Power vs. Specialization in Architecture Reuse

At the far left are generic architectural styles, which are largely
domain-independent. To the right are more-specific versions of
these styles. They narrow the class of system to which they apply,
but remain largely domain independent. For example, a pipe-filter
style will likely apply to any system that is primarily
transformational, but can be equally useful in domains such as
signal processing, music synthesis, scientific workflow
computation, or analysis of large volumes of data (using, map-
reduce, for example).

Further to the right are generic component integration platforms,
which vary in their domain-specificity, but typically provide a
way for multiple vendors to extend a base system with new
components. Platforms usually provide a set of common services
and features, and prescribe requirements for application-specific
components (e.g., functions, services, and applications) that are
hosted on the platform. Requirements specify the services they
must provide to the platform, as well as constraints on how they
can access the shared services of the platform. Platforms are
typically manifested as one or more reusable code libraries that
must be incorporated into a system based on the platform.

Example generic platforms include those that support Internet-
based services (such as any number of service-oriented
architecture platforms), platforms for mobile devices (such as
Android), and domain-specific platforms (such as the High Level

Architecture (HLA) for Distributed Simulation [5] or the
AUTOSAR architecture for automotive systems3).

At the far right we find product lines, which are highly domain-
specific, applying specifically to a set of products within a
particular company. Product lines provide huge economies of
scale when used appropriately, and there are numerous success
stories of their use.4 However, they also require up-front
investment in creating a reusable asset base, as well as on-going
organizational commitment to maintain, promote, and apply them
to new product development [10][14][48].

Although good architectural design is at the heart of any
successful platform or product line, perhaps ironically, their use
can substantially reduce the architectural responsibilities of
software developers, since many, if not most, of the architectural
decisions have already been made by the platform or product line
designers. For instance, many platforms provide a security model,
that when used correctly obviates the need for additional security
tactics.

While the use of platforms and product lines reduces the
architectural burden on developers, it may not entirely eliminate
it. Indeed, critical quality attributes such as performance and
reliability may depend heavily on how the platform services are
used or the product line is instantiated.

One open issue in product lines is whether or not it’s necessary to
create a design for a product line architecture at all. Paul
Clements has argued that his experience at BigLever Software,
Inc. (a company that helps organizations adopt automation-based
product line engineering) has taught him that it is best to
concentrate on the architectures for the individual products.5 If an
overarching product line architecture is deemed useful, it can be
seen as an emergent conceptual design that is the aggregation of
the individual products’ (possibly quite different) architectures.
That is, rather than investing in a large up-front effort to specify
the common and variable parts of a single instantiable design, a
company should use automation to turn out product instances by
creating (and then exercising) variation points in the shared assets
-- including those shared assets that represent the architecture. In
this way, architecture can be treated consistently with the range of
other software development artifacts (requirements, design
specifications, code, tests, user manuals, etc.). In all cases,
commonality and variability will then emerge (and be captured)
over time as needed by the products. (Cf., the discussion about
agile development in Section 4.4.).

On the other hand, other experience suggests that there is
considerable value in formalizing the product line or platform
itself – or at least the parts of it that describe how it can be
extended or specialized. For instance, consider Microsoft’s
experience with tools that check device driver conformance to the
API protocols required by their operating system [6]. Such tools
have greatly reduced the errors that device driver providers made
in providing extensions to the Windows platform.

3 http://www.autosar.org/
4 For example, see the Software Product Line Hall of Fame,

http://splc.net/fame.html.
5 Paul’s blog can be found at the Big Lever Newsletters website:

www.biglever.com/newsletters/Pauls_three_surprises_3.html

4.3 Architecture Description
A critical question for software architects is how to describe their
architectural designs. Ideally those descriptions should convey
their design intent clearly to others, allow critical evaluation, and
require low overhead to create and maintain.

Broadly speaking, today there are three general approaches. The
first is informal description. Such descriptions typically use
general-purpose graphical editing tools (PowerPoint, Visio, etc.)
coupled with prose to explain the meaning of the drawings.

Informal descriptions have the advantage of being easy to
produce, and not requiring special expertise. But they have a host
of disadvantages. The meaning of the design may not be clear
since the graphical conventions will likely not have a well-defined
semantics. Informal descriptions cannot be formally analyzed for
consistency, completeness, or correctness. Architectural
constraints assumed in the initial design are not enforced as a
system evolves. There are few tools to help architectural designers
with their tasks.

The second approach is semi-formal description. This approach
uses generic modeling notations that may lack detailed semantics,
but provide a standardized graphical vocabulary supported by
commercial tools. The primary example of a semi-formal
description language is UML.6 In 2005 the Object Management
Group (which manages the UML standard) adopted UML 2.0,
incorporating explicit constructs for architectural modeling, such
as components, connectors, ports and hierarchical descriptions
[9].

