Software Architecture as a Set of Architectural Design De@ions

Anton Jansen Jan Bosch
Department of Computing Science Software & Application Technologies Lab
University of Groningen Nokia Research Center
PO BOX 800, 9700 AV, The Netherlands PO BOX 407, FI-00045, Finland
anton@cs.rug.nl jan.bosch@nokia.com
Abstract this notion of architectural design decisions, although ar

chitectural design decisions play a crucial role in sofevar

Software architectures have high costs for change, are architecture, e.g. during design, development, evolytion
complex, and erode during evolution. We believe thesereuse and integration of software architectures. In design
problems are partially due to knowledge vaporization. Cur- the main concern is which design decision to make. In de-
rently, almost all the knowledge and information about the velopment, it is important to know which and why certain
design decisions the architecture is based on are implicitl design decisions have been taken. Architecture evolution
embedded in the architecture, but lack a first-class repre- is about making new design decisions or removing obso-
sentation. Consequently, knowledge about these design ddete ones to satisfy changing requirements. The challenge
cisions disappears into the architecture, which leads ® th is to do this in harmony with the existing design decisions.
aforementioned problems. In this paper, a new perspectiveReuse of software architecture is the use of earlier tried an
on software architecture is presented, which views soiwar tested combinations of design decisions (e.g. design pat-
architecture as a composition of a set of explicit design de- terns or components). In the integration of systems, the
cisions. This perspective makes architectural design-deci main concern is the unification of the design decisions and
sions an explicit part of a software architecture. Conse- their assumptions.
guently, knowledge vaporization is reduced, thereby allev
ating some of the fundamental problems of software archi- 10 address this, we propose a new perspective on soft-
tecture. ware architecture: we define software architecture as the

composition of a set of architectural design decisionss Thi
reduces the knowledge vaporization of design decision in-

1 Introduction formation, since design decisions have become an explicit
part of the architecture.

Software architecture [17] has become a generally ac- The contribution of this paper threefold. First, the prob-
cepted concept in research and industry. The importance ofems with the current perspective on software architecture
stressing the components and their connectors of a softwargye presented. Second, it develops the notion of software
system is generally recognized and has led to better controbychitecture as the composition of a set of explicit archite
over the design, development, and evolution of large andtyra| design decisions. Third, various views are presented

increasingly dynamic software systems [4]. for visualizing this new architecture perspective.
Although the achievements of software architecture are

formidable, still some problems remain. The complexity, = The remainder of this paper is organized as follows. The
high costs of change, and design erosion are some of theeoncept of architectural design decisions is presentegtin s
fundamental problems of software architecture. We believetion 2. In section 3, the problems of software architecture
these problems are partially due to knowledge vaporization with respect to architectural design decisions are exgthin
Currently, almost all the knowledge and informationregard in more depth. The next section introduces Archium, our
ing the design decisions on which the architecture is basedapproach to describe software architecture as a set of ar-
on (e.g. results of domain analysis, architectural stydesly chitectural design decisions. The approach is applied to a
trade-offs made etc.) are implicitly embedded in the archi- case and illustrated with various views on design decisions
tecture, but lack a first class representation. in section 6. After this, related work is discussed. The pape
The current perspective on software architecture lacksconcludes with future work and conclusions in section 8.

2 Architectural design decisions ¢ Design decisions are cross cutting and intertwined:
Design decisions are often intertwined with each

Although the term “architectural design decision” is of- other, as they work in close relationship together.
tenused [7, 10, 4], a precise definition is hard to find. There- ~ Furthermore, they typically affect multiple parts of the
fore, we define an architectural design decision as: deSign SimultaneOUS|y. This leads to the situation that

o] N the design decision information is fragmented across
A description of the set of architectural additions, subtra various parts of the design, making it hard to find and

t?ons and modificatiqns to the softvyare archite_cture, the & change the decisions. Both effects increase the overall
tionale, and the design rules, design constraints and addi- complexity of the software architecture, as numerous

tiopal requirementls that (pgrtially) realize one or more re seemingly unrelated relationships (e.g. dependencies)
quirements on a given architecture. between architectural entities are introduced.
With the definition of architectural design decisions using ¢ Design rules and constraints are violated:During
the following elements: the evolution of the system, designers can easily violate
design rules and constraints arising from previously
Rationale The reasons behind an architectural design deci- ~ taken design decisions. Violations of these rules
sion are the rationale of an architectural design decidion. and constraints lead to architectural drift [17] and its
describesvhya change is made to the software architecture. ~ associated problems (e.g. increased maintenance costs).
Design rules anddesign constraintsare prescriptions for As design rules and constraints influence future design
further design decisions. Rules are mandatory guidelines, decisions, they have a steering influence on the future
whereas constraints limit the design to remain sound. direction of the architecture.

