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REPORTS

SOFTWARE ASPECTS OF STRATEGIC DEFENSE SYSTEMS

A former member of the SDIO Panel on Computing in Support of Battle Management explains why he believes
the "star wars" effort will not achieve its stated goals.

DAVID LORGE PARNAS

On 28 June 1985, David Lorge Parnas, a respected computer scientist who has consulted extensively on United
States defense projects, resignedfrom the Panel on Computing in Support of Battle Management, convened by
the Strategic Defense Initiative Organization (SDIO). With his letter of resignation, he submitted eight short
essays explaining why he believed the software required by the Strategic Defense Initiative would not be
trustworthy. Excerpts from Dr. Parnas's letter and the accompanying papers have appeared widely in the press.
The Editors of American Scientist believed that it would be useful to the scientific community to publish these
essays in their entirety to stimulate scientific discussion of the feasibility of the project. As part of the activity of
the Forum on Risks to the Public in the use of computer systems the Editors of Communications are pleased to
reprint these essays.*

This report comprises eight short papers that were completed while I was a member of the Panel on Computing
in Support of Battle Management, convened by the Strategic Defense Initiative Organization (SDIO). SDIO is
part of the Office of the U.S. Secretary of Defense. The panel was asked to identify the computer science
problems that would have to be solved before an effective antiballistic missile (ABM) system could be deployed.
It is clear to everyone that computers must play a critical role in the systems that SDIO is considering The essays
that constitute this report were written to organize my thoughts on these topics and were submitted to SDIO with
my resignation from the panel.
________________________
* Reprinted by permission of American Scientist,  Journal of Sigma Xi: Software Aspects of Strategic Defense Systems, David Lorge Parnas.
Vol. 73 No. s. pp. 432-440.
__________________________________________________________________________________________
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My conclusions are not based on political or policy judgments. Unlike many other academic critics of the SDI
effort, I have not, in the past, objected to defense efforts or defense-sponsored research. I have been deeply
involved in such research and have consulted extensively on defense projects. My conclusions are based on more
than 20 years of research on software engineering, including more than 8 years of work on real-time software
used in military aircraft. They are based on familiarity with both operational military software and computer
science research. My conclusions are based on characteristics peculiar to this particular effort, not objections to
weapons development in general.
I am publishing the papers that accompanied my letter of resignation so that interested people can understand
why many computer scientists believe that systems of the sort being considered by the SDIO cannot be built.
These essays address the software engineering aspects of SDIO and the organization of engineering research.
They avoid political issues; those have been widely discussed elsewhere, and I have nothing to add.
In these essays I have attempted to avoid technical jargon, and readers need not be computer programmers to
understand them. They may be read in any order.
The individual essays explain:
1. The fundamental technological differences between software engineering and other areas of engineering and
why software is unreliable;
2. The properties of the proposed SDI software that make it unattainable;
3. Why the techniques commonly used to build military software are inadequate for this job;
4. The nature of research in software engineering, and why the improvements that it can effect will not be
sufficient to allow construction of a truly reliable strategic defense system;
5. Why I do not expect research in artificial intelligence to help in building reliable military software;
6. Why I do not expect research in automatic programming to bring about the substantial improvements that are
needed;
7. Why program verification (mathematical proofs of correctness) cannot give us a reliable strategic defense
battle-management system;
8. Why military funding of research in software and other aspects of computing science is inefficient and
ineffective. This essay responds to the proposal that SDIO should be funded even if the ABM system cannot be
produced, because the program will produce good  research.
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Why software is unreliable

I. Introduction
People familiar with both software engineering and older engineering disciplines observe that the state of the art
in software is significantly behind that in other areas of engineering. When most engineering products have been
completed, tested, and sold, it is reasonable to expect that the product design is correct and that it will work
reliably. With software products, it is usual to find that the software has major "bugs" and does not work reliably
for some users. These problems may persist for several versions and sometimes worsen as the software is
"improved." While most products come with an express or implied warranty, software products often carry a
specific disclaimer of warranty. The lay public, familiar with only a few  incidents of software failure, may
regard them as exceptions caused by inept programmers. Those of us who are software professionals know
better; the most competent programmers in the world cannot avoid such problems. This section discusses one
reason for this situation.

