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Software Architecture Reconstruction:
a Process-Oriented Taxonomy

Stéphane Ducasse Damien Pollet

Abstract—To maintain and understand large applications, it
is important to know their architecture. The first problem is
that unlike classes and packages, architecture is not explicitly
represented in the code. The second problem is that successful
applications evolve over time, so their architecture inevitably
drifts. Reconstructing the architecture and checking whether
it is still valid is therefore an important aid. While there is a
plethora of approaches and techniques supporting architecture
reconstruction, there is no comprehensive software architecture
reconstruction state of the art and it is often difficult to compare
the approaches. This article presents a state of the art in software
architecture reconstruction approaches.

Index Terms—Software Architecture Reconstruction

I. INTRODUCTION

SOFTWARE ARCHITECTURE acts as a shared mental
model of a system expressed at a high-level of abstraction

[67]. By leaving details aside, this model plays a key role
as a bridge between requirements and implementation [48]. It
allows you to reason architecturally about a software application
during the various steps of the software life cycle. According
to Garlan [48], software architecture plays an important role
in at least six aspects of software development: understanding,
reuse, construction, evolution, analysis and management.

Software architecture is thus important for software develop-
ment, but architectures do not have an explicit representation
in most general purpose programming languages. Another
problem is that successful software applications are doomed to
continually evolve and grow [93]; and as a software application
evolves and grows, so does its architecture. The conceptual
architecture often becomes inaccurate with respect to the
implemented architecture; this results in architectural erosion
[104], drift [124], mismatch [49], or chasm [134].

Several approaches and techniques have been proposed in the
literature to support software architecture reconstruction (SAR).
[106] presented a first raw and simple classification of SAR
environments based on a few typical scenarios (filtering and
clustering, compliance checking, analysers generators, program
understanding, architecture recognition). O’Brien et al. surveyed
SAR practice needs and approaches [120]. Still, there is no
comprehensive state of the art of SAR approaches and it is
often difficult to compare the approaches.

This article presents a state of the art of software architecture
reconstruction approaches. While it is a review on the research
in SAR, we organized it from the perspective of a reverse
engineer who wants to reconstruct the architecture of an
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existing application and would like to know which approaches
to consider. We structure the field around the following axes:
the goals, the process, the inputs, the techniques and the outputs
of SAR approaches. In each axe, we classify both the most
influential approaches and the original ones, with the goal to
create a structured reference or map of the research field.

Approach Selection
We extracted the information described in this taxonomy

based only on published articles or on documents that are
publicly available and trackable, such as PhDs and technical
reports. We excluded industrial tools for accessibility reasons
and we focused on the ideas presented.

We acknowledge that some of the information may be
not totally correct since sometimes we had to interpret the
description of tool or approach. To that regard, it should be
noted that software architecture extraction approaches are often
far from been really well-specified. In addition, as software
architecture is a blurry concept by definition, it is hard to make
clear distinctions. Therefore, the trade-off in this taxonomy is
extent versus extreme precision with respect to the ideas and
approaches. We organized the paper as a cartography rather
than a comparison, because we believe that a taxonomy should
structure the domain and provide a set of criteria, and that in
the specific field of software architecture, the reader has to
complement the information we put in perspective. Still we
apply a rigorous selection process, as explained now.

In this paper, we select works in two steps. First, in addition
to works that are extracting architectural information, we also
consider approaches that do not specifically extract architecture
but related artifacts such as design patterns, features, or roles,
since they often crosscut or are low-level constituents of the
architecture. We read 366 works (articles, PhD and reports)
on architecture extraction and visualization and 76 on features,
design patterns and aspects identification. Since there are often
several articles around the same tool or approach, we selected
the most significant ones, but it does not mean that the articles
we do not cite are not interesting. In total we selected 181
articles, including some articles providing descriptions and
definitions software architecture; the selection was driven by
the excellence of the work, its originality, or its impact in the
community —as perceived through the number of references
in the literature.

We also consider approaches that visualize programs, since
they are often the basis for abstracting and extracting architec-
tural views, but we limit ourselves to the program visualization
approaches that support the overall extraction process and
architecture reconstruction.
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In the second step, we support the comparison of the
approaches with a table for each axis that structures this survey.
In these tables, we only list works that are the most concerned
about architectural extraction. For the sake of space, we
consider two categories of works: first, important contributions,
i.e., those which were pioneers or influenced subsequent works
in the literature; and second, the original works taking a specific
perspective or approach to the general problem —by original,
we mean that the work did not gain a lot of following in the
community, but is still interesting from the survey perspective.
This second category is interesting because it broadens the
SAR taxonomy.

A word about presentation. To avoid to have one single
approach taking all the explanation space, we illustrate our
classification with as different works as possible; therefore, the
fact that we list a tool as an example does not necessary mean
that it is the most cited or used.

We do not take into account works like ArchJava [1] that ex-
tend traditional languages to mix architectural and programming
elements or other architectural description languages, since
in such cases the architecture is not extracted from existing
applications. We also exclude approaches proposing general
methodology or guidelines that do not stress a specific point
to support software architecture reconstruction [31, 82, 155].

Section II first stresses some key vocabulary definitions
and the challenges of software architecture reconstruction.
Section III describes the criteria that we adopted in our
taxonomy. Sections IV to VIII then cover each of these criteria.
Before concluding, Section IX surveys the extraction of artifacts
related to software architecture such as design patterns and
features.

II. SAR CHALLENGES

Kruchten [87] presents a good overview of software archi-
tecture as a field and its history. Now before going into depth
on the challenges of SAR, we feel the need to clarify the
vocabulary.

A. Vocabulary

Software architecture: IEEE defines software architecture
as “the fundamental organization of a system embodied in
its components, their relationships to each other and to the
environment, and the principles guiding its design and evolution”
[70]. This definition is closely related to Shaw and Garlan’s
[141].

Architectural style: A software architecture often conforms
to an architectural style, that is a class of architectures or a
pattern of structural organization. An architectural style is “a
vocabulary of components and connector types, and a set of
constraints on how they can be combined” [141].

Architectural views and viewpoints: We can view a software
architecture from several viewpoints since the different system
stakeholders have different expectations or concerns about the
system [70, 88].
View. A view is “a representation of a whole system from the

perspective of a related set of concerns” [70].

Viewpoint. A viewpoint is “a specification of the conventions
for constructing and using a view. A pattern or a template
from which to develop individual views by establishing
the purposes and audience for a view and the techniques
for its creation and analysis” [70].

Conceptual architecture: This term refers to the architecture
that exists in human minds or in the software documentation
[134, 162]. In the literature, conceptual architecture is also
qualified as idealized [60], intended [134, 175], as-designed
[76, 162] or logical [105].

Concrete architecture: This term refers to the architecture
that is derived from source code [134, 162]. It is also known
as the as-implemented [76, 134], as-built [60, 162], realized
[175] or physical [105] architecture.

Software architecture reconstruction (SAR): Software archi-
tecture reconstruction is a reverse engineering approach that
aims at reconstructing viable architectural views of a software
application. The literature uses several other terms to refer to
SAR: reverse architecting, or architecture extraction, mining,
recovery or discovery. The last two terms are more specific
than the others [104]: recovery refers to a bottom-up process
while discovery refers to a top-down process (see Section V).

B. Challenges

One of the most obvious goals of SAR is to identify
abstractions which represent architectural views or elements.
In this context, two sources of information are considered:
human expertise and program artifacts (e.g., source code and
execution traces).

On the one hand, human expertise is primordial to treat archi-
tectural concepts. Knowledge of business goals, requirements,
product family reference architectures, or design constraints
is important to assist SAR. However, when we take human
and business knowledge into consideration, several problems
appear:

1) Because of the high rate of turnover among experts and the
lack of complete up-to-date documentation, the conceptual
architecture in human minds is often obsolete, inaccurate,
incomplete, or at an inadequate abstraction level. SAR
should take into account the quality of the information.

2) When reconstructing an architecture, system stakeholders
have various concerns such as performance, reliability,
portability or reusability; SAR should support multiple
architectural viewpoints.

