
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Sponsored by the U.S. Department of Defense
© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 1Version 1.0 1

Software ArchitectureSoftware Architecture
inin

PracticePractice

Paul C. Clements
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890 USA

Sponsored by the U.S. Department of Defense
© 2002 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 2Version 1.0

Schedule and Outline

0900 - 0915 Introductions

0915 - 0945 The Architecture Business Cycle

0945 -1000 What is architecture?

1000 - 1030 Why is architecture important?

1030 - 1045 Break

1045 - 1115 Architectural structures

1115 - 1200 New developments in software
architecture

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 3Version 1.0

Schedule and Outline

0900 - 0915 Introductions

0915 - 0945 The Architecture Business Cycle

0945 -1000 What is architecture?

1000 - 1030 Why is architecture important?

1030 - 1045 Break

1045 - 1115 Architectural structures

1115 - 1200 New developments in software
architecture

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 4Version 1.0

Factors Influencing Architectures

Architectures are influenced by
• stakeholders of a system
• technical and organizational factors
• architect’s background

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 5Version 1.0

Stakeholders of a System

Marketing
stakeholder

Behavior,
performance,

security,
reliability!

Low cost,
keeping people

employed, leveraging
existing corporate

assets!

Low cost, timely
delivery, not changed

very often!

Modifiability!Neat features,
short time to market,
low cost, parity with
competing products!

Ohhhhh...Architect

Development
organization’s
management
stakeholder

End user
stakeholder

Maintenance
organization
stakeholder

Customer
stakeholder

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 6Version 1.0

Development Organization
Concerns

Business issues
• investing in, and then amortizing the infrastructure
• keeping cost of installation low
• investing in, and then utilizing personnel

Organizational structure issues
• furthering vested interests, e.g.,

- maintaining an existing database organization
- supporting specialized expertise

• maintaining the standard method of doing business

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 7Version 1.0

Technical Environment

Current trends: today’s information system will likely
employ a
• database management system
• Web browser for delivery and distribution across

platforms
This was not true 10 years ago.

Available technology: decisions on using a centralized
or decentralized system depend on processor cost and
communication speed; both are changing quantities.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 8Version 1.0

Architect’s Background

Architects develop their mindset from their past
experiences.
• Prior good experiences will lead to replication of

prior designs.
• Prior bad experiences will be avoided in the new

design.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 9Version 1.0

Summary: Influences on the Architect

Architect’s influences
Stakeholders

Development
organization

Technical
environment

Architect’s
experience

Requirements
Architecture

System

Architect(s)

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 10Version 1.0

What Makes a Good Architect?

People skills: must be able to
• negotiate competing interests of stakeholders
• promote inter-team collaboration

Technical skills: must understand
• the relationships between qualities and structures
• current technology
• that most requirements for an architecture are not

written down in any requirements document

Communication skills: must be able to
• clearly convey the architecture to teams (both verbally

and in writing)
• listen to and understand multiple viewpoints

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 11Version 1.0

Factors Influenced by Architectures

Structure of the development organization

Enterprise goals of the development organization

Customer requirements

Architect’s experience

Technical environment

The architecture itself

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 12Version 1.0

Architecture Influences the
Development Organization Structure

Short term: work units are organized around
architectural units for a particular system under
construction.

Long term: when company constructs a collection of
similar systems, organizational units reflect common
components (e.g., operating system unit or database
unit).

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 13Version 1.0

Architecture Influences the Development
Organization Enterprise Goals

Development of a system may establish a foothold in
the market niche.

Being known for developing particular kinds of
systems becomes a marketing device.

Architecture becomes a leveraging point for
additional market opportunities and networking.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 14Version 1.0

Architecture Influences Customer
Requirements

Knowledge of similar fielded systems leads
customers to ask for particular features.

Customers will alter their requirements on the basis of
the availability of existing systems.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 15Version 1.0

Architecture Influences the Architect’s
Experience and Technical Environment

Creation of a system affects the architect’s background.