Design constraints Design constraints describe the oppo- ¢ Obsolete design decisions are not removediVhen

site side of design rules. They describe what is not allowed ~ Obsolete design decisions are not removed, the system
in the future of the design, i.e. they prohibit certain behav ~ has the tendency to erode more rapidly. In the current
iors. design practice removing design decisions is avoided,
Additional requirements A design decision may result in because of the effort needed, and the unexpected effects

additional requirements to be satisfied by the architecture this removing can have on the system.

These new requirements need to be addressed by additional
design decisions. As a result of these problems, the developed systems have

a high cost of change, and they tend to erode quickly. Also,

An architectural design decision is therefore the outcome the reusability of the architectural artifacts is limitddie-
of a design process during the initial construction or the Sign decision knowledge vaporizes into the design. These
evolution of a software system. Architectural design deci- Problems are caused by the focus in the software archi-
sions, among others, may be concerned with the applicationfecture design process on the resulting artifacts, instéad
domain of the system, the architectural styles and patternghe decisions that lead to them. Although the effects of
used in the system, COTS components and other infrastructhe made decisions are present in the design, the decisions
ture selections as well as other aspects needed to satisfy ththemselves are not visible. Clearly, design decisions cur-
system requirements. rently lack a representation in software architecturegtesi

We propose to view a software architecture as a set of Defining software architecture as a set of architectural
explicit architectural design decisions. In this persivegt ~ design decisions is a step forward in solving the aforemen-
the software architecture is tiresult of the architectural ~ tioned problems. This would also help the architect with:

design decisions made over time. . . .
9 e Guarding the conceptual integrity of the software ar-

. chitecture. The design decisions describe the rules and
3 Problems of software architecture constraints, which should be obeyed. In current prac-
tice, software engineers and architects often break un-
The current perspective on software architecture lacks a awarely the conceptual integrity of the architecture. Ex-
clear view on why the architecture looks as it does [6, 14]. plicit design decisions help in creating the necessary
In the current notion of a software architecture, the result awareness and reference points for these constraints and
of the design decisions underlying the architecture are im- rules.
plicitly embedded within the architecture. Consequently, e Explicit design space explorationhelps the architect
knowledge about the design decisions underlying the archi- in preventing from making obvious mistakes. It forces
tecture is lost [20]. This vaporization of design decision the architect to self reflect upon the software architec-
information leads to a number of problems associated with ture. Furthermore, it enables communication of the ex-
software architecture: plored design space with others.

e Analysis of both the software architecture and the de- Solutions itectural design decision
sign process. For example, in evolution the architect
wants to play “what if” scenario’s of considered design Soluion 1
decisions in the context of existing ones. -
e Improved traceability of the design decisions and v
their relationship to features, design aspects, concerns, [Sove=] Problem %03”“4 Couse ‘
and among themselves. This helps the architect with
obtaining a better understanding of the software archi- %Se'ws;{ Decision Hesu'ts % ’Mi?!#&iﬁ?éﬁ"
tecture. Makes
However, the following requirements need to be satisfied to Solution X Modies
realize this:
First class architectural design decisionsare required to e
describe a software architecture as a set of design desision R
Furthermore, first class design decisions can be communi- lesln

cated, related and reasoned about. This provides informa-

tion about the architecture, which is currently often misse
Figure 1. Model for architectural design deci-

Explicit architectural changes form the bridge between sions

the first class architectural entities and the architettea

sign decisions. This is needed to have a well-defined rela-

tionship between the proposed solutions of an architelctura

decision and the involved architectural entities. This is mainly due to the ill-defined relationship between

Support for modification, subtraction, and addition these design decision models and software architectures.

changes are required to have sufficient expressiveness. Th&herefore, we have developed an approach called Archium,

characteristic types of change often distinguished are thewhich tries to define this relationship. Archium maintains

corrective, perfective, and adaptive types. However, thethis relationship during the complete life-cycle of the-sys

focus of this classification is on the reasons behind thetem. In this paper the focus is on the software architecture

change, not on the effect of the changes. aspects of Archium. The approach is based on a concep-

Clear, bilateral relationship between architecture and tual architectural design decision model, which describes

realization Viewing a software architecture as a set of de- the elements of architectural design decisions and thieir re

sign decisions, makes evolution an inherent part of the de-tionships in greater detail than the abstract design decisi

scription of an architecture. Changes in the architecturemodels. In the remainder of this section, this conceptual

will have an effect on the realization of the system and vice model is presented.

versa. It is therefore important to have a bilateral retatio

ship between the software architecture and the realization4.1 Architectural design decision model

