
Software Architecture as a Set of Architectural Design Decisions

Anton Jansen
Department of Computing Science

University of Groningen
PO BOX 800, 9700 AV, The Netherlands

anton@cs.rug.nl

Jan Bosch
Software & Application Technologies Lab

Nokia Research Center
PO BOX 407, FI-00045, Finland

jan.bosch@nokia.com

Abstract

Software architectures have high costs for change, are
complex, and erode during evolution. We believe these
problems are partially due to knowledge vaporization. Cur-
rently, almost all the knowledge and information about the
design decisions the architecture is based on are implicitly
embedded in the architecture, but lack a first-class repre-
sentation. Consequently, knowledge about these design de-
cisions disappears into the architecture, which leads to the
aforementioned problems. In this paper, a new perspective
on software architecture is presented, which views software
architecture as a composition of a set of explicit design de-
cisions. This perspective makes architectural design deci-
sions an explicit part of a software architecture. Conse-
quently, knowledge vaporization is reduced, thereby allevi-
ating some of the fundamental problems of software archi-
tecture.

1 Introduction

Software architecture [17] has become a generally ac-
cepted concept in research and industry. The importance of
stressing the components and their connectors of a software
system is generally recognized and has led to better control
over the design, development, and evolution of large and
increasingly dynamic software systems [4].

Although the achievements of software architecture are
formidable, still some problems remain. The complexity,
high costs of change, and design erosion are some of the
fundamental problems of software architecture. We believe
these problems are partially due to knowledge vaporization.
Currently, almost all the knowledge and information regard-
ing the design decisions on which the architecture is based
on (e.g. results of domain analysis, architectural styles used,
trade-offs made etc.) are implicitly embedded in the archi-
tecture, but lack a first class representation.

The current perspective on software architecture lacks

this notion of architectural design decisions, although ar-
chitectural design decisions play a crucial role in software
architecture, e.g. during design, development, evolution,
reuse and integration of software architectures. In design,
the main concern is which design decision to make. In de-
velopment, it is important to know which and why certain
design decisions have been taken. Architecture evolution
is about making new design decisions or removing obso-
lete ones to satisfy changing requirements. The challenge
is to do this in harmony with the existing design decisions.
Reuse of software architecture is the use of earlier tried and
tested combinations of design decisions (e.g. design pat-
terns or components). In the integration of systems, the
main concern is the unification of the design decisions and
their assumptions.

To address this, we propose a new perspective on soft-
ware architecture: we define software architecture as the
composition of a set of architectural design decisions. This
reduces the knowledge vaporization of design decision in-
formation, since design decisions have become an explicit
part of the architecture.

The contribution of this paper threefold. First, the prob-
lems with the current perspective on software architecture
are presented. Second, it develops the notion of software
architecture as the composition of a set of explicit architec-
tural design decisions. Third, various views are presented
for visualizing this new architecture perspective.

The remainder of this paper is organized as follows. The
concept of architectural design decisions is presented in sec-
tion 2. In section 3, the problems of software architecture
with respect to architectural design decisions are explained
in more depth. The next section introduces Archium, our
approach to describe software architecture as a set of ar-
chitectural design decisions. The approach is applied to a
case and illustrated with various views on design decisions
in section 6. After this, related work is discussed. The paper
concludes with future work and conclusions in section 8.

1



2 Architectural design decisions

Although the term “architectural design decision” is of-
ten used [7, 10, 4], a precise definition is hard to find. There-
fore, we define an architectural design decision as:

A description of the set of architectural additions, subtrac-
tions and modifications to the software architecture, the ra-
tionale, and the design rules, design constraints and addi-
tional requirements that (partially) realize one or more re-
quirements on a given architecture.

With the definition of architectural design decisions using
the following elements:

Rationale The reasons behind an architectural design deci-
sion are the rationale of an architectural design decision.It
describeswhya change is made to the software architecture.
Design rules anddesign constraintsare prescriptions for
further design decisions. Rules are mandatory guidelines,
whereas constraints limit the design to remain sound.
Design constraints Design constraints describe the oppo-
site side of design rules. They describe what is not allowed
in the future of the design, i.e. they prohibit certain behav-
iors.
Additional requirements A design decision may result in
additional requirements to be satisfied by the architecture.
These new requirements need to be addressed by additional
design decisions.

An architectural design decision is therefore the outcome
of a design process during the initial construction or the
evolution of a software system. Architectural design deci-
sions, among others, may be concerned with the application
domain of the system, the architectural styles and patterns
used in the system, COTS components and other infrastruc-
ture selections as well as other aspects needed to satisfy the
system requirements.

