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Abstract

To help us identify and focus on pragmatic and concrete

issues related to the role of software architecture in large

systems, we conducted a survey of a variety of software

systems used in industrial applications. Our premise, which

guided the examination of these systems, was that software

architecture is concerned with capturing the structures of a

system and the relationships among the elements both

within and between structures. The structures we found fell

into several broad categories: conceptual architecture,

module interconnection architecture, code architecture, and

execution architecture. These categories address different

engineering concerns. The separation of such concerns,

combined with specialized implementation techniques,

decreased the complexity of implementation, and improved

reuse and reconfiguration.

1. Introduction

Software architectures describe how a system is decom-

posed into components, how these components are inter-

connected, and how they communicate and interact with

each other. When poorly understood, these aspects of

design are major sources of errors.

The research area of software architecture is an emerg-

ing one with little agreement over the definition of architec-

ture. The only consensus seems to be that architecture is

related to the structure of a system and the interactions

among its components [14, 25]. Some of the work focuses

on building theory and models of architecture [2, 31], with

an emphasis on taxonomy, description languages, and veri-

fication of architectural properties. Several efforts have

been made to generate code based on parts of architecture

[13, 27]. In general, the literature relies heavily on informal

examples and anecdotes, and most of this work has not

been proven to be scalable for large systems. Also missing

from prior work is the focus on the pragmatic role of archi-

tecture in software development activities [1O, 33].
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In order to examine the pragmatic and concrete issues

related to the role of architecture in the design and devel-

opment of large systems, we conducted a survey of a vari-

ety of industrial software systems to understand

architecture as it is practiced in the real world. The sys-

tems we surveyed included several image and signal pro-

cessing systems, a real-time operating system,

communication systems, and instrumentation and control

systems [9, 13, 17]. These systems are listed in Table 1.

Our premise, which guided the examination of these sys-

tems, was that software architecture is concerned with

capturing the structures of a system and the relationships

among the elements both within and between structures.

Following this premise, we interviewed system architects’

and designers, and examined design documents and code

to look for important system structures and their use.

Details of the survey process are described in Appendix A.

We observed that most of the systems made a distinc-

tion between architecture for the product-specific software

and architecture for the platform software. Intuitively, the

platform software provided a virtual machine or an infra-

structure for the product-specific software.

For both the application software and the platform soft-

ware, different structures were used at different stages of

the development process. The structures we found fell into

several broad categories: conceptual architecture, module

interconnection architecture, execution architecture, and

code architecture. Within each category, the structures

describe the system from a different perspective:

●

●

●

The conceptual architecture describes the system in

terms of its major design elements and the relation-

ships among them.

The module interconnection architecture encom-

passes two orthogonal structures: functional decompo-

sition and layers.

The execution architecture describes the dynamic

structure of a system.

1

2,

By architects, we mean those who designed the software

architecture,

We will refer to the module interconnection architecture as

module architecture for brevity and ease of reading.
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System Application Domain Size Important System Characteristics

A user interface small window management

B* signal processing medium monitoring, real-time

c image and signal processing medium high throughput

D* signal processing medium monitoring, real-time, safety-critical

E* image and signal processing very large high throughput

F* computing environment medium management of distributed information

(_&# instrumentation and control large fault tolerance, multi-processing, safety-critical

H instrumentation and control large multi-processing

I operating system large real-time

J communication very large multi-processing

K* communication very large distributed, heterogenous, multi-processing

small: fewer than 100 KLOC; medium: 100-500 KLOC; large: 500-1 MLOC; very large: more than 1 MLOC

* These systems were selected for detailed study.

----- “.,. .-
‘lable 1: Summary ot the surveyed Systems

● The code architecture describes how the source code, ties. However, the focus of this paper is to describe the

binaries, and libraries are organized in the development

environment.

As shown in Table 2, not all of the systems have explic-

itl y described architectures for each category: in several

cases, the architectures are implicit in text, code, or one of

the other architecture descriptions. We also found architec-

tures that were a hybrid or that mirrored each other. When

they did make a distinction among these architectures, the

separation of engineering concerns, combined with special-

ized implementation techniques, decreased the complexity

of implementation, and improved reuse and reconfigura-

tion,

System Conceptual Module Execution Code

A +

B +C +
+b

c +’ + +

D + + +

E +C + +

F + d
+ +

G + + + +a,b

H + + + +o,b

1 + +

J + +b

K + + +

a. mirrors conceptual, b. mirrors module,

c. mirrors execution, d. combined with execution

Table 2: Explicitly Described Architectures in the

Surveyed Systems

We also observed that software architecture played an

important role throughout the development process, and in

achieving desired levels of non-functional system proper-

software architectures we found. We will examine the role

of software architecture in the software development pro-

cess in more detail in a subsequent paper.