3) Reverse engineers sometimes get lost in the increasing
complexity of software. SAR needs to be interactive,
iterative and parameterizable [53].

On the other hand, source code and application execution
are the few trustworthy reliable sources of information about
the software application which contains its actual architecture.
However, reconstructing the architecture from the source code
raises several problems:

1) The approaches must scale to handle the large amount of
data held by the source code.

2) Since the considered systems are typically large, complex
and long-living, SAR should handle development methods,
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Fig. 1. The life-time flow of software architecture reconstruction, upon which
we base this taxonomy

languages and technologies that are often heterogeneous
and sometimes interleaved.

3) Architecture is not explicitly represented at the source
code level. In addition, language concepts such as poly-
morphism, late-binding, delegation, or inheritance make
it harder to analyze the code [32, 171]. The extraction of
a relevant architecture is then a difficult task.

4) The nature of software raises the questions of whether
dynamic information should be extracted as the system
is running, and then how do behavioral aspects appear in
the architecture.

The major challenges of software architecture reconstruction
are thus abstracting, identifying and presenting higher-level
views from lower-level and often heterogeneous information.

III. TAXONOMY AXES

Researchers already attempted to classify the field. [106]
proposed a rough classification of SAR environments and
distinguished five families based on the purpose of the
approaches; they actually only define one criterium, with
five values: filtering and clustering, compliance checking,
analyzer generators, program understanding and architecture
recognition. [120] presented some scenarios and approaches of
SAR practice. Like us, they propose a pragmatic way to classify
SAR approaches: they introduce recurring practice scenarios
to characterize an approach: View-set, enforced-architecture,
quality-attribute-changes, common and variable artifacts, binary
components, mixed languages. They then propose a technique
axis to classify approaches along values of manual, manual
with tool support, and query language. The two criteria roughly
correspond to our Goals and Techniques axes. Gallagher et al.
propose a framework to assess architectural visualization tools
and compare a couple of tools [45]. Gueheneuc et al. present a
comparative framework for design recovery tools and compared
three approaches [55]. As a conclusion we can state that there
is no deep and large survey of SAR.

We propose a deeper classification based on the life time
of SAR approaches as depicted in Figures 1 and 2: intended
goals, followed processes, required inputs, used techniques
and expected outputs. Our taxonomy treats a larger number
of approaches than the previous attempts. In particular, while
focusing on SAR approaches, we analyze a broad range of
works. We also put in context works related to program
visualization, design patterns, and features extraction, since
these works are related to the notion of architecture. We also

mention some borderline works, but without comparing them
in depth for space reasons.
Goals. SAR is considered by the community as a proactive

approach to answer stakeholder business goals [31, 150].
The reconstructed architecture is the basis for redocumen-
tation, reuse investigation and migration to product lines,
or co-evolution of implementation and architecture. Some
approaches do not extract the architecture itself but related
and orthogonal artifacts that provide valuable additional
information to engineers such as design patterns, roles or
features.

Processes. We distinguish three kinds of SAR processes based
on their flow to identify an architecture: bottom-up, top-
down or hybrid.

Inputs. Most SAR approaches are based on source code
information and human expertise. However, some exploit
other architectural or non-architectural information sources
such as dynamic information or historical information.
In addition, not all approaches use architectural styles
and viewpoints even though those are the paramount of
architecture.

Techniques. The research community has explored various
architecture reconstruction techniques that we classify
according to their level of automation.

Outputs. While all SAR approaches intend to provide architec-
tural views, some of them produce other valuable outputs
such as information about the conformance of architecture
and implementation.

IV. SAR GOALS

To put in perspective the goals of SAR approaches, we briefly
present the general goals of software architecture. According
to Garlan, software architecture contributes to six main goals
of software development [48]:
Understanding. Architectural views describe a software system

at a level of abstraction high enough to understand its
overall design, to reason about it and make decisions
taking into account its design constraints, quality attributes,
rationale, possible bottlenecks, etc.

Reuse. Architectural views strongly highlight candidates for
reuse such as components, frameworks and patterns.

Construction. Architectural views are at a high-level of ab-
straction, allowing developers to focus their attention on
the implementation of major components and relationships
and iteratively to refine it.

Evolution. Architectural views make explicit the current con-
straints, and better expose how the software application
is expected to evolve.

Analysis. Based on the high abstraction level of architectural
views, new useful analyses can be performed, such as style
conformance, dependence analysis, or quality attribute
analysis.

Management. The clearer the view of the software system is,
the more successful the development task will be.

A. Rearchitecting Goals
Several authors have categorized architecture roles in soft-

ware development [48]; the roles involved in an architecture
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Fig. 2. A process-oriented taxonomy for SAR

define the motivations for rearchitecting. In particular, Kazman
and Bass have a pragmatic categorization of business goals [73]
that motivate having an architecture in the first place. Similarly,
in the context of maintenance, architecture reconstruction
should answer the business objectives of stakeholders; it is a
proactive process realized for future forward engineering tasks.

Knodel et al. identified ten distinct purposes or needs [83];
however, the purposes they present simultaneously are too
narrow and do not cover all goals. This is why we do not
use them for the present article. To classify SAR approaches
in Table I, we grouped these purposes into six main goal
categories refining the goals mentioned by Garlan [48].

Redocumentation and understanding: The primary goal
of SAR is to re-establish software abstractions. Recovered
architectural views document software applications and help
reverse engineers understand them [165]. For instance, the
software bookshelf introduced by Finningan et al. illustrates
this goal [12, 42, 66, 144]. Svetinotic and Godfrey state that
not only the recovered architecture is important, but also its
rationale, i.e., why it is as it is [155]. They focus on the
architecture rationale forces to recover the decisions made,
their alternatives, and why each one was or was not chosen.

Reuse investigation and product line migration: Software
product lines allow one to share commonalities among products
while getting customized products. Architectural views are
useful to identify commonalities and variabilities among
products in a line [36, 130, 149]. SAR has also been used
in the context of service-oriented architectures, to identify
components from existing systems that can be converted into
services [119].

Conformance: To evolve a software application, it seems
hazardous to use the conceptual architecture because it is often

inaccurate with respect to the concrete one. In this case, SAR
is a means to check conformance between the conceptual
and the concrete architectures. Murphy et al. introduced the
reflexion model and RMTool to bridge the gap between high-
level architectural models and the system’s source code [114,
115]. Using SAR, reverse engineers can check conformance of
the reconstructed architecture against rules or styles like in the
SARTool [41, 86], Nimeta [134], Symphony [165], DiscoTect
[180], Focus [24, 105] and DAMRAM [104].

Co-evolution: Architecture and implementation are two
levels of abstraction that evolve at different speeds. Ideally these
abstractions should be synchronized to avoid architectural drift.
Tran and Holt propose a method to repair evolution anomalies
between the conceptual and the concrete architectures, possibly
altering either the conceptual architecture or the source code
[162]. To dynamically maintain this synchronization, Wuyts
uses logic meta-programming [179], and Mens et al. use
intensional source-code views and relations through Intensive
[108, 109, 179]; [38] uses metaware (i.e., meta- and meta-meta-
models); [69] use a reflection mechanism based on dynamic
information.

