
Software Architecture Transformations

Hoda Fahmy Richard C. Holt
Dep’t. of Computer Science Dep’t. of Computer Science
University of Toronto University of Waterloo
fahmyh@cs.toronto.edu holt@plg.math.uwaterloo.ca

Abstract

In order to understand and improve software, we
commonly examine and manipulate its architecture. For
example, we may want to examine the architecture at
different levels of abstraction or zoom-in on one portion
of the system. We may discover that the extracted
architecture has deviated from our mental model of the
software and hence we may want to repair it. This paper
identifies the commonality between these architectural
transformation actions – that is, by manipulating the
architecture in order to understand, analyze, and modify
the software structure, we are in fact performing graph
transformations. We categorize useful architectural
transformations and describe them within the framework
of graph transformations. By describing them in a unified
way, we gain a better understanding of the
transformations and thus, can work towards modeling,
specifying and automating them.

Keywords: software architecture, graph transformation,
reverse engineering, program understanding

1. Introduction

Often, software developers are expected to maintain
poorly understood legacy systems. Unfortunately, due to
the lack of proper understanding of the system, any
extensions or modifications often lead to spaghetti-like
code. Specifically, each modification moves the structure
of the system away from its original design. Maintenance
becomes increasingly difficult and if such systems are to
survive, they need to be repaired or reengineered. To
make maintenance easier, we need to understand the
system’s components and how they interact [22]. In other
words, we need to extract the system’s architecture
[3,25]. Depending on what we are interested in learning
about the system, we may want to create different views
of the architecture (see e.g., [28]). If we determine that
the concrete architecture of the system, which defines the
way the components in the code interact, is not consistent

with our mental or conceptual architecture of the system,
then we need to investigate the possibility of repairing the
system’s structure1. We may also need to restructure the
architecture to fit new operational requirements or
computing platforms. In short, architectural
understanding, analysis and modification are often
necessary during the maintenance phase of the software-
life cycle. This paper identifies architectural
transformations that occur during maintenance
(specifically during architectural understanding, analysis,
and modification) and identifies the commonality between
them.

Architecture extraction is subject to considerable
software reengineering research; this has resulted in
extraction tools such as Acacia [5], Rigi [18], PBS [20]
and ManSART [28]. Given the source code, these tools
determine how low-level components interact. Just as
important, we need to determine the system hierarchy of
the system: how are the modules grouped into subsystems
and how are the subsystems grouped into higher level
subsystems? This hierarchy or decomposition can be
determined from file naming conventions, directory
information, program structure information, interviewing
persons familiar with the software, etc. It is our position
that the component interactions (including program level
dependencies such as calls from procedure to procedure),
together with the system hierarchy, define the software’s
structure or architecture.

 It is common to use a directed typed graph G to
represent the system’s architecture (see Figure 1): (Note
that we will use Figure 1 to illustrate a number of
architectural transformations.)
• Each node in G represents a component in the

system. We can have several types of nodes. In
Figure 1, we have only two types of nodes: modules
and subsystems. Modules are drawn using boxes
with thin lines, while subsystems are drawn using
boxes with thick lines. Each node is labeled by the
software component’s name.

1 We have adopted the terms concrete and conceptual architectures from
Tran [26].

mailto:fahmyh@cs.toronto.edu
mailto:holt@plg.math.uwaterloo.ca

• Each edge in G represents a relation between
components. We can have several types of relations.
In Figure 1, we show only two types of relations:
contain and use. The contain relation defines the
system hierarchy of the software, which is a tree.
There are two common ways to draw the contain
relation; we can use nested boxes as shown in Figure
1(a), or we can use directed edges as shown in Figure
1(b). If x is contained in y, we say that y is x’s parent.
We refer to nodes as siblings if they have the same
parent and are distinct. We say that x is a descendant
of y if x is nested directly or indirectly in y or
equivalently, there is a non-empty path of contain
edges from y to x. Besides the contain relation, there
are dependency relations between components such
as the use relation. In Figure 1, the use relation is
represented as dotted edges.