First class architectural conceptsAs software architec- Figure 1 presents our conceptual model for architectural

ture deals with abstractions, it is important to define thesedesign decisions. At the heart of the model is Breblem

abstractions in a first class way. Abstraction choices areelement, which together with tidotivationandCauseele-

very subjective and greatly influences the resulting aechit ments describes the problemyiativationwhy the problem

ture. Expressing these abstractions in a consistent and uniis a problem, and th€ause of this problem. Th@roblem

form way is therefore essential for software architectures is the goal the architectural design decision wants to solve
The solutions element contains tBelutiors that have been
proposed to solve the problem at handDAcisionis made,

4 Archium which solution should be used, resulting inArchitectural
modificationchanging theContext

The aforementioned problems of section 3 clearly show To solve the describeBroblem one or more potential

that the notion of an architectural design decision is an im- Solutionscan be thought up and proposed. For each of

portant one. Currently, no models for representing archite the proposed solutions, we define the following elements

tural design decisions exist [11]. Some general design deci (which are not shown in the figure 1) :

sion models [18] do facilitate the description of abstract e

ements of an architectural design decision model, but these e Description The description element described the so-

approaches fail to satisfy most of our requirements [11]. lution being proposed. The needed modifications are

explained and rationale for these modifications is pro- comesiioniode
vided.

¢ Design rules A potential solution can have one or more
design rules. Design rules define partial specifications
to which the realization of one or more architectural en- | comecor F—{ pont

Architectural Model Design decision model ©omPoses

composes

Component
Entity

tities has to conform. This allows a solution to define <L i T T o,
parts of how it should be realized in order to have a so-
lution that solves the problem. ‘ ‘ i

e Design constraints Besides design rules, a solution
can have design constraints. Design constraints define
limitations or constraints on the further design of one or ~ Figure 2. Meta-model of a software architec-
more architectural entities. These limitations and con- ture with first class design decisions
straints have to be obeyed for the potential solution to
solve the problem at hand.

e ConsequencesThe consequences element is a descrip-
tion of the expected consequences of the solution on theconsists of three sub-models: an architectural model, a de-
architecture. The element should prOVide additional ra- Sign decision modeL and a Composition model. The ar-
tionale behind the pros and cons of the solution. chitectural model defines software architecture concepts,

e Pros This model element describes the expected ben-which are similar to the concepts used in existing archi-
efit(s) from this solution to the overall design and the tecture models [16]. The design decision model contains
impact on the requirements. design decisions as a first class concept. The compaosition

e Cons Solutions can also have a downside. The ex- model introduces the model elements needed to unite the
pected negative impact on the overall design is as im-two previous sub-models. Each sub-model is explained in
portant as the positive side. more detall in the remaining part of this section.

i _ A (trivial) running example of a subsystem of a measure-
. Trapslatmg the conceptua_l mF’de' mto goncrete mOOIeI(S)ment system exemplifies the different concepts. The mea-
is a big challenge. Our earlier investigation [11] revealed surement system acquires certain properties of a physical

a gap between design decisions_ and software arChiteCtW‘ﬁem that enters the system for measurement. The architec-
models. Therefore, the rest of this paper focuses on the in- . ¢ 1his system is visualized in the top of figure 4.

teraction between architectural design decisions and soft
ware architecture. Specifically, we discuss how thee
cision, solution architectural modification software ar-
chitecture and architectural design decisionsonceptual
model elements are modeled and formalized to describe a The architectural model of Archium meta-model uses

5.1 Architectural Model

software architecture as a set of design decisions. concepts of the Component & Connector view [7]. The re-
lationships of these concepts is visualized in figure 2. Fol-
5 Archium meta-model lowing is a more in-depth description of these concepts and

their relationships:

In Archium, the functionality of the architectural modifi-
cation is expressed aschangen functionality. New func-
tionality is regarded as the change of nothing to something.
In this perspective, Archium is fundamentally differerdh

Component Entity is an abstraction of a component. A

component entity describes the decomposition aspect of a

component. The functionality of a component entity is not

most other design methods, as it does not promote desig efined in the component e.”“ty itself, but in _the del'_[as re-

for or with change, but rather designingingchange. ated to _the component entity. A component in Archium is
a specifianstanceof a component entity with known func-

A software architecture in Archium is described asasetti nalitv. i.e. the deltas incoroorated in th mponetiten
of changes, which together form the software architecture, onaty; I.€. the deftas incorporate € componentg

To be more precise, in Archiumsa ftware archictecture: instance are known.
dd; +ddy + ... + ddy, whereddy is a design decision. The For example, in the measurement system (see top of figure
exact elements required to achieve this are described in thel) a decomposition has been made in two parts, which are
rest of this section. made up of thévleasurement Iterand theSensorcompo-

The Archium approach is based on a meta-model, which nent entities. Th&leasurement Iternomponent entity rep-
describes the central concepts of our approach and their reresents the object to be measured and3brsomeasures
lationships. Figure 2 presents this meta-model. The modelsome properties of the measured object.