A general-purpose modeling language, such as UML, has the
advantages of using notations that practitioners are likely to be
familiar with, that are supported by commercial tools, and that
provide a link to object-oriented modeling and development. But
such languages are limited by their lack of support for formal
analysis and their lack of expressiveness for some architecturally
relevant concepts. (For example, connectors are not first class
entities in UML in the same way as components are [15].)

The third approach is fully-formal description. In response to the
problems with the other two approaches a number of researchers
have proposed formal notations for representing and analyzing
architectural designs. Generically referred to as "Architecture
Description Languages'' (ADLs), these notations provide both a
conceptual framework and a concrete syntax for formal modeling
of software architectures [46]. They also typically provide tools
for parsing, displaying, compiling, analyzing, or simulating
architectural descriptions.

In the 1990’s many ADLs were proposed, each with certain
distinctive capabilities [46]. For instance Wright supports the
formal specification and analysis of interactions between
architectural components [3], xADL provides an extensible
specification language for architectures based on XML [19], and
Acme supports the formal definition of architectural styles [34].
To date those languages have largely failed to become established
in industrial practice. However, they have had an impact on the
revision to UML in 2005, and in several cases have formed the
basis for standardized, formal ADLs used in specific domains. For

6 Some of the diagram types in the UML family of modeling nota-

tions do have formal semantics, but the principle ones used for
modeling architectural structure do not.

instance, both AADL [24] and SysML7 are standardized
languages for modeling and analyzing real-time, safety critical
systems, such as avionics and automotive systems.

It remains to be seen whether more-formal approaches to
architectural description will gain in popularity over time. Today
there is a strong interest across the field of software engineering in
model-based engineering, reflecting the maturation of the field
from ad hoc practices to formal engineering practices.
Architectural models are an important class of engineering model
that can potentially play a prominent role in that evolution [27].

Independent of the level of formality associated with architectural
representations, there are a number of important cross-cutting
principles that are now well understood. The most important of
these is the idea that in order to describe system’s architecture,
one must use multiple views or viewpoints, reflecting different
perspectives on the architectural design problem. For example, it
is helpful to distinguish between coding structures and run-time
structures, since they represent different kinds of design
commitments, and impact the emergent properties of a system in
very different ways. The former is particularly useful for
reasoning about maintainability and the cost of change, while the
latter is useful for reasoning about properties such as
performance, scalability, and reliability. Several systems of views
have been proposed, including Kruchten’s 4+1 approach [40], the
IEEE 1471-2000 Standard [38], and the “Views and Beyond”
approach [15].

However, while the utility of multiple views is well understood,
the consequent problem of reconciling multiple views is not.
Research is needed to provide ways to make sure that views are
consistent in areas where their concerns overlap, and that changes
to one view are appropriately propagated to other views. Some
important challenges in this area include (a) understanding when a
system of partial views provides a complete representation of all
aspects relevant to the design; (b) providing formal criteria for
view consistency, including both structure and semantics; and (c)
using views to capture refinement relationships between abstract
and concrete architectural designs.

4.4 Agility and Architecture
One important issue for software architecture is how best to
integrate architectural practices into the broader software
development processes. At the core of this issue are questions
such as “how much architecture is enough?” and “when should
architectural design be performed?”

Considerable progress has been made in terms of establishing
processes for architectural evaluation and documentation
[15][16]. In particular, architectural reviews are now
commonplace in many organizations, where the benefits have
been well documented [45]. Additionally, studies have been done
to quantify the amount of architectural design that is appropriate
for various sizes and classes of systems [8].

One of the interesting debates over the past few years has been the
role of architecture in agile processes. It may seem at first glance
that architecture would have no place in a rapidly evolving
system, where an organization’s development practices
deemphasize the creation of artifacts that do not manifest

7 http://www.sysml.org/

themselves directly as user-visible functionality.8 But further
reflection suggests that architecture is, in fact, an enabler of
agility, not an impediment to it. We can see this in the emergence
of extensible platforms (mentioned earlier), which can be rapidly
customized with new plug-ins and applications.

Many in the agile community would argue that architecture is
important, but that it will emerge naturally as a system evolves
through extension and refactoring.9 This idea that architecture will
emerge spontaneously is reinforced by the fact that most software
development efforts today do not require a significant amount of
bold new architectural design: the most important design deci-
sions have been made earlier, are fixed by pre-existing conditions,
or are a de facto architectural standard in the respective industry
(cf., Section 4.2). Choices of operating system, servers, program-
ming language, database, middleware, and so on, are pre-
determined in the vast majority of software development projects,
or have a very narrow range of possible variations.

Architectural design, when it is really needed because of project
novelty, has an uneasy relationship with traditional agile practic-
es. Unlike the functionality of the system, it cannot easily be de-
composed into small, incremental chunks of work, user stories or
“technical stories”. The difficult aspects of architectural design are
driven by systemic quality attributes (security, high availability,
fault tolerance, interoperability, scalability, etc.), or are develop-
ment-related (testability, certification, and maintainability). In
general, these cannot be easily decomposed, and tests to deter-
mine their satisfaction are difficult to produce up-front. Moreover,
key architectural choices usually cannot be easily retrofitted on an
existing system by means of simple refactorings. Late decisions
may require the replacement of large bodies of the code, and
therefore many of the important architectural decisions have to be
made early (although not necessarily all at once, up front).

