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Software Architecture Patterns for a Context Processing
Middleware Framework

Romain Rouvoy∗ Denis Conan† Lionel Seinturier‡

March 27, 2008

Abstract

Ubiquitous applications are characterised by variations of their execution context. Their correct op-
eration requires some continual adaptations based on the observation of their execution context. The
design and the implementation of these observation policies is then the cornerstone of any ubiquitous
applications. In this article, we propose COSMOS which is a framework for the principled specification
and composition of context observation policies. With COSMOS, these policies are decomposed into
fine-grained units called context nodes implemented as software components. These units perform basic
context-related operations (e.g., gathering data from a system or network probe, computing threshold
or average values) and are assembled with a set of well-identified architectural design patterns. In this
article, COSMOS is motivated and illustrated with an example from the domain of mobile e-commerce
applications.

Key words: Context management, software architecture, software components, design patterns.

1 Introduction

This article presents the insights of COSMOS, a component-based framework for managing context in-
formation in ubiquitous context-aware applications. COSMOS aims at supporting the design and the de-
velopment of applications reacting to changes in their execution environment. Examples of such context
changes are the (dis-)appearing of hardware or software resources, or the modifications in the user pref-
erences. Due to the high diversity of context information required by this kind of applications, COSMOS
relies on the Component-Based Software Engineering (CBSE) principles [15] to ensure the integration of
context information. In particular, the framework combines the concepts of software components and ar-

chitectural design patterns to define the foundations of its architecture. Software components provide an
efficient encapsulation of the context information diversity while architectural design patterns define the
skeleton of the context management policies.

In [3], we presented how context management policies have been introduced in COSMOS to identify
contextual situations for which a reaction of the application is expected. The context management policies
are described as hierarchies of context nodes using a dedicated composition language. The contribution
of this article is to present the mapping of the composition language constructions to architectural design
patterns used in COSMOS. While the use of a Domain-Specific Language (DSL) leverages the definition of
context management policies, components and design patterns supports the dynamic reconfiguration and
evolution of the context management policies once specified and deployed.

Although components are gaining more and more attention for designing and implementing middle-
ware platforms [4, 12, 16], the identification of architectural design patterns has not been investigated in a
similar way to object-oriented middleware [1, 14]. Thus, we propose to illustrate that well-known design
patterns can be reused and applied at the architectural level to offer a better control over the architecture of
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COSMOS. In particular, we can use these design patterns to separate the various extra-functional concerns
(e.g., memory footprint, resource consumption, instance management) involved in a context management
policy from the business concerns of context management, that is composition of context information.

This article introduces the foundations of a context node in Section 2 and a motivating scenario inspired
from mobile computing is described in Section 3. Next, Section 4 describes the reification of well-known
design patterns in the architecture of COSMOS. The framework is evaluated in Section 5, while Section 6
discusses some related work. Finally, Section 7 concludes and identifies some perspectives.

2 Foundations of COSMOS

This section summarises the basis of the proposed approach by presenting properties related to the basic
building units of composition of a context policy, that is the context nodes (cf. Section 2.1), and an overview
of the core micro-architecture of context nodes (cf. Section 2.2).

2.1 Concepts and properties of a context node

The basic structuring concept of COSMOS is the context node [3]. A context node is a context information
modelled by a software component. Context nodes are organised into hierarchies to form context manage-
ment policies. The relationships between context nodes are encapsulation and sharing. The sharing of a
context node (and by implication of a partial or complete hierarchy) corresponds to the sharing (of a part
or the whole) of a context policy.

Context nodes at the leaves of the hierarchy encapsulate raw context data obtained from collectors (e.g.,
operating system probes, sensors in the vicinity of the device, user preferences in profiles, remote devices).
The rationale for this choice (notably the fact that user preferences are considered as context data to be
collected) is that context nodes should provide all the inputs necessary for reasoning about the execution
context. The role of a context node is thus to isolate the inference of high-level context information from
lower architectural layers responsible for the collection of context data.

Context nodes are also equipped with properties which define their behaviour with respect to the context
management policy.