• Graph nodes and/or edges may have associated
attributes, which store information that is not
conveniently expressed within the graph structure
itself. Attributes may be of any type, including
integer, real, text, list and table. For example, we
may want to associate with each subsystem node the
names of programmers who have worked on that
subsystem using the programmers_names attribute.

In this paper we observe that once the extraction phase
is complete, graph G is commonly transformed in a
number of ways in order to better understand and analyze
the system and to update its structure. For example, the
ManSART tool recovers primitive architecture views of a
software system yet these views are often too fragmented
or too complex for performing software engineering work
[28]. Thus, in [28], the authors proposed that such views
are combined and/or simplified to produce hierarchies,
hybrids, and abstractions. In general, the transformations
that occur range from those simply extracting or “mining”
information from G in order to gain a better
understanding of the system’s structure, to those actually
altering G (perhaps as a part of preventive software
maintenance [16]). Each of these manipulations can be
thought of as applying a graph transformation function T
to G to create graph G’, i.e., G’=T(G). If we can collect
a useful set of these transformations, this can help us
understand the process of large-scale software
maintenance. Furthermore, collecting, analyzing, and
describing these transformations within a common
framework can lead to modeling and formally specifying
these transformations, which in turn can lead to their
automation.

This paper takes a step towards categorizing and
describing commonly used architectural transformations
in the framework of graph transformations. We are
concentrating on the architectural level, and so we do not

include source-code transformations. In this paper, we
will discuss three classes of the transformations, which
are applied to the graph models of software architectures:

S

T V

W

e

c

d

a

b

(a)

S

T V

W a b

c

e

d

(b)

Figure 1. Two graphical rep
software architecture. Part (a)
to model containment. Part
edges to model cont
representing subsystems have
representing modules have t
example, S contains subsys
contains module e and subsys
W contains modules c and d;
contains two modules a and b
c and d; c uses b; and d uses

1. Transformations for understan
transformations when we are b

Contain
 Use
resentations of a
uses nested boxes
(b) uses directed
ainment. Nodes
 thick lines; nodes
hin lines. In this
tems T and V; T
tem W; subsystem
 and subsystem V
; module a uses b,
e.

ding. We use these
uilding a graph model

of the system, and when we wish to explore this
model to help us understand its structure. In doing
this, we determine the system’s hierarchical structure
and we create views based on this structure.

2. Transformations for analysis. We use these
transformations to discover various kinds of
information about the software system. For example,
we may want to know what modules interact in a
cyclic pattern. This kind of information is commonly
used to determine how we will go about modifying
the system.

3. Transformations for modification. We use these
transformations to change the system structure. For
example, from our analysis we may find unexpected
interactions between subsystem V and W and by
moving certain modules we may eliminate these
interactions.

Sections 2, 3 and 4, respectively, discuss these three
classes of transformations.

2. Architecture Understanding

Tools such as RIGI and PBS extract facts from source
code and use these to visualize how components such as
files/modules2 interact. For large software systems, the
graph G will be huge (often containing hundreds of
thousands of edges); hence directly viewing such a graph
is of no help. During architecture understanding, we
need to describe the module interactions at higher-levels
of abstraction (e.g., at the top subsystem level) and also,
we need to be able to simplify this information to produce
various architectural views.

In the rest of this section, we will introduce the lift and
the hide transformations, which help us understand a
software architecture. Section 2.1 describes the lift
transformation, which raises low-level relations to higher
levels in the system hierarchy in order to view
dependencies at various levels of abstraction. Section 2.2
discusses the hide transformation, which is used to hide
the interiors/exteriors of subsystems in order to produce
various views of the architecture.

2.1. Lift Transformations

It is often necessary to lift dependency relations to a
higher level in order to study the structure at various
levels of abstraction [8,12,14,19]. For example, if a
function in module a in subsystem V calls a function in
module d of subsystem W, then we can view that
subsystem V calls subsystem W (see Figure 2). We can

2 In this paper, we will use the terms module and file interchangeably.

consider lifting3 to be a graph transformation: applying a
lifting function to a graph G adds edges to G (see Figure
2). In the rest of this section, we describe three kinds of
lifting functions in terms of graph manipulations.