The requirements of a strategic defense system

In March 1983, President Reagan said, "I call upon
the scientific community, who gave us nuclear
weapons, to tum their great talents to the cause of
mankind and world peace; to give us the means of
rendering these nuclear weapons impotent and
obsolete."
To satisfy this request the software must per-
form the following functions:
—Rapid and reliable warning of attack
—Determination of the source of the attack
—Determination of the likely targets of the attack
—Determination of the missile trajectories
—Coordinated interception of the missiles or
    warheads during boost, midcourse, and termi-
    nal phases, including assignment of responsi-
    bility for targets to individual sensors or
    weapons
—Discrimination between decoys and warheads
—Detailed control of individual weapons
—Evaluation of the effectiveness of each at-
    tempt to destroy a target.

II. System types
Engineering products can be classified as discrete state systems, analog systems, or hybrid systems.
Discrete state or digital systems are made from components with a finite number of stable states. They are
designed in such a way that the behavior of the system when not in a stable state is not significant.
Continuous or analog systems are made from components that, within a broad operating range, have an infinite
number of stable states and whose behavior can be adequately described by continuous functions.
Hybrid systems are mixtures of the two types of components. For example, we may have an electrical circuit
containing, in addition to analog components, a few components whose descriptive equations have
discontinuities (e.g., diodes). Each of these components has a small number of discrete operating states. Within
these states its behavior can be described by continuous functions.

III. Mathematical tools
Analog systems form the core of the traditional areas of engineering. The mathematics of continuous functions is
well understood. When we say that a system is described by continuous functions we are saying that it can
contain no hidden surprises. Small changes in inputs will always cause correspondingly small changes in
outputs. An engineer who ensures, through careful design, that the system components are always operating
within their normal operating range can use a mathematical analysis to ensure that there are no surprises. When
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combined with testing to ensure that the components are within their operating range, this leads to reliable
systems.
Before the advent of digital computers, when discrete state systems were built, the number of states in such
systems was relatively small. With a small number of states, exhaustive testing was possible. Such testing
compensated for the lack of mathematical tools corresponding to those used in analog systems design. The
engineers of such systems still had systematic methods that allowed them to obtain a complete understanding of
their system's behavior.
The design of many hybrid systems can be verified by a combination of the two methods. We can then identify a
finite number of operating states for the components with discrete behavior. Within those states, the system's
behavior can be described by continuous functions. Usually the number of states that must be distinguished is
small. For each of those states, the tools of continuous mathematics can be applied to analyze the behavior of the
system.
With the advent of digital computers, we found the first discrete state systems with very large numbers of states.
However, to manufacture such systems it was necessary to construct them using many copies of very small
digital subsystems. Each of those small subsystems could be analyzed and tested exhaustively. Because of the
repetitive structure, exhaustive testing was not necessary to obtain correct and reliable hardware. Although
design errors are found in computer hardware, they are considered exceptional. They  usually occur in those
parts of the computer that are not repetitive structures.
Software systems are discrete state systems that do not have the repetitive structure fonud in computer circuitry.
There is seldom a good reason to construct software as highly repetitive structures. The number of states in
software systems is orders of magnitude larger than the number of states in the nonrepetitive parts of computers.
The mathematical functions that describe the behavior of these systems are not continuous functions, and
traditional engineering mathematics does not help in their verification. This difference clearly contributes to the
relative unreliability of software systems and the apparent lack of competence of software engineers. It is a
fundamental difference that will not disappear with improved technology.

IV. How can we understand software?
To ameliorate the problems caused by this fundamental difference in technology two techniques are available:
(1) the building of software as highly organized collections of small programs and (2) the use of mathematical
logic to replace continuous mathematics.
Dividing software into modules and building each module  of so-called "structured" programs clearly helps.
When properly done, each component deals with a small number of cases and can be completely analyzed.
However, real software systems have many such components, and there is no repetitive structure to simplify the
analysis. Even in highly structured systems, surprises and unreliability occur because the human mind is not able
to fully comprehend the many conditions that can arise because of the interaction of these components.
Moreover, finding the right structure has proved to be very difficult. Well-structured real software systems are
still rare.
Logic is a branch of mathematics that can deal with functions that are not continuous. Many researchers believe
that it can play the role in software engineering that continuous mathematics plays in mechanical and electrical
engineering. Unfortunately, this has not yet been verified in practice. The large number of states and lack of
regularity in the software result in extremely complex mathematical expressions. Disciplined use of these
expressions is beyond the computational capacity of both the human programmer and current computer systems.
There is progress in this area, but it is very slow, and we are far from being able to handle even small software
systems. With current  techniques the mathematical expressions describing a program are often notably harder to
understand than the program  itself.