We propose to view a software architecture as a set of
explicit architectural design decisions. In this perspective,
the software architecture is theresult of the architectural
design decisions made over time.

3 Problems of software architecture

The current perspective on software architecture lacks a
clear view on why the architecture looks as it does [6, 14].
In the current notion of a software architecture, the results
of the design decisions underlying the architecture are im-
plicitly embedded within the architecture. Consequently,
knowledge about the design decisions underlying the archi-
tecture is lost [20]. This vaporization of design decision
information leads to a number of problems associated with
software architecture:

• Design decisions are cross cutting and intertwined:
Design decisions are often intertwined with each
other, as they work in close relationship together.
Furthermore, they typically affect multiple parts of the
design simultaneously. This leads to the situation that
the design decision information is fragmented across
various parts of the design, making it hard to find and
change the decisions. Both effects increase the overall
complexity of the software architecture, as numerous
seemingly unrelated relationships (e.g. dependencies)
between architectural entities are introduced.

• Design rules and constraints are violated:During
the evolution of the system, designers can easily violate
design rules and constraints arising from previously
taken design decisions. Violations of these rules
and constraints lead to architectural drift [17] and its
associated problems (e.g. increased maintenance costs).
As design rules and constraints influence future design
decisions, they have a steering influence on the future
direction of the architecture.

• Obsolete design decisions are not removed:When
obsolete design decisions are not removed, the system
has the tendency to erode more rapidly. In the current
design practice removing design decisions is avoided,
because of the effort needed, and the unexpected effects
this removing can have on the system.

As a result of these problems, the developed systems have
a high cost of change, and they tend to erode quickly. Also,
the reusability of the architectural artifacts is limited if de-
sign decision knowledge vaporizes into the design. These
problems are caused by the focus in the software archi-
tecture design process on the resulting artifacts, insteadof
the decisions that lead to them. Although the effects of
the made decisions are present in the design, the decisions
themselves are not visible. Clearly, design decisions cur-
rently lack a representation in software architecture designs.

Defining software architecture as a set of architectural
design decisions is a step forward in solving the aforemen-
tioned problems. This would also help the architect with:

• Guarding the conceptual integrity of the software ar-
chitecture. The design decisions describe the rules and
constraints, which should be obeyed. In current prac-
tice, software engineers and architects often break un-
awarely the conceptual integrity of the architecture. Ex-
plicit design decisions help in creating the necessary
awareness and reference points for these constraints and
rules.

• Explicit design space explorationhelps the architect
in preventing from making obvious mistakes. It forces
the architect to self reflect upon the software architec-
ture. Furthermore, it enables communication of the ex-
plored design space with others.



• Analysis of both the software architecture and the de-
sign process. For example, in evolution the architect
wants to play “what if” scenario’s of considered design
decisions in the context of existing ones.

• Improved traceability of the design decisions and
their relationship to features, design aspects, concerns,
and among themselves. This helps the architect with
obtaining a better understanding of the software archi-
tecture.

However, the following requirements need to be satisfied to
realize this:
First class architectural design decisionsare required to
describe a software architecture as a set of design decisions.
Furthermore, first class design decisions can be communi-
cated, related and reasoned about. This provides informa-
tion about the architecture, which is currently often missed.

Explicit architectural changes form the bridge between
the first class architectural entities and the architectural de-
sign decisions. This is needed to have a well-defined rela-
tionship between the proposed solutions of an architectural
decision and the involved architectural entities.
Support for modification, subtraction, and addition
changes are required to have sufficient expressiveness. The
characteristic types of change often distinguished are the
corrective, perfective, and adaptive types. However, the
focus of this classification is on the reasons behind the
change, not on the effect of the changes.
Clear, bilateral relationship between architecture and
realization Viewing a software architecture as a set of de-
sign decisions, makes evolution an inherent part of the de-
scription of an architecture. Changes in the architecture
will have an effect on the realization of the system and vice
versa. It is therefore important to have a bilateral relation-
ship between the software architecture and the realization.

First class architectural conceptsAs software architec-
ture deals with abstractions, it is important to define these
abstractions in a first class way. Abstraction choices are
very subjective and greatly influences the resulting architec-
ture. Expressing these abstractions in a consistent and uni-
form way is therefore essential for software architectures.

4 Archium

The aforementioned problems of section 3 clearly show
that the notion of an architectural design decision is an im-
portant one. Currently, no models for representing architec-
tural design decisions exist [11]. Some general design deci-
sion models [18] do facilitate the description of abstract el-
ements of an architectural design decision model, but these
approaches fail to satisfy most of our requirements [11].