Passive or active. Each context node can be passive or active. An active node is equipped with an activity
to execute a given task. A typical example of an active node is a node in charge of the centralisation of
several types of context information, the periodic computation of a higher-level context information, and
the provision of the latter information to upper nodes.

Observation and/or notification. Communication into the hierarchy of context nodes may be bottom-up
or top-down. The former case corresponds to notifications sent by context nodes to their parents, whereas
the latter case corresponds to observations triggered by a parent node.

Blocking or pass-through. A context node which receives data transmitted by a notification or an ob-
servation may be blocking or pass-through. Non-blocking nodes propagate observations and notifications.
Pass-through nodes stop the traversal: For observations the most up-to-date context information is trans-
mitted without polling child nodes, and for notifications, context data is used to update the state of the node
but parent nodes are not notified.

COSMOS provides the developer with pre-defined generic context operators. They are organised fol-
lowing a typology: Elementary operators for collecting raw data, memory operators, such as averagers,
translation operators, data mergers, abstract or inference operators, such as additioners or thresholds op-
erators. The only programming is in the context operators. If a developer has at her disposal a sufficiently
large library of context operators well targeted to her business, there should be no programming at all, but
only declarative composition of context nodes.
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2.2 Architecture of a context node

Each context node extends the abstract composite ContextNode depicted in Figure 1. The interfaces
Pull and Push are the interfaces for the observation and the notification, respectively. The abstract com-
posite ContextNode contains at least an operator (primitive abstract component ContextOperator) as
well as the message and activity managers. The message manager is in charge of handling the observa-
tion and notification reports which are sent and received by the component on the Pull and Push inter-
faces. The activity manager provides the support for dealing with active components. Finally, nodes are
equipped with attributes which characterise their behaviour with respect to the properties defined in the
previous section. As illustrated, 9 different attributes are defined: nodes which are observers can be active
(isActiveObserver = true) with a period (periodObserver), passive (isActiveObserver = false), or
can be limited to just one observation (observeOnlyOnce = true); in addition, observer nodes can be
blocking (observerThrough = false) or pass-through (= true). Note that the same set of properties can
be defined for notifier nodes. Finally, the nodeName attribute holds the name of the context node.

Message Manager

Activity Manager

*

isActiveNotifier(false), periodNotify(0), notifyThrough(true)
observeOnlyOnce(true), notifyOnlyOnce(false)

isActiveObserver(false), periodObserve(0), observeThrough(true)

nodeName

Context node attributes with their default value:

Context
Operator

Context Node

{
[push−notif−out] Push*

[pull−obs−in] Pull*
[push−notif−in] Push

[pull−obs−out] Pull

Figure 1: Core architecture of a Context Node component.

Context nodes are then classified into two categories: leaves and other nodes. Leaves of the hierarchy
are ContextNodes extended to contain one or several components that receive context information from
an external entity. This external entity may be the operating system or another framework, being built
with COSMOS or not, component-oriented or not. For instance, a WiFi resource manager can obtain
the corresponding context information directly from the operating system (through system calls) or can
encapsulate a (legacy) framework dedicated to the reification of system resources. Nodes of the graph
which are not leaves are extended to contain one or several other context nodes. For example, a context
node may compute the battery charge state of a terminal by encapsulating two other context nodes, the first
one computing the battery charge state and the second one computing the battery time left.

3 Motivating scenario

To illustrate the objectives of the COSMOS framework, we consider the scenario of a family shopping in a
mall with a mobile device1. This application allows them to share information, to consult product prices, to
download discount tickets, to be notified of advertisements, to access additional information and comments
about a product, or to find the location of a product or a shop in the mall. The parents want their children
to remain in the mall, with their devices connected as far as possible, so that everybody knows the location
of the other family members. Nevertheless, children can disconnect for some periods of time in order to
save their battery. While walking in the mall, the eldest girl sees an advertisement indicating that a dressing
store proposes a RFID tag-based service for helping choose clothes.

