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ABSTRACT 
Over the past two and a half decades software architecture has 
emerged as an important subfield of software engineering. During 
that time there has been considerable progress in developing the 
technological and methodological base for treating architectural 
design as an engineering discipline. However, much still remains 
to be done to achieve that. Moreover, the changing face of 
technology raises a number of challenges for software 
architecture. This travelogue recounts the history of the field, its 
current state of practice and research, and speculates on some of 
the important emerging trends, challenges, and aspirations.   

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: domain-specific architectures, 
languages, patterns. 

General Terms 
Documentation, Design, Standardization, Reliability 

Keywords 
Software architecture, software product lines, software frame-
works, architecture description languages, architecture styles, 
architecture trends, architecture and agility. 

1. INTRODUCTION 
A critical issue in the design and construction of any complex 
software system is its architecture: that is, its organization as a 
collection of interacting elements – modules, components, 
services, etc. A good architecture can help ensure that a system 
will satisfy its key functional and quality requirements, including 
performance, reliability, portability, scalability, and 
interoperability. A bad architecture can be disastrous. 
Over the past two and a half decades software architecture has 
received increasing attention as an important subfield of software 
engineering.  Practitioners have come to realize that getting an 
architecture right is a critical success factor for system design and 
development. They have begun to recognize the value of making 
explicit architectural choices, and leveraging past architectural 
designs in the development of new products. Today there are 
numerous books on architectural design, regular conferences and 
workshops devoted specifically to software architecture, a 
growing number of commercial tools to aid in aspects of 

architectural design, courses in software architecture, major 
government and industrial research projects centered on software 
architecture, and an increasing number of formal architectural 
standards. Codification of architectural principles, vocabulary, 
methods, and practices has begun to lead to repeatable processes 
of architectural design, criteria for making principled tradeoffs 
among architectural decisions, and standards for documenting, 
reviewing, and implementing architectures.  

However, despite this progress, as engineering disciplines go, the 
field of software architecture remains relatively immature. While 
the foundations of an engineering basis for software architecture 
are now clear, there remain numerous challenges and unknowns. 
We can therefore expect to see major new developments in the 
field over the next decade – both in research and practice. Some 
of these developments will be natural extensions of the current 
trajectory. But there are also a number of important new 
opportunities, brought about by the changing face of technology 
and its roles in society. 
In 2000 I was invited to write an article, “Software architecture: a 
roadmap” [28] in which I assessed the current state and future 
prospects for architecture. This paper revises that article, now 
with the hindsight of almost a decade and a half, and attempts to 
provide a travelogue describing the conceptual terrain and its key 
features: its history, its current state, and how it may evolve in the 
future to address emerging challenges and opportunities. As we 
will see, many of the challenges are similar to those described in 
the 2000 paper, but with a somewhat different flavor today. 

To provide a broader perspective than my own, and to hear from 
some of the prominent people in the field, I asked a few 
colleagues to contribute ideas and prose. I am grateful to Grady 
Booch, Paul Clements, Philippe Kruchten, and Mary Shaw, who 
agreed to help out, in part acting as “guides” for parts of 
landscape that they know well.  

2. WHAT IS SOFTWARE 
ARCHITECTURE? 
While there are numerous definitions of software architecture, at 
the core of most of them is the notion that the architecture of a 
system describes its gross structure.  This structure illuminates the 
top-level design decisions, including things such as how the 
system is composed of interacting parts, what are the principal 
pathways of interaction, and what are the key properties of the 
parts and the system as a whole. Additionally, an architectural 
description includes sufficient information to allow high-level 
analysis and critical appraisal. 
Software architecture typically plays a key role as a bridge 
between requirements and implementation (see Figure 1).  By 
providing an abstract description of a system, the architecture 
exposes certain properties, while hiding others. Ideally this 
representation provides an intellectually tractable guide to the 
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overall system, permits designers to reason about the ability of a 
system to satisfy certain key requirements, explicitly captures the 
intent and principles that govern its design, and prescribes a 
blueprint for system construction and composition.  

 
Figure 1: Software Architecture as a Bridge 

For example, an architecture for a signal processing application 
might be constructed as a dataflow network in which the nodes 
read input streams of data, transform that data, and write to output 
streams. Designers might use this decomposition, together with 
estimated values for input data flows, computation costs, and 
buffering capacities, to reason about possible bottlenecks, 
resource requirements, and schedulability of the computations. 
As another example, consider an application that provides 
application services over the Internet. A typical architecture for 
such a system will adopt an N-tiered organization, using a data 
tier to store persistent information, one or more tiers to provide 
application functionality, and a user interface tier. Given this 
overall structure, an architect will need to decide which 
capabilities to assign to each tier, how to provide adequate privacy 
and security for communicated and stored data, how to guarantee 
reasonable response times, how to ensure that the system will 
scale gracefully as the number of clients increases over time, and 
what technologies will be used to realize the design. 
To elaborate, software architecture can play an important role in 
at least six aspects of software development: 

1. Understanding: Software architecture simplifies our 
ability to comprehend large systems by presenting them at 
a level of abstraction at which a system's high-level design 
can be easily understood [57]. Moreover, at its best, 
architectural description exposes the high-level constraints 
on system design, as well as the rationale for making 
specific architectural choices [37][15]. 