Architectural design decision


Problem


Motivation


Cause


Decision

Architectural

Modification


Solutions


Context


Requirements


Architectural


design


decisions


Solution 1


Solution X


Solve


Selects
 Results in


Motivates


Cause


Modifies


In context


Trade-off


Makes


Figure 1. Model for architectural design deci-
sions

This is mainly due to the ill-defined relationship between
these design decision models and software architectures.
Therefore, we have developed an approach called Archium,
which tries to define this relationship. Archium maintains
this relationship during the complete life-cycle of the sys-
tem. In this paper the focus is on the software architecture
aspects of Archium. The approach is based on a concep-
tual architectural design decision model, which describes
the elements of architectural design decisions and their rela-
tionships in greater detail than the abstract design decision
models. In the remainder of this section, this conceptual
model is presented.

4.1 Architectural design decision model

Figure 1 presents our conceptual model for architectural
design decisions. At the heart of the model is theProblem
element, which together with theMotivationandCauseele-
ments describes the problem, aMotivationwhy the problem
is a problem, and theCauses of this problem. TheProblem
is the goal the architectural design decision wants to solve.
The solutions element contains theSolutions that have been
proposed to solve the problem at hand. ADecisionis made,
which solution should be used, resulting in anArchitectural
modificationchanging theContext.

To solve the describedProblem, one or more potential
Solutionscan be thought up and proposed. For each of
the proposed solutions, we define the following elements
(which are not shown in the figure 1) :

• Description The description element described the so-
lution being proposed. The needed modifications are



explained and rationale for these modifications is pro-
vided.

• Design rules A potential solution can have one or more
design rules. Design rules define partial specifications
to which the realization of one or more architectural en-
tities has to conform. This allows a solution to define
parts of how it should be realized in order to have a so-
lution that solves the problem.

• Design constraints Besides design rules, a solution
can have design constraints. Design constraints define
limitations or constraints on the further design of one or
more architectural entities. These limitations and con-
straints have to be obeyed for the potential solution to
solve the problem at hand.

• ConsequencesThe consequences element is a descrip-
tion of the expected consequences of the solution on the
architecture. The element should provide additional ra-
tionale behind the pros and cons of the solution.

• Pros This model element describes the expected ben-
efit(s) from this solution to the overall design and the
impact on the requirements.

• Cons Solutions can also have a downside. The ex-
pected negative impact on the overall design is as im-
portant as the positive side.

Translating the conceptual model into concrete model(s)
is a big challenge. Our earlier investigation [11] revealed
a gap between design decisions and software architecture
models. Therefore, the rest of this paper focuses on the in-
teraction between architectural design decisions and soft-
ware architecture. Specifically, we discuss how thede-
cision, solution, architectural modification, software ar-
chitecture, and architectural design decisionsconceptual
model elements are modeled and formalized to describe a
software architecture as a set of design decisions.

5 Archium meta-model

In Archium, the functionality of the architectural modifi-
cation is expressed as achangein functionality. New func-
tionality is regarded as the change of nothing to something.
In this perspective, Archium is fundamentally different than
most other design methods, as it does not promote design
for or with change, but rather designingusingchange.

A software architecture in Archium is described as a set
of changes, which together form the software architecture.
To be more precise, in Archium aso f tware archictecture=
dd1 + dd2 + ...+ ddn, whereddx is a design decision. The
exact elements required to achieve this are described in the
rest of this section.

The Archium approach is based on a meta-model, which
describes the central concepts of our approach and their re-
lationships. Figure 2 presents this meta-model. The model

Composition Model

Architectural Model Design decision model

Design 

Fragment

Design DecisionDelta

Port

Interface

incorporates

Connector

Abstract

Connector

Composition

Configuration

composes

based on

connects

Component

Entity

Composition 

Technique

composes

Design 
Fragment 

Composition

composes

Figure 2. Meta-model of a software architec-
ture with first class design decisions

consists of three sub-models: an architectural model, a de-
sign decision model, and a composition model. The ar-
chitectural model defines software architecture concepts,
which are similar to the concepts used in existing archi-
tecture models [16]. The design decision model contains
design decisions as a first class concept. The composition
model introduces the model elements needed to unite the
two previous sub-models. Each sub-model is explained in
more detail in the remaining part of this section.

A (trivial) running example of a subsystem of a measure-
ment system exemplifies the different concepts. The mea-
surement system acquires certain properties of a physical
item that enters the system for measurement. The architec-
ture of this system is visualized in the top of figure 4.

