
Mälardalen University Press Licentiate Theses
No. 97

SOFTWARE ARCHITECTURE EVOLUTION AND SOFTWARE
EVOLVABILITY

Hongyu Pei Breivold

2009

School of Innovation, Design and Engineering

Copyright © Hongyu Pei Breivold, 2009
ISSN 1651-9256
ISBN 978-91-86135-15-7
Printed by Arkitektkopia, Västerås, Sweden

Abstract

Software is characterized by inevitable changes and increasing complexity,
which in turn may lead to huge costs unless rigorously taking into account
change accommodations. This is in particular true for long-lived systems.
For such systems, there is a need to address evolvability explicitly during
the entire lifecycle, carry out software evolution efficiently and reliably, and
prolong the productive lifetime of the software systems.

In this thesis, we study evolution of software architecture and investigate
ways to support this evolution. The central theme of the thesis is how to
analyze software evolvability, i.e. a system’s ability to easily accommodate
changes. We focus on several particular aspects: (i) what software
characteristics are necessary to constitute an evolvable software system; (ii)
how to assess evolvability in a systematic manner; (iii) what impacts need to
be considered given a certain change stimulus that results in potential
requirements the software architecture needs to adapt to, e.g. ever-changing
business requirements and advances of technology.

To improve the capability in being able to on forehand understand and
analyze systematically the impact of a change stimulus, we introduce a
software evolvability model, in which subcharacteristics of software
evolvability and corresponding measuring attributes are identified. In
addition, a further study of one particular measuring attribute, i.e.
modularity, is performed through a dependency analysis case study.

We introduce a method for analyzing software evolvability at the
architecture level. This is to ensure that the implications of the potential
improvement strategies and evolution path of the software architecture are
analyzed with respect to the evolvability subcharacteristics. This method is
proposed and piloted in an industrial setting.

The fact that change stimuli come from both technical and business
perspectives spawns two aspects that we also look into in this research, i.e.
to respectively investigate the impacts of technology-type and business-type
of change stimuli.

ii

 iii

Acknowledgements

My heartfelt thanks go to my main supervisor Prof. Ivica Crnkovic for
believing in me, and for making the creation of this thesis a thoroughly
constructive and enjoyable experience. You are a great supervisor with a
great sense of humour, and you have been unfailingly generous with your
time and your knowledge, giving me good advice and support when it is
needed.

Many thanks go also to my assistant supervisors Prof. Magnus Larsson and
Dr. Rikard Land, my industrial mentor Dr. Stig Larsson, for your constant
support and encouragement throughout this work. I also appreciate the
opportunities given by Prof. Magnus Larsson and Dr. Fredrik Ekdahl,
introducing me to the journey of research. Very special thanks to Prof.
Judith Stafford, Prof. Nenad Medvidović and Prof. Michel Chaudron for
advice and suggestions in the beginning of my research.

I am grateful to the best team of reviewers, who made time in their very
busy schedules to read and comment on my drafts. I give my sincerest
thanks to each of them, who deserve special recognition for their unique
insights and commentary: Prof. Ivica Crnkovic, Dr. Rikard Land, Dr. Stig
Larsson, Prof. Magnus Larsson, Dr. Anders Wall, Dr. Daniel Sundmark,
Peter Eriksson, Dr. Fredrik Ekdahl and Chuck Connell. Their careful
reading and practical suggestions have led to great improvements of this
work.

I would also like to thank Prof. Hans Hansson for guidance in research
planning, Dr. Gordana Dodig-Crnkovic and Dr. Jan Gustafsson for
introducing me to the research methodology, Dr. Thomas Nolte for advice
on networking and research in general, Harriet Ekwall and Monica Wasell
for helping out. Many thanks go also to colleagues from ABB, people from
the SAVE-IT industrial graduate school and BESS (Business oriented
Engineering of Software intensive Systems) research group for nice
company and discussions. Additionally, the work would not have been
possible without the support from ABB Corporate Research and KKS,
providing me with opportunities and resources for the research study.

iv

I have been lucky to get to know a group of smart and energetic people who
have given much joy and moral support. I especially want to thank Séverine
Sentilles, Aneta Vulgarakis, Dr. Pasqualina Potena, Dr. Cristina Seceleanu,
Dr. Tiberiu Seceleanu, Hüseyin Aysan, Moris Behnam, Yue Lu, Farhang
Nemati, Marcelo Santos, Iva Krasteva, Dr. Mikael Åkerholm, Dr. Dag
Nyström, Stefan Bygde, Anna Östholm, Yina Zhang and Chenyang Steen
for your friendship and nice company.

This work would not be possible without the support of my family. I
especially want to thank my parents for showing me the truths of love,
gentleness, courage and persistence. Thanks to my brother for always caring
about me and supporting me. I want also to express my immense
appreciation to Anita Sletmo, Lasse Sletmo and Stig Lundvall, who have
become one inseparable part of our family through years of deep and
genuine friendship. Thank you so much for all the tremendous help and my
gratitude to you cannot be summarized in a few words alone. Finally, I
would like to dedicate this work to my beloved husband and my wonderful
children, who have been a source of motivation and inspiration for me all
along. Thanks Jon - for your love, patience, encouragement and continued
support. Thanks Johanna, Martin and Elin - you are my sunshine!

Hongyu Pei Breivold

Linz, November, 2008

 v

List of Included Papers

Paper A Analyzing Software Evolvability, Hongyu Pei Breivold, Ivica
Crnkovic, Peter J. Eriksson, Proceedings of the 32nd IEEE
International Computer Software and Applications Conference
(COMPSAC), Turku, Finland, July, 2008

Paper B Analyzing Software Evolvability of an Industrial Automation

Control System: A Case Study, Hongyu Pei Breivold, Ivica
Crnkovic, Rikard Land, Magnus Larsson, Proceedings of the 3rd
International Conference on Software Engineering Advances
(ICSEA), IEEE, Sliema, Malta, October, 2008

Paper C Using Dependency Model to Support Software Architecture

Evolution, Hongyu Pei Breivold, Ivica Crnkovic, Rikard Land, Stig
Larsson, Proceedings of the 4th International ERCIM Workshop
on Software Evolution and Evolvability (Evol’08) at the 23rd
IEEE/ACM Intl. Conf. on Automated Software Engineering, IEEE,
L’Aquila, Italy, September, 2008

Paper D Component-Based and Service-Oriented Software Engineering:

Key Concepts and Principles, Hongyu Pei Breivold, Magnus
Larsson, Proceedings of the 33rd Euromicro Conference on
Software Engineering and Advanced Applications (SEAA),
Component Based Software Engineering (CBSE) Track, IEEE,
Lübeck, Germany, 2007

Paper E Migrating Industrial Systems towards Software Product Lines:

Experiences and Observations through Case Studies, Hongyu Pei
Breivold, Stig Larsson, Rikard Land, Proceedings of the 34th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Software Process and Product Improvement
(SPPI) Track, IEEE, Parma, Italy, September, 2008

vi

Full List of Publications

Conferences and Workshops

• Component-Based and Service-Oriented Software Engineering: Key

Concepts and Principles, Hongyu Pei Breivold, Magnus Larsson,
33rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Component-Based Software Engineering
(CBSE) Track, IEEE, Lübeck, Germany, August, 2007

• Evaluating Software Evolvability, Hongyu Pei Breivold, Ivica
Crnkovic, Peter Eriksson, 7th Conference on Software Engineering
and Practice in Sweden (SERPS), Göteborg, Sweden, October, 2007

• Analyzing Software Evolvability, Hongyu Pei Breivold, Ivica
Crnkovic, Peter J. Eriksson, 32nd IEEE International Computer
Software and Applications Conference (COMPSAC), Turku,
Finland, July, 2008

• Migrating Industrial Systems towards Software Product Lines:

Experiences and Observations through Case Studies, Hongyu Pei
Breivold, Stig Larsson, Rikard Land, 34th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA),
Software Process and Product Improvement (SPPI) Track, IEEE,
Parma, Italy, September, 2008

• Using Dependency Model to Support Software Architecture

Evolution, Hongyu Pei Breivold, Ivica Crnkovic, Rikard Land, Stig
Larsson, 4th International ERCIM Workshop on Software Evolution
and Evolvability (Evol’08) at the 23rd IEEE/ACM Intl. Conf. on
Automated Software Engineering, IEEE, L’Aquila, Italy,
September, 2008

• Analyzing Software Evolvability of an Industrial Automation

Control System: A Case Study, Hongyu Pei Breivold, Ivica
Crnkovic, Rikard Land, Magnus Larsson, 3rd International

 vii

Conference on Software Engineering Advances (ICSEA), IEEE,
Sliema, Malta, October, 2008

Technical Report

• Using Software Evolvability Model for Evolvability Analysis,
Hongyu Pei Breivold, Ivica Crnkovic, Technical Report ISSN 1404-
3041 ISRN MDH-MRTC-222/2008-1-SE, Mälardalen Real-Time
Research Center (MRTC), Mälardalen University, February, 2008

Tutorial

• Emerging Technologies in Industrial Context – Component-Based

and Service-Oriented Software Engineering, Ivica Crnkovic,
Hongyu Pei Breivold, 31st IEEE International Computer Software
and Applications Conference (COMPSAC), Beijing, China, July,
2007

viii

 ix

Table of Contents

Part 1..1

Chapter 1. Introduction ...3

1.1 Research Motivation ..4
1.2 Research Questions ..5
1.3 Thesis Overview...8

Chapter 2. Research Results..13

Chapter 3. Research Method...21

3.1 Research Process and Method..22
3.2 Validity Discussions...24

Chapter 4. Related Work...31

4.1 Software Evolution...31
4.2 Software Quality Models ...34
4.3 Software Process Models ...38
4.4 Software Architecture Evolution..42
4.5 Software Architecture Evaluation ..44
4.6 Component-Based and Service-Oriented Software Engineering ...47
4.7 Software Product Line Engineering ...48
4.8 Reverse Engineering and Reengineering52
4.9 Software Quality Metrics ...54

Chapter 5. Conclusions and Future Work ...57

5.1 Contributions..57
5.2 Future Research Directions ..58

References..61

x

Part 1

Chapter 1. Introduction

For long-lived industrial software, the largest part of lifecycle costs is
concerned with the evolution of software to meet changing requirements
[Bennett 1996]. There is a need to change software on a constant basis with
major enhancements within a short timescale in order to keep up with new
business opportunities. This puts critical demands on the software system’s
capability of rapid modification and enhancement to achieve cost-effective
software evolution.

[Lehman et al. 2000] describes two views on software evolution: what and

why versus the how perspectives. The former perspective studies the nature
of the software evolution phenomenon and investigates its driving factors
and impacts. The latter perspective studies the pragmatic aspects, i.e.
technology, methods and tools that provide the means to control software
evolution. In this research, we focus on the how perspective of software
evolution.

According to [Madhavji et al. 2006], the term evolution reflects “a process

of progressive change in the attributes of the evolving entity or that of one

or more of its constituent elements. What is accepted as progressive must be

determined in each context. It is also appropriate to apply the term

evolution when long-term change trends are beneficial, i.e. value or fitness

is increasing over time, and more adapted to a changing environment even

though isolated or short sequences of changes may appear degenerative.”
Specifically, software evolution relates to how software systems evolve over
time [Yu et al. 2008]. It is one term that expresses the software changes
during software system’s lifecycle.

One of the principle challenges in software evolution is the ability to evolve
software over time to meet the changing requirements of its stakeholders
[Nehaniv and Wernick 2007]. In this context, software evolvability is an
attribute that describes the software system’s capability to accommodate
changes. To better explain the term evolvability, we refer to the definition of
Software Evolvability in [Rowe et al. 1994]:

4 Introduction

“Software evolvability is an attribute that bears on the ability of a system to

accommodate changes in its requirements throughout the system’s lifespan

with the least possible cost while maintaining architectural integrity”

1.1 Research Motivation
The evolution of software systems is characterized by inevitable changes
and increasing complexity, which in turn may lead to huge costs unless
rigorously taking into account change accommodations. This is in particular
true for long-lived systems.

The focus of our research is primarily aimed at analyzing software
evolvability for embedded industrial systems that often have a lifetime of
10-30 years. These systems are subject to and may undergo a substantial
amount of evolutionary changes, e.g. software technology changes, system
migration to product line architecture, ever-changing managerial issues such
as demands for distributed development, and ever-changing business
decisions driven by market situations. Therefore, for such long-lived
systems, there is a need to address evolvability explicitly during the entire
lifecycle, carry out software evolution efficiently and reliably, and prolong
the productive lifetime of the software systems. As software architecture
holds a key to the possibility to implement changes in an efficient manner
[Bass et al. 2003], software architecture evolution becomes a critical part of
the software lifecycle.

According to [Weiderman et al. 1997], software evolvability is a
fundamental element for increasing strategic decisions, characteristics, and
economic value of the software. Thus, the need for greater system
evolvability is becoming recognized [Rowe and Leaney 1997]. We have also
observed this need from various cases in industrial context [Breivold et al.
2008; Christian 2006], where evolvability was identified as a very important
quality attribute that must be maintained. However, to our knowledge, there
are no systematic means for evaluating the evolvability of a system and thus
no means to analyze and compare software systems in terms of evolvability.
Therefore, the motivation of this thesis is to build up a software evolvability
model and to investigate ways to analyze the ability to evolve software.

In this thesis, we describe and make contributions to the following aspects:

1. Identify characteristics that are necessary for the evolvability of a
software system;

Introduction 5

2. Assess software evolvability in a systematic manner;

3. Investigate means for quantitatively assessing quality impact through
using specific quality metrics;

4. Analyze the corresponding impacts, given a certain type of change
stimulus.

1.2 Research Questions
We describe in the previous section that software architecture evolution is a
critical part of software lifecycle, and that there is a need to explicitly
address software evolvability. Therefore, the overall question of this thesis
is:

How to analyze the evolvability of a software system?

Before we can determine how to analyze software evolvability, we need to
understand what characteristics of software constitute the evolvability of a
software system, i.e. what characteristics of software make it easier to
change a software system as requirements evolve. To this end, we formulate
the following research question which provides a starting point for further
research:

What subcharacteristics are of primary importance for

the evolvability of a software system? (Q1)

Once we know what subcharacteristics are of primary importance for the
evolvability of a software system, we would like to have the means to assess
software evolvability. Thus, the next question relates to the assessment of
software evolvability in terms of subcharacteristics:

How can software evolvability be assessed in a systematic

manner? (Q2)

According to [Yang and Ward 2003], software evolvability concerns both
business and technical perspectives, as the stimuli of changes in software
evolution can be related to both. Any change stimulus results in a collection
of potential requirements that the software architecture needs to adapt to.
Some examples of change stimuli are changes in environment, organization,
process, technology and stakeholders’ needs. These change stimuli have
impact on the software system in terms of software architecture and its
quality attributes. Thus, the next question relates to the impact analysis of a
given change stimulus:

6 Introduction

Given a certain type of change stimulus, what kind of

impacts need to be considered? (Q3)

1.2.1 Detailed Studies
Detailed studies have been performed with respect to the research questions
Q1 and Q3. We describe in this section the more detailed and specific
research questions that are relevant to Q1 and Q3.