A number of people have grappled with this tension, including
Cockburn’s “walking skeleton”,10 the Scaled Agile Framework of
Leffingwell et al.,11 and Fairbank’s “risk-driven” approach [23].
A common theme is that architectural design and the incremental
building of a system (i.e., its user-visible functionality) must go
hand-in-hand. The important questions to answer are: How do we
pace ourselves? How do we address architectural issues and make
decisions, over time, in a way that will lead to a flexible architec-
ture, and enable developers to proceed? In which order do we pick
the quality attribute aspects and address them?

One of the ways to understand these questions is in terms of tech-
nical debt [18]. At any time, a software development team is
faced with a choice of what to focus on in the next release cycle,
iteration, or sprint. In the “backlog” of things not yet done, there
are four kinds of elements, illustrated in Figure 3 (adapted from
[41]).

8 Literature in the agile community is full of mantras such as,

YAGNI (You Ain’t Gonna Need It), No BUFD (No Big Up-
Front Design), and “Defer decision to the last responsible mo-
ment”

9 For example, Principle #11 in the “agile manifesto” says “The
best architectures, requirements, and designs emerge from self-
organizing teams” [2].

10 http://alistair.cockburn.us/Walking+skeleton
11 http://scaledagileframework.com/

Items that have visible value:
- Category I (the green stuff): new features (services, func-

tionalities, capabilities) to be added to the system, as well as
visible improvements in quality attributes (capacity, response
time, interoperability).

- Category II (the red stuff): customer-visible defects, limiting
usefulness or negatively impacting perceptions of the prod-
uct.

Figure 3: Four Types of Backlog Elements

Both categories impose a development cost to address and
tradeoffs are involved in determining how to prioritize them: how
much defect fixing relative to new features can we afford to do?

But there are also items that are invisible to the outside world:
- Category III (the yellow stuff): architectural elements, infra-

structure, frameworks, deployment tools, etc. Known to the
internal development team, and architects, they are often de-
ferred in favor of addressing the visible elements. Their cost
is often “lumpy”: they are hard to break down into small in-
crements. We know that they add value, in the long term, by
increasing future productivity, and often improving key qual-
ity attributes. But this value is hard to quantify.

- Category IV (the grey stuff): elements that have both a nega-
tive value, and are invisible – technical debt. These are the
result of earlier architectural and implementation decisions
that may have seemed wise at the time, but which in the cur-
rent context are suboptimal and hurt the project – usually
through reduced productivity or impact on the evolution of
the system. Category IV elements are known by the devel-
opment team, but rarely expressed at the level of key deci-
sion makers, who determine the future release roadmap.
Shortcuts, or failure to develop the yellow stuff of Category
III, increases the amount of grey stuff in Category IV, further
inhibiting progress.

A compounding factor is that the categories have dependencies
between them – especially, dependencies of the visible (I and II)
and the invisible (III and IV) categories. Making tradeoffs be-
tween the various categories now becomes more complicated, and
requires diverse expertise, not just consideration of market value.
Time plays a crucial role, too: the value of delivering a new fea-
ture is immediate, while the value of developing a good architec-
ture may be reaped only over a long period of time.

While the challenge of determining the value and timing of archi-
tectural investments remains an open one, economic concepts
such as Net Present Value, the Incremental Funding Method, and
Real Options, combined with dependency analysis, may help de-
cision making choices for short- or long-term development plan-
ning [21][59].

5. CHALLENGES AHEAD
What about the future? Although software architecture is on a
much more solid footing than two decades ago, it is not yet fully
established as a discipline that is taught and practiced across the
software industry. One reason for this is simply that it takes time
for new approaches and perceptions to propagate. Another reason
is that the technological basis for architecture design (as outlined
earlier) is still maturing. In both of these areas we can expect that
a natural evolution of the field will lead to steady advances.

However, the world of software development, and the context in
which software is being used, is changing in significant ways.
These changes promise to have a major impact on how
architecture is practiced. In this section I consider some the
important trends and their implications for the field of software
architecture.

5.1 Network-Centric Computing
Over the past decade the primary computational model for
systems has shifted from localized computation to a network-
centric model. Increasingly personal computers and a wide
variety of other devices (handheld devices, laptops, phones) are
used primarily as a user interface that provides access to remote
data and computation, rather than as the primary locus of
computation. This trend is not surprising since a network-centric
model offers the potential for significant advantages. It provides a
much broader base of services than is available on local devices. It
permits access to a rich set of computing and information retrieval
services that can be used almost anywhere (in the office, home,
car, and factory), providing ubiquitous access to information and
services.

This trend has a number of consequences for software
engineering, in general, and software architecture, in particular.
Historically, software systems have been created as closed
systems, developed and operated under control of individual
institutions. The constituent components may have been acquired
from external sources, but when incorporated in a system they
came under control of the system designer. Architectures for such
systems are largely static – allowing minimal run-time
restructuring and variability.