Occasionally, a system or an architecture will affect the
technical environment.
• the WWW for information systems
• the three-tier architecture for database systems

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 16Version 1.0

Architecture Business Cycle (ABC)

Architect’s influences
Stakeholders

Development
organization

Technical
environment

Architect’s
experience

Requirements
Architecture

System

Architect(s)

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 17Version 1.0

ABC Summary

Architecture involves more than just technical
requirements for a system. It also involves non-technical
factors, such as the
• architect’s background
• development environment
• business goals of the sponsoring organization

Architecture influences the factors that affect it.
• Architects learn from experience.
• The development environment is expanded and altered.
• Businesses gain new marketing possibilities.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 18Version 1.0

Schedule and Outline

0900 - 0915 Introductions

0915 - 0945 The Architecture Business Cycle

0945 -1000 What is architecture?

1000 - 1030 Why is architecture important?

1030 - 1045 Break

1045 - 1115 Architectural structures

1115 - 1200 New developments in software
architecture

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 19Version 1.0

Some Usual Descriptions of
Architecture

“Components and connectors”

“Overall structure of system”

A diagram:
Control
process

(CP)

Noise
model

(MODN)

Reverb
model

(MODR)

Prop loss
model

(MODP)

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 20Version 1.0

What’s Wrong with “Components
and Connectors?”

What kind of component?
• task? process?
• object? program? function?
• library? compilation unit?
• processor?

What kind of connector?
• calls? invokes? signals? uses? data flow?
• subclass?
• runs with? excludes?
• co-located with?

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 21Version 1.0

What’s Wrong with “Overall
Structure?”

Which structure? Software is composed of many
structures.
• module
• task
• uses
• logical
• functional

When seeing boxes and lines, we must ask
• What do the boxes represent?
• What do the arrows mean?

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 22Version 1.0

What’s Wrong with the Diagram?

Same questions as the previous slide.
• What kind of components?
• What kind of connectors?
• What structures?
• What do the boxes and arrows mean?

Plus new questions
• What is the significance of the layout?
• Why is control process on a higher level?

Box and arrow drawings alone are not architectures;
rather, they are a starting point.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 23Version 1.0

The Definition of Software
Architecture

The software architecture of a program or computing
system is the structure or structures of the system,
which comprise software components, the externally
visible properties of those components, and the
relationships among them.

Notice this means that
• box-and-line drawings alone are not architectures,

but a starting point.
• architecture includes behavior of components

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 24Version 1.0

Architectural Style -1

Architectural style: a description of component and
connector types and a pattern of their runtime control
and/or data transfer [Shaw 96]

Architectural styles are a set of canonical
architectural solutions to problems.

Styles are underspecified architectures. They suggest
patterns of runtime interaction, and topologies of
components.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 25Version 1.0

Architectural Style -2

A style may be thought of as
• a set of constraints on an architecture
• an abstraction for a set of related architectures

Styles appearing in the literature include
• client server
• cooperating process
• data-centered
• layered

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 26Version 1.0

Schedule and Outline

0900 - 0915 Introductions

0915 - 0945 The Architecture Business Cycle

0945 -1000 What is architecture?

1000 - 1030 Why is architecture important?

1030 - 1045 Break

1045 - 1115 Architectural structures

1115 - 1200 New developments in software
architecture

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 27Version 1.0

Importance of Architecture to a Development
Organization’s Business

Software for a system or group of systems
• provides leverage over a marketplace
• provides a vehicle for management oversight
• provides for the scoping of products
• can be used as a sales tool (e.g., conforms to

industry standards)

Enterprise architectures enable
• shorter learning time
• specialized tool support
• sharing of infrastructure costs among systems

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 28Version 1.0

Important of Architecture to a
Development Project

Architecture is important for three primary reasons.
1. It provides a vehicle for communication among
stakeholders.
2. It is the manifestation of the earliest design
 decisions about a system.
3. It is a transferable, reusable abstraction of a
 system.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 29Version 1.0