As a continuation of the first research question Q1, one additional
contribution of the thesis is a deeper study of one of the measuring attributes
identified in the answer to the first research question. Part of the answer to
Q1 is an evolvability model which refines software evolvability into a
collection of subcharacteristics that can be measured through a number of
measuring attributes. The next research question is a continuation of Q1 and
further explores one particular measuring attribute, i.e. modularity. The
choice of focusing on software modularity is motivated mainly by the fact
that modularity affects the behavior of a design with respect to most of the
evolvability subcharacteristics, and that not much data has been published
with respect to large scale industrial software systems [LaMantia et al.
2008]. This leads to the following detailed research question:

What modularization means can be used to support

software architecture evolution? (Q1.1)

To answer the research question Q3, we have performed two case studies
that represent two different types of change stimuli, i.e. technology-type and
business-type. This is due to the fact that software evolvability concerns
both technical and business issues [Yang and Ward 2003]. Thus we look
into both technical and business aspects. These two aspects are further
expressed through the subsequent two detailed research questions Q3.1 and
Q3.2.

(1) Investigate the impact of technology-type change stimuli

With frequent advances in software engineering, the need to evolve software
arises. As a consequence, software evolution faces different problems and
challenges as new technologies are introduced. It has been witnessed that
designing and implementing a large scale and complex system is a
challenging task [Crnkovic and Larsson 2002]. In this thesis, we focus on
two of the most well recognized software engineering paradigms coping
with this challenge, i.e. component-based software engineering (CBSE) and

Introduction 7

service-oriented software engineering (SOSE). Thus, the next question
relates to the impact analysis of the advances of technological paradigms:

Given the technology-type change stimulus of introducing

SOSE to CBSE, what impacts need to be considered? (Q3.1)

(2) Investigate the impact of business-type change stimuli

One of the main difficulties of software evolution is that all artifacts
produced and used during the entire software lifecycle are subject to
changes [Mens and Demeyer 2008]. Meanwhile, to keep up with new
business opportunities, the need for differentiation in the marketplace, with
short time-to-market as part of the need, has put critical demands on the
effectiveness of software reuse. In this context, the change stimuli come
from the business perspective. Accordingly, software product line approach
has emerged as one specific type of software evolution, and has become one
of the most established strategies for achieving large-scale software reuse
and ensuring rapid development of new products [Birk et al. 2003].
However, product line development seldom starts from scratch. Instead, it is
very often based on existing legacy implementations [Kotonya and
Hutchinson 2008], and the issue of keeping legacy systems operational
becomes critical. Accordingly, an important and challenging type of
software evolution is how to cost-effectively manage the migration of legacy
systems towards product lines. This leads to the following research
question:

Given the business-type change stimulus of adopting a

product line approach, what impacts need to be

considered from a software evolution perspective? (Q3.2)

8 Introduction

1.3 Thesis Overview
The thesis is divided into two parts. The first part comprises a summary of
the research. Chapter 1 describes the background, motivation and research
questions of the performed research. Chapter 2 describes the research
results, by recapitulating the research questions. Chapter 3 discusses the
method used and the validity of the presented research. Chapter 4 surveys
related work. Chapter 5 concludes the thesis and outlines future work that
formulates potential tracks for further PhD studies.

The second part of this thesis is a collection of peer-reviewed conference
and workshop papers that document details of the answers to the research
questions, methods, and results. The following papers are included in this
part:

Paper A “Analyzing Software Evolvability”. Hongyu Pei Breivold, Ivica
Crnkovic, Peter J. Eriksson. Proceedings of the 32

nd
 IEEE

International Computer Software and Applications Conference

(COMPSAC), Turku, Finland, July, 2008.

This paper contributes to the answer to the first research question
Q1. The paper describes the initial establishment of an evolvability
model as a framework for the analysis of software evolvability.
We motivate and exemplify the model through an industrial case
study of a software-intensive automation system.

I was the main author and contributed with the proposed
evolvability model and the case study. The coauthors contributed
with advices regarding the research method, discussions regarding
the analysis and reviews.

Paper B “Analyzing Software Evolvability of an Industrial Automation
Control System: A Case Study”. Hongyu Pei Breivold, Ivica
Crnkovic, Rikard Land, Magnus Larsson. Proceedings of the 3

rd

International Conference on Software Engineering Advances

(ICSEA), IEEE, Sliema, Malta, October, 2008.

This paper contributes to the answer to the second research
question Q2. The paper describes our work in analyzing software
evolvability of an industrial automation control system, and
presents 1) evolvability subcharacteristics based on the problems
in the case and available literature; 2) a structured method for

Introduction 9

analyzing software evolvability at the architectural level - the
ARchitecture Evolvability Analysis (AREA) method. This paper
includes also the main analysis results and our observations during
the evolvability analysis process in the case study.

I was the main author and contributed with the description of the
proposed evolvability analysis method, the case study, the analysis
results and conclusions. The coauthors contributed with advice
regarding research method, discussions regarding the analysis and
reviews.

Paper C “Using Dependency Model to Support Software Architecture
Evolution”. Hongyu Pei Breivold, Ivica Crnkovic, Rikard Land,
Stig Larsson. Proceedings of the 4

th
 International ERCIM

Workshop on Software Evolution and Evolvability (Evol’08) at the

23rd IEEE/ACM Intl. Conf. on Automated Software Engineering,

IEEE, L’Aquila, Italy, September, 2008.

This paper contributes to the answer to the research question Q1.1.
The paper explores the relationships between software
evolvability, modularity and inter-module dependency, as
designing software for ease of extension and contraction depends
on how well the software structure is organized. Through a case
study of an industrial power control and protection system, we
describe our work in managing its software architecture evolution,
guided by the static dependency analysis at the architectural level.
The paper includes also the main analysis results, experiences and
reflections during the dependency analysis process in the case
study.

I was the main author and led the case study. I contributed with the
description of managing software architecture evolution using the
dependency analysis results as inputs, as well as the analysis and
conclusions. The coauthors contributed with advice regarding the
case description and reviews.

Paper D “Component-Based and Service-Oriented Software Engineering:
Key Concepts and Principles”. Hongyu Pei Breivold, Magnus
Larsson. Proceedings of the 33

rd
 Euromicro Conference on

Software Engineering and Advanced Applications (SEAA),

Component Based Software Engineering (CBSE) Track, IEEE,
Lübeck, Germany, 2007.

10 Introduction

This paper contributes to the answer to the research question Q3.1.
The paper describes a comparison analysis framework of
Component-Based Software Engineering (CBSE) and Service-
Oriented Software Engineering (SOSE), and analyzes them from a
variety of perspectives. We discuss as well the possibility of
combining the strengths of the two engineering paradigms for
improved quality attributes. This paper clarifies the characteristics
of CBSE and SOSE, tries to shorten the gap between them and
bring the two worlds together so that researchers and practitioners
become aware of essential issues of both paradigms. Clarifying the
characteristics of CBSE and SOSE may serve as inputs for further
utilizing them in a reasonable and complementary way.

I was the main author and contributed with the comparison
analysis framework, the analysis and conclusions. The coauthor
contributed with advice and discussions regarding the analysis and
reviews. In addition, Prof. Ivica Crnkovic contributed with
valuable feedback and comments through reviews.

Paper E “Migrating Industrial Systems towards Software Product Lines:
Experiences and Observations through Case Studies”. Hongyu Pei
Breivold, Stig Larsson, Rikard Land. Proceedings of the 34

th

Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Software Process and Product Improvement

(SPPI) Track, IEEE, Parma, Italy, September, 2008.

This paper contributes to the answer to the research question Q3.2.
The paper presents a product line migration method and describes
our experiences in migrating industrial legacy systems into product
lines. The migration method focuses on the migration process
when the migration decision has been made. In addition, we
present a number of recommendations for the transition process.
They are of value to organizations that are considering a product
line approach to their business. The recommendations cover four
perspectives, i.e. business, organization, product development
processes and technology.

I was the main author and contributed with the description of
recommended practices in product line migration, the analysis and
conclusions. The coauthors contributed with advice regarding
research method and reviews.

Introduction 11

In addition, the following report is indirectly related to the thesis. Part of
the results from this report has been used in the preparation of part 1 of this
thesis:

- “Using Software Evolvability Model for Evolvability Analysis”,
Hongyu Pei Breivold, Ivica Crnkovic, Technical Report ISSN 1404-

3041 ISRN MDH-MRTC-222/2008-1-SE, Mälardalen Real-Time

Research Center, Mälardalen University, February, 2008 [Breivold
and Crnkovic 2008]

Chapter 2. Research Results

This chapter provides a brief overview the research results. The details are
presented in the appended papers in the second part of the thesis.

We describe in section 1.2 that the overall question motivating the thesis is:

How to analyze the evolvability of a software system?

We further refine this question into several concrete research questions. For
each of these questions, we present an answer here and relate the research
questions with the individual papers included in this thesis.

What subcharacteristics are of primary importance for

the evolvability of a software system? (Q1)

The subcharacteristics that are of primary importance for software
evolvability in a given context (long-lived software-intensive systems) are
described in paper A and B: Analyzability, Architectural Integrity,
Changeability, Extensibility, Portability, Testability and Domain-specific

Attributes. These subcharacteristics are identified based on the analysis of
the software quality challenges and assessment [Fitzpatrick et al. 2004], the
types of change stimuli and evolution [Chapin et al. 2001], the taxonomy of
software change based on various dimensions that characterize or influence
the mechanisms of change [Buckley et al. 2004], and experiences we gained
in industrial case studies [Breivold and Crnkovic 2008]. Paper A outlines a
software evolvability model, in which subcharacteristics of software
evolvability and corresponding measuring attributes are identified. The idea
with the evolvability model is to further derive the identified
subcharacteristics to the extent when we are able to quantify them and/or
make appropriate reasoning about the quality of the attributes. This model is
established as a first step towards analyzing and quantifying evolvability, a
base and check point for evolvability evaluation and improvement.
Additionally, paper B describes evolvability subcharacteristics, correlating
to the problems in the case of an industrial automation control system.

14 Research Results

How can software evolvability be assessed in a systematic

manner? (Q2)

Paper B describes our work in analyzing an industrial automation control
system, driven by the need to improve its evolvability. A structured method
has been proposed and piloted for analyzing evolvability at the architectural
level, i.e. the ARchitecture Evolvability Analysis (AREA) method. The
method consists of three phases:
Phase 1: Analyze the implications of change stimuli on software

architecture. As change stimuli have impact on the software system in
terms of software structures and/or functionality, this phase analyzes the
impact of change stimuli on the current architecture. Phase 1 consists of the
following two steps:

- Step 1.1: Identify potential requirements in the software

architecture. The aim of this step is to extract potential
requirements that are essential for software architecture to
accommodate change stimuli.

- Step 1.2: Prioritize potential requirements in the software

architecture. All the potential requirements identified from the first
step need to be prioritized, in order to establish a basis for common
understanding of the architecture requirements among stakeholders
within the organization.

Phase 2: Analyze and prepare the software architecture to

accommodate change stimuli and potential future changes. This phase
focuses on the identification of potential improvement proposals for the
components that need to be refactored. Phase 2 consists of the following
four steps:

- Step 2.1: Extract architectural constructs related to the

respective identified requirement. We mainly focus on
architectural constructs that are related to each identified potential
architectural requirement.

- Step 2.2: Identify refactoring components for each identified

requirement. In this step, we identify the components that need
refactoring in order to fulfill the prioritized requirements.

- Step 2.3: Identify and assess potential refactoring solutions from

technical and business perspectives. Potential refactoring
proposals are identified and design decisions are taken in order to
fulfill the requirements derived from the first phase. The change

Research Results 15

propagation of the effect of refactoring need to be considered, as it
provides an input to the business assessment, estimating the cost and
effort in refactoring work.

- Step 2.4: Define test cases. New test cases that cover the affected
component, modules or subsystems are identified.

Phase 3: Finalize the evaluation. In this phase, the previous results are
incorporated, analyzed and structured into a collection of documents.

- Step 3.1: Analyze and present evaluation results. The evaluation
results include (i) the identified and prioritized potential
requirements on the software architecture; (ii) the identified
components/modules that need to be refactored for enhancement or
adaptation; (iii) refactoring investigation documentation which
describes the current situation, the new requirements, potential
improvement proposals and respective rationale to each identified
candidate that need to be refactored, including estimated workload;
(iv) test scenarios; and (v) impact analysis on evolvability in terms
of each subcharacteristic.

Through the evolvability analysis process, the implications of the potential
improvement proposals and evolution path of the software architecture are
analyzed with respect to the evolvability subcharacteristics. The result is
that the architecture requirements, corresponding architectural decisions,
rationale and architecture evolution path become more explicit, better
founded and documented, and that the resulting documentation of
refactoring improvement proposals are widely accepted by the involved
stakeholders.

Detailed Studies

What modularization means can be used to support

software architecture evolution? (Q1.1)

Through an industrial case study in static dependency analysis, paper C
explores the relationship between software evolvability, modularity and
inter-module dependency. Inter-module dependency is one of many
indicators and measures for achieving modularity. One way to visualize
these inter-module dependencies is through the Design Structure Matrix
(DSM), which is a representation and analysis mechanism for system
modeling with respect to system decomposition and integration. Paper C
describes also the experiences and reflections on using dependency model to

16 Research Results

support software architecture evolution. In addition, as part of the
dependency analysis process, some means for providing modularization are
identified, e.g.

- Design principles

- Software engineering paradigms

- Object-oriented design patterns

- Formal specification

- Programming languages

- Modeling techniques

- Architecture styles

These means can be used to support software evolution and to provide one
way to let some part of a system change independently of all other parts. An
additional observation is the potential of combining different means for
improved modularization and quality attributes, thus to support software
evolution.