For this paper we describe portions of three of the sys-

tems surveyed: one was chosen as a prototypical example,

and the others were chosen for the richness of the architec-

tures they used. We have removed the proprietary details

from these examples, and changed the names of the sys-

tems to remove any connection to actual systems.

We first give a prototypical example of one of these

systems, System B, in Section 2. This system provides a

good overview of the kinds of structures found in the soft-

ware architectures, and of typical ways the architecture

was used.

While System B‘s software architecture is a good intro-

duction to the state of the practice, it does not include the

full variety of the architecture we found. Section 3

describes portions of two systems that are ut the leading

edge in their use of software architecture. These systems

demonstrate the advantages to be gained frolm the separa-

tion of concerns as realized in different structures, and

how to avoid the problems that arise when the structures

are combined.

The final section summarizes the description tech-

niques that were used to describe the software architec-

tures.

2. Four Distinct Software Architectures

Before giving a detailed description of the four kinds of

software architectures we found, we first put them in con-

text by relating them to the historical development of soft-

ware and offering examples of why they are needed and

how they are used (Table 3).
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Software IExamples of Uses IExamples of Influencing Factors

Architecture

Code configuration management, system building, OEM pricing programming language, development tools and envi-

Architecture ronment, external subsystems (e.g., X windows)

Module management and control of module interfaces, change impact enabling software technologies, organization struc-

Architecture analysis, consistency checking of interface constraints, config- ure, design principles

uration management

Execution performance and schedtdability analysis, static and dynamic hardware architecture, run-time environment perfor-

Architecture configuration of the system, porting systems to different exe- mance criteria, communication mechanisms

cution environments

Conceptual design using domain-specific components and connectors, per- application domain, abstract software paradigms,

Architecture formance estimation, safety and reliability analysis, under- design methods

standing the static and dynamic configurability of the system

Table 3: Uses and Influencing Factors of Software Architectures

Initially, only the source code existed. Then interfaces

were introduced for type checking by compilers or other

tools, As software became larger it became useful to divide

source code into files and introduce information hiding

techniques. “Make”[ 12], configuration management[11 ],

and systems building techniques [22] were introduced

along with a flexible product structure to describe and

manipulate the file level organization of source code. This

information belongs in the code architecture.

As systems became even larger and multiple program-

mers worked on a project, abstraction mechanisms, mod-

ules, and module interconnection structures were

introduced. The importance of module interconnection

structures for programming-in-the-large was first recog-

nized by DeRemer and Kron [7]. Several variants of mod-

ule interconnection languages [26] have been defined that

support various features of programming-in-the-large (e.g.,

Intercol [35], PIC [37], and NuMIL [24]). This corresponds

to the module architecture in our categorization.

When systems became distributed, programmers needed

to consider dynamic structure and communication, coordi-

nation, and synchronization. Functional components

needed to be allocated within the dynamic structure [16].

Recently a number of interconnection languages have been

introduced that address the issue of allocating components

in a distributed environment. These include Conic [21],

Durra [3], Enterprise [29], Polylith [27], and UNAS [28].

In our software architecture categories, these issues are

addressed in the execution architecture.

Now research is progressing to higher abstraction levels.

Software engineers would like to be able to compose soft-

ware systems using communicating objects [1, 30] or

assemblies of components and connectors [4,6,8,23,31]. We

place these concerns in the conceptual architecture.

The remainder of this section describes System B, which

is a good example of typical practices regarding the

description and use of software architectures. System B col-

lects data from remote sensor groups for a number of sites

and generates reports of the monitored data. Safety and

real-time performance are some of the important system

characteristics for System B.

2.1 Conceptual Architecture

The conceptual architecture describes the system in

terms of its major design elements and the relationships

among them. This is a very high-level structure of the sys-

tem, using design elements and relationships specific to

the domain. Conceptual architectures are independent of

implementation decisions and emphasize interaction pro-

tocols between design elements.