Communication Vehicle

Architecture is a frame of reference in which
competing interests may be exposed, negotiated.
• negotiating requirements with users
• keeping customer informed of progress, cost
• implementing management decisions and

allocations

Architecture constrains the implementation and
therefore the implementors
• implementations must conform to architecture
• (global) resource allocation decisions constrain

implementations of individual components

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 30Version 1.0

Result of Early Design Decisions -1

The architecture dictates organizational structure for
development/maintenance efforts. Examples include
• division into teams
• units for budgeting, planning
• basis of work breakdown structure
• organization for documentation
• organization for CM libraries
• basis of integration
• basis of test plans, testing
• basis of maintenance

Once decided, architecture is extremely hard to change!

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 31Version 1.0

Result of Early Design Decisions -2

Architecture permits/precludes achievement of a
system’s desired quality attributes. For example:

If you desire Examine
performance inter-component communication
modifiability component responsibilities
security inter-component communication,

specialized components (e. g., kernels)
scalability localization of resources
ability to subset inter-component usage
reusability inter-component coupling

The architecture influences qualities, but does not
guarantee them.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 32Version 1.0

Result of Early Design Decisions -3

An architecture helps users reason about and
manage change (about 80% of effort in systems
occurs after deployment).

Architecture divides all changes into three classes.
• local: modifying a single component
• non-local: modifying several components
• architectural: modifying the gross system topology,

communication, and coordination mechanisms

A good architecture is one in which the most likely changes
are also the easiest to make.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 33Version 1.0

Reusable Model

An architecture is an abstraction: a one-to-many
mapping (one architecture, many systems).

Architecture is the basis for product (system)
commonality. Entire product lines can share a single
architecture.

Systems can be built from large, externally developed
components that are tied together via architecture.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 34Version 1.0

Schedule and Outline

0900 - 0915 Introductions

0915 - 0945 The Architecture Business Cycle

0945 -1000 What is architecture?

1000 - 1030 Why is architecture important?

1030 - 1045 Break

1045 - 1115 Architectural structures

1115 - 1200 New developments in software
architecture

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 35Version 1.0

Schedule and Outline

0900 - 0915 Introductions

0915 - 0945 The Architecture Business Cycle

0945 -1000 What is architecture?

1000 - 1030 Why is architecture important?

1030 - 1045 Break

1045 - 1115 Architectural structures

1115 - 1200 New developments in software
architecture

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 36Version 1.0

Architectural Structures -1

In a house, there are plans for
• rooms
• electrical wiring
• plumbing
• ventilation

Each of these constitutes a “view” of the house.
• used by different people
• used to achieve different qualities in the house
• serves as a description and prescription

So it is with software architecture.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 37Version 1.0

Architectural Structures -2

Which structures are used, and why?

 Common structures include
• module
• process
• uses
• calls
• data flow
• class
• physical

A structure provides a view of the architecture.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 38Version 1.0

Module Structure

Components: modules, work assignments

Relations: “is a submodule of,” “shares a secret
with”

Used: as a basis of team structure and resource
allocation

Affected attributes include: maintainability,
understandability

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 39Version 1.0

Process Structure

Components: tasks, processes

Relations: “synchronizes with,” “excludes,”
“preempts”

Used: to tune system runtime performance, exploit
multiprocessing hardware

Affected attributes include: performance

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 40Version 1.0

Uses Structure

Components: procedures

Relations: “assumes the correct presence of”

Used: to engineer subsets, supersets

Affected attributes include: reusability, testability,
incremental development

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 41Version 1.0

Calls Structure

Components: procedures

Relation: invokes

Used: to trace control flow; for debugging

Affected attributes include: buildability, testability,
maintainability, understandability

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 42Version 1.0

Data Flow Structure

Components: programs, modules

Relation: “may send data to”

Used: for traceability of functionality

Affected attributes include: performance, correctness,
accuracy

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 43Version 1.0

Class Structure

Components: objects

Relation: “inherits from,” “is instance of”

Used: to exploit similarity among objects

Affected attributes include: development time,
maintainability

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 44Version 1.0

Physical Structure

Components: tasks, processes, processors

Relation: “resides on same processor”

Used: to manage process-to-processor allocation

Affected attributes include: performance

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 45Version 1.0

What Are Structures Used For?

