
B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 558–569, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Software as a Service: An Integration Perspective

Wei Sun1, Kuo Zhang1, Shyh-Kwei Chen2, Xin Zhang1, and Haiqi Liang1

1 IBM China Research Lab
2IBM T.J Watson Research Lab

{weisun, zhangkuo, zxin, lianghq}@cn.ibm.com, {skchen}@us.ibm.com

Abstract. Software as a Service (SaaS) is gaining momentum in recent years
with more and more successful adoptions. Though SaaS is delivered over
Internet and charged on per-use basis, it is software application in essence. SaaS
contains business data and logics which are usually required to integrate with
other applications deployed by a SaaS subscriber. This makes Integration be-
come one of the common requirements in most SaaS adoptions. In this paper, we
analyze the key functional and non-functional SaaS integration requirements
from an industry practitioner point of view; and summarize the SaaS integration
patterns and existing offerings; then point out the gaps from both technology and
tooling perspectives; finally we introduce a SaaS integration framework to ad-
dress those gaps. Considering there is no much academic work on SaaS service
modeling, we come up with a SaaS service description framework as an exten-
sion of Web Service description, so as to model SaaS unique features in a unified
way. With the supported tooling and runtime platform, the framework can fa-
cilitate the SaaS integration lifecycle in a model-driven approach.

1 Introduction

Software as a Service (SaaS) is a software delivery model, which provides customers
access to business functionality remotely (usually over the internet) as a service [1, 2].
The customer does not specially purchase a software license. The cost of the infra-
structure, the right to use the software, and all hosting, maintenance and support ser-
vices are all bundled into a single monthly or per-use charging. As SaaS brings lower
Total Cost of Ownership (TCO) and better Return On Investment (ROI), SaaS services
achieve a prosperous development and cover most of the well-known application areas,
e.g. Customer Relationship Management(CRM) service from Salesforce.com, Human
Resource Management(HRM) service from Employease.com [3, 4].

The functionalities of services delivered through SaaS may vary. Complete or
full-blown solutions can be costy and hard to configure. Simple services normally
provide specific functionalities, but a need exists to integrate several services together
to achieve a desired business operation [7]. There are no standards or guidelines for
clients to make technical decision. It becomes a critical problem when disparate ser-
vices come from different software providers, through different service protocols and
with various functionalities. The integration requirement of SaaS customers has been
studied by different SaaS market research efforts. According to the survey of 639
companies by AMR research, more than 70% companies expect that the SaaS solution
can be integrated with their on-Premises legacy applications or other SaaS solutions

 Software as a Service: An Integration Perspective 559

they subscribed/plan to subscribe [8]. IDC conducted a SaaS solution adoption trend
study in 2004 and found that more than 50% of the survey respondents selected “Better
integration with in-house applications” as one of the top 3 drivers, making SaaS solu-
tion more attractive [9].

There are many industry players and offerings addressing the SaaS integration is-
sues. AppExchange from Salesforce.com provides a hosting platform and web based
programming tools for third party vendors to develop/integrate add-on SaaS services on
top of its CRM service [4]. Jamcracker enables a hosted SaaS integration hub [10]. IBM
SaaS showcase provides a portal of different SaaS services which can be subscribed
and integrated [11]. OpenKapow focuses on wrapping SaaS services’ capability with
Web user interface into a standardized component called “Robot”, and leverages
Mashup technologies to facilitate the composition of “Robot” come from different
SaaS services and Web Services [29]. However, there are few academic works in this
area. Seltsikas explored the integration challenges for application service providers
from business model point of view [12]. Elfatatry studied SaaS from contract negotia-
tion point of view [13]. Turne summarized SaaS related Web Services technologies
[14]. Ottinger from Mule open source group [30] analyzed some SaaS integration re-
quirements, which highlighted several SaaS integration unique issues around corporate
firewall, network latency of the integration. However there is not a relatively complete
and deep analysis about the SaaS integration requirements as well as the demand for
any new technologies in a holistic view.