2. Reuse: Architectural design supports reuse of both 
components and also frameworks into which components 
can be integrated. Domain-specific software architectures, 
frameworks, platforms and architectural patterns are 
various enablers for reuse, together with libraries of plug-
ins, add-ins and apps [12][14].  

3. Construction: An architectural description provides a 
partial blueprint for development by indicating the major 
components and dependencies between them. For 
example, a layered view of an architecture typically 
documents abstraction boundaries between parts of a 
system's implementation, identifies the internal system 

interfaces, and constrains what parts of a system may rely 
on services provided by other parts [15]. 

4. Evolution: Architectural design can expose the dimensions 
along which a system is expected to evolve.  By making 
explicit a system’s "load-bearing walls," maintainers can 
better understand the ramifications of changes, and thereby 
more accurately estimate costs of modifications [32]. In 
many cases such evolution and variability constraints are 
manifested in product lines, frameworks and platforms, 
which dictate how the system can be instantiated or 
adapted through the addition of application-specific 
features and components [10][14]. 

5. Analysis: Architectural descriptions provide opportunities 
for analysis, including system consistency checking [3][7], 
conformance to constraints imposed by an architectural 
style [1], satisfaction of quality attributes [16], and 
domain-specific analyses for architectures built in specific 
styles [23][31][44][47]. 

6. Management:  For many companies the design of a viable 
software architecture is a key milestone in an industrial 
software development process.  Critical evaluation of an 
architecture typically leads to a much clearer under-
standing of requirements, implementation strategies, and 
potential risks, reducing the amount of rework required to 
address problems later in a system’s lifecycle [8][16]. 

3. THE PAST 
In the early decades of software engineering, architecture was 
largely an ad hoc affair.1 Descriptions typically relied on informal 
box-and-line diagrams, which were rarely maintained once a 
system was constructed.  Architectural choices were made in an 
idiosyncratic fashion – often by adapting some previous design, 
whether or not it was appropriate.  Good architects – even if they 
were classified as such within their organizations – learned their 
craft by hard experience in particular domains, and were unable to 
teach others what they knew. It was usually impossible to analyze 
an architectural description for consistency or to infer non-trivial 
properties about it.  Nor was there any way to check that a 
system’s implementation faithfully represented its architectural 
design. 

However, despite their informality, even from the earliest days of 
software development, architectural descriptions have been 
central to system design.  As people began to understand the 
critical role that architectural design plays in determining system 
success, they also began to recognize the need for a more 
disciplined approach.  Early authors began to observe certain 
unifying principles in architectural design [52], to call out 
architecture as a field in need of attention [51][58], and to 
establish a more-formal working vocabulary for software 
architects [57]. Tool vendors began thinking about explicit 
support for architectural design.  Language designers began to 
consider notations for architectural representation [46]. Standards 
organizations began to promote standardized languages and tools. 

                                                                 
1 To be sure, there were some notable exceptions.  Parnas recognized the 

importance of system families [49], and architectural decomposition 
principles based on information hiding [50]. Others, such as Dijkstra, 
exposed certain system structuring principles [22]. 



Within industry, two trends highlighted the importance of 
architecture.  The first was the recognition of a shared repertoire 
of methods, techniques, patterns and idioms for structuring 
complex software systems. For example, the box-and-line-
diagrams and explanatory prose that typically accompany a high-
level system description often refer to such organizations as a 
"pipeline,'' a "blackboard-oriented design,'' or a "client-server 
system.''  Although these terms were rarely assigned precise 
definitions, they permitted designers to describe complex systems 
using abstractions that made the overall system intelligible. 
Moreover, they provided significant semantic content about the 
kinds of properties of concern, the expected paths of evolution, 
the overall computational paradigm, and the relationship between 
this system and other similar systems. 

The second trend was the concern with exploiting commonalities 
in specific domains to provide reusable frameworks for product 
families. Such exploitation was based on the idea that common 
aspects of a collection of related systems can be extracted so that 
each new system can be built at relatively low cost by 
"instantiating'' the shared design and reusing shared artifacts. 
Familiar examples include the standard decomposition of a 
compiler (which permits undergraduates to construct a new 
compiler in a semester), standardized communication protocols 
(which allow vendors to interoperate by providing interoperable 
services), and customizable frameworks, platforms and product 
lines. 

During the 1990s and 2000s these trends, and others, led to an 
explosion of interest in software architecture. Sometimes referred 
to as the “Golden Age of Software Architecture” [56], during this 
period the field matured rapidly, producing many books on 
software architecture, improved theories and formalisms for 
reasoning about architecture, tools to automate their construction 
and implementation, and methods for integrating architecture into 
mainstream software development. The next section surveys some 
of the more important of these. 

4. SOFTWARE ARCHITECTURE TODAY 
Although there is considerable variation in the state of the 
practice, today software architecture is widely visible as an 
important and explicit design activity in software development. 
Job titles now routinely reflect the role of software architect; 
companies rely on architectural design reviews as critical staging 
points; and architects recognize the importance of making explicit 
tradeoffs within the architectural design space [42]. 

In addition, the technological and methodological basis for 
architectural design has improved dramatically. Four important 
advances have been (1) the codification and dissemination of 
architectural design expertise; (2) the emergence of platforms and 
product lines, and their associated ecosystems; (3) the 
development of principles, languages and tools for architecture 
description; and (4) the integration of architectural design into the 
broader processes of software development, and, in particular the 
relationship between architecture and agility. 