5.1 Architectural Model

The architectural model of Archium meta-model uses
concepts of the Component & Connector view [7]. The re-
lationships of these concepts is visualized in figure 2. Fol-
lowing is a more in-depth description of these concepts and
their relationships:

Component Entity is an abstraction of a component. A
component entity describes the decomposition aspect of a
component. The functionality of a component entity is not
defined in the component entity itself, but in the deltas re-
lated to the component entity. A component in Archium is
a specificinstanceof a component entity with known func-
tionality, i.e. the deltas incorporated in the component entity
instance are known.

For example, in the measurement system (see top of figure
4) a decomposition has been made in two parts, which are
made up of theMeasurement Itemand theSensorcompo-
nent entities. TheMeasurement Itemcomponent entity rep-
resents the object to be measured and theSensormeasures
some properties of the measured object.



Delta is the first-class representation of a change to the
behavior of a component entity, which is provided by the
deltas already incorporated in the component entity. A com-
ponent entity incorporating a delta includes the modifica-
tion of the delta to its behavior. The merging of the behav-
ior of different deltas is performed using the elements of the
composition model (see section 5.3).

In the example, the functionality of theMeasurement Item
andSensorcomponents are defined in theSensorDeltaand
MIDelta deltas. TheSensorDeltacontains the functionality
to measure an item and theMIDelta has the functionality to
store these measurements. These changes are not visible in
figure 4, as they are being incorporated into the components.
Interface A definition of a collection of method signatures,
representing a specific named semantic.
Port An external visible interface required or provided by
a delta or connector. A port represents the provided or re-
quired “service” of a delta or connector. Deltas and connec-
tors are only allowed to communicate with others through
their defined ports. Ports of a delta and connector can be
connected together, to form a connection, thereby creating
a specific configuration of deltas and connectors.

In the measurement system (see figure 4), two ports are de-
fined: a provided port for theSensorand a required port
for theMeasurement Item. Both ports are not defined in the
component entities, but are part of the deltas incorporated
in the components.
Connector defines the “glue” between one or more deltas,
i.e. a connector is a first class representation of the interac-
tion or communication between these deltas. The ports of a
connector can be bound to the provided and required ports
of deltas, thereby forming the “glue” between them. A con-
nector therefore defines the specific functionality used for
the communication between connected ports.

In the example, the communication between theSensorand
theMeasurement Itemis defined in the connectorCMISen-
sor.
Abstract Connector is an abstraction from a Connector,
as it does not have an interface associated with it. It defines
the communication type (i.e. synchronous, asynchronous)
between two or more deltas. In addition, it defines a set of
connectors that actually communicate between these deltas.

The abstract connector used in our example defines that the
SensorDeltaand MIDelta communicate using method in-
vocation with each other. In addition, the abstract connec-
tor contains the connectorCMISensorconnecting the two
deltas.

5.2 Design Decision Model

In this subsection, the design decision model part of
Archium is presented. The relationship between architec-

RealizationRealizationRealization

Tradeoff

Chooses

Observable History UI

Realization

Observable Logger

Key

Component

Delta

Rationale

Connector

Provided
port

Required

port

Figure 3. Example of a design decision

tural design decisions and the architectural concepts is de-
fined using the concept of a design fragment. Following is
a more in-depth description of both concepts:

Design Fragment is an architectural fragment defining a
collection of architectural entities. An architectural entity
can be part of multiple design fragments. A design fragment
is a boundary-less container for maintaining trace-ability.
The primary use is to define the scope of a solution of a de-
sign decision. For example, a design fragment can contain
deltas and their configuration of (abstract) connectors, com-
ponent entities incorporating certain deltas, and other de-
sign fragments, which describe a particular solution. A de-
sign fragment is therefore a (partial) description of the sys-
tem, which can include explicit change (modeled as deltas)
and structure, i.e. component entities and (abstract) connec-
tors.

In Archium, the concept of a software architecture and a de-
sign pattern are specializations of the design fragment con-
cept. The first class concept of a design fragment makes
these two concepts elements in the Archium model. A soft-
ware architecture is a design fragment describing the system
as a whole. This description consists of the component enti-
ties and (abstract) connectors and their configuration, which
is a specialized subset of the architectural entities a design
fragment can contain.

For example, the architecture of the measurement system
itself is a design fragment. Figure 4 visualizes this, with
the architectural entities (Measurement Item, CMISensor,



Sensor) being enclosed within theSensorFragment.

Design patterns [9] are often seen as predefined design deci-
sions, which is not completely true. They define predefined
parts of design solutions, which can be reused. However,
design patterns still need to be instantiated and configured
in a design decision to be of use in a specific architecture.
Design Decisionis a first class concept in Archium. It de-
fines the solutions considered and the one decided upon (i.e.
the decision) to solve a described problem (see figure 3). A
software architecture (i.e. a design fragment) describes the
context in which this design decision is made. The con-
sidered potential solutions consists of one or more design
fragments, which act upon this context design fragment by
changing it according to the selected solution.