In this paper, we analyze and identify the SaaS integration requirements and tech-
nology gaps, and then propose reference architecture of the SaaS integration framework,
which includes a SaaS Description Language (SaaS-DL) to support model driven inte-
gration approach, tooling and runtime components as well as different configurations.
SaaS can cover very broad areas of Web Services, in this paper, SaaS specially focuses on
those business applications (e.g. CRM [4, 16]) delivered in Web Services model. The rest
of the paper is organized as follows. Firstly, we will analyze the SaaS integration re-
quirements, common patterns as well as challenges in section 2; based on these analysis,
a SaaS-DL and integration framework reference architecture will be introduced in Sec-
tion 3; then in section 4 prototype implementation of the framework is presented; a case
study is introduced in Section 5 to illustrate how the integration framework works; fi-
nally, conclusions and future work will be summarized in section 6.

2 SaaS Integration Requirements and Patterns

Most SaaS service subscribers, especially those medium to large companies, have
certain applications already deployed on their premises. This makes the application
environments of those companies become a hybrid model illustrated in the figure 1.
SaaS service is usually a web application which can be accessed by different customers
through Internet. Just like normal web based business application, SaaS application is
composed by three major layers: user interface, business logic, and data. On the other
hand, the SaaS application is special. It usually involves the metering and billing for the
usage of the service consumer. Its Quality of Service (QoS) should achieve Service
Level Agreement (SLA) between the service provider and consumer according to the
service contract. In this section, we will explore the SaaS integration requirements from
both functional and non-functional perspectives.

560 W. Sun et al.

SaaSSaaS

SaaS Provider

SaaS Provider

SaaS Subscriber Premise

SaaS

SaaS

Fig. 1. SaaS Consumption Environment and Integration Requirements

2.1 SaaS Integration Functional Requirements and Patterns

SaaS subscriber leverages SaaS services to support certain business functions, e.g.
CRM, HRM. However any business function cannot be isolated from others in most
cases. For example, the sales person’s commission calculation in HRM should be
supported by the sales’ performance data managed in CRM. Therefore the different
applications/services a company deployed/subscribed should be integrated together.
The integration will happen in all the three layers of the SaaS application.

a) User Interface(UI) Integration
Every application has its own user interface and related access control. So the SaaS
subscribers should switch among different user interfaces with different user identity
and password information required by SaaS services and on-premise applications. As
illustrated in figure 2, pattern U-I, Single Sign On (SSO), is a very common UI inte-
gration requirement. SSO can enable users log on once and then access all the author-
ized user interfaces from different applications/SaaS services. Pattern U-II, Mash-up
[7, 15], can enable users to access one application/SaaS service’s data through another
SaaS service/application’s user interface.

b) Process Integration
A business process supported by a SaaS service usually can trigger business process
supported by another SaaS service or on-premise application. For example, an order
process from CRM service should trigger an order fulfillment process managed by ERP
application. Therefore process integration can automate the end to end business process
transaction span across multiple SaaS services and on-premise applications. There are
four key process integration patterns that are usually required. Pattern P-I and P-III can
support invoking another process or receiving an invocation through Web Services
technology. P-II can support scheduled process invocation in pulling mode. Pattern
P-IV can support complex process integration scenario using workflow, in which dif-
ferent people and applications will be involved to link different processes.

c) Data Integration
There are two types of data in a SaaS service: master data and transactional data. As
illustrated in Pattern D-I and D-II, these data should be synchronized or migrated from

 Software as a Service: An Integration Perspective 561

SaaS services to on-premise applications or vice versa. One type of data in a company’s
application environment should have only one master data source. The master data
source should populate or synchronize the data to other applications/SaaS services
timely that need to store that data locally. For example, if a company subscribed a CRM
SaaS service, the customer information related data should be a type of master data
maintained by CRM SaaS service, though ERP application need to store customer in-
formation as well to support fulfillment processes (scheduling, shipping, billing, etc),
these data should be always synchronized from CRM service.