Delta is the first-class representation of a change to the Monitoring Design Decision Key

behavior of a component entity, which is provided by the Decision .

. . . : n omponent
deltas already incorporated in the component entity. A com- P o™
ponent entity incorporating a delta includes the modifica-
tion of the delta to its behavior. The merging of the behav- ! _
ior of different deltas is performed using the elements ef th Ghopes_Solutions mht
composition model (see section 5.3). Log Solution

0 Provided

port
} } } —Connector—

Rationale

In the example, the functionality of tideasurement Item
andSensorcomponents are defined in tBensorDeltand
MiDelta deltas. ThesensorDeltaontains the functionality

Description, Design
Rules/Constraints,
Consequences, Pros,
Cons

to measure an item and thMiDelta has the functionality to]]]
store these measurements. These changes are not visible in Fealzation R
figure 4, as they are being incorporated into the components. P - — . |
Interface A definition of a collection of method signatures,

representing a specific named semantic. '

Port An external visible interface required or provided by

a delta or connector. A port represents the provided or re- Graphical Monitoring Design Fragment

quired “service” of a delta or connector. Deltas and connec- " H N ‘
. . servable istory

tors are only allowed to communicate with others through

their defined ports. Ports of a delta and connector can be
connected together, to form a connection, thereby creating

o . . Figure 3. Example of a design decision
a specific configuration of deltas and connectors. 9 P 9

In the measurement system (see figure 4), two ports are de-

fined: a provided port for th&ensorand a required port . - . :
. . tural design decisions and the architectural concepts-is de
for theMeasurement ItenBoth ports are not defined in the . . . L
fined using the concept of a design fragment. Following is

component entities, but are part of the deltas incorporated . -
comp P P a more in-depth description of both concepts:
in the components.

Connector defines the “glue” between one or more deltas, pesign Fragment is an architectural fragment defining a
i.e. a connector is a first class representation of the iatera ¢jlection of architectural entities. An architecturatign

tion or communication between these deltas. The ports of acan pe part of multiple design fragments. A design fragment
connector can be bound to the provided and required portSs 4 poundary-less container for maintaining trace-abilit
of deltas, thereby forming the “glue” between them. A con- The primary use is to define the scope of a solution of a de-
nector therefore defines the specific functionality used for sign decision. For example, a design fragment can contain

the communication between connected ports. deltas and their configuration of (abstract) connectons-co
In the example, the communication between$leisoand ponent entities incorporating certain deltas, and other de
theMeasurement ltens defined in the connect@MISen- sign fragments, which describe a particular solution. A de-
sor. sign fragment is therefore a (partial) description of the-sy

Abstract Connector is an abstraction from a Connector, tem, which can include explicit change (modeled as deltas)
as it does not have an interface associated with it. It definesand structure, i.e. component entities and (abstract)eonn
the communication type (i.e. synchronous, asynchronous)ors.

between two or more deltas. In addition, it defines a set of |n Archium, the concept of a software architecture and a de-
connectors that actually communicate between these delta%ign pattern are specializations of the design fragment con
The abstract connector used in our example defines that theept. The first class concept of a design fragment makes
SensorDeltaand MIDelta communicate using method in- these two concepts elements in the Archium model. A soft-
vocation with each other. In addition, the abstract connec-ware architecture is a design fragment describing the syste
tor contains the connect@MISensorconnecting the two as awhole. This description consists of the component enti-

deltas. ties and (abstract) connectors and their configuratiorglwhi
is a specialized subset of the architectural entities agdesi
5.2 Design Decision Model fragment can contain.

For example, the architecture of the measurement system
In this subsection, the design decision model part of itself is a design fragment. Figure 4 visualizes this, with
Archium is presented. The relationship between architec-the architectural entitiedMeasurement ItemCMISensoy

Sensoy being enclosed within thBensorFragment

Design patterns [9] are often seen as predefined design deci
sions, which is not completely true. They define predefined
parts of design solutions, which can be reused. However,

design patterns still need to be instantiated and configured

in a design decision to be of use in a specific architecture.
Design Decisionis a first class concept in Archium. It de-
fines the solutions considered and the one decided upon (i.e
the decision) to solve a described problem (see figure 3). A
software architecture (i.e. a design fragment) describes t
context in which this design decision is made. The con-
sidered potential solutions consists of one or more design
fragments, which act upon this context design fragment by
changing it according to the selected solution.