All these features are based on different network technologies, such as Bluetooth or WiFi, and require
the application to adapt itself depending on network connectivity and context information availability. As
depicted in Figure 2, each adaptation situation (in the upper part of the picture) is isolated in a context tree
with the possibility of sharing sub-trees between policies. Each adaptation situation relates to a particular

1This scenario is a use case of the French project “Cappuccino” (http://www.cappucino.fr).
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functionality and focuses on a precise set of context information. For example, the WiFi download en-

abled situation is associated to the functionality supporting the download of a discount ticket, it allows
the application to know when the functionality is available. The detection is performed by monitoring the
quality of the WiFi link. The WiFi browsing enabled situation is built upon the previous one and allows
the application to enable and to configure a browsing facility to access comments about a product or to find
its location in the mall. The Bluetooth observation enabled situation is associated to the possibility to
consult product prices and references in the vicinity of the client. This functionality is enabled when the
device battery life expectancy is high enough. The Bluetooth availability situation is combined with user
preferences to infer the Bluetooth notification enabled situation. This last situation leads to the config-
uration of the user application to be notified by the mall infrastructure of product advertisements. Finally,
the Group membership service uses the disconnection and failure detectors to make the distinction be-
tween disconnections and failures, and to be informed about the location of the other members. This last
definition illustrates the definition of sharing between hierarchies by reusing the Disconnection detector
context node provided by the hierarchy WiFi browsing enabled.

To describe this policy, COSMOS provides a declarative language dedicated to the composition of con-
text nodes. The core of this language is described below using the Extended Backus-Naur Form (EBNF):

Sensor ::= "sensor" SensorId "=" ComponentId [ Properties ] ";"
SensorId ::= Identifier
ComponentId ::= Identifier
Properties ::= "[" Property { "," Property } "]"
Property ::= "AO" | "AN" | "BO" | "BN" | "OO" | Identifier "=>" Value

Processor ::= "processor" ProcessorId "=" ComponentId [ Properties ] Dependencies ";"
ProcessorId ::= Identifier
Dependencies ::= "(" Dependency { "," Dependency } ")"
Dependency ::= ( SensorId | ProcessorId ) [ ".extract(" Chunks ")" ]
Chunks ::= ChunkId { "," ChunkId }
ChunkId ::= String

Task ::= "task" TaskId "=" NodeId { "," NodeId } ";"
TaskId ::= Identifier
NodeId ::= SensorId | ProcessorId
Thread ::= "thread" ThreadId "=" ThreadDef { "," ThreadDef } ";"
ThreadId ::= Identifier
ThreadDef ::= ( TaskId | NodeId ) "[" PositiveNumber "]"

Reporting ::= "reporting" ReportingId "=" ReportingDef { "," ReportingDef } ";"
ReportingId ::= Identifier
ReportingDef ::= NodeId [ "/" Xpath ]

The composition language we defined isolates the descriptions of functional concerns from extra-
functional ones. Functional concerns are reified by two constructions sensor and processor. In
addition to the component descriptor, sensors can be configured with the AO, AN, BO, BN, and OO prop-
erties to activate active observation, active notification, blocking observation, blocking notification, and
only once mechanisms (cf. Section 2) as well as additional attributes specific to the resource manager (e.g.,
resourceName=>eth1). Similarly, processors use the same configuration mechanisms, but have to
describe context dependencies.

The specification of extra-functional concerns, such as resource consumption, is supported by the sec-
ond part of the language. Constructions task and thread are used to specify i) the organisation of
activities into hierarchies of tasks to execute and ii) the mapping of tasks to threads. Finally, the construc-
tion reporting supports the grouping of context report managers to reduce the memory footprint of the
policies. Groups are defined using XPath requests2 that apply to the nodes of the context hierarchy.

Using this composition language, the context policies WiFi Download Enabled,
WiFi Browsing Enabled, and Group Membership Service depicted on the right-side
of Figure 2 can be described as follows:

//Bottom: Data gathering
sensor WiFiMgr=WirelessInterfaceRM[BO,AO,resourceName=>eth1];
sensor HeartbeatMgr=PeriodicHeartbeatRM[BO,AO];

//Middle: Data interpretation
processor AverageWiFiQuality=AverageCO(WiFiMgr.extract("link-quality-chunk"));
processor AverageWiFiBitRate=AverageIfCO(WiFiMgr.extract("bit-rate-chunk","is-variable-chunk"));