4.1 Codification and Dissemination 
One early impediment to the emergence of architectural design as 
an engineering discipline was the lack of a shared body of 
knowledge about architectures and techniques for developing 
good ones. Today the situation has improved dramatically, due in 

part to the publication of books on architectural design 
[7][12][23][43][57][60] and courses [37]. 

An important common theme in these is the use of standard 
architectural styles.2 An architectural style typically specifies a 
design vocabulary, constraints on how that vocabulary is used, 
and semantic assumptions about that vocabulary. For example, a 
pipe-and-filter style might specify vocabulary in which the 
processing components are data transformers (filters), and the 
interactions are via order-preserving streams (pipes). Constraints 
might include the prohibition of cycles. Semantic assumptions 
might include the fact that pipes are lossless and preserve the 
order of data written to them. 

Other common styles include blackboard architectures, client-
server architectures, repository-centered architectures, event-
based architectures, N-tiered architectures, and service-oriented 
architectures. Each style is appropriate for certain purposes, but 
not for others [55]. For example, a pipe-and-filter style would 
likely be appropriate for a signal processing application, but not 
for an application in which there is a significant requirement for 
concurrent access to shared data. Moreover, each style is typically 
comes with a set of analyses that can be performed on systems in 
that style. For example, it makes sense to analyze a pipe-and-filter 
system for end-to-end latency, whereas transaction rates would be 
a more appropriate analysis for a repository-oriented style. 

The identification and documentation of such styles (as well as 
their more domain-specific variants) enables others to adopt 
previous architectural structures as a starting point. In that respect, 
the architectural community has paralleled other communities in 
recognizing the value of established, well-documented design 
patterns, such as those found in [25]. 

Although styles are often a good starting point for architectural 
design, in practice they need to be complemented by techniques 
for improving specific quality attributes of a system. Examples 
include the use of redundancy to improve availability, caching to 
improve performance, and authentication to improve security. 
Such techniques are sometimes referred to as architectural tactics. 
Books on software architecture now survey many of these [7], and 
entire books have been written on tactics for specific quality 
attributes such as performance and security [53]. 

Additionally, the realities of software construction often force one 
to compose systems from components and frameworks that were 
not architected in a uniform fashion. For example, one might 
combine a database from one vendor, with middleware from 
another, and a user interface framework from a third.  In such 
cases the parts do not always work well together – in large 
measure because they make conflicting assumptions about the 
environments in which they were designed to work [29][30]. This 
has led to the need to identify architectural strategies for bridging 
mismatches.  Although, we are far from having well understood 
ways of systematically detecting and repairing such mismatch, a 
number of tactics have been developed to deal with this problem, 
and we are starting to see the introduction of automated mismatch 
repair tools. 

                                                                 
2 Some treatments of software architecture use the term “pattern” 

in place of “style”. For a discussion of this terminology, see 
[15] pages 32-36. 



4.2 Platforms and Product Lines 
As noted earlier, one of the important trends in software 
engineering has been exploitation of commonality across multiple 
products in order to reduce development costs for new systems 
through customization of a shared asset base [10][14]. Two 
specific manifestations of that trend are improvements in our 
ability to create product lines within an organization and the 
emergence of cross-vendor platforms. At the heart of such efforts 
is an architectural design that determines what parts of a system 
are shared, and how those parts can be extended to provide the 
capabilities needed for a specific system.  

Like architectural styles, the architectures underlying platforms 
and product lines take advantage of common architectural 
structures, but do so in a domain-specific way. By narrowing the 
domain over which they apply, they trade off generality for power 
– for example, in the form of opportunities for code reuse and the 
ability to perform specialized analyses. Figure 2 illustrates this 
point. 
 

 
Figure 2: Power vs. Specialization in Architecture Reuse 

At the far left are generic architectural styles, which are largely 
domain-independent. To the right are more-specific versions of 
these styles. They narrow the class of system to which they apply, 
but remain largely domain independent. For example, a pipe-filter 
style will likely apply to any system that is primarily 
transformational, but can be equally useful in domains such as 
signal processing, music synthesis, scientific workflow 
computation, or analysis of large volumes of data (using, map-
reduce, for example).  

Further to the right are generic component integration platforms, 
which vary in their domain-specificity, but typically provide a 
way for multiple vendors to extend a base system with new 
components. Platforms usually provide a set of common services 
and features, and prescribe requirements for application-specific 
components (e.g., functions, services, and applications) that are 
hosted on the platform. Requirements specify the services they 
must provide to the platform, as well as constraints on how they 
can access the shared services of the platform. Platforms are 
typically manifested as one or more reusable code libraries that 
must be incorporated into a system based on the platform.  

Example generic platforms include those that support Internet-
based services (such as any number of service-oriented 
architecture platforms), platforms for mobile devices (such as  
Android), and domain-specific platforms (such as the High Level 

Architecture (HLA) for Distributed Simulation [5] or the 
AUTOSAR architecture for automotive systems3).    

At the far right we find product lines, which are highly domain-
specific, applying specifically to a set of products within a 
particular company. Product lines provide huge economies of 
scale when used appropriately, and there are numerous success 
stories of their use.4 However, they also require up-front 
investment in creating a reusable asset base, as well as on-going 
organizational commitment to maintain, promote, and apply them 
to new product development [10][14][48]. 