Analysis: An analysis framework may steer a SAR frame-
work so that it provides required architectural views to compute
architectural quality analyses. Such analysis frameworks assist
stakeholders in their decision-making processes. In ArchView
[126], SAR and evolution analysis activities are interleaved.
QADSAR is a tool that offers several analyses linked to
threads, waiting points and performance properties [150, 151].
Moreover, flexible SAR environments such as Dali [76, 78],
ARMIN [79, 119] or Gupro [33] support architectural analysis
methods like SAAM [74] or ATAM [77] by exporting the
extracted architectures to dedicated tools.
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Alborz [139] red
ArchView [126] red
ArchVis [62] red
ARES [36] red reus
ARM [57] red
ARMIN [79, 119] red reus ana
ART [43] red
Bauhaus [20, 35, 84] red cnf
Bunch [100, 112] red evo
Cacophony [39] red
Dali [76, 78] red ana
DiscoTect [180] red cnf
Focus [24, 105] red evo
Gupro [33] red
Intensive [109, 179] red cnf coev
ManSART [60, 181] red cnf
MAP [149] red reus
PBS/SBS [12, 42, 66, 144] red
PuLSE/SAVE [83] red reus cnf coev ana
QADSAR [150, 151] red ana
Revealer [127, 128] red
RMTool [114, 115] red cnf
SARTool [41, 86] red cnf evo
SAVE [111, 116] red cnf coev
Softwarenaut [97, 98] red
Symphony,Nimeta [134, 165] red cnf ana
URCA [10] red
W4 [61] red cnf
X-Ray [107] red
— [11] red cnf
— [69] red coev ana
— [96] red
— [123] red
— [162] red cnf coev

red re-documentation · reus reuse · cnf conformance
coev co-evolution · ana analysis · evo evolution

TABLE I
SAR GOAL OVERVIEW

Evolution and maintenance: SAR is often a first step towards
software evolution and maintenance. Here we use the term
evolution to mean the study of the architecture as a tool to
support application evolution and not the study the evolution
itself. Understanding the inputs on which an approach is based
is key to make this distinction: some approaches consider
the history of a system to understand its evolution but not in
the precise goal of directly supporting the system’s evolution.
Focus subscribes to that perspective; its strength is that the
SAR scope is reduced to the system part which should evolve
[24, 105]. Krikhaar et al. also introduced a two-phase approach
to evolve architecture based on SAR and on change impact
analyses [41, 86]. [69] also consider SAR in the perspective
of evolution and maintenance.

B. Related and Orthogonal Artifacts

Some SAR approaches do not directly extract the architecture
of an application but correlated artifacts that crosscut and
complement the architecture. Such artifacts are design patterns,
features, aspects, or roles and collaborations. While these
artifacts are not the architecture itself (i.e., view points or
architecture), they provide valuable information about it [8].

Patterns play a key role in software engineering at different

Alborz [139] hybrid
ArchView [126] bottom-up
ArchVis [62] bottom-up
ARES [36] bottom-up
ARM [57] hybrid
ARMIN [79, 119] bottom-up
ART [43] hybrid
Bauhaus [20, 35, 84] hybrid
Bunch [100, 112] bottom-up
Cacophony [39] hybrid
Dali [76, 78] bottom-up
DiscoTect [180] hybrid
Focus [24, 105] hybrid
Gupro [33] bottom-up
Intensive [109, 179] bottom-up
ManSART [60, 181] hybrid
MAP [149] hybrid
PBS/SBS [12, 42, 66, 144] hybrid
PuLSE/SAVE [83] top-down
QADSAR [150, 151] hybrid
Revealer [127, 128] bottom-up
RMTool [114, 115] top-down
SARTool [41, 86] bottom-up
SAVE [111, 116] top-down
Softwarenaut [97, 98] bottom-up
Symphony,Nimeta [134, 165] hybrid
URCA [10] bottom-up
W4 [61] top-down
X-Ray [107] hybrid
— [11] hybrid
— [69] hybrid
— [96] bottom-up
— [123] hybrid
— [162] hybrid

TABLE II
SAR PROCESS OVERVIEW

levels of abstraction: architectural patterns, design patterns or
idioms [8, 16]. Some reverse engineering approaches are thus
based on design pattern identification [5, 6, 56, 63, 85, 178].

Features and aspects are also extracted from existing applica-
tions [35, 52, 123, 134, 172]. In the context of this paper we do
not take aspect mining into account since a couple of surveys
have already been published on the subject [18, 80, 118].

Roles and collaborations are important to object-oriented
design: to achieve the program’s task, objects collaborate
with each other, each one playing a specific role [131].
However roles and collaborations are not explicit but buried
into programs. Both [176] and [133] support the extraction of
roles and collaborations using dynamic information following
the work of [90].

V. SAR PROCESSES

SAR follows either a bottom-up, a top-down or an hybrid
opportunistic process.

A. Bottom-Up Processes

Bottom-up processes start with low-level knowledge to re-
cover architecture. From source code models, they progressively
raise the abstraction level until a high-level understanding of
the application is reached (see Figure 3) [14, 152].
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Fig. 3. A bottom-up process: from the source code, (1) views are extracted
and (2) refined.

Also called architecture recovery processes, bottom-up
processes are closely related to the well-known extract-abstract-
present cycle described by [159]. Source code analyses
populate a repository, which is queried to yield abstract
system representations, which are then presented in a suitable
interactive form to reverse engineers.

Examples: The Dali tool by Kazman et al. [76, 78] supports a
typical example of a bottom-up process: (1) Heterogeneous low-
level knowledge is extracted from the software implementation,
treated and stored in a relational database. (2) Using the Rigi
visualization tool [113, 173], a reverse engineer visualizes and
manually abstracts this information. (3) A reverse engineer
specifies patterns by selecting source model entities with SQL
queries and abstracting them with Perl expressions. Based on
Dali, Guo et al. proposed ARM [57] which focuses on design
patterns conformance.

In Intensive, Mens et al. use logic intension to group related
source-code entities in views that are robust to code changes
[109, 179]. Reverse engineers incrementally define views and
relations by means of intensions specified as Smalltalk or logic
queries. Intensive classifies the views and displays consistencies
and inconsistencies with the code and between architectural
views. Intensive visualizes its results with CodeCrawler [92].

Lungu et al. built both a method and a tool called Software-
naut [98] to interactively explore packages. They enhance the
exploration process in the package architectural structure by
guiding the reverse engineer towards the relevant packages.
They characterize packages based on their relations and on
their internal structure. A set of packages are highlighted and
associated to exploration operations that indicate the actions
to get a better understanding of the software architecture.

Other bottom-up approaches include ArchView [126], Re-
vealer [127, 128] and ARES [36], ARMIN [79, 119], Gupro
[33]. We classify the works around PBS/SBS [12, 42, 66, 144]
in this category, but since they consider conceptual architectures
to steer the process, we could as well have classified them
with the hybrid processes [12, 42, 66, 144].

B. Top-Down Processes

Top-down processes start with high-level knowledge such
as requirements or architectural styles and aim to discover
architecture by formulating conceptual hypotheses and by
matching them to the source code [17, 114, 152] (see Figure 4).
The term architecture discovery often describes this process.

1

2

3

Refinement

Hypothesized architecture

------
------
--
------
----------
------
----

 
A

 
B

 
C

Source code checking

Fig. 4. A top-down process: (1) an hypothesized architecture is defined,
(2) the architecture is checked against the source code, (3) the architecture is
refined.

Examples: The Reflexion Model of Murphy et al. is a
typical example of a top-down process [114, 115]. First, the
reverse engineer defines his high-level hypothesized conceptual
view of the application. Second, he specifies how this view
maps to the source code concrete view. Finally, RMTool
confronts both conceptual and concrete views to compute
a reflexion model that highlights convergences, divergences
and absences (see Figure 5). The reverse engineer iteratively
computes and interprets reflexion models until satisfied. In
a reflexion model, a convergence locates an element that
is present in both views, a divergence an element that is
only in the concrete view, and an absence an element that
is only in the conceptual view. The SAVE tool evaluates a
given software architecture and its corresponding source code
and points out the differences between these two artifacts in
terms of convergences, divergences and absences [111]. The
reflexion model offers a better support to express the conceptual
architecture and the results of the process than the approach
developed in SoFi [17]. The Reflexion Model influenced other
works [20, 61, 83, 133, 162]. Not related to the Reflexion
Model, Argo critics an architecture with high-level goals and
at a high-level representation, however it is not clear how the
architecture is effectively represented [136].