V. The education of programmers
Worsening the differences between software and other areas of technology is a personnel problem. Most
designers in traditional engineering disciplines have been educated to understand the mathematical tools that are
available to them. Most programmers cannot even begin to use the meager tools that are available to software
engineers.

Why the SDI software system will be untrustworthy

I. Introduction
In March 1983, the President called for an intensive and comprehensive effort to define a long-term research
program with the ultimate goal of eliminating the threat posed by nuclear ballistic missiles. He asked us, as
members of the scientific community, to provide the means of rendering these nuclear weapons impotent and
obsolete. To accomplish this goal we would need a software system so well-developed that we could have



Communications of the ACM December 1985 Volume 28 Number 12  Seiten 1326-1335

extremely high confidence that the system would work correctly when called upon. In this section, I will present
some of the characteristics of the required battle-management software and then discuss their implications on the
feasibility of achieving that confidence.

II. Characteristics of the proposed battle-management software system
1. The system will be required to identify, track, and direct weapons toward targets whose ballistic
characteristics cannot be known with certainty before the moment of battle. It must distinguish these targets from
decoys whose characteristics are also unknown.
2. The computing will be done by a network of computers connected to sensors, weapons, and each other, by
channels whose behavior, at the time the system is invoked, cannot be predicted because of possible
countermeasures by an attacker. The actual subset of system components that will be available at the time that
the system is put into service, and throughout the period of service, cannot be predicted for the same reason.
3. It will be impossible to test the system under realistic conditions prior to its actual use.
4. The service period of the system will be so short that there will be little possibility of human intervention and
no possibility of debugging and modification of the program during that period of service.
5. Like many other military programs, there are absolute real-time deadlines for the computation. The
computation will consist primarily of periodic processes, but the number of those processes that will be required,
and the computational requirements of each process, cannot be predicted in advance because they depend on
target characteristics. The resources available for computation cannot be predicted in advance. We cannot even
predict the "worst case" with any confidence.
6. The weapon system will include a large variety of sensors and weapons, most of which will themselves
require a large and complex software system. The suite of weapons and sensors is likely to grow during
development and after deployment. The characteristics of weapons and sensors are not yet known and are likely
to remain fluid for many years after deployment. The result is that the overall battle-management software
system will have to integrate a software system significantly larger than has ever been attempted before. The
components of that system will be subject  to  independent  modification.

III. Implications of these problem characteristics
Each of these characteristics has clear implications on the feasibility of building battle-management software that
will meet the President's requirements.
1. Fire-control software cannot be written without making assumptions about the characteristics of enemy
weapons and targets. This information is used in determining the recognition algorithms, the sampling periods,
and the noise-filtering techniques. If the system is developed without the knowledge of these characteristics, or
with the knowledge that the enemy can change some of them on the day of battle, there are likely to be subtle but
fatal errors in the software.
2. Although there has been some real progress in the area of "fail-soft" computer software, I have seen no
success except in situations where (a) the likely failures can be predicted on the basis of past history, (b) the
component failures are unlikely and are statistically independent, (c) the system has excess capacity, (d) the real-
time deadlines, if any, are soft, i.e., they can be missed without long-term effects. None of these is true for the
required battle-management software.
3. No large-scale software system has ever been installed without extensive testing under realistic conditions. For
example, in operational software for military aircraft, even minor modifications require extensive ground testing
followed by flight testing in which battle conditions can be closely approximated. Even with these tests, bugs can
and do show up in battle conditions. The inability to test a strategic defense system under field conditions before
we actually need it will mean that no knowledgeable person would have much faith in the system.
4. It is not unusual for software modifications to be made in the field.  Programmers are transported by helicopter
to Navy ships; debugging notes can be found on the walls of trucks carrying computers that were used in
Vietnam. It is only through such modifications that software becomes reliable. Such opportunities will not be
available in the 30-90 minute war to be fought by a strategic defense battle-management system.
5. Programs of this type must meet hard real-time deadlines reliably. In theory, this can be done either by
scheduling at runtime or by preruntime scheduling. In practice, efficiency and predictability require some
preruntime scheduling. Schedules for the worst-case load are often built into the program. Unless one can work
out worst-case real-time schedules in advance, one can have no confidence that the system will meet its
deadlines when its service is required.
6. All of our experience indicates that the difficulties in building software increase with the size of the system,
with the number of independently modifiable subsystems, and with the number of interfaces that must be
defined. Problems worsen when interfaces may change. The consequent modifications increase the complexity
of the software and the difficulty of making a change correctly.
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IV. Conclusion
All of the cost estimates indicate that this will be the most massive software project ever attempted. The system
has numerous technical characteristics that will make it more difficult than previous systems, independent of
size. Because of the extreme demands on the system and our inability to test it, we will never be able to believe,
with any confidence, that we have succeeded. Nuclear weapons will remain a potent threat.