Although good architectural design is at the heart of any 
successful platform or product line, perhaps ironically, their use 
can substantially reduce the architectural responsibilities of 
software developers, since many, if not most, of the architectural 
decisions have already been made by the platform or product line 
designers. For instance, many platforms provide a security model, 
that when used correctly obviates the need for additional security 
tactics.  

While the use of platforms and product lines reduces the 
architectural burden on developers, it may not entirely eliminate 
it. Indeed, critical quality attributes such as performance and 
reliability may depend heavily on how the platform services are 
used or the product line is instantiated. 

One open issue in product lines is whether or not it’s necessary to 
create a design for a product line architecture at all.  Paul 
Clements has argued that his experience at BigLever Software, 
Inc. (a company that helps organizations adopt automation-based 
product line engineering) has taught him that it is best to 
concentrate on the architectures for the individual products.5 If an 
overarching product line architecture is deemed useful, it can be 
seen as an emergent conceptual design that is the aggregation of 
the individual products’ (possibly quite different) architectures.  
That is, rather than investing in a large up-front effort to specify 
the common and variable parts of a single instantiable design, a 
company should use automation to turn out product instances by 
creating (and then exercising) variation points in the shared assets 
-- including those shared assets that represent the architecture.   In 
this way, architecture can be treated consistently with the range of 
other software development artifacts (requirements, design 
specifications, code, tests, user manuals, etc.).  In all cases, 
commonality and variability will then emerge (and be captured) 
over time as needed by the products. (Cf., the discussion about 
agile development in Section 4.4.). 

On the other hand, other experience suggests that there is 
considerable value in formalizing the product line or platform 
itself – or at least the parts of it that describe how it can be 
extended or specialized. For instance, consider Microsoft’s 
experience with tools that check device driver conformance to the 
API protocols required by their operating system [6]. Such tools 
have greatly reduced the errors that device driver providers made 
in providing extensions to the Windows platform. 

                                                                 
3 http://www.autosar.org/ 
4 For example, see the Software Product Line Hall of Fame, 

http://splc.net/fame.html.  
5 Paul’s blog can be found at the Big Lever Newsletters website: 

www.biglever.com/newsletters/Pauls_three_surprises_3.html 



4.3 Architecture Description 
A critical question for software architects is how to describe their 
architectural designs. Ideally those descriptions should convey 
their design intent clearly to others, allow critical evaluation, and 
require low overhead to create and maintain. 

Broadly speaking, today there are three general approaches. The 
first is informal description. Such descriptions typically use 
general-purpose graphical editing tools (PowerPoint, Visio, etc.) 
coupled with prose to explain the meaning of the drawings.  

Informal descriptions have the advantage of being easy to 
produce, and not requiring special expertise. But they have a host 
of disadvantages. The meaning of the design may not be clear 
since the graphical conventions will likely not have a well-defined 
semantics.  Informal descriptions cannot be formally analyzed for 
consistency, completeness, or correctness. Architectural 
constraints assumed in the initial design are not enforced as a 
system evolves. There are few tools to help architectural designers 
with their tasks. 

The second approach is semi-formal description. This approach 
uses generic modeling notations that may lack detailed semantics, 
but provide a standardized graphical vocabulary supported by 
commercial tools. The primary example of a semi-formal 
description language is UML.6 In 2005 the Object Management 
Group (which manages the UML standard) adopted UML 2.0, 
incorporating explicit constructs for architectural modeling, such 
as components, connectors, ports and hierarchical descriptions 
[9].   

A general-purpose modeling language, such as UML, has the 
advantages of using notations that practitioners are likely to be 
familiar with, that are supported by commercial tools, and that 
provide a link to object-oriented modeling and development. But 
such languages are limited by their lack of support for formal 
analysis and their lack of expressiveness for some architecturally 
relevant concepts. (For example, connectors are not first class 
entities in UML in the same way as components are [15].) 

The third approach is fully-formal description. In response to the 
problems with the other two approaches a number of researchers 
have proposed formal notations for representing and analyzing 
architectural designs. Generically referred to as "Architecture 
Description Languages'' (ADLs), these notations provide both a 
conceptual framework and a concrete syntax for formal modeling 
of software architectures [46].  They also typically provide tools 
for parsing, displaying, compiling, analyzing, or simulating 
architectural descriptions.   

In the 1990’s many ADLs were proposed, each with certain 
distinctive capabilities [46]. For instance Wright supports the 
formal specification and analysis of interactions between 
architectural components [3], xADL provides an extensible 
specification language for architectures based on XML [19], and 
Acme supports the formal definition of architectural styles [34]. 
To date those languages have largely failed to become established 
in industrial practice. However, they have had an impact on the 
revision to UML in 2005, and in several cases have formed the 
basis for standardized, formal ADLs used in specific domains. For 
                                                                 
6 Some of the diagram types in the UML family of modeling nota-

tions do have formal semantics, but the principle ones used for 
modeling architectural structure do not. 

instance, both AADL [24] and SysML7 are standardized 
languages for modeling and analyzing real-time, safety critical 
systems, such as avionics and automotive systems.  

It remains to be seen whether more-formal approaches to 
architectural description will gain in popularity over time. Today 
there is a strong interest across the field of software engineering in 
model-based engineering, reflecting the maturation of the field 
from ad hoc practices to formal engineering practices. 
Architectural models are an important class of engineering model 
that can potentially play a prominent role in that evolution [27]. 