Descriptive: documentation vehicle for
• current development
• future development
• managers
• customers

To document the architecture, document the views.

Prescriptive: engineering tool to help achieve
qualities

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 46Version 1.0

Architectural Structures Summary

Structures are related to each other in complicated
ways.

In some systems, different structures collapse into a
single one. (For example, process structure may be the
same as module structure for extremely small
systems.)

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 47Version 1.0

Which Views Should I Use?

Rational Unified Process: 4+1 views

Siemens 4-view model

(C4ISR framework prescribes 3 views, but these are
not views of the software architecture. More later.)

What to do? Choose the structures that are useful to
the system being built and to the achievement of
qualities that are important to you.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 48Version 1.0

Architectural Structures Example:
A-7E Corsair II Aircraft

U. S. carrier-based, light attack aircraft, used from the
1960s through the 1980s

Small computer on board for navigation, weapons
delivery

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 49Version 1.0

A-7E Module Structure (2 Levels)
H

ar
dw

ar
e-

H
id

in
g

M
od

ul
e

Device
interface
module

Extended
computer
module

B
eh

av
io

r-
H

id
in

g
M

od
ul

e

Function
driver
module

Shared
services
module

Data banker
module

Physical
models module

Application
data types mod.

Filter
behavior module

Software
utilities module

System
generation mod.

S
of

tw
ar

e
-D

ec
is

io
n-

H
id

in
g

M
od

ul
e

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 50Version 1.0

Data Flow View

Device interfaces

Data banker

Shared services

Function drivers Filter behaviors

Physical models

sensor inputs

computed values stored values

computed values

stored
values

values
to display

filtered
values

sensor
values

calculatedcalculated
real-worldreal-world

valuesvalues

Pilot, external world

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 51Version 1.0

“Uses” View

Function drivers

Extended computer

Application data types

Device interfaces

Data
banker

Physical
models

Filter
behaviors

Shared services

Software
utilities

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 52Version 1.0

A-7E Subset: Display HUD Altitude
Function drivers

Extended computer

Application data types

Device interfaces

Data
banker

Physical
models

Filter
behaviors

Shared services

Software
utilities

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 53Version 1.0

Lecture Summary -1

Architecture is important because
• it provides a communication vehicle among

stakeholders
• it is the result of the earliest design decisions about a

system

An architecture is composed of many structures,
documented as views, which are software components
and their relationships.

Each structure provides engineering leverage on different
qualities. Engineer and document the structures that help
to achieve your desired qualities.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 54Version 1.0

Schedule and Outline

0900 - 0915 Introductions
0915 - 0945 The Architecture Business Cycle
0945 -1000 What is architecture?
1000 - 1030 Why is architecture important?
1030 - 1045 Break
1045 - 1115 Architectural structures
1115 - 1200 New developments in software

architecture
- Software product lines
- Aspect-oriented software development
- Predictable assembly from certifiable

 components

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 55Version 1.0

CelsiusTech Systems

Swedish defense
contractor
• approximately

2000 employees

• about $300 million
 in annual sales

Long-time
supplier of
naval shipboard
command and
control systems

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 56Version 1.0

1985: Disaster Struck!