Given the technology-type change stimulus of introducing

SOSE to CBSE, what impacts need to be considered? (Q3.1)

In order to analyze the impacts of the introduction of SOSE to CBSE, the
first step is to achieve good understandings of the characteristics of and
possibilities provided by the two engineering paradigms. Accordingly,
taking CBSE and SOSE engineering paradigms as examples, paper D
exemplifies the necessity of making analysis and exploration of both
existing and emerging technologies for better understanding and utilization
of both. Paper D presents a comparison framework for component-based and
service-oriented software engineering from the following perspectives:

- Key concepts with respect to module, specification, interface and
assembly;

- Key principles with respect to coupling, self describing, self
contained, state and location transparency;

- Development process;

- Technology concerns with respect to technology neutrality,
encapsulation, and static vs. dynamic;

- Quality concerns e.g. reusability, substitutability and
interoperability;

Research Results 17

- Composition concerns e.g. heterogeneous vs. homogeneous
composition, design time/run time composition and composition
mechanisms, as wells as predictability.

In paper D, a brief discussion of reasonable utilization, combination and
adaptation of the two paradigms is also outlined through looking into a set
of research studies in how they have been used for improved quality
attributes. The result is that as both CBSE and SOSE can co-exist in
enterprise systems and complement each other [Wang and Fung 2004], a
good understanding of both technologies and a thorough analysis of their
impacts on quality attributes will lead to more efficient combination and
adaptation of these paradigms in future software development.

In this thesis, we have only partially answered the research question Q3.1
through providing an explicit clarification of the concepts, principles and
characteristics of CBSE and SOSE. This is the first necessary step before
further exploration in efficient utilization and reasonable combination of
CBSE and SOSE in future applications. It is also a necessary step before
further investigation of the impacts of the introduction of SOSE to CBSE.
However, a continuation of further investigations of the impacts of the
introduction of SOSE to CBSE is not within the focus of this thesis. It
remains to be one of the areas for future work (refer to chapter 5).

Given the business-type change stimulus of adopting a

product line approach, what impacts need to be

considered from a software evolution perspective? (Q3.2)

In order to analyze the impacts of the adoption of a product line approach,
we performed two industrial case studies, driven by the need to transform
the existing legacy systems towards product line architectures in order to
improve evolvability. Paper E describes our work in these two cases and
proposes a structured product line migration method with focus on the
migration process when the migration decision has been made. The method
consists of five steps:

- Step 1: Identify requirements on the software architecture. In
this step, requirements essential for a cost-effective software
architecture transition to product line architecture are extracted.

- Step 2: Identify commonalities and variability. In this step,
common core assets and variability to facilitate product derivation
are identified.

18 Research Results

- Step 3: Restructure architecture. In this step, the product line
architecture is constructed.

- Step 4: Incorporate commonality and variability. In this step,
feasible realization mechanisms and potential improvement
proposals to facilitate the revised product line architecture are
defined.

- Step 5: Evaluate software architecture quality attributes. In this
step, the impact of potential improvement proposals on the quality
attributes of the product line architecture is evaluated.

In addition, applying a software product line approach to legacy systems
requires that care is taken to ensure that critical aspects are considered for a
smooth and successful product line migration. Through the two industrial
cases, observations have been made with respect to business, organization,
development process and technology perspectives when adopting a product
line approach. These observations and experiences from the case studies are
also described in paper E to recommend practices that are particularly
useful. Some examples are:

Business perspective:

- Different triggers for decisions to adopt a product line approach
exist. Business objectives motivate architecture and process
changes. The triggers for these changes might appear different
although the decision to have a product line approach might be the
same.

- Improve risk management through constant progress measuring.

Organization perspective:

- Product managers for different products using the product line
architecture should synchronize needs.

- Define roles, responsibilities and ways to share technology assets.

Process perspective:

- Perform the migration to product lines through incremental
transitions.

- Ensure communication between technology core team and
implementation team.

Technology perspective:

- Use tool support for dependency analysis.

Research Results 19

- Use architecture documentation to improve architectural integrity
and consistency.

- Carefully define variation points and realization mechanisms.

2.1 Summary of Thesis Contributions
The contributions of the thesis are visualized in Figure 1.

Evolvability

QoS

Metrics

Subcharacteristics

Measuring Attributes

-is refined to

-is refined to

-is measured by

-reason about

Change Stimuli

-is influenced by

ARrchitecture

Evolvability Analysis

(AREA) Method

-is assessed by

Business

Perspective

Technology

Perspective

-relates to

-relates to

State-of-the-art and State-of-

the-practice Studies of the

Impacts of the Introduction of

SOSE to CBSE

Case Studies in Migrating

Legacy Systems towards

Product Lines

-is exemplified with -is exemplified with

A Case Study in Using Dependency

Model to Explore One Measuring

Attribute - Modularity, Which Affects

the Behavior of a Design with

Respect to Most of the Evolvability

Subcharacteristics

-is exemplified with

Figure 1. Contributions of the Thesis

We outline in this thesis a software evolvability model that provides a basis
for analyzing and evaluating software evolvability. This model refines
software evolvability into a collection of subcharacteristics that can be
measured through a number of measuring attributes. Moreover, we further
explore one particular measuring attribute, i.e. modularity, which affects the
behavior of a design with respect to most of the evolvability
subcharacteristics. This is because designing software for ease of extension
and contraction depends on how well the software structure is organized,
and modular designs are argued to be more evolvable, i.e. these designs
facilitate making future adaptations.

We introduce a structured method for analyzing evolvability at the
architectural level - the ARchitecture Evolvability Analysis (AREA) method
that focuses on improving the capability in being able to on forehand
understand and analyze systematically the impact of a change stimulus. The
method is studied in an industrial setting.

The fact that change stimuli come from both technical and business
perspectives spawns two aspects that we also focus on in the thesis, i.e. to

20 Research Results

investigate the impact of technology-type and business-type of change
stimuli. For technology-type of change stimulus, we take CBSE and SOSE
engineering paradigms as examples and investigate the impact of the
emergence of a new engineering paradigm. We exemplify the necessity of
making analysis and exploration of both existing and emerging technologies.
For business-type of change stimulus, we focus on managing the migration
of legacy systems towards product lines due to the need for differentiation in
the marketplace, with short time-to-market as part of the need. Two
industrial cases are studied in detail. Observations are made with respect to
business, organization, development process and technology perspectives
when adopting a product line approach. The experiences from the case
studies are also described to recommend practices that are particularly
useful.

Chapter 3. Research Method

This chapter includes an overview of the relevant research methods used in
software engineering and how these methods are used in the research
presented in this thesis. Some of the papers included in the thesis describe
how a specific method is applied in that part of the research. The general
research process and the overall validity of the studies are discussed here.

The ACM SIGCSE committee on teaching Computer Science Research
Methods (SIGCSE-CSRM) [SIGCSE] describes a research process
framework [Holz et al. 2006]. The framework consists of four different
questions that as a whole describe the general research process:

- Question A: What do we want to achieve?

- Question B: Where does the data come from?

- Question C: What do we do with the data?

- Question D: Have we achieved our goal?

To answer these questions in the general research process, different research
methods have been outlined [Holz et al. 2006]. Moreover, Shaw
characterizes software engineering research and develops a research
classification framework, which describes the kind of answers that are of
interest for software engineering research, the research methods that are
adopted and the criteria for evaluating the results [Shaw 2002]. She
classifies research based on the type of the following three aspects:

- Research questions: What kinds of research questions are interesting
for software engineering researchers? This corresponds to question
A in the general research framework, i.e. what do we want to
achieve?

- Research results: A classification of the kind of research results,
which help to answer the research questions. This covers question C
in the general research framework, i.e. what do we do with the data?
This also covers question B, i.e. where does the data come from?

22 Research Method

- Validation techniques: The framework classifies the kind of
evidence that can be used to demonstrate the validity of the result.
This relates to question D in the general research framework, i.e.
have we achieved our goal?

The detailed descriptions of the research questions and the research results
are covered in chapter 1 and chapter 2 respectively. The research process
and method as well as the validity of the research results are discussed in the
following sections.

3.1 Research Process and Method

The research process conducted in this thesis consists of the following steps:

1. Analysis of the state-of-the-art and state-of-the-practice of the existing
software quality models (refer to section 4.2) for software evolution;

2. Analysis of the state-of-the-art and state-of-the-practice of the existing
software process models (refer to section 4.3) for software evolution;

3. Case studies performed to understand subcharacteristics of the
evolvability of a software system;

4. Analysis of the state-of-the-art and state-of-the-practice of component-
based and service-oriented software engineering (refer to section 4.6) to
investigate impacts of technology advances;

5. Case studies performed to investigate impacts of migrating legacy
software systems to the product line software development (refer to
section 4.7).

Through the first two steps, a thorough investigation of the well-known
software quality models is made and the idea of a characterization of
software architecture evolvability is outlined. Afterwards, a characterization
of the evolvability of an industrial software system is studied and created in
the third step. This characterization and the results from the case study are
reported in paper A and B. Furthermore, paper C reports an in-depth study
of one of the measuring attributes identified in the evolvability
characterization. The analysis of the particular measuring attribute is
performed through another industrial case study, in which the software
architecture evolution is supported through the usage of dependency model.
The data collection for paper D is based on literature surveys through the

Research Method 23

fourth step. The fifth step includes two case studies with two different
development organizations in different domains to address the impacts of
product line migration. The migration process and the results from the case
studies are reported in paper E.

A summary of the computing research methods can be found in [Holz et al.
2006]. Among them, the following specific research methods are used in
this thesis for data collection:

- Interview [Benyon et al. 2005]: This is a research method for
gathering information. People are posed questions by an
interviewer. The interviews may be structured or unstructured both
in the questions asked by the interviewer, as well as the answers
available to the interview subject. In the research presented in this
thesis, we performed unstructured interviews.

- Critical Analysis of the Literature [Zelkowitz and Wallace 1997]:
This research method is a historical method, which collects and
analyzes data from published material. Literature search requires the
investigator to analyze the results of papers and other documents
that are publicly available. The research context and background to
paper A (regarding the analysis of existing software quality models)
and paper D (regarding the state-of-the-art and state-of-the-practice
of CBSE and SOSE) are originated from this specific method.

- Lessons-learned [Zelkowitz and Wallace 1997]: Lessons-learned
documents are often produced after a large industrial project is
completed, whether data is collected or not. A study of these
documents often reveals qualitative aspects which can be used to
improve future developments. Parts of the results reported in paper
C (regarding the experiences and reflections through the
dependency analysis) and paper E (regarding the observations and
recommendations in product line migration) are lessons-learned
throughout the case study executions.

- Qualitative Research [Gay and Airasian 1999]: This method is the
collection of extensive narrative data on many variables over an
extended period of time, in a naturalistic setting, in order to gain
insights not possible using other types of research. The results
presented in paper B (regarding the impact analysis of potential
refactoring solutions on evolvability subcharacteristics) belong to
this category.

24 Research Method

- Quantitative Research [Gay and Airasian 1999]: This method is the
collection of numerical data in order to explain, predict and/or
control phenomena of interest. The results presented in paper C
(regarding the inter-module dependencies) belong to this category.

- Case Study [Fenton and Pfleeger 1997]: This is a research technique
in which key factors that may affect the outcome of an activity are
identified and the activity are documented, including its inputs,
constraints, resources and outputs. Two types of case study are
described in [Yin 2003]. They are:

- Single Case: It examines a single organization, group, or system
in detail; involves no variable manipulation, experimental
design or controls. The results presented in paper B (regarding
the software evolvability analysis) are derived from a single
organization and belong to this category.

- Multiple Case Studies: They are as for single case studies, but
carried out in a small number of organizations or context. The
results presented in paper E (regarding the observations and
experiences gained through the product line migration process)
are derived from two organizations in two different domains and
belong to this category.

3.2 Validity Discussions
Based on [Yin 2003] and [Wohlin and Wesslen 2000], four types of validity
are considered in this thesis: construct validity, internal validity, external
validity, and reliability.

Construct validity relates to the collected data and how well the data
represent the investigated phenomenon, i.e. it is about ensuring that the
construction of the study actually relates to the research problem and the
chosen sources of information are relevant. The construct validity can be
increased through the following tactics [Yin 2003]:

- Use multiple sources of evidence;

- Establish chain of evidence;

- Have key informants review draft of case study report.

Internal validity concerns the connection between the observed behavior
and the proposed explanation for the behavior, i.e. it is about ensuring that

Research Method 25

the actual conclusions are true. The internal validity is ‘only a concern for
causal (or explanatory) case studies’ [Yin 2003]. It can be increased through
the following tactics:

- Do pattern-matching;

- Do explanation-building;

- Address rival explanations;

- Use logic models.

External validity concerns the possibilities to generalize the results from a
study. It can be increased through the following tactics [Yin 2003]:

- Use theory in single-case studies;

- Use replication logic in multiple-case studies.

Reliability concerns the possibilities to reach the same conclusions if the
study is repeated by another researcher. It can be increased through the
following tactics [Yin 2003]:

- Use case study protocol;

- Develop case study database.

Because the ways for the data collection and research design vary when we
answer each research question, we go through each research question in the
following subsections and describe respective type of the validation used.

3.2.1 Research Question 1: What subcharacteristics are of
primary importance for the evolvability of a software
system?
The construct validity is addressed through using multiple sources of
evidence, including critical analysis of the existing literature and an
industrial case study [Breivold and Crnkovic 2008]. We collect and analyze
data from published materials. The criteria on which the literature is being
evaluated include software evolution related areas which cover a broad
range of topics, such as software quality models, software process models,
software quality metrics, and software architecture evaluation. In addition,
the industrial case study, though is a single-case, is a representative and
typical case which captures the commonplace situation of large complex
software systems.

Our case study is explorative, and hence less sensitive to the internal

validity which is only a concern for causal (or explanatory) case studies.

26 Research Method

The external validity is addressed through analytical generalizations in the
case study. However, we do not exclude the possibilities that other domains
or cases might have extended or different set of evolvability
subcharacteristics. We cannot with certainty say that this is the case. Further
studies are needed in order to draw such conclusions. For this reason we
precisely defined the scope and the context of the research.

A basis for achieving reliability is to have a well-documented case study
protocol, which is the case in the research presented in this thesis. The
documentation on architectural requirements and quality improvement
requirements is available. However, different people might interpret textual
materials in different ways, which might lead to different set of abstractions
on evolvability subcharacteristics. We address this by having the key
software architect and several researchers to review the documents, e.g.
software architecture requirements, and documents concerning the analysis
of the case study.

3.2.2 Research Question 2: How can software evolvability
be assessed in a systematic manner?
The construct validity is addressed through triangulation, i.e. multiple
sources for the data in the project:

- Architecture workshops with stakeholders to extract potential
architectural requirements; these architectural requirements are
checked against the evolvability subcharacteristics for the
justification of whether the realization of each requirement would
lead to an improvement of the subcharacteristics (or possibly a
decrease, which would then require a tradeoff decision).