Independent of the level of formality associated with architectural 
representations, there are a number of important cross-cutting 
principles that are now well understood. The most important of 
these is the idea that in order to describe system’s architecture, 
one must use multiple views or viewpoints, reflecting different 
perspectives on the architectural design problem. For example, it 
is helpful to distinguish between coding structures and run-time 
structures, since they represent different kinds of design 
commitments, and impact the emergent properties of a system in 
very different ways. The former is particularly useful for 
reasoning about maintainability and the cost of change, while the 
latter is useful for reasoning about properties such as 
performance, scalability, and reliability. Several systems of views 
have been proposed, including Kruchten’s 4+1 approach [40], the 
IEEE 1471-2000 Standard [38], and the “Views and Beyond” 
approach [15].  

However, while the utility of multiple views is well understood, 
the consequent problem of reconciling multiple views is not. 
Research is needed to provide ways to make sure that views are 
consistent in areas where their concerns overlap, and that changes 
to one view are appropriately propagated to other views. Some 
important challenges in this area include (a) understanding when a 
system of partial views provides a complete representation of all 
aspects relevant to the design; (b) providing formal criteria for 
view consistency, including both structure and semantics; and (c) 
using views to capture refinement relationships between abstract 
and concrete architectural designs. 

4.4 Agility and Architecture 
One important issue for software architecture is how best to 
integrate architectural practices into the broader software 
development processes. At the core of this issue are questions 
such as “how much architecture is enough?” and “when should 
architectural design be performed?” 

Considerable progress has been made in terms of establishing 
processes for architectural evaluation and documentation 
[15][16]. In particular, architectural reviews are now 
commonplace in many organizations, where the benefits have 
been well documented [45]. Additionally, studies have been done 
to quantify the amount of architectural design that is appropriate 
for various sizes and classes of systems [8]. 

One of the interesting debates over the past few years has been the 
role of architecture in agile processes. It may seem at first glance 
that architecture would have no place in a rapidly evolving 
system, where an organization’s development practices 
deemphasize the creation of artifacts that do not manifest 

                                                                 
7 http://www.sysml.org/ 



themselves directly as user-visible functionality.8 But further 
reflection suggests that architecture is, in fact, an enabler of 
agility, not an impediment to it. We can see this in the emergence 
of extensible platforms (mentioned earlier), which can be rapidly 
customized with new plug-ins and applications.  

Many in the agile community would argue that architecture is 
important, but that it will emerge naturally as a system evolves 
through extension and refactoring.9 This idea that architecture will 
emerge spontaneously is reinforced by the fact that most software 
development efforts today do not require a significant amount of 
bold new architectural design: the most important design deci-
sions have been made earlier, are fixed by pre-existing conditions, 
or are a de facto architectural standard in the respective industry 
(cf., Section 4.2). Choices of operating system, servers, program-
ming language, database, middleware, and so on, are pre-
determined in the vast majority of software development projects, 
or have a very narrow range of possible variations. 

Architectural design, when it is really needed because of project 
novelty, has an uneasy relationship with traditional agile practic-
es. Unlike the functionality of the system, it cannot easily be de-
composed into small, incremental chunks of work, user stories or 
“technical stories”. The difficult aspects of architectural design are 
driven by systemic quality attributes (security, high availability, 
fault tolerance, interoperability, scalability, etc.), or are develop-
ment-related (testability, certification, and maintainability). In 
general, these cannot be easily decomposed, and tests to deter-
mine their satisfaction are difficult to produce up-front. Moreover, 
key architectural choices usually cannot be easily retrofitted on an 
existing system by means of simple refactorings. Late decisions 
may require the replacement of large bodies of the code, and 
therefore many of the important architectural decisions have to be 
made early (although not necessarily all at once, up front). 

A number of people have grappled with this tension, including 
Cockburn’s “walking skeleton”,10 the Scaled Agile Framework of 
Leffingwell et al.,11 and Fairbank’s “risk-driven” approach [23]. 
A common theme is that architectural design and the incremental 
building of a system (i.e., its user-visible functionality) must go 
hand-in-hand. The important questions to answer are:  How do we 
pace ourselves? How do we address architectural issues and make 
decisions, over time, in a way that will lead to a flexible architec-
ture, and enable developers to proceed? In which order do we pick 
the quality attribute aspects and address them? 

One of the ways to understand these questions is in terms of tech-
nical debt [18].  At any time, a software development team is 
faced with a choice of what to focus on in the next release cycle, 
iteration, or sprint. In the “backlog” of things not yet done, there 
are four kinds of elements, illustrated in Figure 3 (adapted from 
[41]).  

                                                                 
8 Literature in the agile community is full of mantras such as, 

YAGNI (You Ain’t Gonna Need It), No BUFD (No Big Up-
Front Design), and “Defer decision to the last responsible mo-
ment” 

9 For example, Principle #11 in the “agile manifesto” says “The 
best architectures, requirements, and designs emerge from self-
organizing teams” [2]. 

10 http://alistair.cockburn.us/Walking+skeleton 
11 http://scaledagileframework.com/ 

Items that have visible value: 
- Category I (the green stuff): new features (services, func-

tionalities, capabilities) to be added to the system, as well as 
visible improvements in quality attributes (capacity, response 
time, interoperability). 

- Category II (the red stuff): customer-visible defects, limiting 
usefulness or negatively impacting perceptions of the prod-
uct. 