However, within the world of pervasive services and applications
available over networks, systems may not have such centralized
control. The Internet is an example of such an open system: it is
minimally standardized, chiefly at the level of the protocols,
addresses, and representations that allow individual sites to
interact. It admits of considerable variation both in the hardware
that lies below these standards and the applications that lie above.
There is no central authority for control or validation. Individual
sites are independently administered. Individual developers can
provide, modify, and remove resources at will.

For such systems a new set of software architecture challenges
emerges [54]. First, is the need for architectures that scale up to
the size and variability of the Internet. While many of the

traditional architectural paradigms will likely apply, the details of
their implementation and specification will need to change.

For example, one attractive form of composition is implicit
invocation – sometimes termed ''publish-subscribe.'' Within this
architectural style components are largely autonomous, interacting
with other components by broadcasting messages that may be
"listened to" by other components. Most systems that use this
style, however, make many assumptions about properties of its
use. For example, one typically assumes that event delivery is
reliable, that centralized routing of messages will be sufficient,
and that it makes sense to define a common vocabulary of events
that are understood by all of the components. In an Internet-based
setting all of these assumptions are questionable.

Second, is the need to support computing with dynamically-
formed, task-specific, coalitions of distributed autonomous
resources. The Internet hosts a wide variety of resources: primary
information, communication mechanisms, applications and
services, control that coordinates the use of resources, and
services such as secondary (processed) information, simulation,
editorial selection, or evaluation. These resources are indepen-
dently developed and independently supported; they may even be
transient. They can be composed to carry out specific tasks set by
a user; in many cases the resources need not be specifically aware
of the way they are being used, or even whether they are being
used. Such coalitions lack direct control over the incorporated
resources. Selection and composition of resources is likely to be
done afresh for each task, as resources appear, change, and
disappear. Unfortunately, it is hard to automate the selection and
composition activity because of poor information about the
character of services and hence with establishing correctness.

Composition of components in this setting is difficult because it is
hard to determine what assumptions each component makes about
its operating context, let alone whether a set of components will
interoperate well (or at all) and whether their combined
functionality is what you need. Moreover, many useful resources
exist but cannot be smoothly integrated because they make
incompatible assumptions about component interaction. For
example, it is hard to integrate a component packaged to interact
via remote procedure calls with a component packaged to interact
via shared data in a proprietary representation.

One emerging solution to this problem is the creation of
ecosystems based on a common architectural style or platform,
augmented with a rich library of components that can be
composed in well-understood ways within a given domain of
computation. (Cf. also Section 4.2.) As an example, consider
Yahoo! Pipes, a component composition platform that allows one
to compose and execute data steam processing applications
through a web browser using a large number of transformations
available from an on-line library.12 (More on this topic in Section
5.4.)

Third, there is a need to architect systems that can take advantage
of the rich computing base enabled by network-centric computing.
Today cloud computing platforms provide almost unlimited
access to storage and computation, but exploiting these requires
architectures that can scale to large volumes of data and a huge
array of available services.

12 http://pipes.yahoo.com/pipes/

Fourth, there is a need to ensure adequate security and privacy. As
systems migrate away from the direct control of individual
organizations, architects must find ways to ensure confidentiality,
availability, and integrity of their data. In many cases, this will
involve a judicious combination of both private and public
infrastructure, together with architectures that can bridge that
divide.

5.2 Pervasive Computing and Cyber-physical
Systems
A second related trend is toward pervasive computing, in which
the computing universe is populated by a rich variety of software-
enhanced devices: toasters, home heating systems, entertainment
systems, smart cars, etc. This trend is leading to an explosion in
the number of devices in our local environments – from dozens of
devices to hundreds or thousands of devices. In some circles this
is referred to as the “Internet of Things”.

There are a number of consequent challenges for software
architecture. First, we will need architecture design tools that are
suited to systems that combine both physical and software
elements – cyber-physical systems. Such systems cannot be
understood without considering both the properties of their
physical elements (power requirements, mechanics, control
interfaces, etc.) and their software elements (data stores,
communication protocols, security features, etc.). Today design
notations and tools tend to favor one or the other; what is needed
are unifying approaches that permit designers to focus on different
facets of a system, but provide guarantees of consistency and
completeness for the overall system.

Second, architectures for these systems will have to be more
flexible than they are today. In particular, devices, components,
services and other computational elements are likely to come and
go in an unpredictable fashion. Handling reconfiguration
dynamically, while guaranteeing uninterrupted service, is a hard
problem. (See also Section 5.3.)

Third, there is a need for architectures that effectively bridge the
gap between technology and technologically-naïve users.
Currently, our computing environments are configured manually
and managed explicitly by the user. While this may be appropriate
for environments in which we have only a few, relatively static,
computing devices (such as a couple of PCs and laptops), it does
not scale to environments with hundreds of devices. We must
therefore find architectures that provide much more automated
control over the management of computational services.