- The involvement of software architects and senior software
developers in the analysis process;

- The researchers’ experiences and involvement in the software
product development;

- Discussions with involved stakeholders on software architecture
requirement documents, potential architecture improvement
proposals and their respective quality impact analysis to ensure
software evolvability and to avoid risks to its decrease.

Our case study is explorative, and hence less sensitive to the internal

validity which is only a concern for causal (or explanatory) case studies.

Research Method 27

The external validity is addressed through analytical generalizations in the
case study, in which we perform and pilot the software evolvability analysis
method. A possible consideration is whether the analysis method can be
generalized to a different organization or a different domain. We assume
that the analysis method can be generalized, as the method and the
procedures in performing the method are not constrained by any domain or
organization related factors. However, further studies are needed in order to
further refine and validate the method. Another perspective with respect to
the external validity is to perform new evolvability assessment case studies
and compare the results, including the estimation of the efforts needed to
analyze evolvability. This can be done in stages, i.e. firstly, in the same or
similar domain/context, and secondly, in different contexts. This multiple
case study remains to be done.

Reliability is addressed through the detailed description of the procedures
used in the analysis method, proper documentation of the results in each
performed step in the case study, as well as reviews of the software
architecture requirement documents and the potential architecture
improvement proposals by the involved software architects, senior software
developers and researchers.

3.2.3 Research Question 1.1: What modularization means
can be used to support software architecture evolution?
The construct validity is addressed through triangulation. One of the means
applied in the case study is using dependency model to support software
architecture evolution. The idea is to use inter-module dependency as one of
many indicators and measures for achieving modularity. A subset of the
complete software system is analyzed through using inter-module
dependency to measure its modularity. The modularization is performed
through simulating changes in the dependency model without of making any
modifications to the actual source code. Afterwards, the resulting modularity
is compared with the previous one before the simulated changes.

Our case study is explorative, and hence less sensitive to the internal

validity which is only a concern for causal (or explanatory) case studies.

The external validity is addressed through analytical generalizations in the
case study. The purpose of the analysis in the case study is to visualize
dependencies to provide indications to the hotspots in the software
architecture and software implementation, thus to support the software
architecture evolution. The conclusion of using dependency model to

28 Research Method

support software architecture evolution can be generalized, as the inter-
module dependency is an objectively quantitative indicator.

Reliability is addressed through the detailed description of the procedures
performed in the dependency analysis process, proper documentation of the
resulting dependency model from each step in the case study, as well as
reviews of the software architecture improvement proposals by the
stakeholders and researchers. Our software evolution experiences with
respect to the reflections from the dependency analysis process are gained
through:

- The daily meetings with the stakeholders, e.g. the software architect
and senior software developers to discuss the progress and the
solutions to any encountered problems;

- The researchers’ experiences and involvement in the software
product development;

- The reviewing of software architecture analysis documents and
potential improvement proposals to ensure that the collected data is
relevant.

3.2.4 Research Question 3.1: Given the technology-type
change stimulus of introducing SOSE to CBSE, what
impacts need to be considered?
The construct validity is addressed through critical analysis of the existing
literature with regard to component-based and service-oriented software
engineering, as well as through the reviews from several researchers in these
areas. We collect and analyze data from published materials [Crnkovic and
Larsson 2002; Stojanovic and Dahanayake 2005] and other related
publications. The criteria on which the literature is being evaluated include
component-based and service-oriented software engineering related areas as
well as their utilizations.

Our case study is explorative, and hence less sensitive to the internal

validity which is only a concern for causal (or explanatory) case studies.

The external validity is addressed through analytical generalizations from
the evaluated literatures. We introduce the comparison framework between
CBSE and SOSE, through characterizing the key concepts, key principles,
quality concerns, composition mechanisms, utilization and combination of
both technologies. The conclusion of the paper is ‘a good understanding of
both technologies and a thorough analysis of their impacts on quality

Research Method 29

attributes will lead to more efficient combination and adaptation of these
paradigms in future software development’. This conclusion is based on the
comparison framework and related works that describe how the two
technologies have been combined for improved quality attributes. We
assume that the conclusion from the analysis can be generalized with any
technology-type of change stimuli due to the abstraction level.

Reliability is addressed through well-structured data collection from the
literatures. However, different people might interpret textual materials in
different ways, which might lead to different set of abstractions and slightly
different comparison framework. We address this by having several
researchers to review the proposed comparison framework.

3.2.5 Research Question 3.2: Given the business-type
change stimulus of adopting a product line approach, what
impacts need to be considered from a software evolution
perspective?
The construct validity is addressed through triangulation. The reported
migration experiences and observations are gained through multiple sources
for the data in the project:

- Analysis of two different industrial software systems from two
different domains;

- Analysis of two different organization structures with distributed
development teams;

- The involvement of the stakeholders of different roles (e.g. product
management, software architects and senior software developers)
for each case study;

- The researchers’ experiences and involvement in the software
product development to ensure that the collected data is relevant;

- Regular meetings and workshops for open discussions.

Our case study is explorative, and hence less sensitive to the internal

validity which is only a concern for causal (or explanatory) case studies.

The external validity is addressed through the selection of studied systems
from two different domains, including automation control system, power
protection and control system. Besides, external validity is also addressed
through the selection of different organizations with different organization
structures. The product line development is organized in two ways: (i) in a

30 Research Method

separate product line team – one team develops the core assets while other
teams develop products; or (ii) within the product team – the development
team is responsible for both product and core asset development. Both
organization structures are reflected in the two case studies.

Reliability is addressed through the detailed description of the procedures
used in the product line migration process, proper documentation of the
results from each performed step in the case study, as well as reviews of
these documents by the stakeholders and researchers. However, different
people might interpret textual materials in different ways, which might lead
to slightly different set of observations and experiences. We address this by
having several researchers to review the experience analysis extracted from
the case studies.

Chapter 4. Related Work

This chapter relates the work in this thesis to relevant research and practice
areas, subdivided into a number of sections. In each section, there is also an
explanation of how the thesis is related to each area.

Section 1 presents a brief overview of the observed behavior of software
systems and challenges encountered during software evolution. Section 2
provides a survey of the existing well-known software quality models,
which form the basis for the establishment of our evolvability model.
Section 3 surveys the software process models as software architecture
evolution is inseparably bound to a process context, e.g. the need to cost-
effectively carry out software evolution during the software system’s
lifecycle. Section 4 briefly describes software architecture evolution with
regard to its qualitative and quantitative assessment as well as the
architectural integrity issue which is one of the aspects that we take into
consideration during evolvability analysis. Section 5 presents an overview of
software architecture evaluation methods. Good understanding of their
applicability and limitations is the basis for the proposed software
architecture evolvability analysis method in this thesis. Section 6 presents a
brief overview of component-based and service-oriented software
engineering, as one of the detailed research questions that we try to answer
in this thesis is closely related to this area. Section 7 describes briefly the
software product line engineering methods and process, which are of close
relevance as one of our detailed research questions deals with the adoption
of a product line approach. Section 8 describes reverse engineering and
reengineering, and section 9 describes briefly software quality metrics that
are related to software evolution.

4.1 Software Evolution
The laws of software evolution is formulated in [Lehman 1980; Lehman et
al. 1997], based on the observations of the IBM OS/360 operating system

32 Related Work

and the FEAST project. The term software evolution is deliberately used in
Lehman’s work to address the difference with the post-deployment activity
of software maintenance. He uses the term E-type software to denote
programs that must be evolved because they operate in or address a problem
or activity of the real world. Accordingly, changes in the real world will
affect the software and require subsequent adaptations.

The laws of software evolution encapsulate observed behavior of a number
of evolving systems over the years and are summarized as follows:

- Continuing change An E-type system that is used must be
continually adapted else it becomes progressively less satisfactory.

- Increasing complexity As an E-type system evolves its complexity
increases unless work is done to maintain or reduce it.

- Self regulation Global E-type system evolution processes are self
regulating.

- Conservation of organizational stability Average global activity rate
in an E-type process tends to remain constant over periods or
segments of system evolution.

- Conservation of familiarity The average growth rate of E-type
systems tends to remain constant or to decline.

- Continuing growth The functional capability of an E-type system
must be continually increased to maintain user satisfaction over its
lifetime.

- Declining quality Unless rigorously adapted to take into account
changes in the operational environment, the quality of E-type
systems will appear to be declining.

- Feedback system E-type software processes are multilevel, multi-
loop, multi-agent feedback systems.

The software architecture is inevitably subject to evolution due to the above-
mentioned phenomena of software evolution, for instance continuing
change, increasing complexity, continuing growth and declining quality.

Additionally, the following properties of large software systems are noted in
[Brooks 1987].

- Complexity An essential property of large software systems, leading
to the following problems:

Related Work 33

- Difficulty of communication among development team
members, leading to product flaws, cost overruns and schedule
delays;

- Difficulty of understanding all the possible states of the
program;

- Difficulty of extending programs to new functions without
creating side effects;

- Difficulty of getting an overview of the system, thus impeding
conceptual integrity.

- Conformity Many software systems are constrained by the need to
conform to human institutions and systems.

- Changeability The software entity is constantly subject to pressures
for change.

- Invisibility Software is invisible and unvisualizable. There is no
geometric representation. Instead, there are several distinct but
interacting graphs of links that represent different aspects of the
system.

The properties of large software systems noted in [Brooks 1987], e.g.
software complexity, inevitable changes of software systems and invisibility
in terms of software structure representation, further confirm the software
evolution phenomena and exhibit the intensified need on having evolvable
software systems that accommodate changes in a cost-effective way while
maintaining the architectural integrity. Without active countermeasures, the
quality of a software system will gradually degrade as the system evolves.

Moreover, software aging is inevitable. Parnas uses the metaphor of decay
to describe how and why software becomes increasingly brittle over time
[Parnas 1994]. There are two types of software aging which can lead to
rapid decline in the value of a software product. The first is caused by the
failure of the product’s owners to modify it to meet changing needs; the
second is the result of the changes that are made. Both types of software
aging in turn lead to inadequate evolvability. Following problems are
associated with software aging [Parnas 1994]:

- Inability to keep up with the market due to increasing size and
complexity;

- Reduced performance due to the gradually deteriorating structure;

34 Related Work

- Decreased reliability because of errors introduced when changes are
made.

4.1.1 Relation to the Thesis
In order to keep the system useful as it was, we must continually adapt it to
the ever-changing requirements. This exhibits the need on having an
evolvable software system. Therefore, the software evolution retraces
motivate the reasons for the thesis, i.e. we need to investigate means to
analyze, characterize and measure software evolvability.

4.2 Software Quality Models
A quality model provides a framework for quality assessment. It aims at
describing complex quality criteria through breaking them down into
concrete subcharacteristics. A general description of different quality
models can be found in [Ortega et al. 2003]. In quality models, quality
attributes are decomposed into various factors, leading to various quality
factor hierarchies. Some well-known quality models are McCall’s quality
model [McCall et al. 1977], Dromey’s quality model [Dromey 1996],
Boehm’s quality model [Boehm et al. 1978], ISO 9126 [ISO9126] and
FURPS quality model [Grady and Caswell 1987].

4.2.1 McCall’s Quality Model
McCall’s quality model [McCall et al. 1977] addresses three perspectives
for defining and identifying the quality of a software product:

- Product operation is the product’s ability to be quickly understood,
operated and capable of providing the results required by the user. It
covers modifiability, reliability, efficiency, integrity and usability.

- Product revision is the ability to undergo changes. It covers
maintainability, flexibility and testability.

- Product transition is the adaptability to new environments. It covers
portability, reusability and interoperability.

This model further details the above three perspectives into a hierarchy of
factors, criteria and metrics.

Related Work 35

4.2.2 Boehm’s Quality Model
Boehm’s quality model [Boehm et al. 1978] begins with the software’s
general utility, i.e. the high level characteristics that represent basic high-
level requirements of actual use. The general utility is refined into:

- Portability

- Utility It is further refined into reliability, efficiency and human
engineering.

- Maintainability It is further refined into testability,
understandability and modifiability.

Boehm’s quality model is similar to McCall’s quality model in that it
represents a hierarchical structure of characteristics, each of which
contributes to the total quality.

4.2.3 FURPS Quality Model
FURPS [Grady and Caswell 1987] stands for functionality, usability,
reliability, performance and supportability. Two steps are considered in this
model: setting priorities and defining quality attributes that can be
measured.

4.2.4 ISO 9126 Quality Model
ISO 9126 [ISO9126] specifies and evaluates the quality of a software
product from different perspectives. Product quality is defined as a set of
product characteristics. The characteristics that are observed by the end-user
on the final software product are called external quality characteristics. The
characteristics that relate to software development process and environment
or context are called internal quality characteristics. An external
characteristic can be measured internally, and is determined or influenced by
the internal characteristics. The model categorizes software quality
attributes into six characteristics: functionality, reliability, usability,
efficiency, maintainability and portability. One advantage of this quality
model is that it defines the internal and external quality characteristics of a
software product.

4.2.5 Dromey’s Quality Model
[Dromey 1996] proposes a working framework for evaluating requirement
determination, design and implementation phases. Corresponding to the

36 Related Work

products resulted from each stage of the development process; the
framework consists of three models:

- Requirement model The high-level attributes for the requirement
quality model are accurate, understandable, implementable,
adaptable, and process mature.

- Design model The high-level attributes for the design quality model
include accurate; effective, understandable, adaptable and process
mature.

- Implementation quality model

The information extracted from each model can be used to build, compare
and evaluate the quality of a software product. In Dromey’s quality model,
process maturity is an aspect that has not been considered in previous
models.

4.2.6 Relation to the Thesis
The quality characteristics that are addressed in these quality models are
summarized in Table 1. As shown in Table 1, the term evolvability or
similar is not explicitly used in either of the quality models. Nevertheless,
several quality attributes are correlated to software evolvability, e.g.
adaptability, extensibility and maintainability. However, based on the
definition of evolvability in [Rowe et al. 1994], the multifaceted quality
attribute software evolvability covers more aspects than adaptability,
extensibility or maintainability. Through analyzing the software quality
challenges and assessment [Fitzpatrick et al. 2004], the types of change
stimuli and evolution [Chapin et al. 2001], the taxonomy of software change
based on various dimensions that characterize or influence the mechanisms
of change [Buckley et al. 2004], and experiences we gained in industrial
case studies [Breivold and Crnkovic 2008], we have discovered that only
having a collection of the subcharacteristics of maintainability as defined in
the ISO software quality standard [ISO9126] is not sufficient for a software
system to be evolvable. This poses one of the goals for our research, i.e. to
investigate characteristics that are of primary importance for the evolvability
of a software system, and to outline a software evolvability model that
provides a basis for analyzing and evaluating software evolvability.