C. Hybrid Processes

Hybrid processes combine bottom-up with top-down pro-
cesses [152, 165]. On one hand, low-level knowledge is
abstracted using various techniques. On the other hand, high-
level knowledge is refined and confronted against the previously
extracted views (see Figure 6). Because hybrid processes
reconcile the conceptual and concrete architectures, they are
frequently used to stop architectural erosion [104, 124]. Hybrid
approaches often use hypothesis recognizers that provide
bottom-up reverse engineering strategies to support top-down
exploration of architectural hypothesis [123].
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Examples: Sartipi implements a pattern-based SAR approach
in Alborz [139]. The architecture reconstruction has two phases.
During the first bottom-up phase, Alborz parses the source
code, presents it as a graph, then divides that graph in cohesive
regions using data mining techniques. The resulting model is
at a higher abstraction level than the code. During the second
top-down phase, the reverse engineer iteratively specifies his
hypothesized views of the architecture in terms of patterns.
These patterns are approximately mapped with graph regions
from the previous phase using graph matching and clustering
techniques. Finally, the reverse engineer decides to proceed
or not to a new iteration based on the partially reconstructed
architecture and evaluation information that Alborz provides.

Christl et al. [20] present an evolution of the Reflexion Model.
They enhance it with automated clustering to facilitate the
mapping phase. As in the Reflexion Model, the reverse engineer

defines his hypothesized view of the architecture in a top-down
process. However, instead of manually mapping hypothetic
entities with concrete ones, the new method introduces clus-
tering analysis to partially automate this step. The clustering
algorithm groups concrete entities that are not mapped yet
with similar concrete entities already mapped to hypothesized
entities.

To assess the creation of product lines, Stoermer et al.
introduce the MAP method [149]. MAP combines 1) a bottom-
up process to recover the concrete architectures of existing
products; 2) a top-down process to map architectural styles
onto recovered architectural views; 3) an approach to analyze
commonalities and variabilities among recovered architectures.
They stress the ability of architectural styles to act as the
structural glue of the components, and to highlight architecture
strengths and weaknesses.

Other hybrid processes include Focus [24, 105] and Nimeta
[134], ManSART [60, 181], ART [43], X-Ray [107], ARM [57]
and DiscoTect [180]. In ManSART, a top-down recognition
engine maps a style-compliant conceptual view with a system
overview defined in a bottom-up way using a visualization
tool [60, 181]. Pinzger et al. [130] present an approach to
recover architecture for product families; they first determine
the architectural views and concepts and then recover and
assess the architecture using the Pulse-DSSA process [2].

As with any classification, the borders are fuzzy. For example,
if the refinement step of a bottom-up approach is complex,
we could categorize this approach as hybrid. We believe that
this is not a real problem since the distinction still introduces
important structure and flow to categorize the works. From
Table II we can see that the three processes are represented in
equal proportions.

VI. SAR INPUTS

Most often, SAR works from source code representations,
but it also considers other kinds of information, such as
dynamic information extracted from a system execution, or
historical data held by version control system repositories. A
few approaches work from architectural elements such as styles
or viewpoints. There is no clear trend because SAR approaches
are fed with heterogeneous information of diverse abstraction
levels. We present first the non-architectural inputs, then the
architectural inputs.

A. Non-Architectural Inputs

Source Code Constructs: The source code is an omnipresent
trustworthy source of information that most approaches con-
sider. Some of the approaches directly query the source
code using regular expressions like in RMTool [114, 115]
or [127, 128]. However, most of them do not use the source
code text but represent it using metamodels. These metamodels
cope with the paradigm of the analyzed software. For instance,
the language independent metamodel FAMIX is used to reverse
engineer object-oriented applications [23]; its concepts include
classes, methods, calls or accesses. FAMIX is used in ArchView
[126], Softwarenaut [98] and Nimeta [134]. Other metamodels
such as the Dagstuhl Middle Metamodel [94] or GXL [65]
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have been proposed with the same intent of abstracting the
source code.

Symbolic Textual Information: Some approaches use the
symbolic information available in the comments [127, 128]
or in the method names [89, 102]. Anquetil and Lethbridge
recover architecture from the source file names [4].

Dynamic Information: Static information is often insuffi-
cient for SAR since it only provides a limited insight into
the runtime nature of the analyzed software; to understand
behavioral system properties, dynamic information is more
relevant [90]. Some SAR approaches use dynamic information
alone [180] while others mix static and dynamic knowledge
[69, 95, 126, 132, 135, 166]. Walker et al. map dynamic
information to architectural views [167]. Lots of approaches
using dynamic information extract design views rather than
architecture [58, 59, 82, 132, 156]. Huan et al. consider runtime
events such as method calls, CPU utilization or network band-
width consumption because it may inform reverse engineers
about system security properties or system performance aspects
[69]. DiscoTect uses dynamic information too [180]. Li et al.
uses run-time process information to derive architectural views
[95]. Some works focus on dynamic software information
visualization [28, 72, 156]; to get a more precise analysis
of these, we refer the reader to the survey of [59]. [10]
use dynamic information extracted from use cases to identify
packages and architectural views. Dynamic information is also
used to identify features [35, 52, 137], design patterns [63, 168],
or collaborations and roles [133, 176].

Physical Organization: The physical organization of appli-
cations in terms of files and folders often reveals architectural
information. ManSART [60, 181] and Softwarenaut [98] work
from the structural organization of physical elements such as
files, folders, or packages. Some approaches map packages or
classes to components and use the hierarchical nature of the
physical organization as architectural input [91, 129, 177].

Human Organization: According to Conway’s thesis: “Or-
ganizations which design systems are constrained to produce
designs which are copies of the communication structures of
these organizations” [22]. It is then important to consider
the influence of the human organization on the extracted
architectures or views. Inspired by this, Bowman et al. use
the developer organization to form an ownership architecture
that helps stakeholders reconstruct the software architecture
[11].

Historical Information: Historical information is rarely used
in SAR. [179] worked on the co-evolution between code and
design. ArchView is a recent approach that exploits source
control system data and bug reports to analyze the evolution
of recovered architectural views [126]. Mens et al. analyze
the evolution of extracted software views with Intensive [109,
179]. To assist a reverse engineer in understanding dependency
gaps in a reflexion model, [61, 114, 115] annotate entity
dependencies with sticky notes. These sticky notes record
dependency evolution and rationale with information extracted
from version control systems. ArchEvo produces views of
the evolution of modules that are extracted from source code
entities [129].

Human Expertise: Although one cannot entirely trust human
knowledge, it is very helpful when it is available. At high
abstraction levels, SAR is iterative and requires human knowl-
edge to guide it and to validate results. To specify a conceptual
architecture [61, 105, 114], reverse engineers have to study
system requirements, read available documentation, interview
stakeholders, recover design rationale, investigate hypotheses
and analyze the business domain. Human expertise is also
required when specifying viewpoints, selecting architectural
styles (Section VI-B), or investigating orthogonal artifacts
(Section IV-B). While SAR processes involve strategy and
knowledge of the domain and the application itself, only a few
approaches take human expertise explicitly into account. [71]
propose to systematically update a knowledge base that would
become a helpful collection of domain-specific architectural
artifacts.

B. Architectural Inputs
Architectural styles and viewpoints are the paramount of

software architecture, we analyzed whether SAR approaches
consider them as input to steer the extraction process. Some
tools such as SAVE [111] take as input a mapping and
architectural elements and apply the Reflexion Model (see
Section V-B). Even if it is not exactly a SAR process, the
Pulse approach produces a reference architecture by applying
generic scenarios [2]. It works from domain models consisting
of a decision model and generic work products, and was applied
to statically evaluate architectures [82].

Styles: Architectural styles such as pipes and filters, layered
system, data flow are popular because like design patterns,
they represent recurrent architectural situations [16]. They
are valuable, expressive, and accepted abstractions for SAR
and more generally for software understanding. Examples of
architectural styles are pipes and filters, blackboard, and layers.

Recognizing them is however a challenge because they
span several architectural elements and can be implemented in
various ways [127, 128]. The question that turns up is whether
SAR helps reverse engineers specify and extract architectural
styles.

Examples: In Focus, Ding et al. use architectural styles to
infer a conceptual architecture that will be mapped to a concrete
architecture extracted from the source code [24, 105].