Fig. 2. SaaS Integration Common Patterns

2.2 SaaS Integration Non-Functional Requirements(NFR) and Patterns

SaaS services can be treated as Web Services from both macro level (services delivered
over web) and micro level (leverage web services technologies to support integration).
Most the NFR requirements brought by Web Services exist in SaaS domain as well, e.g.
Security and Privacy. Here we point out the following three important requirements in
the integration point of view.

a) Security and privacy
In most cases, all the SaaS subscribers’ business data are centrally stored and managed
by SaaS provider in a remote side over Internet. In the integration scenario, business
data of every SaaS subscribers flow back and forth among the SaaS service and their
on-premise applications over Internet. The integration technology should guarantee the
subscriber’s data should not be hacked and accessed by any third party.

b) Bill reporting and management
SaaS services are charged by usage. A bill is usually issued to the SaaS subscriber in
certain timeframe by SaaS provider. As different SaaS providers issue different bills in
terms of format and delivery method, the ideal integration scenario related with bill is
illustrated in pattern NFR-I: different bills from different SaaS providers use same

562 W. Sun et al.

format or can be transformed into same format, then could be centrally managed and
fed into subscriber’s finance and accounting application.

c) QoS reporting and reconciliation with SLA
SLA is usually included in a SaaS service contract between SaaS provider and SaaS
subscriber. SLA often states the QoS related performance indicators, e.g. availability,
response time. Most SaaS providers do provide QoS reports, however the reports are
generated from service provider point of view only. As shown in pattern NFR-II, if the
QoS of the SaaS services can be metered by the SaaS subscriber and generate report
from consumer point view, then the QoS can be reconciled between service provider
and service consumer so as to guarantee the SLA fulfillment.

2.3 SaaS Integration Design and Development Requirements

As illustrated in the following figure, the SaaS integration design and development
process starts from business process review to analyze the key functional and NFR
requirements; based on which to design and implement UI, process, data and NFR re-
lated integrations; then migrate/populate related data from master data source; finally
test and go on production. This process is similar as the traditional application inte-
gration. However there are several SaaS unique issues we highlight as follows.

Fig. 3. SaaS Integration Design and Development Process

a) SaaS related policies’ visibility
SaaS services have many policies which should be considered and utilized during the
integration design and development process, e.g. configuration and customization
policies. SaaS service usually serves many customers in multi-tenancy mode. Most
customers usually have personalized requirements on the SaaS service. However the
business model of SaaS is fundamentally about economic scale, which can only allow
service configuration and customization within certain scope supported by self-service
mode. Therefore the integration specialist should be instructed for the service con-
figuration and customization policies during the integration design and development
lifecycle. However, there is no related industry standard to support the definition of
service’s configuration and customization policies. Furthermore, to support those SaaS
NFR integration requirements, the NFR policies of SaaS should be visible in the inte-
gration design and development environment.

b) Accommodation of different SaaS services in a unified environment
Currently different SaaS vendors have different toolkits to support integration, and
System Integrators (SI) use different tools as well [4, 17]. However, a unified tooling
environment can standardize the SaaS integration approach, so as to improve integra-
tion productivity, efficiency and accelerate the SaaS adoption accordingly. Since most
SaaS services adopt Web Services technologies, it provides a very good foundation to
accommodate different SaaS services in a unified tooling environment.

 Software as a Service: An Integration Perspective 563

For most SaaS subscribers, functional integration requirements always have higher
priority, NFR integration requirements can be value add features. In the following
sections, a SaaS integration framework will be presented. This framework aims to
streamline the SaaS integration design and development process for SI, supports the
functional and NFR integration requirements accordingly.

3 SaaS Integration Framework

To address those SaaS integration requirements, in this section we introduce a SaaS
integration framework reference architecture based on model driven integration ap-
proach [18], including SaaS-DL, tooling and runtime components.

3.1 SaaS-DL

SaaS can be treated as a kind of complex Web Services. Though Web Services De-
scription Language (WSDL) can be used to describe interface related information,
other information of SaaS services should be captured to support model driven SaaS
integration. WS-Policy [19] represents a set of specifications that describe the
capabilities and constraints of the security (and other business) policies on in-
termediaries and end points, and how to associate policies with services and end
points. However, it does not address customization policy and some specific NFR
policies clearly, which is strongly required in integration perspective. In this section,
we will introduce the design of SaaS-DL that is an extension to WSDL standards. The
overall structure of SaaS-DL is depicted in figure 4. It leverages the
WS-Policyattachment specification to bind itself to WSDL and XSD schemas; WSDL
is also referenced in SaaS-DL, which describes the integration programming interfaces
of the SaaS service. Three additional aspects are included. They are Customization
Policy, Billing Policy, and Data Object Relationship Model.