Related Work 37

Table 1. Quality Characteristics Addressed in Quality Models

Quality

 Characteristics M
cC

a
ll

B
o

eh
m

F
U

R
P

S

IS
O

 9
1

2
6

D
ro

m
ey

Adaptability x x

Compatibility x

Correctness x

Efficiency x x x x

Extensibility x

Flexibility x

Human Engineering x

Integrity x

Interoperability x x

Maintainability x x x x x

Modifiability x x

Performance x

Portability x x x x

Reliability x x x x x

Reusability x x

Supportability x

Testability x x x

Understandability x x

Usability x x x x

38 Related Work

4.3 Software Process Models
The primary functions of a software process model are to determine the
order of the stages involved in software development and evolution, and to
establish the transition criteria for progressing from one stage to the next
[Boehm 1988]. Several process models have been proposed and gained
widespread acceptance since the late seventies as the term software
evolution was deliberately used and recognized by the research community.
Below is an overview of the process models, with focus on those models
that take constant changes and software evolution into consideration.

4.3.1 Waterfall Model
[Royce 1987] proposes the waterfall lifecycle process for software
development. In this process, several stages are described as taking place in
sequence, i.e. requirement analysis, design, implementation, testing and
maintenance. In this process model, there is no iteration in the process.
Although the waterfall model’s approach helps eliminate many difficulties
previously encountered in software projects, the inherent limitations of this
software process model are that the separation in phases is too strict and
inflexible, and that it is often unrealistic to assume that the requirements are
known before starting the software design phase. The emphasis on fully
elaborated documents as completion criteria for early requirements and
design phases creates a primary source of difficulty when the requirements
continue to change during the entire software life cycle as in many cases.
Moreover, in this process model, the maintenance phase is the final phase of
a software system’s lifecycle. Only bug fixes and minor adjustments to the
software are performed during this phase. Therefore, the maintenance stage
needs to be expanded to represent broader activities, i.e. not only
maintaining the originally designed functions, but also adding new
functions, coping with changing environments and changing requirements.

4.3.2 Change Mini-Cycle Process Model
[Yau et al. 1978] proposes a process model with the so called change mini-
cycle, in which change impact analysis and change propagation are
identified to accommodate the fact that software changes are rarely isolated.
In this process model, software evolution is described in terms of the change
mini-cycle, which consists of several phases:

- Change request;

- Change planning includes:

Related Work 39

- Software comprehension to understand what parts of the
software will be affected by a requested change;

- Change impact analysis to predict the parts that are likely to be
affected by a change.

- Change implementation includes:

- Restructuring for change to improve the software structure or
architecture without changing the behavior;

- Change location;

- Propagation of change due to the non-local impact nature of a
change.

- Validation of change

The assumptions of the proposed process model are that the requirements
continue to change during the entire lifetime of a software project, and that
the knowledge gained during the later phases may become feedbacks to the
earlier phases.

4.3.3 Evolutionary Development Model
Gilb proposed an “evolutionary development model”, in which the key word
is incremental delivery, implying real deliveries to a real user. According to
[Gilb 1981], “You must evolve in small steps towards your goals; large step
failure kills the entire effort. And early frequent result delivery is politically
and economically wise. 2% of total is a small step that you can afford to fail
on.”

The assumption of this model is that the software engineering is, by nature,
playing with the unknown [Gilb 2002]. One way to deal with these many
unknowns is to tackle them in small increments, one at a time. These small
increments are not mere development increments. It is important to note that
they are incremental satisfaction of identified stakeholder requirements.

4.3.4 Spiral Model
The spiral model [Boehm 1988] proposed by Boehm is a risk-driven
approach to the software process rather than a primarily document-driven
approach such as the waterfall model or code-driven process such as the
evolutionary development. A typical cycle of the spiral consists of the
following steps:

- Identification of the objectives of the portion of the product being
elaborated, alternative means of implementing this portion of the

40 Related Work

product, and the constraints imposed on the application of the
alternatives;

- Evaluation of the alternatives relative to the objectives and
constraints to identify risks;

- Risk resolution;

- Development and verification of next level product.

In this process model, prototyping is incorporated as a risk reduction option
at any stage of development. In addition, the model accommodates reworks
or go-backs to earlier stages as new alternatives are identified or as new risk
issues need resolution.

4.3.5 Staged Model
[Bennett and Rajlich 2000] explicitly takes into account the issue of
software aging [Parnas 1994] and proposes the staged model which
represents the software lifecycle as a sequence of the following stages:

- Initial development develops the first version of the software system
to ensure that subsequent evolution can be achieved easily;

- Evolution stage implements any kind of modification to the software
system;

- Servicing stage implements and tests tactical changes to the
software through applying small patches to keep the software up and
running;

- Phase out and close down stages manage the software towards the
end of its life.

In this model, during the initial development, the main need is to ensure that
the subsequent evolution can be achieved easily. During the evolution stage,
the software architecture evolution is essential to respond to unexpected
new user requirements. Meanwhile, we need to extend and adapt functional
and nonfunctional behavior without destroying the integrity of the
architecture.

4.3.6 Agile Software Development
Agile software development [Cockburn 2002; Martin 2003] is a lightweight
iterative and incremental approach to software development, which is
performed in a collaborative manner and explicitly needs to accommodate
the changing needs of various stakeholders. The introduction of Extreme
Programming [Beck 1999] is widely acknowledged as the starting point for

Related Work 41

various agile software development methods, such as Scrum [Schwaber and
Beedle 2001], Feature Driven Development [Palmer and Felsing 2002],
Dynamic Systems Development Method [Stapleton 1999], Adaptive
Software Development [Highsmith 2000] and Open Source Software
Development [O'Reilly 1999]. These methods attempt to produce working
software at frequent intervals, minimize the comprehensive documentation
at an appropriate level. A key aspect in these methods is responding to
change, i.e. the development group, comprising both software developers
and customer representatives, should consider possible adjustment needs
that emerge during the development process lifecycle, and should be
prepared to make changes. Changing environment in software business
affects the software development processes [Highsmith and Cockburn
2001]. This requires better handling of inevitable changes throughout the
project lifecycle, instead of trying to stop change early.

4.3.7 Evolution and Maintenance Management Model
SYSLAB, the Information Systems Laboratory (http://syslab.dsv.su.se/) is in
the process of developing a comprehensive process model for industrial
evolution and maintenance, and thus, not much data has been published yet.
The model is called Evolution and Maintenance Management Model. It
consists of the following models:

- Process Models within Corrective Maintenance (CM3)

- Front-End Problem Management is a detailed problem
management process model that is utilized at the front-end
support level;

- Back-End Problem Management is a detailed problem
management process model that is utilized at the back-end
support level;

- Emergency Problem Management attends severe emergency
problems that present immediate danger to people, environment,
resource, general welfare or businesses.

- Process Models within Evolution (EM3)

- Education and Training;

- Pre-delivery/Prerelease Maintenance;

- Release Management.

42 Related Work

4.3.8 Relation to the Thesis
The objective of a software process model is to reduce cost, effort and time-
to-market, to increase productivity and reliability, and to support better
quality and more evolvable software [Mens and Demeyer 2008]. A good
understanding of the existing software process models is necessary for us to
obtain insights in how the software changes are integrated in the software
development lifecycle.

In this thesis, we explore the pragmatic aspects of software evolution, i.e.
the methods and tools that provide the means to analyze and control the
software evolution, with focus on the existing software systems. For
instance, the evolvability analysis method proposed in this thesis is applied
on an existing software system. Considering the complete software lifecycle,
there is also the need to apply the analysis method in the early design phase
of a new development effort (refer to Chapter 5).

We acknowledge changes as an essential part of software development. We
also adopt the iterative and incremental change support in, for instance, the
product line migration process (refer to Chapter 2).

4.4 Software Architecture Evolution
Software architectures model the structure and behavior of a system; and
present a high level view of a system, including the software elements and
the relationships between them. Software architectures are inevitably subject
to evolution and they can expose the dimensions along which a system is
expected to evolve [Garlan 2000] and provide basis for software evolution
[Medvidovic et al. 1998].

Software systems undergo two main kinds of evolution [Mens and Demeyer
2008], i.e. internal evolution and external evolution. The thesis deals with
the external evolution.

- Internal evolution models the changes in the topology of the
components and interactions as they are created or destroyed during
execution. It captures the dynamics of the system.

- External evolution models the changes in the specification of the
components and interactions that are required to cope with new
stakeholder requirements. It entails adaptation of the software
architecture.

Related Work 43

There exist several approaches in describing and evolving software
architecture. [Aoyama 2002] proposes cost metrics of change operation for
software architecture evolution and discusses the proposed metrics in
continuous and discontinuous software evolution, which are the evolution
patterns observed from the evolution of several software systems.
Discontinuous evolution emerges between certain periods of successive
continuous evolution.

[Lung et al. 1997] describes a scenario-based approach which captures and
assesses software architectures for evolution and reuse. The approach
consists of a framework for modeling various types of relevant information
and a set of architectural views for reengineering, analyzing, and comparing
software architectures. This framework is used to model several types of
information, i.e.

- Stakeholder information describes stakeholders’ objectives, which
provide boundaries for analysis;

- Architecture information refers to design principles or architectural
objectives;

- Quality information refers to non-functional attributes;

- Scenarios describe the use cases of the system to capture the
system’s functionality. Scenarios that are not directly supported by
the current system can be used to detect possible flaws or to assess
the architecture’s support for potential enhancements. Scenarios are
derived from the stakeholder objectives, architectural objectives,
and desired system quality attributes or objectives.

The software architecture of an evolvable software system should allow
changes in the software and evolve in a controlled way without
compromising system integrity and invariants [Bennett and Rajlich 2000].
However, software architecture evolution often implies integrating
crosscutting concerns. Therefore, architectural integrity is one aspect that
needs to be taken into consideration. Otherwise, these crosscutting concerns
might, if not handled with care, introduce inconsistencies and lead to
evolvability degradation in the long run. To address this inconsistency issue,
[Barais et al. 2004] describes a framework named TranSAT. The framework
uses architectural aspect to describe new concerns and their integration into
the existing architecture. The framework allows the software architect to
design software architecture stepwise in terms of aspects at the design stage.

According to [Jansen and Bosch 2004], an architectural design decision is a
key concept in software architecture evolution. Capturing design decisions

44 Related Work

is therefore essential to address architectural knowledge [Lago et al. 2008]
vaporation issue. Otherwise, the knowledge of the design decisions that lead
to the architecture is lost. Moreover, changes to the software architecture
might cause violation of earlier design decisions, resulting in increased
design erosion [van Gurp and Bosch 2002].

4.4.1 Relation to the Thesis
Knowledge about the implications of the software architecture evolution
ensures a good understanding of the research context, for instance, we focus
on external evolution in this thesis. Understanding software architecture
evolution also provides us the input and background to evolvability
subcharacteristics identification. For example, the architectural integrity is
one aspect that needs to be considered throughout the software architecture
evolution.

4.5 Software Architecture Evaluation
The foundation for any software system is its architecture, which allows or
precludes nearly all of the quality attributes of the system [Clements et al.
2002]. Accordingly, several architecture evaluation methods have emerged
for various purposes, e.g. to compare and identify the strengths and
weaknesses in different architecture alternatives, to identify any
architectural drift and erosion. Experiences of using various assessment
techniques for software architecture evaluation are presented in [Christian
2006], in which scenario-based assessment, software performance
assessment and experience-based assessment are addressed. A general
description of different architecture analysis methods can be found in [Babar
et al. 2004; Dobrica and Niemela 2002].

The following subsections describe briefly four main categories of the
software architecture evaluation methods [Mattsson et al. 2006].

4.5.1 Experience-Based
Experience-based architecture evaluation means that the evaluations are
based on the previous experiences and domain knowledge of developers or
consultants [Avritzer and Weyuker 1999]. Some examples are:

- Empirically-Based Architecture Evaluation (EBAE) [Lindvall et al.
2003] defines a process for defining and using a number of
architectural metrics to evaluate and compare different versions of

Related Work 45

architectures in terms of maintainability. The main steps include (i)
select a perspective for the evaluation; (ii) define and select metrics;
(iii) collect metrics; and (iv) evaluate and compare the architectures.

- Attribute-Based Architectural Style (ABAS) [Klein et al. 1999]
builds on architectural styles by explicitly associating with
reasoning frameworks, which are based on quality-attribute-specific
models. ABAS consists of four parts: (i) problem description
explains the problem being solved by the software structure; (ii)
stimuli and response correspond to the condition affecting the
system and measurement of the activity as a result of the stimuli;
(iii) architectural styles are descriptions of patterns of component
interaction; and (iv) analysis constitutes a quality-attribute-specific
model that provides a method for reasoning about the behavior of
interacting components in the pattern. Examples of these quality-
attribute-specific models are modifiability model, reliability model
and performance model.

4.5.2 Simulation-Based
Simulation-based architecture evaluation means that the evaluations are
based on a high-level implementation of some or all of the components in
the software architecture [Mattsson et al. 2006]. Some examples are:

- SAM [Wang et al. 1999] is a formal systematic methodology for
software architecture specification and analysis. It is mainly targeted
for analyzing the correctness and performance of a software system.

- Argus-I [Vieira et al. 2000] is a specification-based evaluation
method that evaluates performance, dependence and correctness of a
software architecture. It is also used to evaluate an architecture
design with respect to structural analysis, static and dynamic
behavioral analysis, model checking and simulation of architecture.

4.5.3 Mathematical Modeling
Mathematical modeling means that mathematical proofs and methods are
used to evaluate operational quality requirements such as performance and
reliability [Reussner et al. 2003] of the components in the software
architecture. Some examples are:

- Software Performance Engineering (SPE) [Williams and Smith
1998] is a method for building performance into software systems. It

46 Related Work

can be used to evaluate various performance measures, e.g. response
times, throughput, resource utilization and bottleneck identification.

- Layered Queuing Networks (LQN) [Petriu et al. 2000] is often used
to evaluate the performance of a software architecture or a software
system. The layered queuing network model describes the
interactions between components in the architecture and required
processing times for each interaction.

4.5.4 Scenario-Based
Scenario-based architecture evaluation means that quality attributes are
evaluated by creating scenario profiles that force a concrete description of a
quality requirement [Mattsson et al. 2006]. Some examples are:

- Software Architecture Analysis Method (SAAM) [Kazman et al.
1994] is originally created for evaluating modifiability of software
architecture although it has been used for other set of quality
attributes as well, such as portability and extensibility. The main
outputs from a SAAM evaluation include a mapping between the
architecture and the scenarios that represent possible future changes
to the system, providing indications of potential future complexity
parts in the software and estimated amount of work related to the
changes.