Closely related to this work, Medvidovic et al. introduce an
approach to stop architectural erosion. In a top-down process,
requirements serve as high-level knowledge to discover the
conceptual architecture [104]. In a bottom-up process, system
implementation serves as low level knowledge to recover the
concrete architecture. Both the conceptual and the concrete
architectures are incrementally built. The reverse engineer
reconciles the two architectures, based on architectural styles.
Their approach considers architectural styles as key design
idioms since they capture a large number of design decisions,
their rationale, effective compositions of architectural elements,
and system qualities that will likely result from using the style.

DiscoTect reconstructs style-compliant architectures [180].
Using a state machine, DiscoTect incrementally recognizes
interleaved patterns in filtered execution traces of the applica-
tion. The state machine represents an architectural style; by
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refining it, the reverse engineer defines which hypothesized
architectural style the tool should look for [155].

ManSART [60, 181], ART [43] and MAP [149] are other
SAR approaches taking architectural styles into account.

Viewpoints: The system architecture acts as a mental
model shared among stakeholders [67]. Since the stakeholders’
interests are diverse, viewpoints are important aspects that
SAR may consider [70, 146]. Viewpoint catalogues were built
to address this issue: the 4 + 1 viewpoints of [88]; the four
viewpoints of [64, 148], the build-time viewpoint introduced by
[164] or the implicit viewpoints inherent to the UML standard.
Most SAR approaches reconstruct architectural views according
only to a single or a few preselected viewpoints. Smolander et al.
highlight that viewpoints cannot be standardized but should
be selected or defined according to the environment and the
situation [146]. O’Brien et al. present the View-Set Scenario
pattern that helps one to determine which architectural views
sufficiently describe the system and cover the stakeholders’
needs [120].

Examples: The Symphony approach of van Deursen et al.
aims at reconstructing software architecture using appropriate
viewpoints [165]. Viewpoints are selected from a catalogue
or defined if they don’t exist, and they evolve throughout the
process. They constrain SAR to provide architectural views
that match the stakeholders’ expectations, and ideally are
immediately usable. The authors show how to define viewpoints
step by step, and apply their approach on four case studies with
different stakeholder goals. They provide architectural views
to reverse engineers following the viewpoints these reverse
engineers typically use during design phases. Riva proposed a
view-based SAR approach called Nimeta based on Symphony
[134]: Nimeta is a full SAR approach that uses the Symphony
methodology to define viewpoints.

Favre outlines a generic SAR metamodel-driven approach
called Cacophony [39]. Like Symphony, Cacophony recognizes
the need to identify the viewpoints that are relevant to the
stakeholders’ concerns and that SAR must consider. Contrary
to Symphony, Cacophony states that metamodels are keys for
representing viewpoints: they specify the language that views
have to conform to.

The QADSAR approach both reconstructs the architecture
of a system and drives quality attribute analyses on it [150,
151]. To identify the relevant architectural viewpoints, reverse
engineers formulate scenarios that highlight interesting quality
attributes of the system. ARES [36] and SARTool [41, 86]
also take viewpoints into account.

C. Mixing Inputs

Most approaches work from a limited source of information,
even if multiple inputs are necessary to generate rich and
different architectural views. Kazman et al. advocate the fusion
of multiple source of inputs to produce richer architectural
views: for example, they produce interprocess communication
and file access views [75]. Lange and Nakamura mix dynamic
and static views to support design pattern extraction [90].

ArchVis [62] uses source code, dynamic information such
as network log or messages sends and file structures.

Alborz [139] src dyn exp
ArchView [126] src dyn hist exp
ArchVis [62] src text dyn phys style viewp
ARES [36] src exp
ARM [57] src exp
ARMIN [79, 119] src phys exp
ART [43] src exp style
Bauhaus [20, 35, 84] src dyn exp
Bunch [100, 112] src exp
Cacophony [39] exp viewp
Dali [76, 78] src exp
DiscoTect [180] src dyn exp style
Focus [24, 105] src exp style
Gupro [33] src exp
Intensive [109, 179] src exp
ManSART [60, 181] src phys exp style
MAP [149] src exp style
PBS/SBS [12, 42, 66, 144] src phys exp
PuLSE/SAVE [83] src exp viewp
QADSAR [150, 151] src exp viewp
Revealer [127, 128] src text exp
RMTool [114, 115] src exp
SARTool [41, 86] src exp viewp
SAVE [111, 116] src exp
Softwarenaut [97, 98] src text phys exp
Symphony,Nimeta
[134, 165]

dyn exp viewp

URCA [10] src dyn exp
W4 [61] src hist exp
X-Ray [107] src exp
— [11] src org hist exp
— [69] src dyn style
— [96] src exp
— [123] src dyn exp style
— [162] src exp

src source code · text textual information
dyn dynamic information · phys physical organization
org human organization · hist historical information

exp human expertise · style styles · viewp viewpoints

TABLE III
SAR INPUT OVERVIEW

[82] discuss the combination of different information sources
such as documents, source code and historical data. However it
is not clear whether the approach was used in practice. Multiple
inputs must be organized and Ivkovic and Godfrey propose a
systematic way to organize application domain knowledge into
a unified structure [71].

VII. SAR TECHNIQUES

There is a variety of formalisms used to represent, query
and exchange the data representing applications [30, 50, 135].
A couple of exchange formats exist from simple textual tuples
in RSF [173] or in TA [12, 42, 66, 144], to XML in GXL
[33, 65, 134], or to CDIF in FAMIX [23]. The format may limit
the merging or manipulation of the information it represents
[30]. An important property of an exchange format is that it
can be easily generated and used with simple tools [25].

SAR techniques are often correlated with the data they
operate on: for example, Mens et al. express logic queries on
facts [109, 179] while Ebert et al. perform queries on graphs
[33]. Thus, instead of using data formalisms as a criterion, we
classify techniques into three automation levels:
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Quasi-manual. the reverse engineer manually identifies archi-
tectural elements using a tool to assist him to understand
his findings;

Semi-automatic. the reverse engineer manually instructs the
tool how to automatically discover refinements or recover
abstractions;

Quasi-automatic. the tool has the control and the reverse
engineer steers the iterative recovery process.

Of course, the boundaries in the classification are not clear-cut
and the categories are not mean to be exclusive. Moreover,
reverse engineers often use visualization tools to understand the
results of their analyses, but a comparison of the visualization
tools is beyond the scope of this article. Table IV synthesizes
the classification of SAR techniques.

A. Quasi-Manual Techniques

SAR is a reverse engineering activity which faces scalability
issues in manipulating knowledge. In response to this problem,
researchers have proposed slightly assisted techniques; we
group those into two categories: construction-based techniques
and exploration-based techniques.

Construction-based Techniques: These techniques recon-
struct the software architecture by manually abstracting low-
level knowledge, thanks to interactive and expressive visualiza-
tion tools — Rigi [113, 173], CodeCrawler [92], Shrimp/Creole
[153, 177], Verso [91], 3D [101] or GraphViz [47].

Exploration-based Techniques: These techniques give re-
verse engineers an architectural view of the system by guiding
them through the highest-level artifacts of the implementation,
like in Softwarenaut [98]. The architectural view is then closely
related to the developer’s view.

Instead of providing guidance, the SAB browser allows
reverse engineers to assign architectural layers to classes and
then to navigate the resulting architectural views [37].

ArchView1 visualizes simple architectural elements and their
relationships in 3D [40].

B. Semi-Automatic Techniques

Semi-automatic techniques automate repetitive aspects of
SAR. The reverse engineer steers the iterative refinement
or abstraction, leading to the identification of architectural
elements.