2http://www.w3.org/TR/xpath20
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processor WiFiConnectivity=ConnectivityDetectorCO[BO,AO,AN](AverageWiFiQuality,AverageWiFiBitRate);

processor WiFiAdjustedBitRate=AdjustedBitRateCO(WiFiConnectivity,AverageWiFiBitRate);
processor WiFiStabilisation=DecisionStabilisationCO[BO,BN,AO,AN](WiFiAdjustedBitRate);
processor DisconnectionDetector=ConnectivityDetectorCO(WiFiConnectivity);
processor FailureDetector=FailureDetectorCO(HeartbeatMgr.extract("hb-counters-chunk","location-chunk"));

//Top: Adaptation situation detection
processor WiFiDownloadEnabled=IsEnabledCO(WiFiStabilisation);
processor WiFiBrowsingEnabled=IsEnabledCO(WiFiDownloadEnabled);
processor GroupMembershipService=GroupMembershipCO[BO,BN,AO,AN](DisconnectionDetector,FailureDetector);

//Concern: Thread management
task WiFiTasks=WiFiConnectivity,WiFiAdjustedBitRate,WiFiStabilisation;
thread Communication=WiFiStabilisation[30000],WiFiTasks[5000],WiFiMgr[1000];
thread Group=GroupMembershipService[10000],FailureDetector[3000];

//Concern: Memory management
reporting Communication=WiFiBrowsingEnabled/descendant-or-self::*;
reporting Group=GroupMembershipService,DisconnectionDetector,FailureDetector/descendant-or-self::*;

While leveraging the definition of context management policies, this language also provides various
verifications dedicated to the definition of context management policies. For example, the language can
prevent deadlocks in the policies —e.g., observations (top-down flows of down-calls) and notifications
(bottom-up flows of up-calls) that potentially traverse the same path of context nodes. Furthermore, the
extra-functional part of this language can be extended to address other cross-cutting concerns, such as
distribution (mapping of context nodes to physical machines).

In the remaining of this paper, the language is used as the basis for building the component-based
architecture implementing the context policy. In particular, we illustrate how the constructions of this
language can be mapped to design patterns in the architecture, which are latter reflected at runtime to
support the dynamic reconfiguration of the context policies.

4 Pattern-oriented architecture of COSMOS

In this section, we present how COSMOS maps context policies to context node hierarchies. In particular,
we describe the use of four design patterns, originally identified by the Gang of Four [8], for building
an extensible architecture. By supporting these design patterns at design-time and at run-time, COSMOS
exhibits an architecture closely related to its conceptual model, thus facilitating the dynamic reconfigura-
tion of context policies. The remaining of this section introduces the mapping of COSMOS composition
language construction to the design patterns Factory method (cf. Section 4.1), Composite (cf. Section 4.2),
Flyweight (cf. Section 4.3), and Singleton (cf. Section 4.4).

4.1 “Factory method”: Building the context information reports

Each node of the hierarchy operates a specific treatment on the context information provided either by
child nodes or by encapsulated primitive components in the case of leaves. At each level of the hierarchy,
context information reports need to be dynamically created based on reports retrieved from child nodes. To
handle the management of report instances, the context nodes apply a component-oriented version of the
design pattern “Factory method” [8]. The factory method is a creational pattern that deals with the creation
of objects without specifying the exact class of the objects that will be created.

In COSMOS, the skeleton of a context node is defined as the assembly of a context operator (exten-
sion of a ContextOperator) with, on the one hand, the components for the technical services (components
ActivityManager and MessageManager), and with, on the other hand, the child nodes or the component
that reifies a system resource (ResourceManager in the example of Figure 3). Thanks to this skeleton,
the definition of a context node is leveraged, and it can be easily overridden to support a particular type
of context information. The context operator ForwarderCO (derived from the abstract factory Context-

Operator) is a generic implementation of the factory method and is able to store a message of whatever
type. However, other implementations of this component allows the framework to implement various kind
of operations, such as mathematical operations, boolean operations, or fuzzy rules.
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MessageManagerForwarderCO

[pull−obs−out] Pull

[push−notif−in] Push

*

resourceName(eth1), observeThrough(F)

*

MessageManager

PeriodicResourceManager

* [push−notif−out] Push

TaskManager

ResourceManager

[push−notif−out]

Pull

ActivityManager

Figure 3: Illustration of the design pattern “Factory method”.