We begin by giving a more formal description of the
lifting function applied to the architecture shown in
Figure 1 with the result shown in Figure 2. If module x
uses module y, and x is a descendant of PX and y is a
descendant of PY, then we lift the edge (x,y) to (PX,PY)
only if PX and PY are distinct nodes and PX is not a
descendant or ancestor of PY. The resultant edges are
formed between subsystem nodes. In other words, we
have abstracted the module-module relations to
subsystem-subsystem relations.

S

T V

W a b

c

e

d

Figure 2. Lifting Transformation. Edges
resulting from lifting the low-level use relations
are shown as thick dashed edges. For example,
since c uses b, subsystem W uses subsystem V.

Secondly, Feijs [8] defines a lifting function in terms
of relation partition algebra. Here, we describe their
lifting function in terms of graph transformations: for
each use edge (x,y), create a new use edge between
Parent(x) and Parent(y), only if Parent(x) and Parent(y)
are distinct nodes. The new use edge is in turn lifted
upwards in the system hierarchy one level at a time until
it has reached the top level of the hierarchy. This
algorithm implicitly assumes that the modules in the
system are all at the same depth in the system hierarchy.
This is not the case for the system shown in Figure 1 and
most large industrial systems.

Lastly, Holt [12] defines a lifting function using
Tarski’s algebra. Holt defines a family path for each edge
(x,y). If x is neither a descendant nor an ancestor of y and

3 We will use the term lifting from Feijs [8]. Holt [12] refers to a lifted
edge as an induced dependancy.

x and y are distinct nodes (as is the case for module-
module use edges), the family path is the shortest path
from x to y consisting of parents then exactly one sibling,
and then children. The edges resulting from lifting (x,y)
are all those edges that go from one node in (x,y)’s family
path to a later node in the path. For example, when lifting
the edge (c,b) of Figure 1, the edges created are {(c,W),
(W,T), (T,V), (V,b), (c,T), (W,V), (T,b), (c,V), and
(W,b)}. Despite the mathematical appeal of Holt’s lifting
function, it produces more edges than are commonly
expected for a lifting function. In fact, it produces a
superset of the edges produced by the first two lifting
functions discussed in this section.

2.2. Hide Transformations

Similar to the lift transformation, the hide transformation
is useful when trying to understand the structure of a
software system. When a system contains several
hundred files, with thousands of inter-dependencies, we
need to hide parts of this information, which is not
important to a particular perspective. In this section, we
describe two hide transformations, hide exterior and hide
interior, in terms of graph transformations.

During architecture understanding, we may want to
focus our attention on one subsystem. We may want to
answer questions like, which files in the subsystem are
used by other subsystems? Or, which files in the
subsystem use files belonging to other subsystems. When
these are the questions we want to answer, we can apply
the Hide Exterior transformation [12]. This
transformation accepts the graph representing the
architecture and the name of a particular subsystem we
are interested in, and hides all the nodes and edges outside
of the subsystem. In Figure 3a, we have applied this
transformation to the graph shown in Figure 1 to hide the
exterior of subsystem V. For each node x in V, if it is
being used by something outside of V, then we added a
sell (or export) edge between V and x since V “sells” x to
components outside of it. If node x in V uses something
outside of V, then we added a buy edge between the x and
V since it “buys” a service outside of V. For example, in
Figure 3a, V sells b and lets a buy exterior services.
Finally, we deleted all edges outside of V. It would also
be useful to generalize the Hide Exterior transformation
to take as input a set of subsystems, I, so that only the
contents of those subsystems belonging to I, the
interactions between them, as well as the buy/sell edges to
and from components that interact with anything outside
of I, are contained in the resultant graph.