Abstraction-based Techniques: These techniques aim to
map low-level concepts with high-level concepts. Reverse
engineers specify reusable abstraction rules and execute them
automatically. The following approaches were explored:
Relational queries. Often, relational algebra engines abstract

data out of entity-relation databases. Dali uses SQL queries
to define grouping rules [76, 78] [76]; so does ARMIN
[79, 119]. Relational algebra defines a repeatable set of
transformations such as abstraction or decomposition to
create a particular architectural view. Gupro queries graphs
using a specialized declarative expression language called
GReQL [33]. Rigi is based on graph transformations
written in Tcl [113, 173]. In PBS/SBS, Holt proposes

1Different of ArchView Pinzger’s approach [126], though homonymous.

the Grok relational expression calculator to reason about
software facts [66]. It is based on Tarsky’s relational
algebra and as such is different from SQL-like queries.
Krikhaar presents a SAR approach based on an extension
of relational algebra [41, 86]. The ArchView abstraction
algorithm combines relational algebra with metrics [126].

Logic queries. Logic queries are powerful because of the un-
derlying unification mechanism which allows the writing
of dense multi valued queries. [56, 85, 178] use Prolog
queries to identify design patterns. Mens and Wuyts
use Prolog as a meta programming language to extract
intensional source-code views and relations in Intensive
[109, 179]. Richner and Ducasse also chose a logic query
based approach to reconstruct architectural views from
static and dynamic facts [132].

Programs. Some approaches build analyses as plain object-
oriented programs. For example, the groupings made in
the Moose environment are performed as object-oriented
programs that manipulate models representing the various
inputs [27].

Lexical and structural queries. Some approaches are directly
based on the lexical and structural information in the
source code. Pinzger et al. state that some hot-spots clearly
localize patterns in the source code and consider them as
the starting point of SAR [127, 128]. To drive a pattern-
supported architecture recovery, they introduce a pattern
specification language and the Revealer tool. RMTool
identifies architectural elements and relations using lexical
queries [114, 115]. The Searchable Bookshelf is a typical
example of supporting navigation via queries [144]. Argo
design critics uses Java predicates to automatically assess
the current architecture of a system [136].

ArchVis supports multiple inputs (files, programs, Acme
information), uses static and dynamic information (program
execution but also log files and network traffic), and provides
different views to specific stakeholders (component, developer,
manager views) [62].

Investigation-based Techniques: These techniques map high-
level concepts with low-level concepts. The high-level concepts
considered cover a wide area from architectural descriptions
and styles to design patterns and features. Explored approaches
are:

Recognizers. ManSART [60, 181], ART [43], X-Ray [107],
ARM [57] and [44] are based on recognizers for architec-
tural styles or patterns written in a query language. The
tools then report the source code elements matching the
recognized structures. More precisely, pattern definitions
in ARM are progressively refined and finally transformed
in SQL queries exploitable in Dali [76, 78]. The design
patterns extraction approaches fit in this category (see Sec-
tion IX).

Graph pattern matching. In ARM [57], pattern definitions can
also be transformed into graphs pattern to match with a
graph-based source code representation; this is similar to
what Alborz [139] does.

State engine. In DiscoTect state machines are defined to check
architectural styles conformance [180]. A state engine
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tracks the system execution at run-time and outputs
architectural events when the execution satisfies the state
machine description.

Maps. SAR approaches based on the Reflexion Model [114,
115] use rules to map hypothesized high-level entities
with source code entities. Since these Perl-like rules take
plain source code as input, we could have classified the
reflexion model in the lexical and structural queries group
mentioned previously, but the intention here is really
mapping. In SoFi, Carmichael et al. [17] use naming
conventions of files and folders to automatically group
entities.

C. Quasi-Automatic Techniques

Purely automated software architecture extraction techniques
do not exist. Reverse engineers must still steer the most
automated approaches. Approaches in this area often combine
concept, dominance and cluster analysis techniques.

Concepts: Formal concept analysis is a branch of lattice
theory used to identify design patterns [6], features [35, 52],
or modules [143]. Tilley et al. [160] present a survey of work
using formal concept analysis [10, 143, 161].

Clustering Algorithms: Clustering algorithms identify groups
of objects whose members are similar in some way. They
have been used to produce software views of applications.
To identify subsystems, Anquetil and Lethbridge cluster files
using naming conventions [4]. Some approaches automatically
partition software products into cohesive clusters that are
loosely interconnected [3, 100, 163, 169]. Clustering algorithms
are also used to extract features from object interactions [137].
Koschke emphasizes the need to refine existing clustering
techniques, first by combining them, and second by integrating
the reverse engineer as a conformance supervisor of the
reconstruction process [20, 84].

Dominance: In directed graph, a node D dominates a node
N if all paths from a given root to N go through D. In software
maintenance, dominance analysis identifies the related parts in
an application [21, 51]. In the context of software architecture
extraction, adhering to Koschke’s thesis, Trifu unifies cluster
and dominance analysis techniques to recover architectural
components in object-oriented legacy systems [163]. Similarly,
Lundberg and Löwe outline a unified approach centered around
dominance analysis [96]. On the one hand, they demonstrate
how dominance analysis identifies passive components. On the
other hand, they state that dominance analysis is not sufficient
to recover the complete architecture: it requires other techniques
such as concept analysis to take component interactions into
account.

Layers and Matrix: Often, applications are built with layers
in mind: the lower layers should not communicate with the
upper ones. An interesting approach for identifying cycles and
layers in large applications is the Dependency Structure Matrix
(DSM) [138, 154]. The Dependency Structure Matrix is adapted
from the domain of process management [154] to analyze
architectural dependencies in software [138]. Dependency
structure matrixes show in a compact manner dependencies
between source code entities such as classes and packages. Bril

Quasi- Semi-automatic Quasi-
Tools manual Abstr. Invest. auto.

Alborz [139] gpm auto
ArchView [126] rel
ArchVis [62] cns rel, prg auto
ARES [36]
ARM [57] cns rel
ARMIN [79, 119] rel
ART [43] rec
Bauhaus [20, 35, 84] rec, map auto
Bunch [100, 112] auto
Cacophony [39]
Dali [76, 78] cns rel
DiscoTect [180] sta
Focus [24, 105] cns
Gupro [33] rel
Intensive [109, 179] log
ManSART [60, 181] cns rec
MAP [149] cns
PBS/SBS [12, 42, 66, 144] rel map
PuLSE/SAVE [83] map
QADSAR [150, 151] cns rel
Revealer [127, 128] lex
RMTool [114, 115] map
SARTool [41, 86] rel
SAVE [111, 116] map
Softwarenaut [97, 98] exp rel
Symphony,Nimeta [134, 165]
URCA [10] auto
W4 [61] map
X-Ray [107] rec auto
— [11]
— [69] auto
— [96] auto
— [123] cns, exp auto
— [162] rel map
cns construction · exp exploration · rel relational queries · log
logic queries · prg programslex lexical queries · rec recognizers

gpm graph pattern matching · sta state engine
map maps · auto quasi-automatic

TABLE IV
SAR TECHNIQUE OVERVIEW

et al. use tree-cut based on a component connectivity metric
to identify layers in the application dependency tree structure
[13].

VIII. SAR OUTPUTS

While most approaches focus on identifying and presenting
software architectures, some provide valuable additional infor-
mation, e.g., conformance of architecture and implementation.
Indeed, goals and outputs are clearly related. In this section
we highlight some points to further classify the approaches.

A. Visual Software Views

Several surveys of program visualization tools have been pro-
posed. Gallagher et al. propose a framework to assess software
visualizations around 7 key areas (static representation, dynamic
representation, views, navigation, task support, implementation,
visualization) and 31 features; however, they applied it to
software extraction tools as well as UML case tools or notations
like LePUS [34]. Bassil and Keller propose a survey and
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analysis of software visualization [7], they also mention several
other surveys. Here we do not reproduce such surveys but focus
on the visualization as a possible output of the SAR process.

Supporting visualization tools: A lot of approaches offer
(architectural) views or use visualizations as output [45] such
as ArchVis [62]. As we mentioned earlier, several tools such as
Rigi [113, 173], Shrimp/Creole [153, 177], GraphViz [47] or
CodeCrawler [92] are used to visualize graph representations
of software views [42, 76, 84, 128, 134, 139, 140]. Some
authors propose open toolkits to build architectural extractors
[122, 158] or scriptable visualizations [110].