Why conventional software development does not produce reliable programs

I. What is the conventional method?
The easiest way to describe the programming method used in most projects today was given to me by a teacher
who was explaining how he teaches programming. "Think like a computer," he said. He instructed his students
to begin by thinking about what the computer had to do first and to write that down. They would then think
about what the computer had to do next and continue in that way until they had described the last thing the
computer would do. This, in fact, is the way I was taught to program. Most of today's textbooks demonstrate the
same method, although it has been improved by allowing us to describe the computer's "thoughts" in larger steps
and later to refine those large steps to a sequence of smaller steps.

II. Why this method leads to confusion
This intuitively appealing method works well—on problems too small to matter. We think that it works because
it worked for the first program that we wrote. One can follow the method with programs that have neither
branches nor loops. As soon as our thinking reaches a point where the action of the computer must depend on
conditions that are not known until the program is running, we must deviate from the method by labeling one or
more of the actions and remembering how we would get there. As soon as we introduce loops into the program,
there are many ways of getting to some of the points and we must remember all of those ways. As we progress
through the algorithm, we recognize the need for information about earlier events and add variables to our data
structure. We now have to start remembering what data mean and under what circumstances data are
meaningful.
As we continue in our attempt to "think like a computer," the amount we have to remember grows and grows.
The simple rules defining how we got to certain points in a program become more complex as we branch there
from other points. The simple rules defining what the data mean become more complex as we find other uses for
existing variables and add new variables. Eventually, we make an error. Sometimes we note that error;
sometimes it is not found until we test. Sometimes the error is not very important; it happens only on rare or
unforeseen occasions. In that case, we find it when the program is in use. Often, because one needs to remember
so much about the meaning of each label and each variable, new problems are created when old problems are
corrected.

III. What is the effect of concurrency on this method?
In many of our computer systems there are several sources of information and several outputs that must be
controlled. This leads to a computer that might be thought of as doing many things at once. If the sequence of
external events cannot be predicted in advance, the sequence of actions taken by the computer is also not
predictable. The computer may be doing only one thing at a time, but as one attempts to "think like a computer,"
one finds many more points where the action must be conditional on what happened in the past. Any attempt to
design these programs by thinking things through in the order that the computer will execute them leads to
confusion and results in systems that nobody can understand completely.

IV. What is the effect of multiprocessing?
When there is more than one computer in a system, the software not only appears to be doing more than one
thing at a time, it really is doing many things at once. There is no sequential program that one can study. Any
attempt to "think like the computer system" is obviously hopeless. There are so many possibilities to consider
that only extensive testing can begin to sort things out. Even after such testing, we have incidents such as one
that happened on a space shuttle flight several years ago. The wrong combination of sequences occurred and
prevented the flight from starting.

V. Do professional programmers really use this approach?
Yes. I have had occasion to study lots of practical software and to discuss programs with lots of professional
programmers. In recent years many programmers have tried to improve their working methods using a variety of
software design approaches. However, when they get down to writing executable programs, they revert to the
conventional way of thinking. I have yet to find a substantial program in practical use whose structure was not
based on the expected execution sequence. I would be happy to be shown some.
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Other methods are discussed in advanced courses, a few good textbooks, and scientific meetings, but most
programmers  continue to use the basic approach of thinking things out in the order that the computer will
execute them. This is most noticeable in the maintenance (deficiency correction) phase of programming.