When we are not interested in the details of a particular
subsystem, but rather how it interacts with the rest of the
system, we can hide the interior of that subsystem using
the Hide Interior transformation. In Figure 3b, we have
hidden the interior of subsystem T as follows. For each

component x in T that uses a component y outside of T,
we added an edge from T to y. For each component x in
T that is used by another component y outside of T, we
added an edge from y to T. Finally, we deleted all
components in T (i.e., nodes that are descendants of T).
Like the Hide Exterior transformation, this transformation
can also be generalized to take a set of subsystems as
input.

Since hiding certain details within G has proven
useful, it is also beneficial to collect relevant information
from the hidden parts. For example, assume we have an
attribute, num_of_programmers, associated with each
of the nodes in G storing the number of programmers who
have worked on that component. As we hide the interior
of a subsystem T by collapsing the subtree rooted at T into
one node, we can calculate the number of programmers
who have worked on T given the information contained in
the (hidden) descendant nodes. This is referred to as
attribute aggregation [13].

It should be noted here that the edges formed as a
result of the hide interior and hide exterior
transformations can be formed using Holt’s lifting
transformation [12]. For example, any edge (x,y)
produced from lifting, where x is a descendant of y, is a
buy edge, and any edge (x,y), where y is a descendant of x,
is a sell edge.

V

a

b

S
T V

a

b

(a) Hide exterior of V (b) Hide interior of T

Figure 3. Hide Transformation shown using
nested box representation. In part (a), the
exterior of subsystem V of Figure 1 is hidden.
Thick dashed edges are the use edges added as
a result of this transformation: edge (a, V)
indicates that a uses or “buys” some service
outside of V; edge (V, b) indicates that V exports
or “sells” b to something outside of V. In part
(b), the interior of subsystem T is hidden. The
thick dashed edge from T to b indicates that
something in T uses b; similarly, the thick
dashed edge from a to T means that a uses
something in T.

In summary, we use lifting and hiding to help us
understand a software system. Lifting abstracts low-level
interactions into higher-level interactions. Hiding allows
us to zoom in and out to concentrate on views of interest.
These transformations are used in the PBS Toolkit to
allow the user to navigate the structure of the software;
they are specified using Tarski’s algebra and calculated
using Grok [12].

3. Architecture Analysis

In this section we focus on architecture analysis, during
which we discover various kinds of information about the
system that can help us restructure or modify the
architecture. Questions like, “How are the concrete and
conceptual architectures different and what has caused the
inconsistencies?”[19] or “Which modules should be made
local to other modules?”[8] or “Which modules exhibit
poor information-hiding?”[15] need to be answered so
that we can decide what should be changed. In this
section, we describe two types of transformations that
support architecture analysis: diagnostic transformations
(Section 3.1) and sifting transformations (Section 3.2).

3.1. Diagnostic Transformations

Once we have extracted the concrete model of the
software architecture, it often becomes evident that as the
software evolved, it deviated from the intended structure
or conceptual architecture [22,26]. The conceptual model
may be provided by the software’s architects who have
determined which subsystems should interact. After
lifting the low-level edges, we may determine that certain
subsystems interact though they should not. For example,
as shown in Figure 2, after lifting the low-level edges
given in Figure 1, we determine that subsystem T uses
Subsystem V and vice versa. In our conceptual model of
the architecture, we may have expected that subsystem V
uses T and not the other way around. In this example, we
need to see what module-module edges cause the
unexpected subsystem-subsystem edge (T,V). We can
isolate these unexpected interactions by performing
diagnostic transformations. We identify a high-level use
edge between subsystems that is not expected and convert
it to an unexpected edge. Then we lower [8] it (the
reverse of the lifting), by identifying lower-level edges
which cause the higher-level unexpected edges until we
reach the bottom level (see Figure 4). Given the lifting
shown in Figure 2, we determine the unexpected lower-
level edges as follows. If there is an unexpected edge
(x,y), then any use edge from x, or any of x’s descendants,
to y, or any of y’s descendants, is changed to an
unexpected edge.