Figure 3 presents an example of a design decision. It con-
sists of the rationale described in section 4.1, a decidion e
ement, and one or more solution elements. Each solution
contains its own rationale and a realization part. The real-
ization is a design fragment, which is mapped onto a design
fragment representing the architecture. The mapping is ex-
plained in more detail in the next subsection.

A design decision is regarded a change function within
Archium. It has optional parameters, which are the de-
sign fragment describing the context the design decision
changes. Applying a design decision on this context design
fragment results in a new design fragment, which includes
the design decision it originate from. This explains the mu-

tual relationship between a design fragment and design de-

cision in the Archium meta-model (figure 2).

An example of the application of a design decision is pro-
vided in figure 4. In this case, the measurement system
needs to be changed to allow monitoring of the activities
within the system. The design decision is made to change
the SensorFragmertb include a logger. This design deci-
sion is presented in figure 3. The logger logs the actions
of the Measurement Iteran theSensor This modification

is defined in theL.oggerFragmentwhich is another design
fragment. The composition of the design fragments, as a
means to change the measurement system, is described i
the next subsection.

5.3 Composition Model

The composition model is responsible for relating the

1. Design fragments Key

LoggerFragment

Observable CObsLoa—+ Logger

Component

: ltem } €

: Design
: Fragment !

Design °
\ Fragment
Composition /
N 5

C—_—

/
| |

Required Port

|

Provided Port

|
|
|
|
i

—Connector—

ResultFragment B
CMISensor—] Sensor :
CObSLOQ—E

Measurement
Item

Figure 4. Example of the composition of two
design fragments

of composition techniques include: Inheritance, Deleggti
Replacement, and Adapter (adapt a port interface).

For example, in figure 4 a composition technique is used
to describe how the provided port of tibservableDelta
reacts on the activities on the required porMeasuremen-
titem

Composition Configuration specifies how a component
entity incorporates a certain delta. The composition cenfig
uration uses composition techniques to specify the change
on a per port basis. In this sense, the composition configu-
ration is nothing more than a set of composition techniques

changes of the design decision model to the elements of theo describe the way in which a delta changes a component

architectural model. It defines the way in which a delta in-
teracts with other composed deltas. In Archium, the follow-
ing first class citizens are concerned with describing this:

Composition Technique describes the way in which a

delta changes a port of a component entity. For example, it
can define that a delta introduces a new port to the compo
nent entity, subtracts, or modifies an existing one. Example

For the example of figure 4, the design fragment composi-

entity.

Design Fragment Compositionis used to define how a
design fragment can change another design fragment. It
uses composition configurations and design fragments to re-
late architectural entities of one design fragment to agmmth

thereby creating a new changed design fragment.

tion composes théoggerFragmentaind SensorFragment
It uses a composition configuration to relate thbserv-
ableDeltawith the Measurementltem

6 Athena case

The previous section introduced the Archium meta-

@ Distribution Web
server
General
architecture <
style CORBA
realization
Servlet
Engine

Arbiter
Platform I

model and illustrated parts of in on a trivial example. In
this section, we validate our approach by applying it on a
case. First, the case is introduced, after which two design
decisions are presented in more detail.

Domain
Object/
Managers

Python
ORB
Database
abstraction
Fraud
Integration

Figure 5. Design decisions of Athena

Database Ky

Key
6.1 Introduction <Refnes—
«Depends on—
Athena is a submit system for (automatic) judging, re-
viewing, manipulation, and archiving of computer program
sources. The primary use is supporting students to learn
programming. To develop the programming skills of a stu-
dent, he or she has to practice a lot. Small programming ex-
ercises are often used for this end. However, providingfeed
back on these exercises is laborious and time-consuming.
Athena helps students (and teachers) by testing their solustraints hinder a more elaborate description. Based on the
tions to functional correctness and provides feedback (e.g different elements of Archium’s design decision model (see
test results, test inputs, compilation information etcr) o section 4.1) thé=raud and Fraud Integrationdesign deci-
this. sion are described. Both design decisions are made after
The architecture of Athena (called “Original design”) is the initial deployment of the system. They are described as
illustrated on the top of figure 6. Athena uses a three tier follows:
architectural style consisting of tlizatabase Middleware
and Client component. ThéMiddlewarecomponent con- Fraud design decision
sists of aConnection Brokerwhich provides database ab- Problem Some of the students don’t create solutions for the
straction and connection handling. Themain Objectep- exercises themselves, but rather copy the work of their fel-
resents the different specific domain objects used in Athenalow studentsMotivation A result of this is that the students
(e.g. Student, Submission, Assignment etc.). Viamager don't obtain an adequate programming experience, which
provides query and instantiation services for @ientand is required for more advanced courseSause The large
Domain Objeccomponents. In th€lientcomponent, stu- number of students (100+) in courses where Athena is used
dents submit their work with the help of tHfeubmission leads to anonymity and a small chance to get caught. On top
Client The Arbiter tests this work and students can view of this, the high pressure resulting from the strict deasin
the results with theStudent Web InterfaceTeachers and imposed by the system increases the temptation to commit
their assistants configure Athena with the help ofMen- fraud. Context The original design of the Athena system,