CelsiusTech marketers landed two large contracts
simultaneously.
• 1,000,000 SLOC each (estimated)
• greater complexity of requirements than before

CelsiusTech realized they could not fulfill both
contracts unless they started doing business in a
totally new way.
• Earlier systems were troublesome to integrate and

had cost schedule overruns.
• Hiring was not an option: there was a shortage of

engineers.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 57Version 1.0

CelsiusTech’s Response

Business strategy
• create a product family
• make the software scaleable over a wide range of

systems

Technical strategy
• create a new generation of system

- hardware, software
- supporting development approach

• configure systems from product family; each new
project was added to the family

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 58Version 1.0

What CelsiusTech Did

Assembled a small expert architecture team with
• extensive domain knowledge
• previous systems experience
• Objective: produce architecture that would suffice

for both systems plus new systems in the same
domain.

Produce software components that populated this
architecture
• Components were flexible, configurable across a

wide variety of envisioned uses

System-building became a matter of integration, not
construction.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 59Version 1.0

SS2000 System Architecture

Data
processor

Workstation

Workstation

Gun
processor

Processor

dual Ethernet LAN

Workstation
Processor

Processor

Data
processor

Surface to
air missile
interface

Radar
detector

E/O
director

Torpedo
processor

Standard
interface

unit
Video
switch

Surface to
surface
missile

interface

Plot and
target

extractor
Comm.

processor

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 60Version 1.0

Typical System Configuration

15-30 nodes on LAN

30-70 CPUs

100-300 Ada programs

1-1.5 million Ada SLOC

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 61Version 1.0

Members of SS2000 Product Family
Over 55 variants
• Swedish Goteborg class Coastal Corvettes (KKV) (380

tons)
• Danish SF300 class multi-role patrol vessels

(300 tons)
• Finnish Rauma class Fast Attack Craft (FAC)

(200 tons)
• Australian/New Zealand ANZAC frigates (3225 tons)
• Danish Thetis class Ocean Patrol vessels

(2700 tons)
• Swedish Gotland class A19 submarines (1330 tons)
• Pakistani Type 21 class frigates
• Republic of Oman patrol vessels
• Danish Niels Juel class corvettes

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 62Version 1.0

Result of Changes:
Shrinking, Predictable Schedules

1986 1988 1990 1992 1994 1996

A

B

C

D

E

F

G

Ships

Hardware-to-software cost ratio changed from 35:65 to 80:20

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 63Version 1.0

Result of Changes: Lower Staffing
200

180

160

140

120

100

80

60

40

20

0
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 64Version 1.0

Result of Changes: Reuse

Ships

N
um

be
r o

f S
ys

te
m

 M
od

ul
es

Unique application
National application

Modified

Reusable application

Common (verbatim)

140

120

100

80

60

40

20

0
A B C D E

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 65Version 1.0

Cummins, Inc.

World’s largest
manufacturer of
large diesel engines.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 66Version 1.0

Complex domain of variation

Today’s diesel engines are driven by software
• Micro-control of ignition timing to achieve optimum

mix of power, economy, emissions

• Conditions change dynamically as function of road
incline, temperature, load, etc.

• Must also respond to statutory regulations that
often change

• Reliability is critical! Multi-million dollar fleets can
be put out of commission by a single bug

• 130KSLOC -- C, assembler, microcode

• Different sensors, platforms, requirements

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 67Version 1.0

In 1993, Cummins had a problem

Six engine projects were underway
Another 12 were planned.

Each project had complete control over its
development process, architecture, even choice of
language. Two were trying to use O-O methods.

Ron Temple (VP in charge) realized that he would
need another 40 engineers to handle the new projects
-- out of the question.

This was no way to do business.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 68Version 1.0

What Cummins did

In May, 1994 Temple halted all the projects.

He split the leading project.
• One half built core assets -- generic software,

documentation, and other assets that every product
could use

• Other half became pilot project for using the core
assets to turn out a product

In 1995, the product was launched on time (relative to
re-vamped schedule) with high quality.