The identification of inconsistencies between the
concrete and conceptual model is common in

reengineering software [8,19,26]. For example, Murphy
[19] has developed a tool to isolate these inconsistencies,
and used it to reengineer NetBSD, an implementation of
Unix comprised of 250,000 lines of C code. It has also
been applied to aid in the understanding and experimental
reengineering of the Microsoft Excel spreadsheet product.

3.2. Sifting Transformations

During architecture analysis, we are often determining
how to change the software system. This requires that we
identify what parts need to be changed. In this section,
we describe sifting transformations, which sift the
software components looking for components which will
play a role in the change. These transformations identify
such components by examining their interrelationships
with other components and update the graph by marking
such components using corresponding node attributes.
For example, we may wish to find and eliminate cycles in
the software structure. To do so, we need to identify the
components which are involved in a cycle. We can define
a boolean attribute called cycle which is true if the
component uses itself via a cycle, and false otherwise.
The sifting transformation when applied to G will update
G such that all components involved in a cycle will have
the cycle attribute set to true. A more detailed example is
discussed in the remaining of this section.

S

T V

W a b

c

e

d

Figure 4. Diagnostic Transformations. Applying
diagnostic transformations to the graph shown
in Figure 2. The problematic or “Unexpected”
relations are shown as thick dashed edges.
Once we assert that T should not use V, then this
information is lowered down the system
hierarchy. We find out that W should not use V
and c should not use b.

We may want to modify the software architecture to
restructure it to fit the layering paradigm [8]. The
components of the system are to be organized in layers so
that each component use only components belonging to
the same layer or the layer beneath it. In order to
restructure the architecture in this way, we first need to
identify components that are candidates for the top and
bottom layers. Components which are not used but use
others potentially belong to the top layer, and components
which are used but do not use others potentially belong to
the bottom layer. Let us define boolean attributes top,
which is true if and only if the software component
satisfies the requirements of belonging to the top layer of
a layering architecture, and bottom, which is true if and
only if the component satisfies the requirements of
belonging to the bottom layer. We apply sifting
transformations which inspect G and set the top and
bottom values for each node. We can then use these
attributes to help us restructure the architecture as a
layering architecture.

In summary, we use diagnostic and sifting
transformations to help us plan changes in the system
structure. These create or modify edges and update
nodes’ attribute values, which identify problems or
indicate components that may be changed or moved.

4. Architecture Modification

During the software life cycle, the need to keep the
architecture up to date increases. For example, we may
want the architecture to meet new requirements [4] or fit a
new architectural style. Or, we may want to improve the
modularity of the code by performing reclustering
[23,24]. These architecture modifications are a part of the
maintenance phase of the software life cycle. In this
section, we focus on a type of modification called repair,
which minimizes the inconsistencies between concrete
and conceptual architectures. Section 4.1 describes repair
transformations applied to the concrete architecture, while
Section 4.2 describes those applied to the conceptual
architecture.

4.1. Forward Repair Transformations

Forward repair transformations are used to minimize
inconsistencies between the concrete and conceptual
architectures by modifying the concrete architecture4.
Once we have identified the unexpected relations in the
concrete architecture, we apply forward repair
transformations that move software components or even
split components in order to help eliminate the
inconsistencies. Tran [26,27] identifies two basic

4 The terms forward repair and reverse repair (see Section 4.2) are taken
from Tran[26].

manipulations that he used to help minimize unexpected
dependencies in the Linux and VIM architecture:

(1) Kidnapping moves a program entity, module or
subsystem from one parent (e.g. subsystem) to a new
one. For example, let us consider kidnapping
component c from Subsystem W to Subsystem V (see
Figure 1), since it doesn’t use any component in
subsystem W nor is it used by anything in W. If we
do that, Subsystems T and W no longer use
Subsystem V, and hence, we have to eliminate the
unexpected edges (T,V) and (W,V) (see Figure 5).
Tran [26] performs kidnapping to repair Linux’s
concrete architecture. For example Linux has 7 top-
level subsystems, two of which are the Network
Interface subsystem and the Process Scheduler
subsystem [3]. The Process Scheduler subsystem
unexpectedly depended on the Network Interface,
and it was determined that the inet.h module,
which is only used by modules in the Network
Interface subsystem, was the cause of this
dependency. By having the Network Interface
subsystem kidnap inet.h, the unexpected
dependency was eliminated.