Design
Decision

agement Tool as depicted on the top of figure 6.
Potential solutions
6.2 Design decisions e Moss
Description Moss [19] is an anti-fraud system, which
The software architecture of Athena is the result of mul- employs various code finger printing techniques to

tiple design decisions. Figure 5 presents a part of these de- detect plagiarism. The Moss system uses a client-
sign decisions in a design decision dependency view. An ar- server architecture. The client consists of perl script,
chitect would like to navigate between this view and other which communicates with the Moss Internet server over

views on the architecture. The view allows for the man- TCP/IP. The client provides the user with an URL point-
agement of the dependencies among design decisions. For ing to the results of the analysis.
example, “what if” scenario’s can be played, where the im- Design rules For each assignment it should be clear

pact of potential design decisions is examined. whether it should be scanned for fraud or not.
The focus in the remainder of this section is on one Design constraints Moss works in a batch oriented
dependency between two design decisions, as space con- way, all the data to be tested for fraud should be de-

Original Design

Database Middleware

Client

Arbiter

Connection |
Broker

O
Domain 4
Object

Student Web
Interface

Submission
Client

=
E
L3
g8
=3
g

Moss Solution

Moss

JPlag Solution

JPlag
S

Original Design + Fraud

Moss ‘

Database Middleware

Client

Arbiter

Management

Connection |
Broker

O
Domain 4
Object

00l

Student Web
Interface

Submission
Client

Illi

Notification Solution

Fraud Reporting
Student Web Interface

Connection
Broker
o
Fraud Report N
Domain Objec]

Fraud
Scanner

Submission
1 Notification >Domain

raud Configuration
>Management Tool

Fraud
Scanner
>Middleware ¥

Fraud Management
>Management Tool

User-requested Solution

ubmission Manager
>Manager

Original Design + Fraud + Fraud Integration

Database Middleware

Client

Management
Tool

Student Web
Interface

Submission
Client

Key

Design

c " o ! ® Required Port | |
omponent | —Connector— | |
P o Provided Port | Fragment |

Alternative > Design
Chosen ; Decision

Figure 6. Two design decisions of Athena

livered at once and increments are not possible.
ConsequencesThe Athena middleware becomes de-
pendent on the Moss server.
Pros +Good confident fraud detection. +Can ignore
base frameworks provided to students +Support multi-
ple programming languages +Free in use
Cons -Integration and archiving of the analysis results
can be difficult.

e JPlag
Description JPlag [15] is a plagiarism detection sys-
tem similar to Moss. JPlag parses the submitted files
and searches for similarities in their parse trees. The
JPlag architecture uses a client-server architecture. The
Java client sends the files for scanning to the server. The
results of the analysis can be viewed through a web in-
terface.
Design rules For each assignment it should be clear
whether it should be scanned for fraud or not.
Design constraints JPlag works in a batch oriented
way, all the data to be tested for fraud should be de-
livered at once and increments are not possible.
ConsequencesThe Athena middleware becomes de-
pendent on the JPlag server.
Pros +Free in use
Cons -Supports a relative small number of program-
ming languages -No demo available

DecisionThe Moss solution is chosen, as it supports more
programming languages and can ignore base frameworks
provided to the student#rchitectural modification The
architectural modification of this design decision is dé&giic

in figure 6.

Fraud integration design decision

Problem The Moss Internet server should be integrated
with the Athena system.Motivation The Athena users
should use the anti-fraud functionality in a transparentwa
CauseThe need for a fraud system, as describe8raud
design decisionContext The design of the Athena system,
as depicted in figure 6 under the title “Original Design +
Fraud”.