In most of the systems we surveyed, conceptual archi-

tectures were implicit and embedded within the documen-

tation of other structures. Although the conceptual

architecture of System B is not documented explicitly, the

system architect drew informal diagrams depicting major

system components when describing the system to us. We

have derived a component-connector model of its concep-

tual architecture based on these discussions with the sys-

tem architect and through extensive studies of the

documentation and code. This model is informally

described in Figure 1; the rounded boxes represent func-

tional components while the rectangular boxes represent

.

Data Acquisition
Connector

OCompone.t

mConnector

Figure 1: Conceptual Architecture of System B
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Figure 2: Decomposition of the Data Acquisition

Connector in System B

connectors (i.e. interfaces and protocols) between compo-

nents.

Both components and connectors can be further decom-

posed in terms of more primitive components and connec-

tors. Figure 2 demonstrates how the data acquisition

connector in Figure 1 can be further decomposed in terms

of a connector representing a data acquisition protocol and

other components. This protocol is described using state

transition tables for the client and servers. Typical message

flows are described using extended sequence charts. Details

of message formats complete the description of the proto-

col .

2.2 Module Architecture

The module architecture supports programming-in-the-

large [7]. It encompasses two orthogonal structures: func-

tional decomposition and layers. Functional decomposition

of a system captures the way the system is logically decom-

posed into subsystems, modules, and abstract program

units. It captures the components’ interrelationships in

terms of exported and imported interfaces. Layers reflect

design decisions based on allowable import/export relations

and interfacing constraints. They reduce and isolate exter-

nal (e.g., hardware and operating system) and internal

dependencies, and facilitate bottom-up building and testing

of various subsystems.

Unlike the conceptual architecture, the module architec-

ture reflects implementation decisions. These implementa-

tion decisions are general] y independent of any

programming language. Thus this architecture can also be

thought of as the ideal implementation structure.

In System B, as in most of the systems we studied, the

module architecture is the most developed aspect of the sys-

tem. The application software of System B is decomposed

into a collection of modules for the major functions of the

system (Figure 3). The platform software of the system is

decomposed into system modules such as the real-time

operating system, file management, and the device drivers.

Details of the interfaces between pairs of modules are

described in the architecture specification.

System B
I

1

Data . . . Logging

1’ F&

1

Database

Acquisition Service Manager

Report Clock Display

Generator Service Manager

Figure 3: Functional Decomposition for Application

Software of System B

The layer structure of System B shows how the applica-

tion modules are assigned to the top two layers (Figure 4).

The layers in the architecture represent allowable inter-

faces among the application modules as well as the mod-

ules implementing the platform software. Modules within

a layer can communicate with each other. Modules in dif-

ferent layers can communicate with each other only if their

respective layers are adjacent.

Data Acquisition, Report Generator, etc.

Logging Service, Clock Service, Database Mgr,

Display Manager, etc.

ma

] Device Service Moclules I Interrupt Service Modules I

Figure 4: Layer Structure of System B

The dominant relationship between the conceptual and

the module architectures is implemented_by: a component

or connector in the conceptual architecture may be imple-

mented by one or more modules in the module architec-

ture. The implementation of a conceptual connector is

usually distributed across several modules, and may be

included in the implementations of components connected

to it. For example, implementation of the data acquisition

connector is distributed across both the remote sensor

groups and the data acquisition module. A conceptual con-

nector also imposes the interface requirements between its

implementation and the implementations of its connecting

components.

2.3 Execution Architecture

The execution architecture is used to describe the

dynamic structure of a system in terms of its run-time ele-

ments (e.g., operating system tasks, processes, address

spaces), communication mechanisms, assignment of func-
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Figure 5: Execution Architecture of System B

tionality to run-time elements, and resource allocation. It

also describes design decisions related to location, migra-

tion, and replication of a system’s run-time elements.

The driving forces behind the structuring decisions here

are performance, distribution requirements, and the run-

time environment, which includes the under] ying hardware

and software platform. Thus, the execution architecture is

likely to change more often because the underlying technol-

ogy of the hardwarelsoftware platform changes frequently.

Execution architectures are used for performance analysis,

monitoring, and tuning as well as for debugging and service

maintenance. The execution architecture is sometimes triv-

ial, as for example when the system is a single process.