Figure 2 depicts a leaf of a context hierarchy —i.e., a sensor— that uses the operator ForwarderCO as
implementation of the factory method. For example, the sensor reifying the WiFi manager is described as
follows:

sensor WiFiMgr = WirelessInterfaceRM[BO,AO,resourceName=>eth1];

The sensor WiFiMgr is translated into the following Fractal ADL [11] code excerpt, that reflects the
design pattern “Factory method”. In particular, the context operator is automatically configured with the
component ForwarderCO.

<definition name="WiFiMgr" extends="PeriodicResourceManager(nodeName=>WiFiMgr)">
<component name="co" definition="ForwarderCO(observeThrough=>false,isActiveObserver=>true)"/>
<component name="rm" definition="WirelessInterfaceRM(resourceName=>eth1)"/>

</definition>

When loaded by COSMOS, the sensor description is reified as the software architecture depicted in
Figure 3.

4.2 “Composite”: Supporting the hierarchies of context nodes

The organisation of context information into hierarchies leads to the confinement of the different sub-trees
in order to ease their composition. This confinement is realized with the design pattern “Composite” [8],
which makes possible the homogenisation of the architecture in which an element is composed of several
sub-elements themselves composites, except the leaves of the recursion. Furthermore, hierarchies built
with COSMOS exploit the composition of nodes for inferring higher-level context information. There-
fore, this type of hierarchical structure motivates the use of composites in order to isolate at each level of
the hierarchy the sub-trees. Thanks to the composite, the complexity and the dependencies of nodes are
automatically solved: This simplifies the composition at every level of the hierarchies.

processor WiFiAdjustedBitRate = AdjustedBitRate[BN](WiFiConnectivity, AverageWiFiBitRate);

An example is the definition of the processor WiFiAdjustedBitRate, which is trans-
formed to the FRACTAL-ADL code excerpt that follows. It depicts a definition that builds the
context node AdjustedBitRate composed of a node ConnectivityDetector and a node
AverageBitRate. Note that the design pattern “Composite” does not preclude the sharing of compo-
nents at several levels of a hierarchy (when a processor is required by several processors):

<definition name="WiFiAdjustedBitRate" extends="ContextNode(notifyThrough=>false)">
<component name="cn-1" definition="WiFiConnectivity"/>
<component name="cn-2" definition="AverageWiFiBitRate"/>
[...]

</definition>

In this hierarchy, as illustrated in Figure 4, the most nested components in the hierarchies are the reified
sensors, while the other components are the processors that infer context information from the former
nodes.
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Figure 4: Illustration of the design pattern “Composite”.

4.3 “Flyweight”: Reducing the memory footprint of context nodes

The system resources reified in the leaf nodes of the hierarchy can be shared by numerous context nodes
since the former nodes may contain many elementary context information. In the example of Figure 4, the
context node WiFiMgr is shared by three context nodes. In fact, WiFiMgr context node reifies more than
30 context elements, thus being potentially shared by more than 30 context nodes. This is precisely the
purpose of the design pattern “Flyweight” [8]: To efficiently share numerous fine-grained elements. By
applying a component-oriented version of this design pattern, context nodes in COSMOS can efficiently
share any child node of the hierarchy.

Another example of such a situation is the inference of the failure detector from information retrieved
by the periodic heartbeat. In the description below, the processor FailureDetector extracts the context
information hb-counters-chunk and location-chunk provided by the HeartbeatMgr context
node.

sensor HeartbeatMgr=PeriodicHeartbeatRM[BO,AO];
[...]
processor FailureDetector=FailureDetectorCO(HeartbeatMgr.extract("hb-counters-chunk","location-chunk"));