S a S - S e r v i c e

C u s t o m i z a t i o n P o l i c i e s
- r e fW S D L : W S D L D e f
- r e fW S D L U R I : s t r i n g

R e f e r e n c e W S D L N F R

C u s t o m i z a t i o n P o l i c y

1

*

B i l l i n g P o l i c y

D a ta O b je c t R e l a t i o n s h i p s

-R e f e r e n t i a l In t e g r i t y : R e fe r e n t i a l I n t e g r i t y E n u m
-N a m e : s t r i n g

D a ta O b jR e l a t i o n S h i p

1

*
1

*

1

* 1
0 . .1

1
0 . .1

1

0 . . 1

SaaS-DL

Fig. 4. Structure of SaaS-DL

Customization Policy
As analyzed in Section 2, SaaS services usually need to be customized to satisfy spe-
cific subscriber’s requirements. Current Research topics on web services customization
usually focus on semantic discovery or virtual wrappers [20, 21]; we propose a novel

564 W. Sun et al.

approach by defining customization policy in SaaS-DL, and consuming it through SaaS
integration lifecycle. Customization policy can be defined by SaaS provider, which
annotates the SaaS service’s customization capability to its subscribers; customization
policy, customization process and related enablement technologies can streamline a
standardized approach for the collaboration between providers and subscribers for the
entire service customization lifecycle, the detailed design is discussed in paper [22].

Billing Policy
Billing is one of the most important NFR technologies required by SaaS. Many re-
search works have been done on metering and accounting for Web Services [23, 24].
However, Web Services accounting is only one factor of SaaS billing concerns. Other
factors should be considered, such as storage usage, and the membership types of SaaS
subscribers. How to reasonably reflect the composite values, and consolidate different
bills from different providers with different formats and styles, are important concerns.
Therefore, a structuralized hierarchical model is proposed to organize the bill items and
their relationships in a billing policy. Bill item is an atomic unit to describe the rule of
billing, while the relationships in billing policy provide the power to specify how to
compose a complex bill by combining atomic items recursively. The billing policy can
be used to guide the metering of service usage so as to generate bill. Based on the
policy, bill report structure can be standardized, so the bill reports from different SaaS
providers can be easily consolidated into one bill for the SaaS subscriber.

Data Relationship Model
A SaaS service generally depicts a relatively complex service that involves many
business objects (or data types) and their operations. As data relationship is not covered
in WSDL, incorrect data manipulation can easily happen, for example, deleting one
data object will bring major influence to another data. We propose to depict the data
relationships of SaaS data in the SaaS-DL. This data relationship model in SaaS-DL is
very much like that Entity Relationship(ER) diagram[25], where a data relationship is a
triple of three elements: source object, target object, and its cardinality. Representing
data relationships in SaaS-DL will also help SaaS customization process by analyzing
and populating the impact of the customization to one data to another data.

3.2 Integration Framework

Here we introduce SaaS integration accelerator (SaaSia), which is reference archi-
tecture of SaaS integration framework. As shown in figure 5, the framework enables a
collaborative integration environment for SaaS service provider and SI. It covers all the
major aspects of the integration requirements and processes from design, development,
deployment, and down to runtime support.

On the SaaS service provider side, the SaaS-DL Composer provides a tool for the
service provider to describe the service information in a SaaS-DL, and then to publish it
into the service registry to share with service subscribers. The Customization Engine
provides a standardized interface to fulfill the customization requests. Through vali-
dating, analyzing, and decomposition, the Customization Engine weaves these requests
into existing SaaS services, updates its implementation/configuration, and dynamically
loads the upgraded service for the requestor. The NFR Reporting Service offers web
services interfaces for subscribers to access NFR reports, e.g. bill, QoS report.