 
Figure 3: Four Types of Backlog Elements 

Both categories impose a development cost to address and 
tradeoffs are involved in determining how to prioritize them: how 
much defect fixing relative to new features can we afford to do? 

But there are also items that are invisible to the outside world:  
- Category III (the yellow stuff): architectural elements, infra-

structure, frameworks, deployment tools, etc. Known to the 
internal development team, and architects, they are often de-
ferred in favor of addressing the visible elements. Their cost 
is often “lumpy”: they are hard to break down into small in-
crements. We know that they add value, in the long term, by 
increasing future productivity, and often improving key qual-
ity attributes. But this value is hard to quantify.  

- Category IV (the grey stuff): elements that have both a nega-
tive value, and are invisible – technical debt. These are the 
result of earlier architectural and implementation decisions 
that may have seemed wise at the time, but which in the cur-
rent context are suboptimal and hurt the project – usually 
through reduced productivity or impact on the evolution of 
the system. Category IV elements are known by the devel-
opment team, but rarely expressed at the level of key deci-
sion makers, who determine the future release roadmap. 
Shortcuts, or failure to develop the yellow stuff of Category 
III, increases the amount of grey stuff in Category IV, further 
inhibiting progress. 

A compounding factor is that the categories have dependencies 
between them – especially, dependencies of the visible (I and II) 
and the invisible (III and IV) categories.  Making tradeoffs be-
tween the various categories now becomes more complicated, and 
requires diverse expertise, not just consideration of market value. 
Time plays a crucial role, too: the value of delivering a new fea-
ture is immediate, while the value of developing a good architec-
ture may be reaped only over a long period of time. 



While the challenge of determining the value and timing of archi-
tectural investments remains an open one, economic concepts 
such as Net Present Value, the Incremental Funding Method, and 
Real Options, combined with dependency analysis, may help de-
cision making choices for short- or long-term development plan-
ning [21][59]. 

5. CHALLENGES AHEAD 
What about the future? Although software architecture is on a 
much more solid footing than two decades ago, it is not yet fully 
established as a discipline that is taught and practiced across the 
software industry.  One reason for this is simply that it takes time 
for new approaches and perceptions to propagate. Another reason 
is that the technological basis for architecture design (as outlined 
earlier) is still maturing. In both of these areas we can expect that 
a natural evolution of the field will lead to steady advances. 

However, the world of software development, and the context in 
which software is being used, is changing in significant ways. 
These changes promise to have a major impact on how 
architecture is practiced. In this section I consider some the 
important trends and their implications for the field of software 
architecture. 

5.1 Network-Centric Computing 
Over the past decade the primary computational model for 
systems has shifted from localized computation to a network-
centric model.  Increasingly personal computers and a wide 
variety of other devices (handheld devices, laptops, phones) are 
used primarily as a user interface that provides access to remote 
data and computation, rather than as the primary locus of 
computation.  This trend is not surprising since a network-centric 
model offers the potential for significant advantages. It provides a 
much broader base of services than is available on local devices. It 
permits access to a rich set of computing and information retrieval 
services that can be used almost anywhere (in the office, home, 
car, and factory), providing ubiquitous access to information and 
services. 

This trend has a number of consequences for software 
engineering, in general, and software architecture, in particular.  
Historically, software systems have been created as closed 
systems, developed and operated under control of individual 
institutions. The constituent components may have been acquired 
from external sources, but when incorporated in a system they 
came under control of the system designer. Architectures for such 
systems are largely static – allowing minimal run-time 
restructuring and variability. 

However, within the world of pervasive services and applications 
available over networks, systems may not have such centralized 
control.  The Internet is an example of such an open system: it is 
minimally standardized, chiefly at the level of the protocols, 
addresses, and representations that allow individual sites to 
interact. It admits of considerable variation both in the hardware 
that lies below these standards and the applications that lie above. 
There is no central authority for control or validation. Individual 
sites are independently administered.  Individual developers can 
provide, modify, and remove resources at will. 

For such systems a new set of software architecture challenges 
emerges [54]. First, is the need for architectures that scale up to 
the size and variability of the Internet. While many of the 

traditional architectural paradigms will likely apply, the details of 
their implementation and specification will need to change.  

For example, one attractive form of composition is implicit 
invocation – sometimes termed ''publish-subscribe.'' Within this 
architectural style components are largely autonomous, interacting 
with other components by broadcasting messages that may be 
"listened to" by other components. Most systems that use this 
style, however, make many assumptions about properties of its 
use. For example, one typically assumes that event delivery is 
reliable, that centralized routing of messages will be sufficient, 
and that it makes sense to define a common vocabulary of events 
that are understood by all of the components. In an Internet-based 
setting all of these assumptions are questionable. 

Second, is the need to support computing with dynamically-
formed, task-specific, coalitions of distributed autonomous 
resources.  The Internet hosts a wide variety of resources: primary 
information, communication mechanisms, applications and 
services, control that coordinates the use of resources, and 
services such as secondary (processed) information, simulation, 
editorial selection, or evaluation.  These resources are indepen-
dently developed and independently supported; they may even be 
transient. They can be composed to carry out specific tasks set by 
a user; in many cases the resources need not be specifically aware 
of the way they are being used, or even whether they are being 
used.  Such coalitions lack direct control over the incorporated 
resources. Selection and composition of resources is likely to be 
done afresh for each task, as resources appear, change, and 
disappear.  Unfortunately, it is hard to automate the selection and 
composition activity because of poor information about the 
character of services and hence with establishing correctness. 