The execution architecture is a prominent part of the

software architecture of all of the surveyed systems. System

B illustrates a simple but typical example of an execution

architecture (Figure 5). Each application module from the

module architecture is assigned to its own operating system

task, and sometimes a module is replicated by having mttlti-

ple instantiation of its associated task. For example, the

Data Acquisition task is replicated once for each remote

sensor group. The real-time operating system provides the

queues, semaphores, and mailboxes that are used for inter-

process communication between tasks. Tasks, acting as pro-

ducers or consumers, use both synchronous and asynchro-

nous communication to exchange data. Figure 5 is derived

from the detailed diagram of the execution architecture.

More information about the interactions among the tasks is

shown using control and data flow diagrams. The paths are

numbered to reference accompanying text that describes the

order of communication among the tasks. These diagrams

are similar to object interaction diagrams used in object-ori-

ented analysis [18].

The relationship between the conceptual and execution

architectures is two fold. Fh-st, each conceptual component

or a connector (or its implementation) can be related to a

run-time element in the execution architecture using the

relation as~igned_to, Second, the communication mecha-

nisms selected in the execution architecture constrain the

vSystem B

!2
include

files

Rm

@@

E!iiYi!m

Figure 6: Code Architecture of System B

implementation of conceptual components and connec-

tors. In System B, for example, the selection of the operat-

ing system and communication mechanisms constrains

how the data acquisition connector is implemented.

The relationship between module and execution archi-

tectures is similar. Modules in the module architecture are

assigned_to run-time elements in the execution architec-

ture. In addition, each of the run-time elements in the exe-

cution architecture is implemented_by specific modules in

the module architecture.

2.4 Code Architecture

The code architecture is used to organize the source

code into language level modules, directories, files, and

libraries. This architecture is influenced by the choice of

the programming language, the development tools and

environment (e.g., configuration management), and the

structure of the project (e.g., inter-corporation) and the

organization. Although this architecture is explicit in all

the surveyed systems, it is generally not described as part

of the software architecture. We found that the major use

of this architecture is to facilitate system building, system

installation, and configuration management. Other uses are

to minimize dependencies (e.g., compilation) among sub-

projects and to enforce import/export constraints specified

in the module architecture.

For System B, the organization of the source code mir-

rors the functional decomposition of the module architec-

ture of the application. The code architecture (Figure 6)

consists of directories for include files (defining inter-

faces), common library functions and source code. The

include files and libraries for the application and system

soft ware are separated.
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The relationship between the module and code architec-

tures is simply characterized by implemented_by. Each

abstract program unit in the module architecture is imple-

mented_by concrete program units in the code architecture.

There is also a relationship between run-time elements

in the execution architecture and elements such as executa-

ble and configuration files in the code architecture.

2.5 Summary

In this section, we have described the four categories of

software architectures found in the surveyed systems. We

have also described the relationships among the conceptual,

module, execution, and code architectures; these relation-

ships are summarized in Figure 7.

The four kinds of architectures address different though

inter-related engineering concerns:

●

●

●

●

●

Each contains the results of engineering decisions taken

at different times in the development process (e.g.,

design time, implementation time, build time, or run

time).

Each is influenced by different engineering and organi-

zational factors such as clarity, reducing dependencies

among programming tasks, evolution, or performance.

Each is developed and used for different purposes by

different teams (e.g., system architects, programmers,

system builders, or service personnel).

The degree to which each architecture reflects imple-

mentation decisions varies.

The degree to which each architecture is expected to

change varies. For example, the execution architecture

is likely to change more often than the conceptual archi-

tecture.

Each architecture category can be characterized using a

set of components, their interconnections, and the criteria

for evaluating them. Table 4 gives examples of typical com-

ponents and interconnections for architectures in each of

, 4

the above categories. The challenge, as we see it, is to pre-

cisely describe these architectures, separate their descrip-

tions to manage complexity, establish correspondences

between the descriptions, and facilitate analysis and

manipulation of the descriptions [32].

3. Separation of Concerns

It has long been recognized by hardware designers that

separation of concerns has powerful advantages when

developing large, complex systems. They have reached

agreements about separating design artifacts into levels

(e.g., architecture, logic design, physical layouts and

masks) describing different concerns, and about the pre-

cise description of these design artifacts [5, 19].

Separation of concerns is also used to advantage in

reflective systems [20]. In the Apertos operating

system [38] for example, an object is defined indepen-

dently from its execution environment, in orcler to facili-

tate object migration. A similar approach is used to deal

with the complexity of concurrent systems [ 1]. Concur-

rency abstractions simplify the task of programming by

separating design concerns such as locality and synchroni-

zation. The separation of design concerns is accomplished

by using abstractions to specify coordination patterns, and

by separating functionality from resource management.