 Software as a Service: An Integration Perspective 565

Fig. 5. SaaSia Framework Reference Architecture

On the SaaS service subscriber side, SI can use the design-time integration tool to
design/develop the SaaS integration artifacts and deploy them into runtime environ-
ment, then automates the execution of integration logics on the runtime platform to
meet its customer’s needs. The SaaS-DL Manager component retrieves SaaS-DL from
service registry and manages it in local repository. Customization Design Utility pro-
vides the customization controller for SI to handle the customization requirements in
the whole integration lifecycle. The requirements are controlled within the scope de-
fined by customization policy in SaaS-DL. The utility generates customization requests
and send to SaaS service’ Customization Engine to fulfill. The Bill Consolidation De-
sign Utility can be used to design how the bills are retrieved from SaaS providers and
then consolidated as one bill. QoS Metering Design Utility is used to define how the
SaaS service’s usage is metered so as to generate QoS report locally. Beside the core
components introduced above, SaaSia design-time leverages common PI/UI/DI Design
Utilities(e.g. BPEL[26]). The Deployment Service packages all the integration artifacts
and deploys the package to runtime environment.

SaaSia runtime provides fundamental services and integration capabilities from
different perspectives. The SaaS Repository manages the SaaS-DL and provides in-
terface for runtime usage. NFR Services include two key services: QoS Metering
service meters the SaaS services' utilization(transaction numbers, response time, ex-
ception rate, etc); the Bill Retrieval and Consolidation service fetches the bill reports
from SaaS provider, transform and consolidate multiple bills into one integrated bill.
The NFR Dashboard component provides a visualized presentation about the bill and
service utilization information. The Adaptor is a runtime framework to enable the in-
tegration with on-premise application using required network protocol and program-
ming interfaces.

The SaaSia runtime architecture can be implemented in two different deployment
modes illustrated in figure 6. If the SaaS subscribers have strong integration require-
ments about security and privacy, they should select the local deployment mode which
provides dedicated SaaSia runtime; If the SaaS subscribers prefer to get the integration
capability as hosted services, they should use the remote deployment mode. In this

566 W. Sun et al.

mode, SaaSia adapter should be deployed at SaaS subscriber’s premise to connect with
on-premise application, the functional and NFR integration logics should be deployed
to a hosted SaaS integration hub which provides integration services in multi-tenancy
mode for many SaaS subscribers.

S a a S ia T o o l

S a a S ia T o o l

S a a S ia R u n tim e

S a a S ia R u n tim e
a s In te g ra t io n
S e rv ic e

S a a S ia
A d a p te r

S a a S ia
A d a p te r

S a a S
S e rv ic e

S a a S
S e rv ic e

Fig. 6. SaaSia Deployment Mode

3.3 SaaSia Prototype

According to the reference architecture, a SaaSia prototype is built. The tooling pro-
totype embraces the lightweight and open Eclipse platform. It also benefits from the
full functionalities brought by the Eclipse projects, e.g., web tool by Eclipse WTP, data
transformation by Eclipse DTP, dashboard by Eclipse BIRT, and BPEL programming
by Eclipse BPEL [27]. There are also pre-built assets to accelerate the integration de-
sign/development, including Common Services (e.g., scheduling, logging), Integration
Adapters(e.g. Adapter for SAP, Quickbooks) and Integration Templates(e.g. CRM
opportunity to ERP order fulfillment). As illustrated in figure 7, SaaS-DL Manager,
SaaS Customization, NFR Dashboard Design Utilities and Deployment Utility can
integrate with these Eclipse components as a SaaS integration design and development
toolkit.

SaaS Vendor

SaaS-DL Editor

SaaS Customization

SaaS-DL

SaaS Customer

Fig. 7. SaaSia Design-Time Prototype

The SaaSia Runtime prototype adopts the local deployment mode. It focuses on
lightweight integration capability at SaaS subscriber premise environment. SaaS run-
time is an integrated platform built by leveraging open source and existed components
as much as possible. As shown in figure 8, SaaS runtime provides three key modules:
administration console, integration platform, and SaaS utilization dashboard. The

 Software as a Service: An Integration Perspective 567

integration module provides integration related capabilities such as BPEL engine, ETL
engine, and legacy application integration through JCA adaptor. SaaS NFR dashboard
demonstrates the result of SaaS usage metering and bill consolidation. Administration
components offer the SSO and SaaS-DL management services.