- Architecture Trade-off Analysis Method (ATAM) [Clements et al.
2002] is a method for evaluating software architectures in terms of
quality attribute requirements. It is used to expose the risks, non-
risks, sensitivity points and trade-off points in the software
architecture. It aims at different quality attributes and supports
evaluation of new types of quality attributes.

- Architecture Level Modifiability Analysis (ALMA) [Bengtsson et al.
2004] is a method for analyzing modifiability based on scenarios. It
consists of five steps: (i) set the analysis goal; (ii) describe the
software architecture; (iii) elicit change scenarios; (iv) evaluate
change scenarios; and (v) interpret the results. The outputs from an
ALMA evaluation include: (i) maintenance prediction to estimate
the required effort for system modification to accommodate future
changes; (ii) risk assessment to identify the types of changes that the
system shows inability to adapt to; and (iii) software architecture
comparison for optimal candidate architecture.

Related Work 47

4.5.5 Relation to the Thesis
A survey of architecture evaluation methods presented in [Mattsson et al.
2006] indicates that most evaluation methods only address one quality
attribute, and very few can evaluate several quality attributes simultaneously
in the same method. The survey indicates also that no specific methods
evaluate testability or portability explicitly. These quality attributes can be
addressed by the evaluation methods that are more general in their nature,
e.g. ATAM, SAAM and EBAE. However, to analyze software evolvability
which is a multifaceted quality attribute, the scenario-based methods such as
ATAM would require quite a number of evolvability scenarios (to address
and cover each of the seven evolvability subcharacteristics identified in our
research); a more important limitation is that while scenarios are concrete
anticipated events in the system lifetime, evolvability might concern high-
level business requirements at an abstract level which calls for some more
general type of analysis to identify the implications on software architecture
and corresponding evolution path. This poses one of the motivations for our
research to investigate the means to assess software architecture
evolvability.

4.6 Component-Based and Service-Oriented
Software Engineering

Component-based software engineering (CBSE) provides support for
building systems through the composition and assembly of software
components. It is an established approach in many engineering domains,
such as distributed and web based systems, desktop and graphical
applications and recently in embedded systems domains. CBSE technologies
facilitate effective management of complexity, significantly increase
reusability and shorten time-to-market.

While CBSE is an established approach in many engineering domains, the
growing demands for Internet computing and emerging network-based
business applications and systems are the driving forces for the emergence
of service-oriented software engineering (SOSE). SOSE has evolved from
CBSE frameworks and object oriented computing to face the challenges of
open environments. SOSE utilizes services as fundamental elements for
developing applications and software solutions. SOSE technologies offer
feasibility in integrating distributed systems that are built on various

48 Related Work

platforms and technologies, and further push focus on reusability and
development efficiency.

Because of the diverse nature of software systems, it is unlikely that systems
will be developed using a purely service-oriented or component-based
approach [Kotonya et al. 2004]. Therefore, the ability to combine the
strengths of CBSE and SOSE, and use them in a complementary manner
becomes essential. So far, some research has been done in combining the
strengths of CBSE and SOSE for improved quality attributes of software
solutions. [Jiang and Willey 2005] proposes a multi-tiered architecture that
offers flexible and scalable solutions to the design and integration of large
and distributed systems. The architecture makes use of both services and
components as architectural elements, offering flexibility and scalability in
large distributed systems and meanwhile remaining the system performance.
[Wang and Fung 2004] proposes an idea of organizing enterprise functions
as services and implementing them as component-based systems in order to
offer flexible, extensible and value-added services. [Cervantes and Hall
2004] introduces service-oriented concepts into component models to
provide support for late binding and dynamic component availability in the
component models. [O'Brien et al. 2007] explores how service oriented
architecture impacts a number of quality attributes, identifies issues and
tradeoffs related to them. The investigated quality attributes are
interoperability, performance, security, reliability, availability,
modifiability, testability, usability and scalability.

4.6.1 Relation to the Thesis
Designing and implementing a large scale and complex system is a
challenging task. In this thesis, we focus on two of the most well recognized
software engineering paradigms that cope with this challenge, i.e.
component-based software engineering (CBSE) and service-oriented
software engineering (SOSE). One of the detailed research questions that we
intend to address in this thesis is, by taking CBSE and SOSE as an example,
to analyze the technology-type of change stimulus.

4.7 Software Product Line Engineering
A software product line is defined as “a set of software-intensive systems

sharing a common, managed set of features that satisfy the specific needs of

a particular market segment or mission and that are developed from a

Related Work 49

common set of core assets in a prescribed way” [Clements and Northrop
2002]. Product line software engineering aims to reduce cost, time-to-
market, increase productivity and quality through leveraging reuse of
artifacts and processes for similar products in a particular domain [Pohl et
al. 2005]. It has become one of the most established strategies for achieving
large-scale software reuse [Estublier and Vega 2005].

4.7.1 Software Product Line Methods
Within the area of software product line evolution, [Bosch 2000] proposes
methods for designing software architecture, in particular product line
architecture. [Pohl et al. 2005] elaborates two key principles behind
software product line engineering: (i) separation of software development in
domain and application engineering, and (ii) explicit definition and
management of variability of the product line across all development
artifacts. A four-dimensional software product family engineering
evaluation model is described in [van der Linden et al. 2004] to determine
the status of software family engineering, concerning business, architecture,
organization and process.

[Faust and Verhoef 2003] presents metrics for genericity relayering, and
migrates multiple instances of a single information system to a product line.
[Bayer et al. 1999] presents the RE_MODEL method to integrate
reengineering and product line activities to achieve a transition into product
line architecture. A key element in the method is the blackboard, a work
space which is shared for both activities that are done in parallel. The
PuLSETM method [Schmid et al. 2005] addresses the different phases of
product line development, and is used to systematically analyze a
component and to improve its reusability as well as maintainability. The
focus is on one component enabling reuse of that component. In order to
evaluate the potential of creating a product line from existing products,
MAP (Mining Architectures for Product Lines) [Stoermer and O'Brien
2001] focuses on the feasibility evaluation process of the organization’s
decision to move towards a product line. Options Analysis for
Reengineering [Smith et al. 2002] is another method for mining existing
components for a product line. [Maccari and Riva 2002] describes
combining reference architecture and configuration architecture to describe
legacy product family architecture and manage its evolution.

Research is also done in domain analysis methods. Some examples of the
widely used domain analysis techniques are Feature-Oriented Domain
Analysis (FODA) [Kang et al. 1990] and Feature-Oriented Reuse Method

50 Related Work

(FORM) [Kang et al. 1998] through using feature models, in which system
features are organized into trees of nodes that represent the commonality
and variability within a software product line. Another notation is the
orthogonal variability model [Bachmann et al. 2004; Pohl et al. 2005],
which is a graph of variation points and variants.

4.7.2 Software Product Line Evolution
The ever-changing customer requirements, technology advances and internal
enhancements lead to the continuous evolution of a product line’s reusable
assets. According to [Dhungana et al. 2008], product line evolution occurs
in two dimensions as both the meta-model and the variability models can
evolve independently:

- Meta-models evolve due to changes in the scope of the product line;
e.g., new asset types are introduced or the product line itself is
extended to support new business units.

- Variability models are subject to change whenever the product line
changes; e.g., as a result of improving or extending functionality,
changing technology or reorganization.

Explicit architectural knowledge is important in software evolution [Jansen
2008]. [Dhungana et al. 2006] confirms this and reports the experience of
the necessity to capture architectural knowledge and make this knowledge
available appropriately to various stakeholders in the product line
environment. The authors argue that the architectural knowledge need to be
captured by combining both top-down and bottom-up knowledge elicitation
for a software product line infrastructure.

4.7.3 Product Line Engineering Process
According to [Pohl et al. 2005], the product line engineering process is
composed of two sub-processes:

- Domain engineering: The goals of domain engineering are to define
the commonality and the variability of the software product line, to
define the scope of the software product line, define and construct
reusable artefacts that accomplish the desired variability. The
domain engineering process consists of the following five activities:

- Product management defines the scope of the product line, i.e. a
product roadmap that determines the major common and
variable features of future products, as well as a schedule with
their planned release dates. A list of the existing products and

Related Work 51

the development artefacts that can be reused for establishing the
common platform is also defined;

- Domain requirement engineering elicitates and documents the
common and variable requirements for all foreseeable
applications of the product line;

- Domain design defines the reference architecture and a refined
variability model of the product line;

- Domain realization produces the detailed design and the
implementation of reusable software components;

- Domain testing aims to validate and verify the reusable
components.

- Application engineering: The goals of application engineering are to
achieve reuse of the domain assets, to exploit the commonality and
variability of the software product line during the development of a
product line application, to document the application artefacts. The
application engineering process consists of the following four
activities:

- Application requirements engineering develops requirements
specification for the particular application;

- Application design produces a specialization of reference
architecture for the particular application;

- Application realization creates a running application with
detailed design artefacts;

- Application testing aims to validate and verify an application
against its specification.

4.7.4 Relation to the Thesis
Product line development seldom starts from scratch. Instead, it is very often
based on the existing legacy implementations [Kotonya and Hutchinson
2008]. Accordingly, a specific type of software evolution is the adoption of
a product line approach and migrate existing software systems towards
product line architectures. Applying a software product line approach to
legacy systems requires that care is taken to ensure that critical aspects are
considered for a smooth and successful product line migration. In our
research, observations are made with regard to business, organization,
development process and technology perspectives when adopting a product
line approach. This classification has similar dimensions as in [van der

52 Related Work

Linden et al. 2004] though we compliment with more experiences and
practices.

One of the research contributions in this thesis is the proposed product line
migration method with focus on the migration process when the migration
decision has been made. This differs with PuLSETM method [Schmid et al.
2005] which addresses the different phases of product line development.
Additionally, instead of using FODA method [Kang et al. 1990] for domain
engineering, we applied product modeling in our method. The idea of
constructing a federated architecture to migrate multiple instances of a
single information system to a product line described in [Faust and Verhoef
2003] is similar to the way that we have performed in our case studies.

4.8 Reverse Engineering and Reengineering
Reverse engineering [Chikofsky and Cross 1990] is an important activity
within software evolution. It aims at understanding the architecture or
behavior of a software system through recovering and recording high-level
information of a software system. The information represents abstractions
that include the system structure in terms of its components and their
interrelationships, the dynamic behavior of the system, functionality,
modules, documentation and test suites. Reverse engineering is a key to
software reengineering [Arnold 1993], because it ensures to recover an
abstract representation that can be used for subsequent reengineering of an
existing software system.

The goal of reengineering is to reconstitute a software system in a new form
that is more evolvable and possibly has more functionality than the original
software system. The reengineering process is usually composed of three
activities: reverse engineering [Chikofsky and Cross 1990], software
restructuring [Arnold 1989] and forward engineering.

- Reverse engineering is necessary due to incomplete documentation
and relevant references, unavailability of personnel with relevant
knowledge, inconsistency between documentation and
implementation, outdated technological platforms of a software
system, e.g. programming languages, tools and operating systems.

- Software restructuring aims to improve certain aspects of a software
system and it is “the transformation from one representation form to
another at the same relative abstraction level, while preserving the

Related Work 53

software system’s external behavior, i.e. functionality and
semantics” [Yang and Ward 2003].

- Forward engineering implements and builds a software system from
the restructured model.

This reengineering process is captured in the horseshoe process model for
reengineering [Kazman et al. 1998], which consists of three related
processes: (i) code and architecture recovery, and conformance evaluation;
(ii) architecture transformation; and (iii) architecture-based development in
which the new architecture is instantiated.

One approach that assists in software reengineering is refactoring [Fowler
1999], which is a technique for restructuring an existing body of code,
altering and improving its internal structure without changing its external
behavior. The refactoring process consists of a series of small behavior-
preserving transformations. The system is kept fully working after each
small refactoring, reducing the chances that a system becomes broken during
the restructuring. Refactoring is one way to improve software quality as it
helps to improve the design of software, make software easier to understand
and help to find bugs [Fowler 1999]. As stated in [Opdyke 1992], while
refactorings do not change the behavior of a program, they can support
software design and evolution by restructuring a program in a way that
allows other changes to be made more easily.

4.8.1 Relation to the Thesis
The software systems that we work with throughout this research are legacy
systems that represent valuable software assets. They usually have a long
lifetime and most likely have gone through many changes such as
technological platform changes and turnover of the original developers.
Thus they show signs of many modifications and adaptations. They also
have the typical characteristics of legacy systems as described in [Demeyer
et al. 2003], e.g. increasing complexity, poor documentation and lack of
understanding by the current developers. Therefore, reverse engineering is
necessary for understanding the architecture or behavior of a large software
system when the source code is the main information. Additionally, as
refactoring is one key to increase internal software quality during the whole
software lifecycle [Simon et al. 2001], it is one technique that is used in our
research when we identify components that need to be refactored and
potential architectural improvement proposals to improve the software
quality aspects.

54 Related Work

4.9 Software Quality Metrics
Various techniques have emerged to qualitatively or quantitatively assess
quality impact through specific quality metrics. They differ from each other
in terms of principles, concepts and analysis capabilities. For instance,
[Kataoka et al. 2002] proposes coupling metrics to measure the
maintainability enhancement effect of a program refactoring. [Tahvildari
and Kontogiannis 2002] proposes a reengineering transformation framework
using soft goal graph to correlate non-functional requirements with design
patterns to guide transformation process. The soft goals that are refined from
maintainability include coupling, cohesion, modularity, encapsulation,
complexity, consistency and reuse. [Tahvildari and Kontogiannis 2003]
proposes also another framework which combines using metrics for quality
estimation and performing transformation based on soft goal graphs.

To evaluate evolvability, [Ramil and Lehman 2000] proposes metrics based
on implementation change logs. [Lehman et al. 1997] proposes computation
of metrics using the number of modules in a software system. Another set of
metrics is based on software life span and software size [Tamai and
Torimitsu 1992]. [Nary and Chung 2003] proposes a framework of process-
oriented metrics for software evolvability and traces the metrics back to the
evolvability requirements based on the NFR framework [Chung 2000]. An
ontological basis which allows for the formal definition of a system and its
change at the architectural level is presented in [Rowe and Leaney 1997].

[Simon 1962] describes the link between modularity and evolution, and
argues that nearly-decomposable systems facilitate experimentation and
problem solving. [LaMantia et al. 2008] examines the design evolution of
one open source software product and one company software product
platform through the modelling lens of design rule theory and design
structure matrices.