VI. How do we get away with this inadequate approach?
It should be clear that writing and understanding very large real-time programs by "thinking like a computer"
will be beyond our intellectual capabilities. How can it be that we have so much software that is reliable enough
for us to use it? The answer is simple; programming is a trial and error craft. People write programs without any
expectation that they will be right the first time. They spend at least as much time testing and correcting errors as
they spent writing the initial program. Large concerns have separate groups of testers to do quality assurance.
Programmers cannot be trusted to test their own programs adequately. Software is released for use, not when it is
known to be correct, but when the rate of discovering new errors slows down to one that management considers
acceptable. Users learn to expect errors and are often told how to avoid the bugs until the program is improved.

VII. Conclusion
The military software that we depend on every day is not likely to be correct. The methods that are in use in the
industry today are not adequate for building large real-time software systems that must be reliable when first
used. A drastic change in methods is needed.

The limits of software engineering methods

I. What is software engineering research?
We have known for 25 years that our programming methods are inadequate for large projects. Research in
software engineering, programming methodology, software design, etc., looks for better tools and methods. The
common thrust of results in these fields is to reduce the amount that a programmer must remember when
checking and changing a program.
Two main lines of research are (1) structured programming and the use of formal program semantics and (2) the
use of formally specified abstract interfaces to hide information about one module (work assignment) from the
programmers who are working on other parts. A third idea, less well understood but no less important, is the use
of cooperating sequential processes to help deal with the complexities arising from concurrency and
multiprogramming. By the late 1970s  the basic ideas in software engineering were considered "motherhood" in
the academic community. Nonetheless, examinations of real programs revealed that actual programming
practice, especially for military systems, had not been changed much by the publication of the academic
proposals.
The gap between theory and practice was large and growing. Those espousing structured approaches to software
were certain that it would be easy to apply their ideas to the problems that they faced in their daily work. They
doubted that  programs organized according to the  principles  espoused by academics could ever meet the
performance constraints on "real" systems. Even those who claimed to believe in these principles were not able
to apply them consistently.
In 1977 the management of the Naval Research Laboratory in Washington, D.C., and the Naval Weapons Center
in China Lake, California, decided that something should be done to close the gap. They asked one of the
academics who had faith in the new approach (myself) to demonstrate the applicability of those methods by
building, for the sake of comparison, a second version of a Navy real-time program. The project, now known as
the Software Cost Reduction project (SCR), was expected to take two to four years. It is still going on.
The project has made two things clear: (I) much of what the academics proposed can be done; (2) good software
engineering is far from easy. The methods reduce, but do not eliminate, errors. They reduce, but do not
eliminate, the need for testing.

II. What should we do and what can we do?
The SCR work has been based on the following precepts.
1. The software requirements should be nailed down with a complete, black-box requirements document before
software design is begun.
2. The system should be divided into modules using information-hiding (abstraction) before writing the program
begins.
3. Each module should have a precise, black-box, formal specification before writing the program begins.
4. Formal methods should be used to give precise documentation.
5. Real-time systems should be built  as a set of cooperating sequential processes, each with a specified period
and deadline.
6. Programs should be written using the ideas of structured programming as taught by Harlan Mills.
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We have demonstrated that the first four of these precepts can be applied to military software by doing it. The
documents that we have written have served as models for others. We have evidence that the models provide a
most effective means of technology transfer.
We have not yet proved that these methods lead to reliable code that meets the space and time constraints. We
have found that every one of these precepts is easier to pronounce than to carry out. Those who think that
software design will become easy, and that errors will disappear, have not attacked substantial problems.

III. What  makes software engineering hard?
We can write software requirements documents that  are complete and precise. We understand the  mathematical
model behind such documents and can follow a systematic procedure to document all necessary requirements
decisions. Unfortunately, it is hard to make the decisions that must be made to write such a document. We often
do not know how to make those decisions until we can play with the system. Only when we have built a similar
system before is it easy to determine the requirements in advance. It is worth doing, but it is not easy.
We know how to decompose complex systems into modules when we know the set of design decisions that must
be made in the implementation. Each of these must be assigned to a single module. We can do that when we are
building a system that resembles a system we built before. When we are solving a totally new problem, we will
overlook difficult design decisions. The result will be a structure that does not fully separate concerns and
minimize complexity.
We know how to specify abstract interfaces for modules. We have a set of standard notations for use in that task.
Unfortunately, it is very hard to find the right interface. The interface should be an abstraction of the set of all
alternative designs. We can find that abstraction only when we understand the alternative designs. For example,
it has proved unexpectedly  hard to design an abstract interface that hides the mathematical model of the earth's
shape. We have no previous experience with such models and no one has designed such an abstraction before.
The common thread in all these observations is that, even with sound software design principles, we need broad
experience with similar systems to design good, reliable software.