(2) Splitting breaks a module or subsystem into parts.
Usually, one part remains where it is, and the others
are moved to other subsystems.

S

T V

W a bce

d

Figure 5. An example of a forward repair
transformation. We have applied a kidnapping
transformation to the graph shown in Figure 1.
When we kidnap c from subsystem W to
subsystem V then W and T no longer use V. Note
that component c has all its original use edges.

For all these repair actions, we need to determine the
appropriate conditions for application. In other words,
when should we apply them? For example, we can say, if
a component is involved in an unexpected dependency
and it is not used by and does not use anything in its
subsystem (like module c in Figure 1), then it becomes a

candidate for kidnapping. We can use a sifting
transformation (Section 3.2) to determine such candidates.

When we perform a repair action on G, we need to
assess whether the resultant graph G’, is better or worse
than the original graph G. To assess G’, we can apply
lifting and diagnostic transformations again to determine
whether new unexpected edges have been created as a
result of the repair. If the modified graph G’ is worse, we
should revert to the original graph G.

4.2. Reverse Repair Transformations

When we want to modify the conceptual architecture so
that it is more consistent with the concrete architecture,
we can apply reverse repair transformations. The main
reason for wanting to modify the conceptual architecture
of a system is to minimize any misunderstanding of the
system so as to make maintenance easier. We will now
give two examples of reverse repair.

Tran [26] performed forward repair to Linux’s
concrete architecture, but found that discrepancies
remained between it and the conceptual architecture.
Hence, he performed reverse repair on the conceptual
architecture to further minimize the discrepancies.
Reverse repair actions, like forward repair actions,
include kidnapping and splitting as described in Section
4.1.

Another example of reverse repair transformations is
discussed in Fahmy [7]. (Related work is described in
Mancoridis [17].) In this case, we assume that the
software architects have imposed scoping constraints to
control how software components are allowed to interact.
During software evolution, the software may no longer
conform to these constraints. If this is the case, the system
contains illegal relations. In order to eliminate illegal
relations without altering the source code, we can add
new allowable interactions in the conceptual model, in
such a way that the illegal relations become legal. For
example, Holt [11] identifies four scoping styles, one of
which is the Import/Export Style. In this style, a
component may export, import and use another
component. X can export Y only if Y is X’s child. X can
import Y only if they are siblings or if X’s parent imports
Y’s parent and Y’s parent exports Y. X can use Y if they
are siblings or if Y is an exported item (any number of
levels of export) of X’s sibling or of X’s parent’s imports.
(This style is much like that used in various module
interconnection languages (MILs) [21], as well as
languages such as Java [9] and Object-Oriented
Turing[10].) Without any import or export edges in the
architecture shown in Figure 1, the use edge (a,b) is legal
given the Import/Export scoping style; all others are not.
To make the edge (a,d) legal, we can add import edges
(V, T) and (V,W) and export edges (T,W) and (W,d).

In summary, forward repair transformations modify
the concrete architecture to match the conceptual
architecture, while reverse repair transformations modify
the conceptual architecture to match the concrete
architecture. By reconciling the conceptual and concrete
architectures, we are less apt to make erroneous
maintenance decisions.

5. Conclusions

This paper categorizes a number of architectural
transformations that are useful during program
maintenance. These include lifting and hiding
transformations (Section 2), diagnostic and sifting
transformations (Section 3), and repair transformations
(Section 4); see Table 1. Since it is common to represent
a software architecture as a typed, directed graph, we can
think of these architectural transformations as graph
transformations. In this paper, we have presented these in
a unified way, which we hope will help us (1) model them
so that (2) we can develop executable specifications for
them, which (3) can lead to tools which automate them.