4.9.1 Relation to the Thesis
Software evolvability is a multifaceted quality attribute [Rowe et al. 1994],
which is refined into a collection of subcharacteristics in our research. Each
subcharacteristic is in turn refined into a collection of measuring attributes
that we intend to qualitatively and/or quantitatively measure. One particular
measuring attribute that we have further explored in our research is
modularity. It affects the behavior of a design with respect to most of the
evolvability subcharacteristics, as designing software for ease of extension
and contraction depends on how well the software structure is organized and

Related Work 55

modular designs are argued to be more evolvable [Maccormack et al. 2008].
The way that we perform in our case study is similar to the idea in
[LaMantia et al. 2008], i.e. through using design rules and design structure
matrix. We further enrich the data with experiences and reflections through
our dependency analysis of a complex industrial software system.

Chapter 5. Conclusions and Future Work

The goal of the research presented in this thesis is to understand software
architecture evolution and to investigate ways to analyze software
evolvability to support this evolution. Establishing the evolvability model
and systematically assessing the software evolvability at the architecture
level are the first steps towards analyzing and quantifying evolvability, a
base and check point for evolvability evaluation and improvement. Software
architecture evolution is inevitably subject to various change stimuli from
technological and business perspectives. Accordingly, comprehensive
analysis needs to be performed to obtain knowledge of the potential
implications of these change stimuli.

5.1 Contributions
The main contributions of the presented research are summarized as
follows:

Software evolvability model. In this thesis, we outline a software
evolvability model that provides a basis for analyzing and evaluating
software evolvability. This model refines software evolvability into a
collection of subcharacteristics that can be measured through a number of
measuring attributes. In addition, we further explore one particular
measuring attribute, i.e. modularity, which affects the behavior of a design
with respect to most of the evolvability subcharacteristics. This is because
designing software for ease of extension depends on how well the software
structure is organized and modular designs are argued to be more evolvable,
i.e. these designs facilitate making future adaptations.

Architecture evolvability analysis method. We introduce a structured
method for analyzing evolvability at the architectural level, i.e. the
ARchitecture Evolvability Analysis (AREA) method that focuses on
improving the capability of being able to on forehand understand and

58 Conclusions and Future Work

analyze systematically the impact of a change stimulus. The method is
studied in an industrial setting.

Comparison analysis framework of CBSE and SOSE. We take
component-based and service-oriented software engineering paradigms as an
example to analyze a technology-type of change stimulus, i.e. the
introduction of SOSE to CBSE. We exemplify the necessity of making
analysis and exploration of both the existing and emerging technologies for
better understanding of the implications.

Practices in product line migration. We take the adoption of a product
line approach as an example to analyze the impacts of a business-type of
change stimulus. We focus on managing the migration of legacy systems
towards product lines due to the need for differentiation in the marketplace,
with short time-to-market as part of the need. Two industrial cases are
studied in details. Observations are made with respect to business,
organization, development process and technology when adopting a product
line approach. The experiences from the case studies are also described to
recommend practices that are particularly useful.

Practices in using architecture-level dependency analysis to support

software evolution. We explore the links between evolvability, modularity,
as well as inter-module dependency, and focus on visualizing static
dependencies to identify hotspots in the architecture and implementation,
and to provide direction for future improvement. We perform one industrial
case study and describe a dependency analysis of a complex industrial
power control and protection system, using the inter-module dependency
model. Experiences and reflections are made through the analysis process.

5.2 Future Research Directions
A number of potential tracks for further PhD studies and future research are
identified as follows:

Further refinement and validation of evolvability model. The initial
establishment of the software evolvability model developed in this research
has only been motivated and exemplified through one industrial case study.
We need to continue working on the evolvability model by conducting more
case studies or surveys to confirm and refine the model. A subject that also
needs to be investigated is to identify metrics to quantify evolvability
subcharacteristics in terms of the identified measuring attributes. In the

Conclusions and Future Work 59

research presented so far, we have only looked into modularity which is one
of the measuring attributes. Further we plan to analyze the correlations
among the subcharacteristics with respect to constraints and tradeoffs.

Further validation of evolvability analysis method. The software
evolvability analysis method developed in this research has only been
exemplified and verified through one industrial case study. Future research
includes additional validation of the method using multiple case studies.
Another aspect that needs to be considered is to apply the method to address
evolvability explicitly in the early design phase of a new development effort,
since software architecture that is capable of accommodating change must
be specifically designed for change [Isaac and McConaughy 1994].

Further study of the impacts of change stimuli. In this thesis, we have
taken the introduction of SOSE to CBSE respective the adoption of product
line engineering as examples of technology-type and business-type of
change stimuli. Further studies remain to be done to broaden the question at
issue and look at other representative change stimuli. An alternative is to
enter deeply into the already-selected change stimuli:

- Further investigation of the impacts of introducing SOSE to CBSE.
In this thesis, we have only partially answered the research question
Q3.1 through providing an explicit clarification of the concepts,
principles and characteristics of CBSE and SOSE. More work
remains to be done to further investigate the impacts of the
introduction of SOSE to CBSE.

- Further study of the adoption of product line engineering. As
product line software engineering has become one of the most
established strategies for achieving large-scale software reuse
[Estublier and Vega 2005], its impact on software architecture
evolution and software evolvability becomes a research area worth
further research.

To summarize, future research comprises several tracks that are of different
priorities. A top prioritized direction for further research is to further refine
and validate the software evolvability model, as it lays a foundation for the
rest of the research tracks. This model is a first step towards analyzing and
quantifying evolvability, a base and check point for evolvability evaluation
and improvement.

References

[Aoyama 2002] Aoyama, M.: ‘Metrics and analysis of software architecture
evolution with discontinuity’, ACM, New York, NY, USA, 2002

[Arnold 1989] Arnold, R.S.: ‘Software restructuring’, Proceedings of the
IEEE, 1989, 77, (4), pp. 607-617

[Arnold 1993] Arnold, R.S.: ‘Software reengineering’ IEEE Computer
Society, Press Los Alamitos, Calif, 1993.

[Avritzer and Weyuker 1999] Avritzer, A. and Weyuker, E.J.: ‘Metrics to
Assess the Likelihood of Project Success Based on Architecture Reviews’,
Empirical Software Engineering, 1999, 4, (3), pp. 199-215

[Babar et al. 2004] Babar, M.A., Zhu, L., and Jeffery, R.: ‘A framework for
classifying and comparing software architecture evaluation methods’,
Software Engineering Conference, Australian, 2004, pp. 309-318

[Bachmann et al. 2004] Bachmann, F., Goedicke, M., Leite, J., Nord, R.,
Pohl, K., Ramesh, B., and Vilbig, A.: ‘A Meta-model for Representing
Variability in Product Family Development’, Lecture Notes in Computer
Science, 2004, pp. 66-80

[Barais et al. 2004] Barais, O., Cariou, E., Duchien, L., Pessemier, N., and
Seinturier, L.: ‘TranSAT: A Framework for the Specifcation of Software
Architecture Evolution’, 2004

[Bass et al. 2003] Bass, L., Clements, P., and Kazman, R.: ‘Software
Architecture in Practice’, Addison-Wesley Professional, 2003.

[Bayer et al. 1999] Bayer, J., Girard, J.F., Wurthner, M., DeBaud, J.M., and
Apel, M.: ‘Transitioning legacy assets to a product line architecture’, ACM,
1999

[Beck 1999] Beck, K.: ‘Extreme Programming Explained: Embrace
Change’, Addison-Wesley, Reading, PA, 1999

62 References

[Bengtsson et al. 2004] Bengtsson, P.O., Lassing, N., Bosch, J., and van
Vliet, H.: ‘Architecture-level modifiability analysis (ALMA)’, The Journal
of Systems & Software, 2004, 69, (1-2), pp. 129-147

[Bennett and Rajlich 2000] Bennett, K. and Rajlich, V.: ‘Software
maintenance and evolution: a roadmap’. Proceedings of the Conference on
the Future of Software Engineering, Limerick, Ireland, 2000

[Bennett 1996] Bennett, K.: ‘Software evolution: past, present and future’,
Information and Software Technology, 1996, 38, (11), pp. 673-680

[Benyon et al. 2005] Benyon, D., Turner, P., and Turner, S.: ‘Designing
interactive systems’ Addison-Wesley, New York, 2005.

[Birk et al. 2003] Birk, A., Heller, G., John, I., Schmid, K., von der Massen,
T., and Muller, K.: ‘Product line engineering, the state of the practice’, IEEE
Software, 2003, 20, (6), pp. 52-60

[Boehm et al. 1978] Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M.,
MacLeod, G.J., and Merritt, M.J.: ‘Characteristics of software quality’,
North-Holland, 1978.

[Boehm 1988] Boehm, B.W.: ‘A spiral model of software development and
enhancement’, Computer, 1988, 21, (5), pp. 61-72

[Bosch 2000] Bosch, J.: ‘Design and use of software architectures: adopting
and evolving a product-line approach’, ACM Press/Addison-Wesley
Publishing Co., 2000.

[Breivold and Crnkovic 2008] Breivold, H.P. and Crnkovic, I.: ‘Using
Software Evolvability Model for Evolvability Analysis’, Mälardalen Real-
Time Research Center, Mälardalen University, 2008

[Breivold et al. 2008] Breivold, H.P., Crnkovic, I., and Eriksson, P.J.:
‘Analyzing Software Evolvability’, COMPSAC, 2008

[Brooks 1987] Brooks, F.P.: ‘No Silver Bullet’, IEEE Computer, 1987, 20,
(4), pp. 10-19

[Buckley et al. 2004] Buckley, J., Mens, T., Zenger, M., Rashid, A., and
Kniesel, G.: ‘Towards a taxonomy of software change’, Journal of Software
Maintenance and Evolution: Research and Practice, 2004

[Cervantes and Hall 2004] Cervantes, H. and Hall, R.S.: ‘Autonomous
adaptation to dynamic availability using a service-oriented component
model’, IEEE Comput. Soc, 2004

References 63

[Chapin et al. 2001] Chapin, N., Hale, J.E., Khan, K.M., Ramil, J.F., and
Tan, W.G.: ‘Types of software evolution and software maintenance’,
Journal of Software Maintenance and Evolution: Research and Practice,
2001, 13, (1), pp. 3-30

[Chikofsky and Cross 1990] Chikofsky, E.J. and Cross, J.H.: ‘Reverse
engineering and design recovery: a taxonomy’, Software, IEEE, 1990, 7, (1),
pp. 13-17

[Christian 2006] Christian, D.R.: ‘Continuous evolution through software
architecture evaluation: a case study’, Journal of Software Maintenance and
Evolution: Research and Practice, 2006, 18, pp. 351-383

[Chung 2000] Chung, L.: ‘Non-Functional Requirements in Software
Engineering’, Springer, 2000.

[Clements et al. 2002] Clements, P., Kazman, R., and Klein, M.: ‘Evaluating
Software Architectures: Methods and Case Studies’, Addison-Wesley, 2002.

[Clements and Northrop 2002] Clements, P. and Northrop, L.: ‘Software
Product Lines: Practices and Patterns. 2002’, Addison-Wesley, 2002

[Cockburn 2002] Cockburn, A.: ‘Agile Software Development’, Addison-
Wesley Boston, 2002.

[Crnkovic and Larsson 2002] Crnkovic, I. and Larsson, M.: ‘Building
Reliable Component-Based Software Systems’, Artech House, 2002.

[Demeyer et al. 2003] Demeyer, S., Ducasse, S., and Nierstrasz, O.M.:
‘Object-Oriented Reengineering Patterns’, Morgan Kaufmann, 2003.

[Dhungana et al. 2006] Dhungana, D., Rabiser, R., Grunbacher, P., Prahofer,
H., Federspiel, C., and Lehner, K.: ‘Architectural Knowledge in Product
Line Engineering: An Industrial Case Study’, 32nd EUROMICRO
Conference on Software Engineering and Advanced Applications, 2006, pp.
186-197

[Dhungana et al. 2008] Dhungana, D., Neumayer, T., Grünbacher, P., and
Rabiser, R.: ‘Supporting Evolution in Model-based Product Line
Engineering’, 12th Int'l Software Product Line Conference, Limerick,
Ireland, 2008

[Dobrica and Niemela 2002] Dobrica, L. and Niemela, E.: ‘A survey on
software architecture analysis methods’, IEEE Transactions on Software
Engineering, 2002, 28, (7), pp. 638-653

64 References

[Dromey 1996] Dromey, R.G.: ‘Cornering the Chimera’, IEEE Software,
1996, 13, (1), pp. 33-43

[Estublier and Vega 2005] Estublier, J. and Vega, G.: ‘Reuse and variability
in large software applications’, Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering, 2005, pp. 316-325

[Faust and Verhoef 2003] Faust, D. and Verhoef, C.: ‘Software product line
migration and deployment’, Software-Practice and Experience, 2003, 33,
(10), pp. 933-955

[Fenton and Pfleeger 1997] Fenton, N. and Pfleeger, S.L.: ‘Software
metrics: a rigorous and practical approach’, PWS Publishing Co. Boston,
MA, USA, 1997.

[Fitzpatrick et al. 2004] Fitzpatrick, R., Smith, P., and O'Shea, B.: ‘Software
Quality Challenges’, Proceedings of the Second Workshop on Software
Quality at the 26th International Conference on Software Engineering, 2004

[Fowler 1999] Fowler, M.: ‘Refactoring: Improving the Design of Existing
Code’, Addison-Wesley Professional, 1999.

[Garlan 2000] Garlan, D.: ‘Software architecture: a roadmap’, ACM Press
New York, NY, USA, 2000

[Gay and Airasian 1999] Gay, L.R. and Airasian, P.W.: ‘Educational
Research: Competencies for Analysis and Applications’, Prentice Hall,
1999.

[Gilb 1981] Gilb, T.: ‘Evolutionary development [software]’, SIGSOFT
Software Engineering Notes, 1981, 6, (2), pp. 17

[Gilb 2002] Gilb, T.: ‘The 10 Most Powerful Principles for Quality in
Software and Software Organizations’, Cross-Talk, Nov, 2002

[Grady and Caswell 1987] Grady, R.B. and Caswell, D.L.: ‘Software
metrics: establishing a company-wide program’, Prentice-Hall, Inc. Upper
Saddle River, NJ, USA, 1987.

[Highsmith and Cockburn 2001] Highsmith, J. and Cockburn, A.: ‘Agile
Software Development: The Business of Innovation’, 2001

[Highsmith 2000] Highsmith, J.A.: ‘Adaptive software development: a
collaborative approach to managing complex systems’, Dorset House
Publishing Co., Inc. New York, NY, USA, 2000.