Such architectures will need to raise the level of abstraction for
configuring pervasive systems, allowing users to focus on their
high-level tasks (e.g., being entertained, ensuring the security of
their home, managing the energy usage of their appliances) [36].
For example, how many of us have been frustrated trying to figure
out how to configure an entertainment system, with multiple
remote devices and their myriad buttons? Note that in general it is
not merely a matter of making individual devices “smarter”. It will
require new architectures that span multiple devices, and are able
not only to simply their use, but proactively adapt themselves to
user’s needs.

5.3 Fluid Architectures
In the past, software systems were largely static: changes to
system functionality happened rarely, and usually required

significant manual oversight and installation. Today systems are
much more dynamic: new applications are downloaded onto
mobile platforms; new devices are installed in homes; mobile
devices enter and leave our computing environment; new web
services become available through web applications; system
upgrades are required to address discovered security
vulnerabilities, etc.

Such fluidity raises a number of architectural challenges. The first
is architecting for ease of change and adaptation. For many
systems, this requires the ability to dynamically discover and
compose available services and resources. For other systems it
requires well-defined interfaces that support rapid customization,
extension and upgrade. In addition, the architect needs to be sure
that such changes do not interfere with on-going services that
must continue to function. It would be unfortunate, indeed, if
when downloading a new app to your phone, no one could contact
you, or if an on-line e-commerce site were to become unavailable
to customers when system upgrades were propagated.

Second is the problem of describing and reasoning about the
architecture. Since the actual run-time configuration is largely
unknown at design time, how can one specify the architecture?
Clearly, what is needed is a way to characterize the set of all
possible systems. But architectural modeling notations (in any of
the categories mentioned in Section 4.3) often have difficulty at
characterizing such families. Moreover, the combinatorial
explosion of possible future system configurations makes formal
analysis difficult. Partial solutions to this problem may emerge
from the application of product line variability representation and
analysis [48].

Despite these challenges the existence of fluid architectures opens
up a set of new opportunities. Chief among these are the ability to
create systems that can take a stronger role in ensuring their own
health and quality. Such systems are sometimes referred to as self-
adaptive systems or autonomic systems [39], and are the subject
of considerable research in their own right [13][20].

While there are many approaches to self-adaptation, one
prominent technique is to adopt a control systems view of the
problem. In this approach each system is coupled with a control
layer that is responsible for monitoring the state of that system,
detecting opportunities for improvement, and effecting change as
it runs. Central to such an approach (as with any control systems
approach) is the use of system models in the control layer. These
models reflect the current state of the system, and are used to
detect problems and decide on courses of action. It turns out that
architectural models are particularly useful in this regard [35]. As
such, architectural models now become useful not only as design-
time artifacts, but as run-time artifacts as well.

5.4 Socio-technical Ecosystems
The emergence of platforms as a central basis for modern system
development has brought with it a new set of challenges for
software architecture. Beyond the technical issues of platform
design itself (noted earlier), architects must now also consider the
socio-technical ecosystems that arise around the platform and are
necessary to ensure its sustainability. Such ecosystems include not
only the platform developers, but also the much larger community
of developers who provide platform extensions (apps, services,
etc.), users who must purchase and install those extensions,
governance rules and processes to qualify potential extensions,

incentive systems to motivate developers of extensions, legal and
economic systems, and so on [11].

Table 1: Some End-User Architecting Domains

Domain Type of compositions Tools

Astronomy electromagnetic image
processing tasks

Astrogrid

Bioinformatics biological data-analysis
services

Taverna

Digital music
production

audio sequencing &
editing

Steinberg
VST

Environmental
Science

spatio-temporal experi-
ments

Kepler

Film production scripting animation-
effects and components

Maya/Adobe
after-effects

Gaming scriptable and composa-
ble 3D engines

Mavenlink

Geospatial
Analysis

interactive visualization
of geographical data

Ozone widget
framework

Home Automa-
tion

home devices & services Control4
Composer

Neuroscience brain-image processing Loni Pipeline
Scientific com-
puting

transformational work-
flows

WINGS

Socio-technical
Analysis

network creation, analy-
sis & simulation

SORASCS

Virtual Tools scientific experiment
pipelines

Labview

Today we have only a very weak understanding of the
interrelationship between all of these moving parts, and the way in
which architectural design facilitates a sustainable ecosystem.
Consider, for example, the architectural issue of the kinds of
interaction the platform will support between components
provided by third parties. Limited interaction can provide
stronger guarantees, but may reduce flexibility, and will affect the
extent to which a component developer can depend on
components built by others. Different choices will have a strong
impact on the nature of the ecosystem and potentially its long-
term viability, as illustrated by the difference between the iOS and
Android ecosystems.
One important emerging class of ecosystems allows end users to
do their own system composition to create innovative
computational systems. Such users typically have minimal
technical expertise, and yet still want strong guarantees that the
parts will work together in the ways they expect, and to
understand the properties of their compositions (How fast will
they run? Will they guarantee data privacy?). In essence, this
requires support for “end-user architecting” [33]. Some examples
of domains and their respective end-user architecting tools are
listed in Table 1. Unfortunately, such tools are often difficult to
use, and may require considerable low-level knowledge of
invocation conventions, parameter settings, and data formats. An
open research problem is finding ways to provide improved
architecting environments and task-oriented interfaces for such
users.