Table 1. Summary of Architectural
Transformations Discussed in this Paper

Class Type Description
Lifting Lift low-level use edges

up the system hierarchyArchitecture
Understanding Hide Interior/

Exterior
Eliminate information
to make the structure
more understandable

Diagnostic

Given high-level
unexpected edges,
lower them down the
system hierarchy to
identify low-level
unexpected edgesArchitecture

Analysis

Sifting

Mark components,
using node attributes,
that play some role in
the desired change of
the software structure

Forward
Repair

Alter the concrete
architecture to be more
consistent with the
conceptual architectureArchitecture

Modification
Reverse
Repair

Alter the conceptual
architecture to be more
consistent with the
concrete architecture

To model these in a common framework, we can use a
graph or relation-based model. Krikhaar uses a relational

approach to model some of the described transformations
[8,14], and similarly, Holt uses Tarski’s algebra. Holt has
been successful in using the Grok tool to execute
specifications for some of these transformations [12].

Another possibility is to use graph grammars or graph
rewriting [1] to model these transformations, and the
PROGRES [2] tool, to execute specifications for them.
PROGRES, which is an acronym for PROgrammed
Graph REwriting Systems, is a visual graph-
transformation language which supports the manipulation
of directed attributed graphs. It shows promise; for
example, Cremer [6] has used it to develop a redesign tool
to migrate existing software into distributed
environments. Each architectural transformation can be
specified using graph rewrite rules. The application of a
graph rewrite rule (1) identifies a pattern in the graph, and
then (2) transforms the graph in some way based on that
pattern. In other words, graph inspection as well as graph
transformation is performed. Given the way we have
described each of the architectural transformations
discussed in this paper in terms of graphs and graph
transformations, it is straightforward to specify these
transformations as graph rewriting rules.

Regardless of how these transformations are specified
and implemented, we hope that our framework of
architectural transformations or graph transformations
provides a better understanding of the maintenance of
large software systems.

Acknowledgements

This work has been made possible by the first author’s
NSERC Postdoctoral Fellowship. The authors would like
to thank Dorothea Blostein, Bob Schwanke, and the
anonymous referees who provided a number of valuable
suggestions, which helped improve this paper.

References

[1] D. Blostein, H. Fahmy, A. Grbavec. “Issues in the Practical
Use of Graph Rewriting,” Lecture Notes in Computer
Science, Vol. 1073, 1996, pp. 38-55.

[2] D. Blostein and A. Sch

ürr. “Computing with Graphs and
Graph Transformations,” Software- Practice and
Experience, Vol. 29(3), pp. 197-217, 1999.

[3] I.T. Bowman, R.C. Holt, and N.V. Brewster. “Linux as a
Case Study: Its Extracted Software Architecture,”
Proceedings in the 21st International Conference on
Software Engineering, Los Angeles, May 1999.

[4] S.J. Carriere, S. Woods, and R. Kazman. “Software
Architectural Transformation,” Proc. 1999 Working
Conference on Reverse Engineering, Oct. 1999.

[5] Y.-F.Chen, M.Y. Nishimoto, and C.V. Ramamoorthy.
“The C Information Abstraction System,” IEEE
Transactions on Software Engineering, Vol. 16, pp. 325-
334, 1990.

[6] K. Cremer. “GraphBased Reverse Engineering and
Reengineering Tools,” Proc. AGTIVE Workshop, Aug.
1999.

[7] H. Fahmy, R.C. Holt, and S. Mancoridis. “Repairing
Software Style using Graph Grammars,” Proceedings of the
IBM Centre of Advanced Studies Conference, Nov. 1997.

[8] L. Feijs, R. Krikhaar and R. Van Ommering. “A Relational
Approach to Support Software Architecture Analysis,”
Software-Practice and Experience, Vol. 28(4), pp. 371-
400, April 1998.

[9] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification, Addison-Wesley, 1997.

[10] R.C. Holt, T. West. Turing Reference Manual, 5th Edition,
H.S.A. Inc., 1994.

[11] R. Holt. “Binary Relational Algebra Applied to Software
Architecture,” CSRI Technical Report 345, Computer
Systems Research Institute, University of Toronto, June
1996.