Figure 3 presents an example of a design decision. It con-
sists of the rationale described in section 4.1, a decision el-
ement, and one or more solution elements. Each solution
contains its own rationale and a realization part. The real-
ization is a design fragment, which is mapped onto a design
fragment representing the architecture. The mapping is ex-
plained in more detail in the next subsection.

A design decision is regarded a change function within
Archium. It has optional parameters, which are the de-
sign fragment describing the context the design decision
changes. Applying a design decision on this context design
fragment results in a new design fragment, which includes
the design decision it originate from. This explains the mu-
tual relationship between a design fragment and design de-
cision in the Archium meta-model (figure 2).

An example of the application of a design decision is pro-
vided in figure 4. In this case, the measurement system
needs to be changed to allow monitoring of the activities
within the system. The design decision is made to change
theSensorFragmentto include a logger. This design deci-
sion is presented in figure 3. The logger logs the actions
of theMeasurement Itemon theSensor. This modification
is defined in theLoggerFragment, which is another design
fragment. The composition of the design fragments, as a
means to change the measurement system, is described in
the next subsection.

5.3 Composition Model

The composition model is responsible for relating the
changes of the design decision model to the elements of the
architectural model. It defines the way in which a delta in-
teracts with other composed deltas. In Archium, the follow-
ing first class citizens are concerned with describing this:

Composition Technique describes the way in which a
delta changes a port of a component entity. For example, it
can define that a delta introduces a new port to the compo-
nent entity, subtracts, or modifies an existing one. Examples

Logger

«
»

«
»

Observable Role

CMISensor Sensor
Measurement

Item

LoggerCObsLog

Measurement 

Item

CMISensor Sensor

LoggerCObsLog

ResultFragment

DesignFragmentComposition1

CMISensor Sensor
Measurement

Item

SensorFragment

Key

«
»

«
»

Delta

Provided Port

Connector

Required Port

Design

Fragment

Design

Fragment 

Composition

CObsLog

«
»

«
»

Observable

Role

LoggerFragment

Component

Figure 4. Example of the composition of two
design fragments

of composition techniques include: Inheritance, Delegation,
Replacement, and Adapter (adapt a port interface).

For example, in figure 4 a composition technique is used
to describe how the provided port of theObservableDelta
reacts on the activities on the required port ofMeasuremen-
tItem.
Composition Configuration specifies how a component
entity incorporates a certain delta. The composition config-
uration uses composition techniques to specify the change
on a per port basis. In this sense, the composition configu-
ration is nothing more than a set of composition techniques
to describe the way in which a delta changes a component
entity.
Design Fragment Composition is used to define how a
design fragment can change another design fragment. It
uses composition configurations and design fragments to re-
late architectural entities of one design fragment to another,
thereby creating a new changed design fragment.

For the example of figure 4, the design fragment composi-



tion composes theLoggerFragmentand SensorFragment.
It uses a composition configuration to relate theObserv-
ableDeltawith theMeasurementItem.

6 Athena case

The previous section introduced the Archium meta-
model and illustrated parts of in on a trivial example. In
this section, we validate our approach by applying it on a
case. First, the case is introduced, after which two design
decisions are presented in more detail.

6.1 Introduction

Athena is a submit system for (automatic) judging, re-
viewing, manipulation, and archiving of computer program
sources. The primary use is supporting students to learn
programming. To develop the programming skills of a stu-
dent, he or she has to practice a lot. Small programming ex-
ercises are often used for this end. However, providing feed-
back on these exercises is laborious and time-consuming.
Athena helps students (and teachers) by testing their solu-
tions to functional correctness and provides feedback (e.g.
test results, test inputs, compilation information etc.) on
this.

The architecture of Athena (called “Original design”) is
illustrated on the top of figure 6. Athena uses a three tier
architectural style consisting of theDatabase, Middleware,
and Client component. TheMiddlewarecomponent con-
sists of aConnection Broker, which provides database ab-
straction and connection handling. TheDomain Objectrep-
resents the different specific domain objects used in Athena
(e.g. Student, Submission, Assignment etc.). TheManager
provides query and instantiation services for theClient and
Domain Objectcomponents. In theClient component, stu-
dents submit their work with the help of theSubmission
Client. TheArbiter tests this work and students can view
the results with theStudent Web Interface. Teachers and
their assistants configure Athena with the help of theMan-
agement Tool.