6. CONCLUSION
The field of software architecture is one that has experienced
considerable growth over the past two and a half decades, and it

promises to continue that growth for the foreseeable future.
Although architectural design has matured into an engineering
discipline that is broadly recognized and practiced, there are a
number of significant challenges that will need to be addressed.
Many of the solutions to these challenges are likely to arise as a
natural consequence of dissemination and maturation of the
architectural practices and technologies that we know about today.
Other challenges arise because of the shifting landscape of
computing and the roles that software systems play in our world:
these will require significant new innovations. In this paper we
have attempted to provide a high-level overview of this terrain—
illustrating where we have come over the past few years, and
speculating about where we need to go to meet the demands of the
future.

Reflecting on the differences between now and the state of the
world characterized in the 2000 article [28], we can see that many
of the challenges noted there are still with us, but with some
changes. The challenge of exploiting reuse has matured
substantially since 2000 with broad-based use of platforms,
frameworks and product lines. The architectural challenges of
pervasive computing, noted in 2000, remain, but have broadened
to include, more generally, cyber-physical systems, which affect
most of the things we depend on (phones, cars, energy, houses,
etc.). Beyond the simple pervasiveness of software, its emerging
role as an enhancement to our physical environment suggests the
need for a significant broadening of the architectural discipline.
The area of network centric computing has blossomed via the
Internet, and now requires that we understand how the
architectures of the past can be adapted to the connected,
distributed, data-rich world of the future. Finally, in this article we
noted the importance of ecosystems and their symbiotic
relationship with architecture.

7. ACKNOWLEDGEMENTS
This article has benefitted from many long-standing interactions
and collaborations with numerous colleagues and students over
the past two decades. I would like to thank Grady Booch, Paul
Clements, Philippe Kruchten, and Mary Shaw for their
contributions to the content and prose of this paper. Paul provided
some of the ideas and text for product lines in Section 4.2;
Philippe on agile computing and technical debt in Section 4.4;
and Mary on dynamic coalitions in Section 5.2. Section 2
describing the roles of software architecture was adapted from an
introductory article on software architecture [26]. I would also
like to credit past and present members of the ABLE Research
Group, and colleagues at the Software Engineering Institute.
Finally special thanks to Andreas Metzger and Klaus Pohl who
made many helpful suggestions for improvements.

8. REFERENCES
[1] Abowd, G., Allen, R., and Garlan, D. Using style to

understand descriptions of software architecture. In
Proceedings of SIGSOFT'93: Foundations of Software
Engineering. ACM Press, December 1993.

[2] Agile Alliance, Manifesto for Agile Software Development,
June 2001, http://agilemanifesto.org/.

[3] Allen, R. and Garlan, D. A formal basis for architectural
connection. ACM Transactions on Software Engineering
and Methodology, Vol. 6(3):213-249 July 1997.

http://agilemanifesto.org/

[4] Allen, R. and Garlan, D. Formalizing architectural
connection. In Proceeding of the 16th International
Conference on Software Engineering, pps 71-80, May
1994.

[5] Bachinsky, S., Mellon, L., Tarbox, G., and Fujimoto, R. RTI
2.0 architecture. In Proceedings of the 1998 Spring
Simulation Interoperability Workshop, 1998.

[6] Ball, T., Levin, V., Rajamani, S. K. A Decade of Software
Model Checking with SLAM, Communications of the ACM,
Vol. 54. No. 7, 2011, Pages 68-76.

[7] Bass, L., Clements, P. and Kazman, R. Software
Architecture in Practice, Third Edition. Addison Wesley,
2012.

[8] Boehm, B. and Turner, R. Balancing Agility and Discipline:
A Guide for the Perplexed. Addison-Wesley/Pearson Edu-
cation, 2003.

[9] Booch, G., Rumbaugh, J, and Jacobson, I. The Unified
Modeling Language User Guide, 2nd Edition. Addison Wes-
ley, 2005.

[10] Bosch, J. Design and Use of Software Architectures: Adopt-
ing and Evolving a Product-Line Approach. ACM
Press/Addison-Wesley Publ. Co. 2000.

[11] Bosch, J. From software product lines to software ecosys-
tems. In Proceedings of the 13th International Software
Product Line Conference (SPLC '09, Pittsburgh, PA, USA,
111-119. 2009.

[12] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.
and Stal, M. Pattern Oriented Software Architecture: A
System of Patterns, Volume 1. Wiley, 1996.