[12] R.C. Holt. “Structural Manipulations of Software
Architecture Using Tarski Relational Algebra,”
Proceedings of the 5th Working Conference on Reverse
Engineering 1998, Honolulu, Hawaii, October 12-14, 1998.

[13] R.C. Holt. “Software Architecture Abstraction and
Aggregation as Algebraic Manipulations,” in Proceedings
of the IBM Centre of Advanced Studies Conference, Nov.
1999.

[14] R. Krikhaar, A. Postma, A. Sellink, M. Stroucken, and C.
Verhoef. “A Two-phase Process for Software Architecture
Improvement”. Available at
http://adam.wins.uva.nl/~x/sai/sai.html.

[15] R. Lange and R.W. Schwanke. “Software Architecture
Analysis: A Case Study,” Proceedings of the 3rd
International Workshop on Software Configuration
Management, 1991, pp. 19 – 28.

[16] B. Leintz, E.B. Swanson, and G.E. Tompkins.
“Characteristics of Applications Software Maintenance,”
Communications in the ACM, Vol. 21, 1978, pp. 466-471.

[17] S. Mancoridis and R.C. Holt. “Algorithms for Managing
the Evolution of Software Designs,” Proceedings of the
’98 International Conference on Software Engineering and
Knowledge Engineering, San Francisco, CA, June ’98.

[18] H. Muller, O. Mehmet, S. Tilley, J. Uhl. “A Reverse
Engineering Approach to Subsystem Identification,”
Software Maintenance and Practice, Vol. 5, pp. 181-204,
1993.

http://adam.wins.uva.nl/~x/sai/sai.html

[19] G.C. Murphy, D. Notkin, and K. Sullivan. “Software
Reflexion Models: Bridging the Gap Between Source and
High-Level Models,” Proceedings of the Third ACM
Symposium on the Foundations of Software Engineering,
Oct. 1995.

[20] Portable Bookshelf (PBS) tools. Available at
http://www.turing.cs.toronto.edu/pbs

[21] R. Prieto-Diaz and J.M. Neighbors. “Module
Interconnection Languages,” Journal of Systems and
Software, Vol. 6, 1986, pp. 307-334.

[22] R.W. Schwanke, R.Z. Altucher, and M.A. Platoff.
“Discovering, Visualizing, and Controlling Software
Structure,” Proceedings of the 5th International Workshop
on Software Specification and Design, 1989, pp. 147-154.

[23] R.W. Schwanke. “An Intelligent Tool for Re-engineering
Software Modularity,” Proc. of the 13th International
Conference on Software Engineering, 1991, pp. 83-92.

[24] R.W. Schanke and S.J. Hanson. “Using Neural Networks
to Modularize Software,” Machine Learning, Vol. 15,
1994, pp. 137-168.

[25] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall,
1996.

[26] J.B. Tran and R.C. Holt. “Forward and Reverse Repair of
Software Architecture,” Proceedings of the IBM Centre of
Advanced Studies Conference, Nov. 1999.

[27] J.B. Tran, M.W. Godfrey, E.H.S. Lee, and R.C. Holt.
“Architecture Analysis and Repair of Open Source
Software,” to appear in Proceedings of International
Workshop on Program Comprehension, 2000.

[28] A.S. Yeh, D.R. Harris, and M.P. Chase. “Manipulating
Recovered Software Architecture Views,” in Proceedings
of International Conference on Software Engineering,
1997, pp. 184-194.

http://www.turing.cs.toronto.edu/pbs

	Abstract
	Introduction
	Architecture Understanding
	2.1. Lift Transformations
	2.2. 	Hide Transformations

	Architecture Analysis
	3.1.	Diagnostic Transformations
	3.2.	Sifting Transformations

	4.	Architecture Modification
	4.1.	Forward Repair Transformations
	4.2.	Reverse Repair Transformations

	5.	Conclusions
	
	Table 1. Summary of Architectural Transformations Discussed in this Paper

	Acknowledgements
	References