6.2 Design decisions

The software architecture of Athena is the result of mul-
tiple design decisions. Figure 5 presents a part of these de-
sign decisions in a design decision dependency view. An ar-
chitect would like to navigate between this view and other
views on the architecture. The view allows for the man-
agement of the dependencies among design decisions. For
example, “what if” scenario’s can be played, where the im-
pact of potential design decisions is examined.

The focus in the remainder of this section is on one
dependency between two design decisions, as space con-

Platform

Distribution

General
architecture

style

Database

CORBA

realization

Arbiter

Platform

Python

ORB

Web

server

Servlet

Engine

Database

abstraction

Domain

Object/

Managers

Design

Decision

Depends on

Refines

Key

Fraud

Fraud

Integration

Figure 5. Design decisions of Athena

straints hinder a more elaborate description. Based on the
different elements of Archium’s design decision model (see
section 4.1) theFraud andFraud Integrationdesign deci-
sion are described. Both design decisions are made after
the initial deployment of the system. They are described as
follows:

Fraud design decision
Problem Some of the students don’t create solutions for the
exercises themselves, but rather copy the work of their fel-
low students.Motivation A result of this is that the students
don’t obtain an adequate programming experience, which
is required for more advanced courses.CauseThe large
number of students (100+) in courses where Athena is used
leads to anonymity and a small chance to get caught. On top
of this, the high pressure resulting from the strict deadlines
imposed by the system increases the temptation to commit
fraud. Context The original design of the Athena system,
as depicted on the top of figure 6.
Potential solutions
• Moss

Description Moss [19] is an anti-fraud system, which
employs various code finger printing techniques to
detect plagiarism. The Moss system uses a client-
server architecture. The client consists of perl script,
which communicates with the Moss Internet server over
TCP/IP. The client provides the user with an URL point-
ing to the results of the analysis.
Design rules For each assignment it should be clear
whether it should be scanned for fraud or not.
Design constraints Moss works in a batch oriented
way, all the data to be tested for fraud should be de-



Fraud

Fraud 

Integration

Moss Solution

Moss

Client

Student Web 
Interface

Management 
Tool

Arbiter

Submission
Client

Connection 
Broker

Domain
Object

Middleware

Manager

Original Design

Database

Client

Student Web 
Interface

Management 
Tool

Arbiter

Submission

Client

Connection 
Broker

Domain

Object

Middleware

Manager

Original Design + Fraud

Database

Moss

JPlag Solution

JPlag

Original Design + Fraud + Fraud Integration

Database

Moss

User-requested Solution

Fraud 

Scanner 
>Middleware

Fraud Management 
>Management Tool

Submission Manager 

>Manager

Notification Solution

Submission 
Notification >Domain 

Object

Fraud Configuration 
>Management Tool

Moss

Connection
Broker

Fraud Reporting 
>Student Web Interface

Fraud Report
>Domain Object

Fraud 

Scanner 
>Middleware

Moss

Connection 
Broker

Middleware

Manager

Fraud

Scanner

Domain 
Object

Client

Arbiter

Submission

Client

Management 
Tool

Student Web 

Interface

Key

Component
Design

Fragment
Connector Delta

Design 
Decision

Alternative

Chosen

Required Port

Provided Port

Figure 6. Two design decisions of Athena

livered at once and increments are not possible.
ConsequencesThe Athena middleware becomes de-
pendent on the Moss server.
Pros +Good confident fraud detection. +Can ignore
base frameworks provided to students +Support multi-
ple programming languages +Free in use
Cons -Integration and archiving of the analysis results
can be difficult.

• JPlag
Description JPlag [15] is a plagiarism detection sys-
tem similar to Moss. JPlag parses the submitted files
and searches for similarities in their parse trees. The
JPlag architecture uses a client-server architecture. The
Java client sends the files for scanning to the server. The
results of the analysis can be viewed through a web in-
terface.
Design rules For each assignment it should be clear
whether it should be scanned for fraud or not.
Design constraints JPlag works in a batch oriented
way, all the data to be tested for fraud should be de-
livered at once and increments are not possible.
ConsequencesThe Athena middleware becomes de-
pendent on the JPlag server.
Pros +Free in use
Cons -Supports a relative small number of program-
ming languages -No demo available

DecisionThe Moss solution is chosen, as it supports more
programming languages and can ignore base frameworks
provided to the students.Architectural modification The
architectural modification of this design decision is depicted
in figure 6.