[13] Cheng, B., de Lemos, R., Giese, H., et al. Software Engi-
neering for Self-Adaptive Systems: A Research Roadmap.
In: Software Engineering for Self-Adaptive Systems. Lecture
Notes in Computer Science, 5525. Springer,, pp. 1-26.
2009.

[14] Clements, P. and Northrop, L. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[15] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J.,
Little, R., Merson, P., Nord, R. and Stafford, J. A.
Documenting Software Architectures: Views and Beyond,
Second Edition. Addison-Wesley, 2011.

[16] Clements, P., Kazman, R., Klein, M. Evaluating Software
Architectures: Methods and Case Studies. Addison Wesley,
2002.

[17] Coglianese, L. and Szymanski, R., DSSA-ADAGE: An
Environment for Architecture-based Avionics Development.
In Proceedings of AGARD'93, May 1993.

[18] Cunningham, W. The WyCash Portfolio Management
System. Proc. OOPSLA, ACM Press, 1992.

[19] Dashofy, E. M., Van der Hoek, A., and Taylor, R. N.. A
Highly-Extensible, XML-Based Architecture Description
Language. In Proceedings of the Working IEEE/IFIP Con-
ference on Software Architectures (WICSA 2001), Amster-
dam, Netherlands.

[20] De Lemos, R., et al. Software engineering for self-adaptive
systems: A second research roadmap. Software Engineering

for Self-Adaptive Systems II. Lecture Notes in Computer
Science, Vol. 7475:1-32, Springer, 2013.

[21] Denne, M. and Cleland-Huang, J. The Incremental Funding
Method: Data-Driven Software Development IEEE Soft-
ware, 21(3), pp. 39-47, 2004.

[22] Dijkstra, E. W. The structure of the "THE" –
multiprogramming system. Communications of the ACM,
11(5):341-346, 1968.

[23] Fairbanks, G. Just Enough Software Architecture: A Risk-
Driven Approach. Marshal and Brainerd, 2010.

[24] Feiler, P., Gluch, D. Model-Based Engineering with
AADL: An Introduction to the SAE Architecture Analysis
& Design Language. Addison-Wesley, 2012.

[25] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Design.
Addison-Wesley, 1995.

[26] Garlan, D. and Perry, D. Introduction to the special issue
on software architecture. IEEE Transactions on Software
Engineering, 21(4), April 1995.

[27] Garlan, D. and Schmerl, B. Architecture-driven Modelling
and Analysis. In T. Cant editor, Proc. of the 11th Australian
Workshop on Safety Related Programmable Systems
(SCS'06), Vol. 69 of Conferences in Research and Practice
in Information Technology, Melbourne, Australia, 2006.

[28] Garlan, D. Software Architecture: a Roadmap. In A. Finkel-
stein editor, Proceedings of the Conference on The Future
of Software Engineering, Pages 91--101, ACM Press, 2000.

[29] Garlan, D., Allen, R. and Ockerbloom, J. Architectural
mismatch: Why reuse is so hard. IEEE Software, 12(6):17-
28, November 1995.

[30] Garlan, D., Allen, R. and Ockerbloom, J. Architectural
Mismatch: Why Reuse is Still So Hard. IEEE Software, pp.
66-69, July 2009.

[31] Garlan, D., Allen. R. and Ockerbloom, J. Exploiting style
in architectural design environments. In Proc of
SIGSOFT'94: The second ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pages 170-185.
ACM Press, December 1994.

[32] Garlan, D., Barnes, J. M., Schmerl, B. and Celiku, O. Evo-
lution Styles: Foundations and Tool Support for Software
Architecture Evolution. In Proceedings of the Joint Work-
ing IEEE/IFIP Conference on Software Architecture 2009
& European Conference on Software Architecture 2009,
September 2009.

[33] Garlan, D., Dwivedi, V., Ruchkin, I. and Schmerl, B. Foun-
dations and Tools for End-User Architecting. In D. Garlan
and R Calinescu editors, Large-Scale Complex IT Systems.
Development, Operation and Management, 17th Monterey
Workshop 2012, vol. 7539:157-182 of Lecture Notes in
Computer Science, Springer, 2012.

[34] Garlan, D., Monroe, R. and Wile, D. Acme: Architectural
Description of Component-Based Systems. In Foundations
of Component-Based Systems, Pages 47-68, Cambridge
University Press, 2000.

[35] Garlan, D., Schmerl, B. and Cheng, S. Software
Architecture-Based Self-Adaptation. In M. Denko, L. Yang

and Y. Zhang editors, Autonomic Computing and
Networking. Springer, 2009.

[36] Garlan, D., Siewiorek, D., Smalagic, A. and Steenkiste, P.
Project Aura: Towards Distraction-Free Pervasive Compu-
ting. IEEE Pervasive Computing,. 1(2):22-31, April 2002.

[37] Garlan. D., Shaw, M., Okasaki, C., Scott, C., and Swonger,
R. Experience with a course on architectures for software
systems. In Proceedings of the Sixth SEI Conference on
Software Engineering Education. Springer Verlag, LNCS
376, October 1992.