S a a S ia T o o l i n g P l a t f o r m (E c l i p s e)

S a a S - D L R e p o s i t o r y

S a a S - D L M a n a g e r

Fig. 8. SaaSia Prototype Architecture

4 Case Study

In this section, a case about integrating CRM SaaS service and ERP on-premise ap-
plication is studied. The customer company has hundreds of employees and 4 offices in
different cities in China. An ERP application has been deployed for several years to
support manufacturing related business. Recently the company subscribed a SaaS CRM
service to better support their customer related business. Though they started to use the

Table 1. Business Requirements and corresponding pattern and actions

Business Requirements Pattern Integration Actions
“Product” information synchronization from
ERP to CRM service; “Account” information
synchronization from CRM service to ERP

D-II Customize the “Product” & “Account” data
structure on CRM service to map with ERP;
Leverage Scheduling service and CRM service
& ERP application api to synchronize data

Pass new “Order” information from CRM
service to ERP

P-III Customize the “Product” & “Account” data
structure on CRM service to map with ERP;
Leverage Scheduling service and CRM service
& ERP application api to synchronize data

Pass new “Shipping Notice” and “Invoice”
information from ERP to CRM service and
update original “Order”’s status

P-I Create new data structure “Shipping Notice”
and “Invoice” and build relationship with “Or-
der” using Order_ID; Develop new web service
to feed the data into CRM services

Sales Person creates a new “Product” request
according to customer’s special requirements,
the request will be sent to Product Manager to
approve, and then feed into ERP system to
guide fulfillment.

P-IV Create a workflow and link the workflow with
CRM service/ERP application api

Have an integrated user interface to access
both CRM service & ERP application

U-I Create a new web page to accommodate the
ERP & CRM service with UI supported by SSO.

Collect the usage statistical information of the
CRM service

NFR-II Configure NFR dashboard based on web service
metering capability

568 W. Sun et al.

SaaS service as a standalone application, they eventually found that it had to be inte-
grated with their on-premise ERP application. The detailed requirements, patterns ap-
plied and developed integration actions are listed in the following table1.

As illustrated in figure 9, the requirements listed above have been fulfilled by SaaSia
prototype technologies. There are two important lessons gained through our practice:

SaSia QOS Dashboard

Webservices Invocation Successful Ratio/by method Webservices Invocation number historigram /by week

SaaSia QOS Dashboard

Fig. 9. Integrated Solution based on CRM SaaS and ERP on-Premise Application

a) Most SaaS services don’t provide programmatic interfaces for customer to retrieve
QoS and Billing reports. Different SaaS services use their own tools to describe cus-
tomization capability and perform customization actions. So SaaS related standards
should include these perspectives to benefit the SaaS growth.

b) As currently most SaaS services’ subscribers are SMBs [6]. They strongly -expect
integration to be done with very small footprint in agile way. The current SaaSia pro-
totype is standard based, e.g. Eclipse, BPEL. But to gain SMB adoption we need to
explore more lightweight approach including browser based integration tool and pro-
gramming model based on Web 2.0 technologies [12, 28].

5 Conclusions and Future Work

In this paper, we analyzed the key requirements for SaaS integration and presented
several integration patterns. A SaaS integration framework, SaaSia, is proposed to
address those requirements. Also a prototype and corresponding case study is intro-
duced. We learned two valuable lessons. Firstly, most SaaS integration functional re-
quirements can be fulfilled by existing SOA integration technologies [5]; Secondly
SaaS involves some NFR requirements which should be addressed by extending exiting
integration technologies. We plan to pursue future work in two directions. As there
lacks of industry standards to streamline SaaS integration, we will conduct more re-
search around the concept of SaaS-DL [22] in Enterprise Application Integration,
leverage and Enhance BPEL or ESB; we will also dive into the latest Web2.0 tech-
nology [12, 28], e.g. apply SaaS-DL in Mash-up description languages, to explore a
more lightweight and generic SaaS integration platform for SMB.