Composition of components in this setting is difficult because it is 
hard to determine what assumptions each component makes about 
its operating context, let alone whether a set of components will 
interoperate well (or at all) and whether their combined 
functionality is what you need. Moreover, many useful resources 
exist but cannot be smoothly integrated because they make 
incompatible assumptions about component interaction. For 
example, it is hard to integrate a component packaged to interact 
via remote procedure calls with a component packaged to interact 
via shared data in a proprietary representation.  

One emerging solution to this problem is the creation of 
ecosystems based on a common architectural style or platform, 
augmented with a rich library of components that can be 
composed in well-understood ways within a given domain of 
computation. (Cf. also Section 4.2.) As an example, consider 
Yahoo! Pipes, a component composition platform that allows one 
to compose and execute data steam processing applications 
through a web browser using a large number of transformations 
available from an on-line library.12  (More on this topic in Section 
5.4.) 

Third, there is a need to architect systems that can take advantage 
of the rich computing base enabled by network-centric computing. 
Today cloud computing platforms provide almost unlimited 
access to storage and computation, but exploiting these requires 
architectures that can scale to large volumes of data and a huge 
array of available services. 

                                                                 
12 http://pipes.yahoo.com/pipes/ 



Fourth, there is a need to ensure adequate security and privacy. As 
systems migrate away from the direct control of individual 
organizations, architects must find ways to ensure confidentiality, 
availability, and integrity of their data. In many cases, this will 
involve a judicious combination of both private and public 
infrastructure, together with architectures that can bridge that 
divide. 

5.2 Pervasive Computing and Cyber-physical 
Systems  
A second related trend is toward pervasive computing, in which 
the computing universe is populated by a rich variety of software-
enhanced devices: toasters, home heating systems, entertainment 
systems, smart cars, etc. This trend is leading to an explosion in 
the number of devices in our local environments – from dozens of 
devices to hundreds or thousands of devices.  In some circles this 
is referred to as the “Internet of Things”. 

There are a number of consequent challenges for software 
architecture.  First, we will need architecture design tools that are 
suited to systems that combine both physical and software 
elements – cyber-physical systems. Such systems cannot be 
understood without considering both the properties of their 
physical elements (power requirements, mechanics, control 
interfaces, etc.) and their software elements (data stores, 
communication protocols, security features, etc.). Today design 
notations and tools tend to favor one or the other; what is needed 
are unifying approaches that permit designers to focus on different 
facets of a system, but provide guarantees of consistency and 
completeness for the overall system.  

Second, architectures for these systems will have to be more 
flexible than they are today. In particular, devices, components, 
services and other computational elements are likely to come and 
go in an unpredictable fashion.  Handling reconfiguration 
dynamically, while guaranteeing uninterrupted service, is a hard 
problem. (See also Section 5.3.) 

Third, there is a need for architectures that effectively bridge the 
gap between technology and technologically-naïve users.  
Currently, our computing environments are configured manually 
and managed explicitly by the user. While this may be appropriate 
for environments in which we have only a few, relatively static, 
computing devices (such as a couple of PCs and laptops), it does 
not scale to environments with hundreds of devices. We must 
therefore find architectures that provide much more automated 
control over the management of computational services.  

Such architectures will need to raise the level of abstraction for 
configuring pervasive systems, allowing users to focus on their 
high-level tasks (e.g., being entertained, ensuring the security of 
their home, managing the energy usage of their appliances) [36]. 
For example, how many of us have been frustrated trying to figure 
out how to configure an entertainment system, with multiple 
remote devices and their myriad buttons? Note that in general it is 
not merely a matter of making individual devices “smarter”. It will 
require new architectures that span multiple devices, and are able 
not only to simply their use, but proactively adapt themselves to 
user’s needs. 

5.3 Fluid Architectures 
In the past, software systems were largely static: changes to 
system functionality happened rarely, and usually required 

significant manual oversight and installation. Today systems are 
much more dynamic: new applications are downloaded onto 
mobile platforms; new devices are installed in homes; mobile 
devices enter and leave our computing environment; new web 
services become available through web applications; system 
upgrades are required to address discovered security 
vulnerabilities, etc. 

Such fluidity raises a number of architectural challenges. The first 
is architecting for ease of change and adaptation. For many 
systems, this requires the ability to dynamically discover and 
compose available services and resources. For other systems it 
requires well-defined interfaces that support rapid customization, 
extension and upgrade. In addition, the architect needs to be sure 
that such changes do not interfere with on-going services that 
must continue to function. It would be unfortunate, indeed, if 
when downloading a new app to your phone, no one could contact 
you, or if an on-line e-commerce site were to become unavailable 
to customers when system upgrades were propagated. 

Second is the problem of describing and reasoning about the 
architecture. Since the actual run-time configuration is largely 
unknown at design time, how can one specify the architecture? 
Clearly, what is needed is a way to characterize the set of all 
possible systems. But architectural modeling notations (in any of 
the categories mentioned in Section 4.3) often have difficulty at 
characterizing such families. Moreover, the combinatorial 
explosion of possible future system configurations makes formal 
analysis difficult. Partial solutions to this problem may emerge 
from the application of product line variability representation and 
analysis [48]. 