This definition is translated into the ADL code excerpt that follows. The ADL definition shows the
sharing of the component HeartbeatMgr by the context nodes PeriodicHeartbeatCounters
and PeriodicHeartbeatLocation. These nodes are already defined in other ADL
files not shown here. In this ADL code excerpt, the sharing is performed by recursively re-
opening the component PeriodicHeartbeatLocation and by naming the “target” com-
ponent of PeriodicHeartbeatCounters with a path (./cn-1/cn/rm). This defini-
tion states that the instance of the component HeartbeatMgr contained in the component
PeriodicHeartbeatLocation (./cn-2/cn/rm) is the same as the one contained in the
component PeriodicHeartbeatCounters (./cn-1/cn/rm):

<definition name="FailureDetector" extends="ContextNode">
<component name="co" definition="FailureDetectorCO(resourceName=>FailureDetector)"/>
<component name="cn-1" definition="PeriodicHeartbeatCounters"/>
<component name="cn-2" definition="PeriodicHeartbeatLocation">

<component name="cn" definition="HeartbeatMgr">
<component name="rm" definition="./cn-1/cn/rm"/>

</component>
</component>
[...]

</definition>

The resulting component-oriented version of the design pattern “Flyweight” is illustrated in Figure 5.
By enforcing sharing of COSMOS hierarchies, the memory footprint of the COSMOS policy is consider-
ably reduced.

4.4 “Singleton”: Controlling the resources consumed by context nodes

The design pattern “Singleton” is used to restrict instantiation of a class to one object [8]. This is useful
when exactly one object is needed to coordinate actions across the system. But, sometimes it is generalised
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Figure 5: Illustration of the design pattern “Flyweight”.

to systems that operate more efficiently when only one or a few objects exist. In COSMOS, it consists
in centralising the fine-grained control of system resources consumed by context operators. For instance,
the end-user or the developer may want to execute all the observation and notification tasks in only one
thread, or, on the contrary, to separate the observations from the notifications, or to partition context nodes
of the graph into as many threads as needed (cf. Section 3). Therefore, one must be able to express
the sharing of a component, here the component ActivityManager, by every nodes of the graph. For
example, we expect that the context nodes associated to the processors GroupMembershipService
and the processor FailureDetector share the component ActivityManager, which is responsible
for scheduling activity tasks.

processor FailureDetector = FailureDetectorCO(PeriodicHeartbeat);
processor GroupMembershipService = GroupMembershipCO[BO,BN,AO,AN](DisconnectionDetector,FailureDetector);
[...]
thread GroupThread = GroupMembershipService[10000],FailureDetector[3000];

The following ADL code excerpt shows the resulting architecture for the component
GroupMembershipService. In particular, the component ActivityManager is shared by speci-
fying that the child node FailureDetector uses the instances of the component ActivityManager
contained in the current definition (GroupMembershipService), thus using the path “./am”.

<definition name="GroupMembershipService" extends="ContextNode(isActiveObserver=>true,
isActiveNotifier=>true,observerThrough=>false,notifyThrough=>false)">

<component name="co" definition="MembershipCO(periodObserve=>10000,periodNotify=>10000)"/>
<component name="mm" definition="MessageManager"/>
<component name="am" definition="ActivityManager"/>
<component name="cn-1" definition="DisconnectionDetector">
<component name="cn-2" definition="FailureDetector(periodObserve=>3000,periodNotify=>3000)">

<component name="am" definition="./am"/>
</component>

</definition>

Similarly, this design pattern is also used to share the component MessageManagerwhen the context
policy uses the construction reporting to group context report managers.

5 Evaluation

In this section, we report the benefits of using COSMOS as a framework for composing context man-
agement policies. This evaluation is based on preliminary experiences we operated with COSMOS. In
particular, we observed that COSMOS provides a comprehensive approach for describing the realization of
context policies. By providing a uniform abstraction of context information, the context node, COSMOS
supports the composition of context information from low-level sensors to high-level policies. At the lowest
level, context nodes can reify hardware capabilities (e.g., CPU, battery, network), software resource (e.g.,
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user preferences, e-mail history, personal agenda), or embedded sensors (e.g., position, temperature, blood
pressure). At an higher level, context nodes can reuse or develop composition operators (e.g., mathematics,
comparison, fuzzy) to infer advanced context information. As context policies are reflected themselves as
context nodes, they can be reused in different contexts. For example, the scenario we present in this article
reuses context policies we described in [3].