References

[1] Knorr, E.: Software as a Service: The Next Big Thing, http://www.infoworld.com/
article/06/03/20/76103_12FEsaas_1.html

 Software as a Service: An Integration Perspective 569

[2] Summit Strategy Report: The Future of Software as Service-And the Partners ISVs will
Need to Get There (2004)

[3] Web Site, http://www.employease.com
[4] Web Site: Salesforce.com AppExchange, [Online]: http://www.salesforce.com
[5] Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison-Wesley,

Reading (2004)
[6] Baumol, W.: Small Firms: Why Market-Driven Innovation Can’t Get Along Without Them.,

The Small Business Economy: A Report to the President, Ch. 8, pp. 183–206 (2005)
[7] Web Site: Mashups and the Web as Platform, http://www.programmableweb.com/
[8] AMR Research Report: Software as a Service: Managing Buyer Expectations as We Pass

the Tipping Point from Novelty to Necessity (2005)
[9] IDC report: Software as a Service in the Mid-market: Adoption Trends and Customer

Preferences (2004)
[10] Web Site, [Online]: http://www.jamcracker.com
[11] Web Site, SaaS Showcase, [Online]: http://www-19.lotus.com/wps/portal/showcase/SaaS
[12] Seltsikas, P., Currie, W.L.: Evaluating The Application Service Provider (ASP) Business

Model: The Challenge of Integration. In: Proceedings of the 35th Hawaii International
Conference on System Sciences (2002)

[13] Elfatatry, A.: Software As A Service: A Negotiation Perspective. In: COMPSAC’02. Proceed-
ings of the 26th Annual International Computer Software and Applications Conference (2002)

[14] Turne, M.: turning Software into a Service, Computer (October 2003)
[15] O’Reilly: What is Web 2.0, Design Patterns and Business Models for the Next Generation

of Software (2005)
[16] Web Site: NetSuite Small Business, [Online]: http://www.netsuite.com/
[17] Web Site, [Online] available: http://www.aboveall.com
[18] OMG: An Architecture for Modeling, http://www.omg.org/mda
[19] W3C WS-Policy standard: http://schemas.xmlsoap.org/ws/2004/09/policy/
[20] Mandell, D., McIlrait, S.: Automating Web Service Discovery, Customization, and Se-

mantic Translation with a Semantic Discovery Service. The Twelfth International World
Wide Web (2003) (reference 26)

[21] Rykowski, J.: Virtual Web Services - Application of Software Agents to Personalization of
Web Services. In: 6th International Conference on Electronic Commerce ICEC 2004: En-
gineering the New Landscape, pp. 419–428. ACM Publishers, New York (2004)

[22] Zhang, K., Sun, W., Zhang, X., Liang, Hq., Huang, Y., Liu, X.: A Policy-Driven Approach
for SaaS Customization. In: The 9th IEEE Conference on E-Commerce Technology, IEEE
Computer Society Press, Los Alamitos (2007)

[23] Aboda, B., Arkko, J., Harrington, D.: Introduction to Accounting Management, RFC2975
(October 2000)

[24] Agarwal, V., Karnik, N., Kumar, A.: Metering and Accounting for Composite e-Services.
In: CEC’03. Proceedings of the IEEE International Conference on E-Commerce, IEEE
Computer Society Press, Los Alamitos (2003)

[25] Web Site, [Online] available, http://www.umsl.edu/~sauter/analysis/er/er_intro.html
[26] IBM: BEA Systems, Microsoft, SAP AG, Siebel Systems, Business Process Execution

Language for Web Services version 1.1
[27] Web Site, [Online] available, http://www.eclipse.org
[28] Gross, C.: Ajax Patterns and Best Practices, Apress (2006)
[29] Web Site, OpenKapow, http://openkapow.com/
[30] Ottinger, J.: Software as a Service Integration via Mule, http://www.theserverside.com/

news/thread.tss?thread_id=44456

	Software as a Service: An Integration Perspective
	Introduction
	SaaS Integration Requirements and Patterns
	SaaS Integration Functional Requirements and Patterns
	SaaS Integration Non-Functional Requirements(NFR) and Patterns
	SaaS Integration Design and Development Requirements

	SaaS Integration Framework
	SaaS-DL
	Integration Framework
	SaaSia Prototype

	Case Study
	Conclusions and Future Work
	References