Classifying the outputs of the various visualization ap-
proaches is difficult and outside of the scope of this article,
but we can still distinguish some groups:
Architecture as boxes. Some visualization approaches present

and group source code entities as boxes using the tools
mentioned above [42, 75, 76, 84, 128, 134, 139]. For
example, the Pulse approach [83] applied the SAVE tool to
extract architectural views by grouping entities [111, 116].

Source entity visualization. Some tools focus on source code
visualization or abstractions as opposed to true architec-
tural entities. For example CodeCrawler [92], Distribution
Map [26] and Package Blueprints [29] present condensed
views of software source code entities. Similarly, Verso
uses 3D to combine more information per entity [91].

Architectural Views. Some offer enhanced views that provide
architectural information [98, 109, 126]. In this context
some approaches improve their visualizations with 2D/3D
[40, 101, 122, 158]. Erben and Lör define dedicated tool
support to represent architectural elements and layers; for
example, the Software Architecture Browser is a graphical
editor dedicated to navigation in layers [37]. Grundi and
Hosking propose the SoftArch tool which supports both
static and dynamic visualisation of software architecture
components at varying levels of abstraction. SoftArch
copies, annotates, and animates static architectural views
to provide developers with multiple, high-level execu-
tion architectural visualisations [53]. ArchVis [62] uses
multiple sources and representations of architecture in to
generate multiple views of software architecture. Pacione
proposed both the architecture-oriented visualization tool
Vanessa, and a taxonomy surveying related tools [121].

Orthogonally to this draft classification, and as shown in
Section VI, some SAR approaches focus on the behavior of
software and use execution traces. [59] surveyed some of
the tools supporting traces visualization. To offer multiple
views of an application, it is interesting to combine static and
dynamic analysis [28, 62, 90, 132, 157]. Program Explorer
supports a navigation of design pattern elements using execution
traces information [90]. For example, Shimba combines static
and dynamic information to produce high-level views of Java
systems; it displays static information with Rigi [113, 173],
and dynamic information as state diagrams [157]. Both views
are thus displayed separately, but the reverse engineers can
constrain the abstraction of each view from the other one.
Richner and Ducasse propose different views such as an
invocation or instantiation relationships between high-level
components [132].

B. Architecture

Since one an important goal of SAR approaches is to provide
better understanding of the applications, they tend to present
reconstructed architectural views to stakeholders. As the code
evolves, some approaches focus on the co-evolution of the
reconstructed architecture: Intensive [109, 179] synchronizes
the architecture with its implementation and highlights the
differences due to evolution.

Iterative approaches based on the reflexion model [20, 83,
114, 133] make explicit the absences, convergences and diver-
gences between the conceptual architecture and the architecture
that results from mapping source code elements to architectural
elements.

Architecture Description Languages (ADLs) have been
proposed both to formally define architectures and to support
architecture-centric development activities [103]. In the context
of SAR, X-Ray uses Darwin [99] to express reconstructed
architectural views [107]. Darwin was also extended by [36]
in ARES. Acme [50] has ADL-like features and is used in
DiscoTect [180]. [69] specify architectures with the ABC
ADL. They reconstruct architectural views and express them
according to the ADL language in use to be coherent with an
architecture-centric software development. In addition ADL
features allow reverse engineers to give information in an ADL
compliant format to improve the SAR process such as the
layouts of architectural views that they have already produced.

C. Conformance

Some approaches focus on determining the conformance of
an application to a given architecture [108]. We distinguish
two kinds of architecture conformance: horizontal conformance
between similar abstractions and vertical conformance between
different abstraction levels.

Horizontal conformance is checked between two recon-
structed views, or between a conceptual and a concrete
architecture, or between a product line reference architecture
and the architecture of a given product. For example, SAR
approaches for product line migration identify commonalities
and variabilities among products, like in MAP [149]. Some-
times, SAR requires to define a conceptual architecture and to
compare it with the reconstructed one [57, 162]. Sometimes,
an architecture must conform to architectural rules or styles;
this was discussed in Nimeta [134], the SARTool tool [41, 86],
Focus [24, 105] and DiscoTect [180]. Argo offers critics that
comment the architecture or its potential problems [136]. Critics
may also be low-level code critics such as abstract class wrong
usage.

Vertical conformance assesses whether the reconstructed
architecture conforms to the implementation. Both Reflexion
Model-based [114, 115] and co-evolution-oriented [109, 179]
approaches revolve around vertical conformance.

D. Analysis

Some approaches perform extra analysis on the extracted
architecture to qualify it or to refine it further. Reverse engineers
use modularity quality metrics either to iteratively assess current
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Alborz [139] vis ana
ArchView [126] vis
ArchVis [62] vis desc
ARES [36] vis desc ana
ARM [57] vis
ARMIN [79, 119] vis ana
ART [43] vis
Bauhaus [20, 35, 84] vis vert
Bunch [100, 112] vis
Cacophony [39]
Dali [76, 78] vis desc ana
DiscoTect [180] vis desc horz vert
Focus [24, 105] vis
Gupro [33] vis
Intensive [109, 179] vis
ManSART [60, 181] vis
MAP [149] vis
PBS/SBS [12, 42, 66, 144] vis
PuLSE/SAVE [83] vis vert ana
QADSAR [150, 151] vis ana
Revealer [127, 128] vis
RMTool [114, 115] vis vert
SARTool [41, 86] vis horz vert ana
SAVE [111, 116] vis vert
Softwarenaut [97, 98] vis
Symphony,Nimeta [134, 165] vis horz vert ana
URCA [10] vis
W4 [61] vis vert ana
X-Ray [107] vis desc
— [11] vis horz
— [69] desc horz ana
— [96] vis
— [123] vis
— [162] vis vert

vis architecture visualization · desc architecture description
horz horizontal conformance · vert vertical conformance

ana analysis

TABLE V
SAR OUTPUT OVERVIEW

results and steer the process, or to get cues about reuse and
possible system improvement [84, 139].

A few SAR approaches propose other analyses: ArchView
[126] provides structural and evolutionary views of a software
application. [36] in ARES, and Stoermer in QADSAR [150,
151] reconstruct software architectures to highlight properties
like safety, concurrency, portability or other high-level statistics
[69].

Finally, some approaches highlight architectural patterns or
orthogonal artifacts: ARM [57], Revealer [127, 128] or Alborz
[139].

IX. ORTHOGONAL OR RELATED ABSTRACTIONS

A large body of work focuses on extracting design or
on reverse engineering applications. It is difficult to clearly
separate these approaches from SAR since architecture has
many forms and design information is important to characterize
architecture. These approaches focus on identifying artifacts
that either support the architecture, such as design patterns
[8], or crosscut the architecture, such as features and roles.
These related artifacts convey important information about the
architecture; this is why we included them in this survey in a
section of their own.

A. Design Patterns

Design patterns are important abstractions in programming
and designing applications because they create a common
vocabulary [46]. A design pattern highlights a recurring
problem that arises in a specific design context, and discusses
the possible solutions.

Beck and Johnson derive an architecture from a set of
patterns [8]. Deducing an architecture from patterns records the
design decisions that were made, and hints at their underlying
motivations. Buschman et al. mention that patterns are useful
mental building-blocks which compose and document the
architecture [16]. Patterns span several levels of abstraction
from architecture through design to language, and they are
interwoven with each other. Architectural patterns or styles
express high level fundamental organizations of systems; design
patterns describe medium level structures of communicating
components; language patterns or idioms present low level
aspects of programming languages. For all these reasons
researchers have been drawing considerable attention onto
design pattern identification [90]. Gueheneuc, Mens and Wuyts
propose a framework to compare design recovery tools [55].

Shull et al. propose a method to manually identify workable
domain-specific design patterns and create customized catalogs
of the identified patterns [142]. Brown automatically identifies
design patterns using the reflective capabilities of Smalltalk
[15]. Keller et al. promote pattern analysis as well as human
expertise to extract design pattern [81]. Bergenti and Poggi
provide critiques about the design patterns identified in UML
documents [9]. Philippow et al. promote a design pattern-based
approach to reconstruct the reference architecture of a product
line [125].