Others followed.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 69Version 1.0

Cummins’ results

Achieved a product family capability with a breathtaking
capacity for variation, or customization
• 9 basic engine types
• 4-18 cylinders
• 3.9 - 164 liter displacement
• 12 kinds of electronic control modules
• 5 kinds of microprocessors
• 10 kinds of fuel systems
• diesel fuel or natural gas

Highly parameterized code. 300 parameters are
available for setting by the customer after delivery.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 70Version 1.0

Cummins’ results by the numbers -1

• 20 product groups launched, which account for
over 1000 separate engine applications

• 75% of all software, on average, comes from core
assets

• Product cycle time has plummeted. Time to first
engine start went from 250 person-months to a few
person-months. One prototype was bulit over a
weekend.

• Software quality is at an all-time high, which
Cummins attributes to product line approach.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 71Version 1.0

Cummins’ results by the numbers -2

• Customer satisfaction is high. Productivity gains
enables new features to be developed (more than
200 to date)

• Projects are more successful. Before product line
approach, 3 of 10 were on track, 4 were failing, and
3 were on the edge. Now, 15 of 15 are on track.

• Widespread feeling that developers are more
portable, and hence more valuable.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 72Version 1.0

Cummins’ results by the numbers -3

Supported Components 1992 1993 1994 1995 1996 1997 1998

==
Electronic control
modules (ECMs) 3 3 4 5 5 11 12

Fuel systems 2 2 3 5 5 10 11

Engines 3 3 5 5 12 16 17

Features * ECM 60 80 180 370 1100 2200 2400

Achieving this flexibility without the product line approach
would have required 3.6 times the staff Cummins has.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 73Version 1.0

Cummins’ results by the numbers -4

Cummins management has a history of embracing
change, but carefully targeted change.

They esimate that process improvement alone has
brought a benefit/cost ration of 2:1 to 3:1.

They estimate that the product line approach has
brought a benefit/cost ration of 10:1.

Product line approach let them quickly enter and then
dominate the industrial diesel engine market.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 74Version 1.0

Two companies, same goals

High quality

Quick time to market

Effective use of limited resources

Product alignment

Low cost production

Low cost maintenance

Mass customization

High qualityHigh quality

Quick time to marketQuick time to market

Effective use of limited resourcesEffective use of limited resources

Product alignmentProduct alignment

Low cost productionLow cost production

Low cost maintenanceLow cost maintenance

Mass customizationMass customization

 Improved
 efficiency

 and
 productivity

 How?
Strategic reuse.

 Improved
 efficiency

 and
 productivity

 How?
Strategic reuse.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 75Version 1.0

Reuse History: From Ad-Hoc to
Systematic

1960’s
Subroutines

1970’s
Modules

1980’s
Objects

1990’s
Components

2000’s
Software

Product Lines

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 76Version 1.0

What Is a Product Line?
A product line is a group of products sharing
a common, managed set of features that satisfy specific needs of a
selected market or mission.

Market strategy/
Application domain

pertain to

Products

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 77Version 1.0

What is a Software Product Line?

A software product line is a set of software-intensive
systems sharing a common, managed set of features
that satisfy the specific needs of a particular market
segment or mission and that are developed from a
common set of core assets in a prescribed way.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 78Version 1.0

Software Product Lines

Market strategy/
Application domain

Architecture

Components

pertain to

share an

are built from

is satisfied by

used to structureProducts
CORE

ASSETS

Product lines
• take economic advantage of commonality
• bound variability

Product lines
• take economic advantage of commonality
• bound variability

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 79Version 1.0

How Do Product Lines Help?

Product lines amortize the investment in these
and other core assets:
•requirements and requirements analysis
•domain model
•software architecture and design
•performance engineering
•documentation
•test plans, test cases, and data
•people: their knowledge and skills
•processes, methods, and tools
•budgets, schedules, and work plans
•components

 product lines = strategic reuse

earlier life-
cycle
reuse

more
benefit

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 80Version 1.0

Economics of Product Lines

Derived from data supplied by
Lucent Technologies

Bell Laboratories Innovations

With Product Line Approach

Current
Practice

Cumulative
Cost

Number of Products

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 81Version 1.0

The Key Concepts

Use of a
common
asset base

in
production

of a related
set of
products

ArchitectureArchitecture
Production PlanProduction Plan

Scope Definition
Business Case

Scope Definition
Business Case

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 82Version 1.0

Organizational Benefits
Improved productivity
 by as much as 10x

Decreased time to market (to field, to launch...)
 by as much as an order of magnitude