Separation of engineering concerns facilitated the three

architecture-related objectives that are common among the

systems we studied:

exploitation of commonalities in product families,

faster turn around time for enhancement of application

●

functionality, and

evolution due to evolving hardware and software tech-

nologies.

Our observation is that the use of different kinds of

architectures arose in part to address these common objec-

tives, Many of the reported successes of the surveyed sys-

I Conceptual I
.—

components, w II
Execution Hardware

implemented_by
+4 ,

Architecture Architecture

Module subsystems, modules,
assigned_to resourc e_resides_on

*
Architecture exports, imports, ...

~

implemented_by tasks,

+

,, ‘L-
+processors,

implemented_by
threads,

networks,

Code
assigned_to IPC, RPC,

memory,,

files, directories, libraries disks,...

Architecture includes, contains, ...
.,.

conjigured_by

H
located_in

Source Code

Figure 7: Relationships among the Software Architectures
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Software Components Interconnections Engineering Criteria

Architecture

Conceptual domain-specific domain-specific constraints on cycles, requirements on throughput

Architecture components interconnections

Module systems, subsystems, component_of, import_from, functional decomposition methods, criteria such as

Architecture modules, layers export_to information hiding and abstraction, when to use muki-

ple interfaces, constraints imposed by layering strategy

Execution processes, tasks, threads, inter-process communication, criteria for priority assignment, constraints imposed by

Architecture clients, servers, buffers, remote procedure call run-time environment

message queues

Code files, directories, linker member_of, includes, contains, compilation and build time, criteria related to project

Architecture libraries, packages, linked_with, compiled_into, management and configuration management tools and

program libraries with clause, use clause the development environment

Table 4: Characterizations of the Software Architectures

terns resulted from allowing the different architectures to

develop independently while maintaining the relationship

between them. Similarly, some of the problems they

reported were a direct result of merging or intermingling

these architectures.

In Section 2, we described the typical software architec-

tures found in the surveyed systems. Next we describe

some of the more elegant examples of software architec-

tures, and the advantages of separating them.

3.1 Conceptual and Execution Architectures

in System G

The architecture of System G has an explicit conceptual

architecture. One of the design goals for this system is to

have a formal (i.e., complete and unambiguous) representa-

tion that both serves as documentation for the users, and

allows verification by engineers of various disciplines.

Such verification may include verification against the sys-

tem requirements, checking syntactic consistency, and vali-

dation with a system simulator.

The conceptual architecture is decomposed into a net-

work of several thousand interconnected functional dia-

grams. The network organizes functional diagrams into

Author Date Remarks Planname

Figure 8: Example of a Functional Diagram in

System G

areas of measurement of control variables, and open/

closed loop control of devices. Each functional diagram

consists of a small number of interconnected basic func-

tional blocks (Figure 8). These functional blocks are the

basic units of functionality, each performing a well-

defined mathematical or control function. The conceptual

architecture also includes protocols for synchronization

and fault tolerance; these protocols are the most complex

parts of the software.

System G explicitly distinguishes between the concep-

tual and execution architectures. To organize the execution

architecture, it uses two kinds of components, a Group

Module, and a Run-time Environment. A Group Module is

a group of functional diagrams that are executed on a vir-

tual machine provided by the Run-time Environment.

Each Group Module is assigned to the Run-time Environ-

ment on a single processor (Figure 9). The local execution

architecture for each processor is separately described in

terms of its Group Module, its Run-time Environment,

processes executing other software modules, buffers, and

communication mechanisms.

Figure 9: An Overview of the Execution Architecture in

System G

202



~ one-to-one
~ part of

~ many-to-one

*

relationship
c is ‘<c,,

~-~ constrains
a

Figure 10: Entity -Relationship-Attribute Notation for

Relationships

System G is the best illustration for the benefits of sepa-

ration of concerns. It clearly separates the instrumentation

and control (I&C) functions from the complex protocols

related to fault tolerance and synchronization, and separates

the execution architecture from the rest of the software.

This approach has made the introduction of digital technol-

ogy both tractable and feasible.

Separation of the conceptual architecture facilitates the

design, analysis, verification, and update of I&C functions

by process engineers and I&C engineers. The conceptual

architecture is preserved and/or traceable in the code, mak-

ing it possible to update and replace any Group Module at

build time.