Several approaches use Prolog to represent and query
source code [85, 178]. Design patterns are then represented as
logic queries. Lange et al. represents both static and dynamic
information as logic facts to generate interactive design views
and help understanding frameworks [90]. To extract design
patterns that are based on specific interactions among the
pattern participants, like Chain of Responsibility, researchers
investigated dynamic analysis [63, 168]. One of the main
problems in pattern identification is the search space. To reduce
it, [168] combines static and dynamic analyzes, the first one
reducing the search space of the second one: the static analysis
searches for sets of candidates that respect the static structure
of the design pattern, while the dynamic analysis monitors
candidates and checks whether the observed interactions satisfy
the behavioral rules of the design patterns [63]. Gueheneuc
et al. used explanation-based constraint programming to report
problems when failing to identify design patterns [54]. Antoniol
et al. propose a multi stage reduction strategy: software metrics
and structural properties computed on design patterns become
constraints that design pattern candidates must satisfy [5]. [56]
reduces the search space using metrics to define design pattern
fingerprints of the design pattern participants. A design pattern
has several design variants and can be implemented in different
ways; [117] overcomes both problems with fuzzy logic, and
[168] rates instance candidates with fuzzy values to support
inexact mismatch.
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B. Features and Aspects

A key to software understanding is to locate source code
entities according to the concerns they address. The decom-
position of product families is often driven by the product
features [145], and aspects represent crosscutting abstractions.
While they are not directly related to software architecture,
features often relate to functional requirements, while aspects
often relate to non-functional requirements or to activity
crosscutting a system; as such, both features and aspects provide
interesting alternate views on the architecture of an application.
However, these concerns are not explicitly linked to source
code entities; in fact, they often crosscut the system’s physical
decomposition, scattered and tangled throughout its artifacts.
Recovering crosscutting concerns is thus an active research
area, but nowadays, researchers essentially focus their attention
on mining concerns and rarely link their works with SAR, even
though aggregating source code entities around the concerns
they address could be a useful means of abstraction for SAR.

Features: According to [35] a feature is “an observable
behavior of a system that can be triggered by a user” and
a computational unit is “an executable part of a system”.
A feature in the minds of reverse engineers is implemented
through several computational units in the source code. To
understand how a set of features is implemented, one must
identify the computational units that contribute to these features
and optionally the way they interact together. Features are
high level knowledge while computational units are low level
knowledge. More generally, features acts as a bridge between
the requirements and the architecture of the system [123].
Therefore, a feature view improves software understanding
by mapping functional requirements in the minds of reverse
engineers with architectural elements and indirectly with source
code entities. A feature view could help SAR by hiding
implementation details around features.

The Software Reconnaissance method is a promising ap-
proach in the feature location field [172]. To identify the
computational units related to a given feature, this method
compares computational units invoked by different scenarios
which trigger or not this feature. In a similar way, Wong et al.
proposed an approach that analyses execution slices of different
scenarios [174]. Chen et al. outlined a human-guided approach
[19, 170]. Assisted by a tool, a reverse engineer explores a
statically derived dependency graph and iteratively decides
whether each considered computational unit is relevant to the
feature or not.

Eisenbarth et al. combine static and dynamic analyses to
derive the map linking features with computational units [35].
Using concept analysis, they obtain a map of relationships
between features and computational units; this map is subject to
human interpretation. Finally, they refine the map by deriving
more relevant computational unit sets using static analysis
such as dominance analysis. Salah and Mancoridis derive a
feature map from object interactions; their method progressively
raises the abstraction level from object interactions to feature
interactions [137]. Greevy and Ducasse characterize features
and computational units according to two complementary
perspectives: A feature perspective and a computational unit

perspective [52]. The approach allows for instance a reverse
engineer to know how some computational units participate at
the realization of a given feature.

Pashov and Riebisch promote the use of feature modeling to
improve SAR [123]. Their feature-oriented approach iteratively
reconstructs the architecture by establishing and verifying
functional and architectural hypotheses. These hypotheses link
features, architectural elements and source code entities in cross-
referencing tables which are verified iteratively. Sochos et al.
propose a method to offer a stronger mapping between features
and the architecture based on a series of transformations on
the initial product line feature. Architectural components are
derived during the transformations and encapsulate the business
logic of each transformed feature [147].

Aspects: Aspect mining receives a lot of attention currently.
As said above, concerns often crosscut the implementation;
aspect mining is the reverse engineering process which aims
to find and isolate these crosscutting concerns. It is mainly
explored to better understand a piece of software or to refactor
it in an aspect-oriented one. Since there are already several
surveys of the subject [18, 80, 118], we do not cover it here.
It is however worth to mention that there are no approaches
linking mining aspects with architecture extraction.

C. Collaborations and Roles

To understand an object-oriented application, one must
understand the collaborations and the roles that objects
play [131, 176]. Collaborations are goal-oriented interactions
between participants, while roles describe the participants’
responsibilities in a collaboration. [133] focused on recovering
collaborations and roles of objects and indirectly of classes.
[68] proposes collaboration contracts as a basis to control the
evolution of collaborations.

Some approaches deduce class collaborations by visualizing
object interactions [59]. Richner et al. propose an approach to
recover collaborations and roles that does however not rely
on visualization techniques; they work from both dynamic
information and human expertise [133]. Pattern matching tools
extract collaboration patterns from execution traces that record
method invocation information. To only focus on relevant class
collaborations and roles, reverse engineers then steer the process
through querying and visualization facilities. Wu et al. applied
a closely related approach to procedural legacy systems [176].

X. DISCUSSION

Here are some general points that appeared to us out of
this survey. A lot of approaches visualize software entities but
few work from diverse information or even take advantage of
having different kinds of information. Several times this paper
stresses the need to provide a large variety of views at different
levels of abstraction. We advocate that viewpoints should be
defined consistently. SAR must integrate in an environment
that provides reverse engineers with views at different levels of
abstraction and means to navigate horizontally and vertically.
To fulfill this requirement, we state that a mechanism is
required to express consistently viewpoints whatever the level
of abstraction of the views they respectively describe. In this
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perspective, the metamodel-based SAR outlined by [39] is
promising.

Lots of works focused on extracting design information such
as design patterns but stopped building on this knowledge up
to the architectural level. Similarly few works bring together
features and architectural information.

Because it is complex to extract architectural components
from source code, those are often simply mapped to packages
or files. Even if this practice is understandable, we think it
limits and overloads the term component.

We see that few works really take into account architectural
styles. This may be the result of having different communities
working on architectural description languages and mainte-
nance.

SAR is complex and time consuming. The iterative aspects of
SAR imposed themselves as a key point to ensure a successful
reconstruction. Now to reach a high-level of maturity in leading
such an activity, we advocate that SAR has to support co-
evolution and conformance mechanisms. Indeed both horizontal
and vertical conformance help the reverse engineer to bring
all the recovered views face to face. This confrontation
allows reverse engineers to refine views iteratively, to identify
commonalities and variabilities among views (especially if they
represent product lines architecture), to lead impact analysis
or still to update views when the system evolves.

Since successful systems are doomed to continually evolve
and grow, SAR approaches should support co-evolution mech-
anisms to keep all recovered views synchronized with the
source code. The logic-based approach of Intensive proved to
be efficient in checking horizontal and vertical conformance
and in allowing co-evolution [109, 179].

XI. CONCLUSION

It is hard to classify research approaches in a complex field
where the subject matter is as fuzzy as software architecture.
Still this survey has provided an organization of the significant
fundamental contributions made within software architecture
reconstruction. To structure the paper, we followed the general
process of SAR: what are the stakeholders’ goals; how does the
general reconstruction proceed; what are the available sources
of information; based on this, which techniques can we apply,
and finally what kind of knowledge does the process provide.
We believe that software architecture is still an important topic
since it is a key abstraction for the understanding of large
industrial applications and their evolutions.
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