The reflection of design patterns in the architecture supports a canonical architecture for describing ex-
tensible context nodes. This base architecture acts as a backbone, which is refined and configured using the
COSMOS composition language. In other words, design patterns we identified reflect the variation points
of the architecture, which are fixed by the COSMOS descriptions. Context policies we developed and illus-
trated in this article demonstrate this extensible architecture. Furthermore, preliminary experiments show
that the runtime performances are not affected by our approach compared to existing context management
frameworks [3].

Up to now, COSMOS and its reference implementation, based on the FRACTAL component model,
is used for the design and the development of context policies for ubiquitous computing scenarios3. Fur-
thermore, COSMOS has been selected by the IST MUSIC project4 in order to develop context operators
for synthesising social relationships among collocated mobile users. Finally, the COSMOS abstract model
is also investigated in combination to wireless sensor networks for reifying context information in next
generation health-care applications5.

6 Related Work

In this section, we compare COSMOS with middleware frameworks of the literature.

Context Toolkit is one of the first research works on context management that was based on event pro-
gramming and widget concepts introduced by GUI (Graphical User Interfaces) [7]. Following the philoso-
phy of the framework, interpretation and aggregation functionalities have to be programmed in monolithic
blocks: One interpreter and one aggregator per application, independently of the number of widgets and
the level of abstraction requested by the application.

Gaia Context Service consists of context providers offering low-level or high-level context informa-
tion [13]. Context information is modelled using first order logic and boolean algebra. Gaia services and
applications are programmed in a high-level scripting language (LuaOrb), which implements language
bindings to object broker technologies such as CORBA and COM. The context providers are then either
large-grained objects or developers must program the composition of context providers.

MoCA Context Service architecture transposes the ontology-based approach to an object-oriented
one [6]. For instance, the source of a context information is described by an attribute rather than being
described in the architecture; the type manager and the repository are the only accesses to context infor-
mation, whatever the abstraction level and the use case. Context data are typed objects and described
using an XML-based model. The authors propose to partition the context information space into views for
improving the performance.

The Contextor builds the context manager as a network of contextors [5]. The Contextor defines an ad

hoc component model, but the component model is implicit and the network of contextors is not config-
urable. The Flyweight design pattern may be applied to build a hierarchy of Java classes for contextors,
but there is no design pattern at the architectural level. To limit the number of activities, the authors plan
to use the Composite design pattern. The sharing of context nodes is not addressed.

3French project CAPPUCINO: http://www.cappucino.fr
4European project MUSIC: http://www.ist-music.eu
5Norwegian project SWISNET: http://www.ifi.uio.no/forskning/grupper/nd/projects/swisnet
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CARISMA provides application developers with an application profile abstract syntax [2]. Profiles are
passed down to the middleware and applications can change their profiles during execution. In a profile,
the behaviour of the middleware with respect to an application specifies the context dependent adaptation
situations. The specification gives no hints on the architecture of the context manager being responsible for
detecting these situations.

PACE presents an architecture in which meta-data (temporality, quality, etc.) are added either to context
data or to relations between them [9]. The same authors prone the object or the ontology orientations
as the two acceptable alternatives among the myriad of modelling methods. With COSMOS, we add the
component orientation, which raises a limitation of the object orientation: A more formal specification of
the dependencies between context entities thanks to the usage of an ADL.

EgoSpaces is a tuple-space based middleware framework that puts the concepts of transient tuple space
sharing, flexible tuple representation and declarative view specification forward [10]. Views are sets of
tuples that satisfy some data constraints, are owned by agents that satisfy the agent constraints, are lo-
cated on hosts that satisfy the host constraints, and for which these hosts must lie within the boundaries
defined by the network constraints. Such a specification language for expressing the distribution of context
information does not exist in COSMOS up to now.

7 Conclusion

This article proposes COSMOS: A component- and software architecture-based framework for gathering
and processing context information. As a matter of future work, we plan to adopt two directions. First, we
believe it could be interesting to complement the domain specific language and the architectural patterns
with constructs dedicated to the distribution of context data on different types of networks. A second
direction concerns the composition of context policies at run-time, the issue being to be able to address
situations in which the intersection between these policies may be non empty, that is dynamically detecting
and solving conflicts.
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