Separating out the complex protocols supporting fault-

tolerance and synchronization made the protocols amenable

to formal modeling and analysis, and simplified their imple-

mentation and verification. Through the use of extended

finite state machines (e.g. Statecharts [15]), several errors in

the protocols were caught early in the design phases. This

separation also simplified the manual implementation of

functional blocks and the Run-time Environment, since the

code related to synchronization and fault-tolerance is

located elsewhere.

Finally, separation of the execution architecture from the

other architectures facilitated reconfiguration of functional

diagrams into Group Modules and their processor assign-

ments. The use of a Run-time Environment as a virtual

machine that executes functional diagrams also made it eas-

ier to change the platform software (e.g. operating system

and communication) without affecting the application soft-

ware (cf. Chimera [34] with its multilevel reconfigurable

software framework).

3.2 Module and Execution Architectures

in System K

System K is another system with a particularly interest-

ing architecture: here the module and execution architec-

tures are notable. To show these architectures, we use an

entity -relationship-attribute notation. Components are rep-

resented as entities (shown in boxes), and relationships

between components are described with the symbols listed

in Figure 10.

Like System B and several other systems, the module

architecture of System K encompasses both functional

decomposition and a layer structure (Figure 11). The appli-

Functional Decomposition Layer Structure

uSystem
lLayer~ll

——

-

~J
is assigned to

Language Level

Module

Figure 11: Skeletal Mets-Model of the

Module Architecture in System K

cation software of the system is decomposed into sub-

systems that are further decomposed into subsystems, until

reaching the lowest level abstract modules called Service

Provision Units (SPUS). The services provided by an SPU

are defined by their abstract interfaces. SPUS can interact

with each other only through these interfaces, thereby con-

straining the connections between SPUS. The connections

between abstract modules are grouped into system-level

connections at the subsystem level.

An SPU is an abstract module class created by the sys-

tem architects. SPUS contain a mix of implementation lan-

guage elements to provide the designer with larger, more

abstract functional building blocks. These promote soft-

ware reusability at the level of services by tightly defining

and restricting the scope of the SPUS.

System K illustrates an interesting interplay between

the functional decomposition and the layers. The layer

structure (Figure 11) consists of a number of layers, each

of which may be further decomposed into sublayers. The

layer model is designed before any functional decomposi-

tion takes place, and is used to guide partitioning of func-

tionality into SPUS. The SPUS from the functional

decomposition structure are then assigned to a layer,

thereby constraining the SPUS’ interfaces and dependen-

cies. This assignment constrains an SPU to interact only

with SPUS that are assigned to adjacent layers. The separa-

tion into layers allows changes to be made to components

at one layer without affecting the components of the other

layers. It also provides application independence from the

evolving hardware. It also facilitates the bottom-up build-

ing and testing of various subsystems.
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Module

(e.g. OS process (e.g. buffer, Resources Instance

or task) disk storage) (e.g. SPU

instance)

Figure 12: Skeletal Mets-Model of the

Execution Architecture in System K

Like System G and several other systems, System K

uses an execution grouping to organize the execution archi-

tecture (Figure 12). System Ks execution group is called a

“capsule,” and it contains instances of one or more SPUS

(see Figure 13). The SPUS that comprise the capsule exe-

cute on the same processor and are allocated a subset of the

total processing resources (e.g., address space, memory

pool, timers). The contents of a capsule are defined at build

time. The allocation of SPU instances to capsule is based on

grouping SPUS that have related functions and therefore a

related cumulative need of computational resources. Cap-

sules are then assigned to processors based on CPU

resource and timing requirements.

The execution architecture of System K is explicitly sep-

arated from its module architecture in anticipation of poten-

tial changes to the execution architecture. In order to

facilitate changes to the execution architecture, SPU imple-

mentations use loosely-coupled inter-process communica-

tion for interaction with other SPUS. This allows alternate

grouping of SPUS into capsules and migration of capsules

to other processors without any changes to the code.

3.3 Summary

Combining architectures can reduce understandability of

the system. For example, combining module and execution

architectures can group together functional components that

are not logically related. This reduces understandability

because decomposition reflects decisions related to task

allocation rather than decisions based on functional rela-

tionships.