Fraud integration design decision
Problem The Moss Internet server should be integrated
with the Athena system.Motivation The Athena users
should use the anti-fraud functionality in a transparent way.
CauseThe need for a fraud system, as described inFraud
design decision.Context The design of the Athena system,
as depicted in figure 6 under the title “Original Design +
Fraud”.
Potential solutions
• Notification

Description The Fraud Scannerwith the help of the
Fraud Configurationand theMoss server keeps the
Fraud Reportfor an assignment up-to-date. TheFraud
Reportinguses theFraud Reportto inform the users.
Design rules The Domain Object responsible for the
processing of the student submissions should notify the
Fraud Scanner, when a new submission for an assign-
ment is made.
Design constraints The availability of the Moss server
may not interfere with the submission process.
ConsequencesEvery submission by a student leads to



a newFraud Report.
Pros +The data forFraud Reportingis instantly avail-
able +Allows for immediate feedback on the detection
of fraud
Cons -Heavy load induced on the Moss server

• User-requested
Description The user initiates a fraud analysis. The
Fraud Scannerdelivers the analysis using theMoss
server.
Design rules TheSubmission Managershould provide
the student submissions for a fraud analysis for the
Fraud Scanner.
Design constraints Fraud analysis should be only per-
formed, when a user requests for this information in the
Management Tool.
ConsequencesThe result of the fraud analysis is not
stored in the Athena system, but byMoss.
Pros +Relatively easy to develop +Light load induced
on the Moss server
Cons -Automatic fraud feedback to students is not
available.

DecisionThe decision is made to use the Notification solu-
tion, which provides a more active feedback from the sys-
tem to the users.Architectural modification The architec-
tural modification is presented in figure 6.

Figure 6 presents a view on these two design decisions,
which visualizes part of the history of the Athena architec-
ture with the help of design decisions. The top displays the
architecture on which theFraud design decision is based.
The realization and choice part of theFrauddesign decision
is shown together with the “resulting” architecture below
them. The same is done for theFraud Integrationdesign
decision.

Note that in the view of design decision (figure 6) the
mapping of the change elements onto the architecture is vi-
sualized in the change element themselves. For example,
in theNotificationof theFraud Integrationdesign decision
the Submission Notificationdelta is mapped onto theDo-
main Object. This mapping is defined with the help of the
composition model (see section 5.3). However, the visual-
ization of this mapping is not visible in this view. Instead,
when the mapping is not clear from the delta name, the>

symbol followed by the target of the delta is used to clarify
the mapping.

From both design decisions emerge a number of addi-
tional requirements. For example, in theFraud design de-
cision an Internet connection to the Moss server is now re-
quired for the Athena system to function completely. The
same happens with theFraud integrationdesign decision,
where requirements are needed about the expected feedback
of the fraud system.

Remark that the description of the design decisions itself
was sufficient to describe the software architecture evolu-
tion and its reasons. For example, the Archium model con-
tains all the information needed to explain why theFraud
Scannercomponent is part of the system. Usually with
the term “architecture”, the latest incarnation of a design
is meant. In this case this would be the architecture illus-
trated on the bottom of figure 6. However, as showed, this
architecture is the result of a number of design decisions.

7 Related work

Archium employs concepts from the field of software ar-
chitecture [17]. Important concepts in this field are com-
ponents and connectors, which are believed to lead to bet-
ter control over the design, development and evolution of
large and increasingly dynamic software architectures [4].
Software architecture documentation approaches [7, 10] try
to provide guidelines for the documentation of software ar-
chitectures. However, guidelines for design decisions are
absent in these approaches, whereas Archium does provide
them.

Architectural Description Languages (ADLs) [16] de-
scribe software architectures in a formal language, which
support first class architectural concepts. Whereas ADLs
try to describe an architecture, Mae [21] and Archium try to
describe the evolution leading to an architecture. Mae [21]
is an architectural change management tool, which tracks
changes to an architecture definition by a revision manage-
ment system. However, it lacks the notion of a design deci-
sion and delta. Therefore, it can only track arbitrary changes
and not the dependencies between design decisions the ar-
chitect is interested in.

Component languages like ArchJava[1] and Koala [22]
are programming languages supporting some architectural
concepts first-class to various degrees. Archium shares
some the concepts of these component languages, but dif-
fers as design decisions and architectural change are first-
class citizens.

AOP[13] with its implementations like AspectJ[12] and
genVoca [5] are approaches using different techniques to
achieve multiple separation of concerns. Traditional use of
AOP focuses on the code level, on the other hand Archium
focusses on the cross-cutting concerns of design decisions
at the architectural level.

A design pattern is a special type of design decision. De-
sign patterns [9] are sets of predefined design decisions with
known functionality and behavior. The rationale of these
decisions, as documented in the description of a design pat-
tern, can be related to the realization [3]. Archium differs
from [3] as it keeps design patterns first class in the realiza-
tion.