Decreased cost
 by as much as 60%

Decreased labor needs
 by as much as 10X fewer software developers

Increased quality
 by as much as 10X fewer defects

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 83Version 1.0

Product Line Practice

Contexts for product
lines vary widely

• nature of products
• nature of market or
mission

• business goals
• organizational
infrastructure

• workforce distribution
• process maturity
• artifact maturity

 But there are
 universal essential
elements and practices.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 84Version 1.0

CelsiusTech and Cummins both learned
vital lessons
Lessons in software engineering
• architectures for product lines
• testing variable architectures and components
• importance of having and capturing domain knowledge
• managing variations
• important of large, pre-integrated chunks

Lessons in technical/project management
• importance of configuration management, and why it’s harder for product

lines
• product line scoping: What’s in? What’s out?
• Tool support for product lines

Lessons in organizational management.
• People issues: how to bring about change, how to launch the effort
• Organizational structure: Who builds the core assets?
• Funding: How are the core assets paid for?
• Interacting with the customer has whole new dimension

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 85Version 1.0

Embodying the knowledge:
SEI Product Line Practice Framework

Web-based, evolving document

Describes product line essential activities
• Core asset development
• Product development
• Management

Describes essential and proven product line practices
in the areas of
• software engineering
• technical management
• organizational management

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 86Version 1.0

Framework Goals

Identify the foundational concepts underlying the
software product lines and the essential issues to
consider before fielding a product line.

Identify practice areas that an organization
creating or acquiring software product
lines must master.

Define practices in each practice area where
current knowledge is sufficient to do so.

Provide guidance to an organization about how to move
to a product line approach for software.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 87Version 1.0

SEI Information Sources

Collaborations
with customers

on actual product lines

Case studies,
experience reports,
and pilots

Workshops

Surveys

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 88Version 1.0

A practice area is a body of work or a collection of
activities that an organization must master to
successfully carry out the essential work of a product
line.

• Are finer chunks than the essential activities

• Must be mastered to carry out the essential activities

• Provide starting points for organizations wanting to
make and measure product line progress

Practice Areas

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 89Version 1.0

Software Engineering
Practice Areas

Architecture Definition
Architecture Evaluation
Component Development
COTS Utilization
Mining Existing Assets
Requirements Engineering
Software System Integration
Testing
Understanding Relevant Domains

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 90Version 1.0

Technical Management
Practice Areas

Configuration Management
Data Collection, Metrics, and Tracking
Make/Buy/Mine/Commission Analysis
Process Definition
Product Line Scoping
Technical Planning
Technical Risk Management
Tool Support

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 91Version 1.0

Organizational Management
Practice Areas

Achieving the Right Organizational Structure
Building and Communicating a Business Case
Customer Interface Management
Developing and Implementing an Acquisition Strategy
Funding
Launching and Institutionalizing a Product Line
Market Analysis
Operations
Organizational Planning
Organizational Risk Management
Technology Forecasting
Training

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 92Version 1.0

Examples of Product Line Practice - 1
Motorola - FLEXworks Project (family of one-way pagers)

• 4x cycle time improvement
• 80% reuse

Nokia - mobile phones
• went from 4 different phones produced per year to 50 per year

National Reconnaissance Office’s Control Channel Toolkit - ground-based
satellite systems
• first family member required 1/10 normal number of developers

Hewlett Packard - printer systems
• 2-7x cycle time improvement (some 10x)
• Sample Project

–shipped 5x number of products
–that were 4x as complex
–and had 3x the number of features
–with 4x products shipped/person

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 93Version 1.0

Examples of Product Line Practice - 3

MarketMaker Software AG - German financial info provider
• able to field a customer-specific solution in about a week
• small company (under 50 people)