Combining architectures can also significantly increase

the cost of porting to a different hardware or software plat-

form, requiring significant rewriting of code. Porting often

requires changes in the execution architecture. When the

module architecture is made to mirror the execution archi-

tecture, the module architecture must change in response to

changes in the execution architecture. Such changes in the

module interfaces and the process boundaries may result in

reworking of code.

Processing
platform Capsule i

I Capsule 1 Ai.rh

I . SPU m II
I ISPU1 nil.

B’ L II

I OS kernel !

Communication; with’ oth;r system units

Figure 13: An Overview of the Execution

Architecture in System K

In summary, combining architectures can limit evolv-

ability, reconfigurability, and ability to change over to

commercial, off-the-shelf technology. This is due to inter-

mingling the implementation of the functionality with

implementation decisions related to protocols, communi-

cation mechanisms, and resource allocation. Careful sepa-

ration of such decisions facilitates the adaptation of

reusable components to different execution architectures.

4. Architecture Description Techniques

We found that most architects and developers use a

combination of informal and semi-formal techniques to

describe software architectures. This is not surprising

since rigorous architecture description techniques are not

available. Entity -relationship-attribute (ERA) notation and

finite state machines are two description techniques that

were extremely useful for describing and modeling aspects

of architecture. CASE tools are beginning to be used to

construct functional decomposition diagrams. On the other

hand, informal diagrams, tables, and natural language text

with naming conventions are used to describe many of the

other software structures. Even when a formal notation is

used, it is often supplemented with informal and incom-

plete diagrams, in order to enhance the understanding of

the formal model.

The disadvantages of using informal description tech-

niques are described in the literature, and this was borne

out in the surveyed systems. Among these are the ambigu-

ity of informal descriptions, and the problems of detecting

inconsistencies and establishing traceability between the

architecture and the code. In addition, without a rigorous

and an unambiguous language to describe architectures,

automated tools cannot be used to support architecture-

based software development activities.
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We found two other common problems when architec-

ture was described informally. It is difficult to recognize

and exploit similarities between architectures of other prod-

ucts within a product family. Conversely, it is easy to blur

the distinction between quite dissimilar architectures when

the descriptions are informal.

4.1 Describing Software Architectures

When explicitly described, the conceptual architecture is

usually an informal block diagram depicting major system

components and data and control paths between them. A

notable exception is System G, in which the conceptual

architecture is described using precise, application-specific

notation, thus making it possible for tools to check the syn-

tax of the architecture, analyze it for performance, and gen-

erate code. This notation is based on an entity-relationship-

attribute model. System G uses extended finite state

machines (e.g. StateCharts [15]) to model voter-checker

protocols, and System K uses a similar formalism to model

protocols.

The module architecture is described using a combina-

tion of techniques. The functional decomposition is

described using decomposition hierarchies (e.g. trees,

TeamWork process diagrams), tables, and text. Layers are

usually described using stacked rectangular boxes. Adja-

cencies between these boxes represents allowable interfaces

between components in different layers. When the layers

have sublayers, they are either depicted in separate dia-

grams or described in text.

Execution architecture is often embedded in the code

architecture or in configuration files used by system build-

ing tools. Execution architectures are informally docu-

mented using a variety of techniques, including text, tables,

and informal diagrams. Such diagrams depict operating

system processes, buffers, and communication mecha-

nisms. Sometimes the relationship of execution architecture

elements to the hardware elements such as processors and

networks is also described. When the systems use module

and execution architectures that mirror each other, the exe-

cution architecture is often superimposed on the module

architecture. For example, the capsule structure (execution

architecture) of System K is superimposed on its layer

structure. The actual contents of each of the capsules are

shown using a separate table.

Again a notable exception is System G, which uses a

combination of formal and informal notations to describe

the execution architecture. In the formal notation, Group

Modules are constructed from collections of functional dia-

grams. The functional diagrams, Group Modules, run-time

elements (e.g. telegrams, buffers) of the execution architec-

ture, and the hardware architecture are modeled using an

entity-relation ship-attribute model.

Code architectures are generally described with the help

of make files or equivalent models for system building.

4.2 Describing Relationships among

Software Architectures

For describing the relationship and correspondences

between the architectures, we found several methods

being used: mirroring one architecture after another,

hybrid structures, and correspondence using explicit

mechanisms such as assignment of functionality. Several

systems mirror one architecture with respect to another,

often using naming conventions. For example, the func-

tional decomposition of System B mirrors its execution

architecture. That is, each task in the execution architec-

ture is assigned a single module from the module architec-

ture.