References 65

[Holz et al. 2006] Holz, H.J., Applin, A., Haberman, B., Joyce, D., Purchase,
H., and Reed, C.: ‘Research methods in computing: what are they, and how
should we teach them?’, Annual Joint Conference Integrating Technology
into Computer Science Education, 2006, pp. 96-114

[Isaac and McConaughy 1994] Isaac, D. and McConaughy, G.: ‘The Role of
Architecture and Evolutionary Development in Accommodating Change’,
1994

[ISO9126] ISO9126: ‘ISO/IEC 9126-1, International Standard, Software
Engineering. Product Quality – Part 1: Quality Model’

[Jansen and Bosch 2004] Jansen, A. and Bosch, J.: ‘Evaluation of Tool
Support for Architectural Evolution’, 2004

[Jansen 2008] Jansen, A.G.J.: ‘Architectural Design Decisions’, PhD thesis
(to appear), 2008

[Jiang and Willey 2005] Jiang, M. and Willey, A.: ‘Architecting systems
with components and services’, Institute of Electrical and Electronics
Engineers Computer Society, Piscataway, NJ 08855-1331, United States,
2005

[Kang et al. 1990] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E.,
Peterson, A.S.: ‘Feature-Oriented Domain Analysis (FODA) Feasibility
Study’, the Institute of Software Engineering, 1990.

[Kang et al. 1998] Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., and Huh,
M.: ‘FORM: A feature-; oriented reuse method with domain-; specific
reference architectures’, Annals of Software Engineering, 1998, 5, pp. 143-
168

[Kataoka et al. 2002] Kataoka, Y., Imai, T., Andou, H., and Fukaya, T.: ‘A
quantitative evaluation of maintainability enhancement by refactoring’,
IEEE Comput. Soc, 2002

[Kazman et al. 1994] Kazman, R., Bass, L., Abowd, G., and Webb, M.:
‘SAAM: A Method for Analyzing the Properties of Software Architectures’,
International Conference on Software Engineering, 1994, 16, pp. 81-81

[Kazman et al. 1998] Kazman, R., Woods, S.G., and Carriere, S.J.:
‘Requirements for Integrating Software Architecture and Reengineering
Models: CORUM II’, Working Conference on Reverse Engineering, 1998,
pp. 154–163

66 References

[Klein et al. 1999] Klein, M., Kazman, R., Bass, L., Carriere, J., Barbacci,
M., and Lipson, H.: ‘Attribute-Based Architecture Styles’, Kluwer, BV
Deventer, the Netherlands, 1999.

[Kolb et al. 2005] Kolb, R., Muthig, D., Patzke, T., and Yamauchi, K.: ‘A
Case Study in Refactoring a Legacy Component for Reuse in a Product
Line’, Proceedings of the 21st IEEE International Conference on Software
Maintenance, 2005, pp. 369-378

[Kotonya et al. 2004] Kotonya, G., Hutchinson, J., and Bloin, B.: ‘A Method
for Formulating and Architecting Component and Service-Oriented
Systems’, Stojanovic, Z. et al.(Hrsg.), 2004, pp. 155-181

[Kotonya and Hutchinson 2008] Kotonya, G. and Hutchinson, J.: ‘A
component-based process for modelling and evolving legacy systems’,
Software Process Improvement and Practice, 2008, 13, (2), pp. 113-125

[Lago et al. 2008] Lago, P., Avgeriou, P., Capilla, R., and Kruchten, P.:
‘Wishes and Boundaries for a Software Architecture Knowledge
Community’, WICSA, 2008

[LaMantia et al. 2008] LaMantia, M.J., Cai, Y., MacCormack, A., and
Rusnak, J.: ‘Analyzing the Evolution of Large-Scale Software Systems
Using Design Structure Matrices and Design Rule Theory: Two Exploratory
Cases’, 2008

[LaMantia et al. 2008] LaMantia, M.J., Cai, Y., MacCormack, A.D., and
Rusnak, J.: ‘Analyzing the evolution of large-scale software systems using
design structure matrices and design rule theory: Two exploratory cases’,
Institute of Electrical and Electronics Engineers Computer Society,
Piscataway, NJ 08855-1331, United States, 2008

[Lehman 1980] Lehman, M.M.: ‘On understanding laws, evolution, and
conservation in the large-program life cycle’, Journal of Systems and
Software, 1980, 1, (3), pp. 213-221

[Lehman et al. 1997] Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry,
D.E., and Turski, W.M.: ‘Metrics and laws of software evolution - the
nineties view’, IEEE Comp Soc, Los Alamitos, CA, USA, 1997

[Lehman et al. 2000] Lehman, M.M., Ramil, J.F., and Kahen, G.: ‘Evolution
as a noun and evolution as a verb’, SOCE 2000 Workshop on Software and
Organisation Co-evolution, 2000, pp. 12-13

References 67

[Lindvall et al. 2003] Lindvall, M., Tvedt, R.T., and Costa, P.: ‘An
Empirically-Based Process for Software Architecture Evaluation’, Empirical
Software Engineering, 2003, 8, (1), pp. 83-108

[Lung et al. 1997] Lung, C.H., Bot, S., Kalaichelvan, K., and Kazman, R.:
‘An approach to software architecture analysis for evolution and
reusability’, IBM Press, 1997

[Maccari and Riva 2002] Maccari, A. and Riva, C.: ‘Architectural evolution
of legacy product families’, Springer-Verlag, 2002

[Maccormack et al. 2008] Maccormack, A., Rusnak, J., and Baldwin, C.Y.:
‘the Impact of Component Modularity on Design Evolution: Evidence from
the Software Industry’, 2008

[Madhavji et al. 2006] Madhavji, N.H., Fernandez-Ramil, J., and Perry, D.:
‘Software Evolution and Feedback: Theory and Practice’ John Wiley &
Sons, 2006.

[Martin 2003] Martin, R.C.: ‘Agile Software Development: Principles,
Patterns, and Practices’, Prentice Hall PTR Upper Saddle River, NJ, USA,
2003.

[Mattsson et al. 2006] Mattsson, M., Grahn, H., and Mårtensson, F.:
‘Software Architecture Evaluation Methods for Performance,
Maintainability, Testability, and Portability’, QoSA, 2006

[McCall et al. 1977] McCall, J.A., Richards, P.K., Walters, G.F., United, S.,
Electronic Systems, D., Force, A., Rome Air Development, C., and Systems,
C.: ‘Factors in Software Quality’ NTIS, 1977.

[Medvidovic et al. 1998] Medvidovic, N., Taylor, R.N., and Rosenblum,
D.S.: ‘An Architecture-Based Approach to Software Evolution’, 1998

[Mens and Demeyer 2008] Mens, T. and Demeyer, S.: ‘Software Evolution’
Springer, 2008.

[Nary and Chung 2003] Nary, S. and Chung, L.: ‘Process-oriented metrics
for software architecture evolvability’, IEEE Comput. Soc, 2003

[Nehaniv and Wernick 2007] Nehaniv, C.L. and Wernick, P.: ‘Introduction
to Software Evolvability’, Third International IEEE Workshop on Software
Evolvability, 2007

[O'Brien et al. 2007] O'Brien, L., Merson, P., and Bass, L.: ‘Quality
attributes for service-oriented architectures’, Institute of Electrical and

68 References

Electronics Engineers Computer Society, Piscataway, NJ 08855-1331,
United States, 2007

[O'Reilly 1999] O'Reilly, T.: ‘Lessons from open-source software
development’, Communications of the ACM, 1999, 42, (4), pp. 32-37

[Opdyke 1992] Opdyke, W.F.: ‘Refactoring Object-Oriented Frameworks’,
University of Illinois, 1992

[Ortega et al. 2003] Ortega, M., Pérez, M., and Rojas, T.: ‘Construction of a
Systemic Quality Model for Evaluating a Software Product’, Software
Quality Journal, 2003, 11, (3), pp. 219-242

[Palmer and Felsing 2002] Palmer, S. and Felsing, M.: ‘A Practical Guide to
Feature Driven Development.’ Prentice Hall, 2002

[Parnas 1994] Parnas, D.L.: ‘Software aging’, Proceedings of 16th
International Conference on Software Engineering, 1994, pp. 279-287

[Petriu et al. 2000] Petriu, D., Shousha, C., and Jalnapurkar, A.:
‘Architecture-Based Performance Analysis Applied to a Telecommunication
System’, IEEE Transactions on Software Engineering, 2000, pp. 1049-1065

[Pohl et al. 2005] Pohl, K., Böckle, G., and van der Linden, F.: ‘Software
Product Line Engineering: Foundations, Principles, and Techniques’
Springer, 2005.

[Ramil and Lehman 2000] Ramil, J.F. and Lehman, M.M.: ‘Metrics of
software evolution as effort predictors - a case study’, Institute of Electrical
and Electronics Engineers Inc., Piscataway, NJ, USA, 2000

[Reussner et al. 2003] Reussner, R.H., Schmidt, H.W., and Poernomo, I.H.:
‘Reliability prediction for component-based software architectures’, The
Journal of Systems & Software, 2003, 66, (3), pp. 241-252

[Rowe et al. 1994] Rowe, D., Leaney, J., and Lowe, D.: ‘Defining systems
evolvability-taxonomy of change’, Change, 1994, pp. 541-545

[Rowe and Leaney 1997] Rowe, D. and Leaney, J.: ‘Evaluating evolvability
of computer based systems architectures-an ontological approach’, IEEE
Computer Society, 1997

[Royce 1987] Royce, W.W.: ‘Managing the development of large software
systems: concepts and techniques’, Proceedings of the 9th International
Conference on Software Engineering, 1987, pp. 328-338

References 69

[Schmid et al. 2005] Schmid, K., John, I., Kolb, R., and Meier, G.:
‘Introducing the PuLSE approach to an embedded system population at
Testo AG’, Association for Computing Machinery, New York, NY 10036-
5701, United States, 2005

[Schwaber and Beedle 2001] Schwaber, K. and Beedle, M.: ‘Agile Software
Development with Scrum’, Prentice Hall PTR Upper Saddle River, NJ,
USA, 2001.

[Shaw 2002] Shaw, M.: ‘What makes good research in software
engineering?’, International Journal on Software Tools for Technology
Transfer (STTT), 2002, 4, (1), pp. 1-7

[SIGCSE] SIGCSE: ‘http://www.sigcse.org/’, the ACM Special Interest
Group on Computer Science Education (SIGCSE)

[Simon et al. 2001] Simon, F., Steinbruckner, F., and Lewerentz, C.:
‘Metrics based refactoring’, 5th European Conference on Software
Maintenance and Reengineering, 2001

[Simon 1962] Simon, H.A.: ‘The architecture of complexity’, Proceedings
of the American Philosophical Society, 1962, 106, (6), pp. 467-482

[Smith et al. 2002] Smith, D., O'Brien, L., and Bergey, J.: ‘Using the
Options Analysis for Reengineering (OAR) method for mining components
for a product line’, Springer-Verlag, 2002

[Stapleton 1999] Stapleton, J.: ‘DSDM: Dynamic Systems Development
Method’, Technology of Object-Oriented Languages and Systems, 1999, pp.
406-406

[Stoermer and O'Brien 2001] Stoermer, C. and O'Brien, L.: ‘MAP - mining
architectures for product line evaluations’, IEEE Comput. Soc, 2001

[Stojanovic and Dahanayake 2005] Stojanovic, Z. and Dahanayake, A.:
‘Service-oriented Software System Engineering: Challenges and Practices’
IGI Global, 2005.

[Tahvildari and Kontogiannis 2002] Tahvildari, L. and Kontogiannis, K.: ‘A
methodology for developing transformations using the maintainability soft-
goal graph’, IEEE Comput. Soc, 2002

[Tahvildari and Kontogiannis 2003] Tahvildari, L. and Kontogiannis, K.: ‘A
metric-based approach to enhance design quality through meta-pattern
transformations’, IEEE Comput. Soc, 2003

70 References

[Tamai and Torimitsu 1992] Tamai, T. and Torimitsu, Y.: ‘Software lifetime
and its evolution process over generations’, IEEE Comput. Soc. Press, 1992

[van der Linden et al. 2004] van der Linden, F., Bosch, J., Kamsties, E.,
Kansala, K., and Obbink, H.: ‘Software product family evaluation’,
Springer-Verlag, 2004

[Van Gurp and Bosch 2002] van Gurp, J. and Bosch, J.: ‘Design erosion:
problems and causes’, The Journal of Systems & Software, 2002, 61, (2),
pp. 105-119

[Wang and Fung 2004] Wang, G. and Fung, C.K.: ‘Architecture paradigms
and their influences and impacts on component-based software systems’,
Institute of Electrical and Electronics Engineers Computer Society,
Piscataway, NJ 08855-1331, United States, 2004

[Wang et al. 1999] Wang, J., He, X., and Deng, Y.: ‘Introducing software
architecture specification and analysis in SAM through an example’,
Information and Software Technology, 1999, 41, (7), pp. 451-467

[Weiderman et al. 1997] Weiderman, N.H., Bergey, J.K., Smith, D.B., and
Tilley, S.R.: ‘Approaches to Legacy System Evolution’, 1997

[Vieira et al. 2000] Vieira, M.E.R., Dias, M.S., and Richardson, D.J.:
‘Analyzing software architectures with Argus-I’, Proceedings of the 22nd
international conference on Software engineering, 2000, pp. 758-761

[Williams and Smith 1998] Williams, L.G. and Smith, C.U.: ‘Performance
evaluation of software architectures’, Proceedings of the 1st international
workshop on Software and performance, 1998, pp. 164-177

[Wohlin and Wesslen 2000] Wohlin, C. and Wesslen, A.: ‘Experimentation
in Software Engineering: An Introduction’, Springer, 2000.

[Yang and Ward 2003] Yang, H. and Ward, M.: ‘Successful Evolution of
Software Systems’, Artech House, 2003.

[Yau et al. 1978] Yau, S.S., Collofello, J.S., and MacGregor, T.: ‘Ripple
effect analysis of software maintenance’, IEEE, 1978

[Yin 2003] Yin, R.K.: ‘Case Study Research: Design and Methods’ Sage
Publications Inc, 2003.

[Yu et al. 2008] Yu, L., Ramaswamy, S., and Bush, J.: ‘Symbiosis and
Software Evolvability’, IT Professional, 2008, 10, (4), pp. 56-62

References 71

[Zelkowitz and Wallace 1997] Zelkowitz, M.V. and Wallace, D.:
‘Experimental validation in software engineering’, Information and
Software Technology, 1997, 39, (11), pp. 735-743