Despite these challenges the existence of fluid architectures opens 
up a set of new opportunities. Chief among these are the ability to 
create systems that can take a stronger role in ensuring their own 
health and quality. Such systems are sometimes referred to as self-
adaptive systems or autonomic systems [39], and are the subject 
of considerable research in their own right [13][20]. 

While there are many approaches to self-adaptation, one 
prominent technique is to adopt a control systems view of the 
problem. In this approach each system is coupled with a control 
layer that is responsible for monitoring the state of that system, 
detecting opportunities for improvement, and effecting change as 
it runs. Central to such an approach (as with any control systems 
approach) is the use of system models in the control layer. These 
models reflect the current state of the system, and are used to 
detect problems and decide on courses of action. It turns out that 
architectural models are particularly useful in this regard [35]. As 
such, architectural models now become useful not only as design-
time artifacts, but as run-time artifacts as well. 

5.4 Socio-technical Ecosystems 
The emergence of platforms as a central basis for modern system 
development has brought with it a new set of challenges for 
software architecture. Beyond the technical issues of platform 
design itself (noted earlier), architects must now also consider the 
socio-technical ecosystems that arise around the platform and are 
necessary to ensure its sustainability. Such ecosystems include not 
only the platform developers, but also the much larger community 
of developers who provide platform extensions (apps, services, 
etc.), users who must purchase and install those extensions, 
governance rules and processes to qualify potential extensions, 



incentive systems to motivate developers of extensions, legal and 
economic systems, and so on [11].  

Table 1: Some End-User Architecting Domains 

Domain Type of compositions Tools 

Astronomy electromagnetic image 
processing tasks 

Astrogrid 

Bioinformatics biological data-analysis 
services 

Taverna 

Digital music 
production 

audio sequencing & 
editing 

Steinberg 
VST 

Environmental 
Science 

spatio-temporal experi-
ments 

Kepler  

Film production scripting animation-
effects and components 

Maya/Adobe 
after-effects 

Gaming scriptable and composa-
ble 3D engines 

Mavenlink 

Geospatial 
Analysis 

interactive visualization 
of geographical data 

Ozone widget 
framework 

Home Automa-
tion 

home devices &  services Control4 
Composer 

Neuroscience brain-image processing  Loni Pipeline 
Scientific com-
puting 

transformational work-
flows 

WINGS 

Socio-technical 
Analysis 

network creation, analy-
sis & simulation 

SORASCS 

Virtual Tools scientific experiment 
pipelines 

Labview 

Today we have only a very weak understanding of the 
interrelationship between all of these moving parts, and the way in 
which architectural design facilitates a sustainable ecosystem. 
Consider, for example, the architectural issue of the kinds of 
interaction the platform will support between components 
provided by third parties.  Limited interaction can provide 
stronger guarantees, but may reduce flexibility, and will affect the 
extent to which a component developer can depend on 
components built by others. Different choices will have a strong 
impact on the nature of the ecosystem and potentially its long-
term viability, as illustrated by the difference between the iOS and 
Android ecosystems. 
One important emerging class of ecosystems allows end users to 
do their own system composition to create innovative 
computational systems. Such users typically have minimal 
technical expertise, and yet still want strong guarantees that the 
parts will work together in the ways they expect, and to 
understand the properties of their compositions (How fast will 
they run? Will they guarantee data privacy?). In essence, this 
requires support for “end-user architecting” [33]. Some examples 
of domains and their respective end-user architecting tools are 
listed in Table 1. Unfortunately, such tools are often difficult to 
use, and may require considerable low-level knowledge of 
invocation conventions, parameter settings, and data formats. An 
open research problem is finding ways to provide improved 
architecting environments and task-oriented interfaces for such 
users. 

6. CONCLUSION 
The field of software architecture is one that has experienced 
considerable growth over the past two and a half decades, and it 

promises to continue that growth for the foreseeable future. 
Although architectural design has matured into an engineering 
discipline that is broadly recognized and practiced, there are a 
number of significant challenges that will need to be addressed. 
Many of the solutions to these challenges are likely to arise as a 
natural consequence of dissemination and maturation of the 
architectural practices and technologies that we know about today. 
Other challenges arise because of the shifting landscape of 
computing and the roles that software systems play in our world: 
these will require significant new innovations. In this paper we 
have attempted to provide a high-level overview of this terrain—
illustrating where we have come over the past few years, and 
speculating about where we need to go to meet the demands of the 
future. 

Reflecting on the differences between now and the state of the 
world characterized in the 2000 article [28], we can see that many 
of the challenges noted there are still with us, but with some 
changes. The challenge of exploiting reuse has matured 
substantially since 2000 with broad-based use of platforms, 
frameworks and product lines. The architectural challenges of 
pervasive computing, noted in 2000, remain, but have broadened 
to include, more generally, cyber-physical systems, which affect 
most of the things we depend on (phones, cars, energy, houses, 
etc.). Beyond the simple pervasiveness of software, its emerging 
role as an enhancement to our physical environment suggests the 
need for a significant broadening of the architectural discipline. 
The area of network centric computing has blossomed via the 
Internet, and now requires that we understand how the 
architectures of the past can be adapted to the connected, 
distributed, data-rich world of the future. Finally, in this article we 
noted the importance of ecosystems and their symbiotic 
relationship with architecture. 
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