Potential solutions

¢ Notification
Description The Fraud Scannewith the help of the
Fraud Configurationand the Moss server keeps the
Fraud Reportfor an assignment up-to-date. TReaud
Reportinguses thd-raud Reporto inform the users.
Design rules The Domain Object responsible for the
processing of the student submissions should notify the
Fraud Scannerwhen a new submission for an assign-
ment is made.
Design constraints The availability of the Moss server
may not interfere with the submission process.
ConsequencesEvery submission by a student leads to

a newFraud Report Remark that the description of the design decisions itself

Pros +The data fofFraud Reportings instantly avail- was sufficient to describe the software architecture evolu-
able +Allows for immediate feedback on the detection tion and its reasons. For example, the Archium model con-
of fraud tains all the information needed to explain why thaud
Cons -Heavy load induced on the Moss server Scannercomponent is part of the system. Usually with
e User-requested the term “architecture”, the latest incarnation of a design

Description The user initiates a fraud analysis. The is meant. In this case this would be the architecture illus-
Fraud Scannerdelivers the analysis using thdoss trated on the bottom of figure 6. However, as showed, this
server. architecture is the result of a number of design decisions.

Design rules The Submission Manageshould provide
the student submissions for a fraud analysis for the 7 Related work
Fraud Scanner

Design constraints Fraud analysis should be only per- Archjum employs concepts from the field of software ar-
formed, when a user requests for this information in the chitecture [17]. Important concepts in this field are com-
Management Tool o ponents and connectors, which are believed to lead to bet-
ConsequencesThe result of the fraud analysis is not e control over the design, development and evolution of
stored in the Athena system, but bloss _ large and increasingly dynamic software architectures [4]
Pros +Relatively easy to develop +Light load induced gqfiware architecture documentation approaches [7, 0] tr
on the Moss server _ to provide guidelines for the documentation of software ar-
Cons -Automatic fraud feedback to students is not chjtectures. However, guidelines for design decisions are
available. absent in these approaches, whereas Archium does provide

hem.

Architectural Description Languages (ADLs) [16] de-
scribe software architectures in a formal language, which
support first class architectural concepts. Whereas ADLSs
try to describe an architecture, Mae [21] and Archium try to
describe the evolution leading to an architecture. Mae [21]
Figure 6 presents a view on these two design decisions,js an architectural change management tool, which tracks
which visualizes part of the history of the Athena architec- changes to an architecture definition by a revision manage-
ture with the help of design decisions. The top displays the ment system. However, it lacks the notion of a design deci-
architecture on which théraud design decision is based. sion and delta. Therefore, it can only track arbitrary clesng
The realization and choice part of tReaud design decision ~ and not the dependencies between design decisions the ar-
is shown together with the “resulting” architecture below chitect s interested in.
them. The same is done for tieaud Integrationdesign Component languages like ArchJava[l] and Koala [22]
decision. are programming languages supporting some architectural

Note that in the view of design decision (figure 6) the concepts first-class to various degrees. Archium shares
mapping of the change elements onto the architecture is vi-some the concepts of these component languages, but dif-
sualized in the change element themselves. For examplefers as design decisions and architectural change are first-
in the Notificationof the Fraud Integrationdesign decision class citizens.
the Submission Notificatiodelta is mapped onto thBo- AOP[13] with its implementations like AspectJ[12] and
main Object This mapping is defined with the help of the genVoca [5] are approaches using different techniques to
composition model (see section 5.3). However, the visual- achieve multiple separation of concerns. Traditional dse o
ization of this mapping is not visible in this view. Instead, AOP focuses on the code level, on the other hand Archium
when the mapping is not clear from the delta name,the focusses on the cross-cutting concerns of design decisions
symbol followed by the target of the delta is used to clarify at the architectural level.
the mapping. A design pattern is a special type of design decision. De-

From both design decisions emerge a number of addi-sign patterns [9] are sets of predefined design decisioihs wit
tional requirements. For example, in tRe|ud design de- known functionality and behavior. The rationale of these
cision an Internet connection to the Moss server is now re-decisions, as documented in the description of a design pat-
quired for the Athena system to function completely. The tern, can be related to the realization [3]. Archium differs
same happens with theraud integrationdesign decision, from [3] as it keeps design patterns first class in the realiza
where requirements are needed about the expected feedbadlon.
of the fraud system. Knowledge systems [18] like IBIS [8] model decision

DecisionThe decision is made to use the Notification solu- t
tion, which provides a more active feedback from the sys-
tem to the usersArchitectural modification The architec-
tural modification is presented in figure 6.

processes and try to capture the rationale or knowledge used
in these processes. Design decision models [18] are a spe-

cial type of knowledge system, as they try to capture ratio-
nale of design decisions. Archium expands these decision
models, as it integrates the decision model with an architec

tural model.

8 Conclusion

Architectural design decisions play an important role in
the design, development, integration, evolution, andeeus
of software architectures. However, the notion of architec

9th European software engineering conferenpages 48—
57. ACM Press, 2003.