Knowledge systems [18] like IBIS [8] model decision



processes and try to capture the rationale or knowledge used
in these processes. Design decision models [18] are a spe-
cial type of knowledge system, as they try to capture ratio-
nale of design decisions. Archium expands these decision
models, as it integrates the decision model with an architec-
tural model.

8 Conclusion

Architectural design decisions play an important role in
the design, development, integration, evolution, and reuse
of software architectures. However, the notion of architec-
tural design decisions is not part of the current perspective
on software architectures. We have identified several prob-
lems due to this, including high costs of change, design ero-
sion, and limited reuse, which are primarily caused by the
vaporization of these design decisions into the architecture.

To address these problems, we propose a new perspec-
tive on software architecture, where software architectures
are described as set of design decisions. The presented
Archium approach is centered around this idea. Archium
models for the first time the relationship between software
architecture and design decisionsin detail. It uses a concep-
tual model consisting of the notions of deltas, design frag-
ments, and design decisions to describe a software archi-
tecture. The different concepts were exemplified with the
Athena case.

Ongoing and future work on Archium includes the devel-
opment of tool support (see [2]) facilitating experimentation
of the various concepts. In addition, we intend to add sup-
port for multiple views on the architecture as different views
show different concerns about the architecture [7, 10].

This paper presented a first step in modeling the perspec-
tive of software architectures as a set of design decisions.
Many research challenges remain in this perspective. For
example, how can we distinguish important design deci-
sions? What are interesting relationships between design
decisions? What are the crucial factors influencing a design
decision?

References

[1] J. Aldrich, C. Chambers, and D. Notkin. Archjava: connect-
ing software architecture to implementation. InProceedings
of the 24th international conference on Software engineer-
ing, pages 187–197. ACM Press, 2002.

[2] Archium website, . http://www.archium.net.
[3] E. L. A. Baniassad, G. C. Murphy, and C. Schwanninger.

Design pattern rationale graphs: Linking design to source.
In Proceedings of the 25th ICSE, pages 352–362, May 2003.

[4] L. Bass, P. Clements, and R. Kazman.Software architecture
in practice 2nd ed.Addison Wesley, 2003.

[5] D. Batory, J. Liu, and J. N. Sarvela. Refinements and multi-
dimensional separation of concerns. InProceedings of the

9th European software engineering conference, pages 48–
57. ACM Press, 2003.

[6] J. Bosch. Software architecture: The next step. InSoft-
ware Architecture, First European Workshop (EWSA), vol-
ume 3047 ofLNCS, pages 194–199. Springer, May 2004.

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford.Documenting Software
Architectures, Views and Beyond. Addison Wesley, 2002.

[8] J. Conklin and M. L. Begeman. gibis: a hypertext tool for
exploratory policy discussion.ACM Transactions on Infor-
mation Systems (TOIS), 6(4):303–331, 1988.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[10] C. Hofmeister, R. Nord, and D. Soni.Applied software ar-
chitecture. Addison Wesley, 2000.

[11] A. G. J. Jansen and J. Bosch. Evaluation of tool support for
architectural evolution. InProceedings of the 19th IEEE In-
ternational Conference on Automated Software Engineering
(ASE), pages 375–378. IEEE, September 2004.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ.Lecture Notes
in Computer Science, 2072:327–355, 2001.

[13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Akşit and S. Matsuoka, editors,Pro-
ceedings ECOOP, volume 1241, pages 220–242. Springer-
Verlag, 1997.

[14] P. Kruchten. An ontology of architectural design decisions
in software intensive systems. In2nd Groningen Workshop
on Software Variability, pages 54–61, December 2004.

[15] G. Malpohl. Jplag website. http://www.jplag.de/.
[16] N. Medvidovic and R. N. Taylor. A classification and

comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering,
26(1):70–93, 2000.

[17] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture.ACM SIGSOFT Software Engineering
Notes, 17(4):40–52, 1992.

[18] W. Regli, X. Hu, M. Atwood, and W. Sun. A survey of de-
sign rationale systems: Approaches, representation, capture
and retrieval. Engineering with Computers, 16(3-4):209–
235, December 2000.

[19] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnow-
ing: local algorithms for document fingerprinting. InSIG-
MOD ’03: Proceedings of the 2003 ACM SIGMOD inter-
national conference on Management of data, pages 76–85,
New York, NY, USA, 2003. ACM Press.

[20] J. Tyree and A. Akerman. Architecture decisions: Demysti-
fying architecure.IEEE Software, 22(2):19–27, 2005.

[21] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and
N. Medvidovic. Taming architectural evolution. InProceed-
ings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, pages 1–10.
ACM Press, 2001.

[22] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The koala component model for consumer elec-
tronics software. IEEE Computer, 33(3):78–85, march
2000.