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 94Version 1.0

Adoption strategies

Proactive (predictive)
• Look ahead, define the product line’s scope proactively
• Learn all you can from domain analysis
• Product line adoption is an organization-wide affair
• Cummins and CelsiusTech both took this approach

Reactive
• Start with 1-2 products
• React to new customers as they arrive

Extractive
• Extract commonality from existing products
• Form common asset base from what you already have
• Product line adoption can start in small pockets, spread as

acceptance grows

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 95Version 1.0

For Additional Information on
SEI’s Product Line Systems Program
Dave White
Business Development
Product Line Systems Program
Telephone: 412-268-4796
Email: dwhite@sei.cmu.edu

For questions about this talk:
Paul Clements
Product Line Systems Program
Email: clements@sei.smu.edu

World Wide Web:
http://www.sei.cmu.edu/plp

Linda Northrop
Director
Product Line Systems Program
Telephone: 412-268-7638
Email: lmn@sei.cmu.edu

U.S. mail:
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

SEI Fax: 412-268-5758

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 96Version 1.0

To read more about CelsiusTech

Software Architecture in
Practice

Len Bass
Paul Clements
Rick Kazman

Addison Wesley 1998

- Seven case studies in
 successful software
 architectures
- Architecture evaluation
- Architecture business cycle
- Achievement of system
 qualities through architecture

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 97Version 1.0

To read more about Cummins

Software Product Lines:
 Practices and Patterns
 Paul Clements
 Linda Northrop
 Addison Wesley 2001
 ~600 pages

- Product line fundamentals
 and economics
- Practice areas described
- Patterns for adoption
- 3 Detailed case studies
- Product Line Technical Probe

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 98Version 1.0

Schedule and Outline

0900 - 0915 Introductions
0915 - 0945 The Architecture Business Cycle
0945 -1000 What is architecture?
1000 - 1030 Why is architecture important?
1030 - 1045 Break
1045 - 1115 Architectural structures
1115 - 1200 New developments in software

architecture
- Software product lines
- Aspect-oriented software development
- Predictable assembly from certifiable

 components

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 99Version 1.0

Aspect-Oriented Software
Development (AOSD)
Also called “multi-dimensional separation of
concerns.” Recognition that separation of concerns
may be performed in many ways.

Example:
• Dividing a system into elements based on likely

application-based changes
• Each element still must reflect

- a particular error-handling philosophy
- an architectural packaging decision
- naming conventions
- interaction protocols
- …and many others

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 100Version 1.0

AOSD (cont’d.)

AOSD tools and languages let programmers weave
these separate concerns together in discrete elements,
so that these global design decisions (that have far-
reaching effects) can be changed locally.

AOSD represents the introduction of truly
architectural thinking into program development.

For more information: http://www.aosd.net.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 101Version 1.0

Schedule and Outline

0900 - 0915 Introductions
0915 - 0945 The Architecture Business Cycle
0945 -1000 What is architecture?
1000 - 1030 Why is architecture important?
1030 - 1045 Break
1045 - 1115 Architectural structures
1115 - 1200 New developments in software

architecture
- Software product lines
- Aspect-oriented software development
- Predictable assembly from certifiable

 components

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 102Version 1.0

Predictable Assembly of Certifiable
Components (PACC)
At the vanguard of work on component-based
systems.

Previous work has concentrated on component
selection and qualification, and building frameworks
for component-based systems.

This work focuses on building systems with provable
quality attributes from components.

© 1999 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

CECOM Course 2, Lecture 1 - page 103Version 1.0

PACC -2

Two driving questions:
• Given a set of components with certified quality

attributes, what can you conclude about the qualities
of a system including those component?

• Given a quality attribute need for a system, what must
you be able to certify about its components to know
you’ve satisfied that need?

Very early work. Preliminary results with latency,
starting to work on reliability.

For more information:
http://www.sei.cmu.edu/pacc/index.html