[38] IEEE Standard 1471-2000. IEEE Recommended Practice
for Architectural Description for Software-Intensive Sys-
tems. http://standards.ieee.org/findstds/standard/1471-
2000.html

[39] Kephart, J.O., Chess, D.M. The vision of autonomic compu-
ting. IEEE Computer, vol.36, no.1, pp.41,50, Jan 2003.

[40] Kruchten, P. B. The 4+1 view model of architecture. IEEE
Software, pages 42-50, November 1995.

[41] Kruchten, P., Nord, R. and Ozkaya, I. Technical debt: from
metaphor to theory and practice, IEEE Software, 29(6), pp.
18-21, 2012.

[42] Kruchten, P., Obbink, H., Stafford, J. The Past, Present, and
Future for Software Architecture. IEEE Software. pp. 22-30
March/April (vol. 23 no. 2), 2006.

[43] Lattanze, A. Architecting Software Intensive Systems: A
Practitioners Guide. CRC Press. 2009.

[44] Magee, J., Dulay, N., Eisenbach, S. and Kramer, J.
Specifying distributed software architectures. In
Proceedings of the Fifth European Software Engineering
Conference, ESEC'95, September 1995.

[45] Maranzano, J. F., Rozsypal, S.A., Zimmerman, G.H.,
Warnken, G.W., P.E. and Wirth, Weiss, D.M.. Architecture
reviews: practice and experience. IEEE Software, 22(2),
pp.34-43, March-April 2005.

[46] Medvidovic, N. and Taylor, R. N. A Classification and
Comparison Framework for Software Architecture Descrip-
tion Languages. IEEE Transactions on Software Engineer-
ing, vol. 26, no. 1, pages 70-93,January 2000.

[47] Medvidovic, N., Oreizy, P., Robbins, J. E. and Taylor, R. N.
Using object-oriented typing to support architectural design
in the C2 style. In SIGSOFT'96: Proceedings of the 4th
ACM Symposium on the Foundations of Software
Engineering. ACM Press. Oct 1996.

[48] Metzger, A, Pohl, K. Software Product Line Engineering
and Variability Management: Research Achievements and
Challenges. FOSE'14, May 31 – June 7, 2014, Hyderabad,
India.

[49] Parnas, D. L. Designing software for ease of extension and
contraction. IEEE Transactions on Software Engineering,
5:128-138, March 1979.

[50] Parnas, D. L., Clements, P. C. and Weiss, D. M. The
modular structure of complex systems. IEEE Transactions
on Software Engineering. SE-11(3):259-266, March 1985.

[51] Perry, D. E. and Wolf, A. L. Foundations for the study of
software architecture. ACM SIGSOFT Software Engineer-
ing Notes, 17(4):40-52, October 1992.

[52] Rechtin, E. Systems architecting: Creating and Building
Complex Systems. Prentice Hall, 1991.

[53] Schmidt, D., Stal, M., Rohnert, H. and Buschmann, F. Pat-
tern-Oriented Software Architecture, Volume 2: Patterns
for Concurrent and Networked Objects. Wiley, 2000.

[54] Shaw, M. Architectural Requirements for Computing with
Coalitions of Resources. In Proceedings of the 1st Working
IFIP Conf. on Software Architecture, February 1999.

[55] Shaw, M. and Clements, P. A field guide to boxology:
Preliminary classification of architectural styles for software
systems. In Proceedings of COMPSAC 1997, August 1997.

[56] Shaw, M. and Clements, P. The Golden Age of Software
Architecture. IEEE Software, 23(2), pp. 31-39. March/April
2006.

[57] Shaw, M. and Garlan, D. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
1996.

[58] Shaw, M. Toward Higher-Level Abstractions for Software
Systems. Proceedings of the Tercer Simposio Internacional
del Conocimiento y su Ingerieria, October 1988 (printed by
Rank Xerox), pp.55-61. Reprinted in Data and Knowledge
Engineering, 5 (1990) pp.19-128.

[59] Sullivan, K. J., Chalasani, P., Jha, S. and Sazawal, V. Soft-
ware Design as an Investment Activity: A Real Options Per-
spective, in Real Options and Business Strategy: Applica-
tions to Decision Making, L. Trigeorgis (ed.), Risk Books,
1999.

[60] Taylor, R. N., Medvidovic, N. and Dashofy, E. Software
Architecture: Foundations, Theory, and Practice. Wiley,
2009.

	1. INTRODUCTION
	2. WHAT IS SOFTWARE ARCHITECTURE?
	3. THE PAST
	4. SOFTWARE ARCHITECTURE TODAY
	4.1 Codification and Dissemination
	4.2 Platforms and Product Lines
	4.3 Architecture Description
	4.4 Agility and Architecture

	5. CHALLENGES AHEAD
	5.1 Network-Centric Computing
	5.2 Pervasive Computing and Cyber-physical Systems
	5.3 Fluid Architectures
	5.4 Socio-technical Ecosystems

	6. CONCLUSION
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