In several systems, hybrid structures are used to show

the relationship between two architectures, and these

hybrid structures can be derived automatically given rep-

resentations for the architectures and the relationships

between them. System K uses a combination of the layer

structure and the execution architecture to describe the

relationships among them.

One of the systems using an explicit mechanism to

describe the relationship between architectures is System

G, in which the relationships between the functional dia-

grams (in the conceptual architecture) and Group Modules

(in the execution architecture) are formally based on the

entity-relationship-attribute models of the two architec-

tures. System G uses informal diagrams to combine the

execution and module architectures. It also uses diagrams

that superimpose the module architectures and the mode

transition diagrams (from the execution architecture).

These informal diagrams are used to better understand the

formal model of the architectures and their relationships.

5. Conclusions

In this paper, we have presented a discussion of soft-

ware architecture in industrial applications. This presenta-

tion was based on a survey of the software architecture of

a number of systems, with six representative systems stud-

ied in depth. The systems represent a variety of application

domains, and range in size from small (fewer than 100

KLOC) to very large (more than 1 MLOC). We found that

while architecture descriptions and analysis techniques are

a mix of informal and semi-formal, separate architectures

were used to describe the different concerns addressed by

a system’s software architecture.

The various architectures describe the system from dif-

ferent perspectives, they are characterized by different

needs and goals, and they are used at different times in the

development process. Many of the reported successes of

the surveyed systems resulted from allowing these archi-

tectures to develop independently while maintaining the

relationship between the architectures. Similarly, some of
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the problems they reported were a direct result of merging

or intermingling these architectures.

In examining the components and interconnections in

the systems, we found that the structures used to describe

architecture fall into four broad categories. The conceptual

architecture describes the structure of a system in terms of

its functional components and interface connectors, the

module architecture describes the ideal implementation

structure of the system, the execution architecture describes

the dynamic structure of a system in terms of its run-time

elements, and the code architecture describes how the

source code of the system is organized.

While these categories are not the final answer to the

definition of software architecture, we believe that separat-

ing structures into more than one perspective is crucial.

This separation accurately reflects the practice in develop-

ment of real software systems, and the reasons for the sepa-

ration become clear upon studying these systems.

We believe this separation of software architectures will

facilitate the use of formal approaches (such as formal

description and analysis) that are powerful, but have not

readily produced scalable, practical results. Meanwhile, rig-

orous techniques need to be developed to describe these

software architectures, so that they can be analyzed to pre-

dict and assure non-functional system properties. It then

becomes possible to design, implement, test, and re-engi-

neer a software system based on the rigorous description of

its architecture. Finally, all of these architecture-based

activities need to be incorporated in existing development

processes for maximum effectiveness.
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A Process forthe Study

The software systems we studied were all developed

for industrial applications. Although the designers and

developers of the various systems may disagree on exactly

what the software architecture consists of, they all recog-

nize its importance, and some are at the lealding edge in

their use of software architecture in industry, As a part of

the study, we talked to architects and engineers, read

design documents, and, in some cases, read parts of the

source code. The sequence of steps we undertook is as fol-

lows:

1.

2.

3.

4.

5.

6.

7.

8.

We started with an initial list of questions to guide our

study. The questions were related to how architecture

was described and used in the development of a sys-

tem. We developed a questionnaire based on these

questions and sent it to the organizations we intended

to visit. This questionnaire appears in Appendix B.

We visited the organizations to present our premise

and the objectives of our study.

We collected and read design documents and, in some

cases, code for the systems,

We held extended discussions with the architects and

designers of these systems. In some cases, these dis-

cussions lasted several days over several visits. We

used the questionnaire during these interviews to struc-

ture the initial discussion and to gather information.

We also held a workshop on software architectures

where the architects described and discussed the archi-

tecture of their systems.

We selected six of the systems for more detailed study,

and carefully studied the available artifacts for these

systems. These six, annotated with asterisks in Table 1,

represent a wide variety of application domains, and

they are among the systems for which we Ihad the most

information.

We distilled the information from these six systems

using a structured template. This template appears in

Appendix C.

We analyzed the distilled information to m-rive at our

findings. Based on this analysis, we restructured the

description of the systems to improve understanding,

and prepared the internal technical report.

We then sent the technical report to the designers and

architects of the systems for their comments, and mod-

ified it based on these comments. The internal report

provides the basis for this paper.
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