] J. Bosch. Software architecture: The next step. Sbft-

(7]

(8]

(9]

tural design decisions is not part of the current perspectiv [10]

on software architectures. We have identified several prob-
lems due to this, including high costs of change, design ero-
sion, and limited reuse, which are primarily caused by the
vaporization of these design decisions into the architectu

[11]

To address these problems, we propose a new perspecf12]

tive on software architecture, where software architestur
The presented

are described as set of design decisions.

Archium approach is centered around this idea. Archium [13]

models for the first time the relationship between software
architecture and design decisidngletail. It uses a concep-
tual model consisting of the notions of deltas, design frag-

ments, and design decisions to describe a software archi-14

tecture. The different concepts were exemplified with the

Athena case.

Ongoing and future work on Archium includes the devel- [15]

opment of tool support (see [2]) facilitating experimeitat

of the various concepts. In addition, we intend to add sup-

port for multiple views on the architecture as differentvse
show different concerns about the architecture [7, 10].

This paper presented a first step in modeling the perspec-
tive of software architectures as a set of design decisions.

] N. Medvidovic and R. N. Taylor.

[17]

Many research challenges remain in this perspective. For[18]

example, how can we distinguish important design deci-
sions? What are interesting relationships between design

decisions? What are the crucial factors influencing a design [19]

decision?

References

[1] J. Aldrich, C. Chambers, and D. Notkin. Archjava: conrec

ing software architecture to implementation.Aroceedings

of the 24th international conference on Software engineer-

ing, pages 187-197. ACM Press, 2002.
[2] Archium website, . http://www.archium.net.

[3] E. L. A. Baniassad, G. C. Murphy, and C. Schwanninger.
Design pattern rationale graphs: Linking design to source.
In Proceedings of the 25th ICSages 352—-362, May 2003.

[4] L. Bass, P. Clements, and R. Kazm&uftware architecture
in practice 2nd ed Addison Wesley, 2003.

[5] D. Batory, J. Liu, and J. N. Sarvela. Refinements and multi

dimensional separation of concerns. Rroceedings of the

[20]

[21]

[22]

ware Architecture, First European Workshop (EWS#&)-
ume 3047 oLNCS pages 194-199. Springer, May 2004.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. lvers,
R. Little, R. Nord, and J. StaffordDocumenting Software

Architectures, Views and Beyandddison Wesley, 2002.

J. Conklin and M. L. Begeman. gibis: a hypertext tool for
exploratory policy discussionACM Transactions on Infor-
mation Systems (TOI3)(4):303—-331, 1988.

E. Gamma, R. Helm, R. Johnson, and J. VlissidBgsign
Patterns - Elements of Reusable Object-Oriented Software
Addison Wesley, 1994.

C. Hofmeister, R. Nord, and D. SonApplied software ar-
chitecture Addison Wesley, 2000.

A. G. J. Jansen and J. Bosch. Evaluation of tool support f
architectural evolution. IProceedings of the 19th IEEE In-
ternational Conference on Automated Software Engineering
(ASE) pages 375-378. IEEE, September 2004.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.riRal
and W. G. Griswold. An overview of Aspectilecture Notes

in Computer Scien¢c@072:327-355, 2001.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Aksit and S. Matsuoka, editoPsp-
ceedings ECOOPvolume 1241, pages 220-242. Springer-
Verlag, 1997.

P. Kruchten. An ontology of architectural design demis

in software intensive systems. 2md Groningen Workshop
on Software Variabilitypages 54—61, December 2004.

G. Malpohl. Jplag website. http://www.jplag.de/.

A classification and
comparison framework for software architecture desaipti
languages. IEEE Transactions on Software Engineering
26(1):70-93, 2000.

D. E. Perry and A. L. Wolf. Foundations for the study of
software architecturddCM SIGSOFT Software Engineering
Notes 17(4):40-52, 1992.

W. Regli, X. Hu, M. Atwood, and W. Sun. A survey of de-
sign rationale systems: Approaches, representationyi@apt
and retrieval. Engineering with Computersl6(3-4):209—
235, December 2000.

S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnow-
ing: local algorithms for document fingerprinting. 81G-
MOD ’'03: Proceedings of the 2003 ACM SIGMOD inter-
national conference on Management of dgtages 76-85,
New York, NY, USA, 2003. ACM Press.

J. Tyree and A. Akerman. Architecture decisions: Detinys
fying architecure IEEE Software22(2):19-27, 2005.

A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and
N. Medvidovic. Taming architectural evolution. Rroceed-
ings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international sympo-
sium on Foundations of software engineeripgges 1-10.
ACM Press, 2001.

R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The koala component model for consumer elec-
tronics software. IEEE Computer 33(3):78-85, march
2000.