IV. Will new programming languages make much difference?
Because of the very large improvements in productivity that were noted when compiler languages were
introduced, many continue to look for another improvement by introducing better languages. Better notation
always helps, but we cannot expect new languages to provide the same magnitude of improvement that we got
from the first introduction of such languages. Our experience in SCR has not shown the lack of a language to be
a major problem.
Programming languages are now sufficiently flexible that we can use almost any of them for almost any task.
We should seek simplifications in programming languages, but we cannot expect that this will make a big
difference.

V. What about programming environments?
The success of UNIX™  as a programming development tool has made it clear that the environment in which we
work does make a difference. The flexibility of UNIX™ has allowed us to eliminate many of the timeconsuming
housekeeping tasks involved in producing large programs. Consequently, there is extensive research in
programming environments. Here, too, I expect small improvements can be made by basing tools on improved
notations but no big breakthroughs. Problems with our programming environment have not been a major
impediment in our SCR work.

VI. Why software engineering research will not make the SDI goals attainable
Although I believe that further research on software engineering methods can lead to substantial improvements
in our ability to build large real-time software systems, this work will not overcome the difficulties inherent in
the plans for battle-management computing for SDI. Software engineering methods do not eliminate errors. They
do not eliminate the basic differences between software technology and other areas of engineering. They do not
eliminate the need for extensive testing under field conditions or the need for opportunities to revise the system
while it is in use. Most important, we have learned that the successful application of these methods depends on
experience accumulated while building and maintaining similar systems. There is no body of experience for SDI
battle management.

VII. Conclusion
I am not a modest man. I believe that I have as sound and broad an understanding of the problems of software
engineering as anyone that I know. If you gave me the job of building the system, and all the resources that I
wanted, I could not do it. I don't expect the next 20 years of research to change that fact.



Communications of the ACM December 1985 Volume 28 Number 12  Seiten 1326-1335

Artificial intelligence and the Strategic Defense Initiative

I. Introduction
One of the technologies being considered for use in the SDI battle-management software is artificial intelligence
(AI). Researches in AI have often made big claims, and it is natural to believe that one should use this
technology for a problem as difficult as SDI battle management. In this section, I argue that one cannot expect
much help from AI in building reliable battlemanagement software.

II. What is artificial intelligence?
Two quite different definitions of Al are in common use today.
AI-1: The use of computers to solve problems that previously could be solved only by applying human
intelligence.
AI-2: The use of a specific set of programming techinques known as heuristic or rule-based programming. In this
approach human experts are studied to determine what  heuristics or rules of thumb they use in solving problems.
Usually they are asked for their rules. These rules are then encoded as input to a program that attempts to behave
in accordance with them. In other words, the program is designed to solve a problem the way that humans seem
to solve it.
It should be noted that the first definition defines AI as a set of problems, the second defines AI as a set of
techniques. The first definition has a sliding meaning. In the Middle Ages, it was thought that arithmetic required
intelligence. Now we recognize it as a mechanical act. Something can fit the definition of AI-l today, but, once
we see how the program works and understand the problem, we will not think of it as AI anymore.
It is quite possible for a program to meet one definition and not the other. If we build a speech-recognition
program that uses Bayesian mathematics rather than heuristics, it is AI-l but not AI-2. If we write a rulebased
program to generate parsers for precedence grammars using heuristics, it will be AI-2 but not AI-l because the
problem has a known algorithmic solution.
Although it is possible for work to satisfy both definitions, the best AI-l work that I have seen does not use
heuristic or rule-based methods. Workers in AI-1 often use traditional engineering and scientific approaches.
They study the problem, its physical and logical constraints, and write a program that makes no attempt to mimic
the way that people say they solve the problem.

III. What can we learn from AI that will help us build the battle-management computer software?
I have seen some outstanding AI-l work. Unfortunately, I cannot identify a body of techniques or technology that
is unique to this field. When one studies these AI-1 programs one finds that they use sound scientific approaches,
approaches that are also used in work that is not called AI. Most of the work is problem specific, and some
abstraction and creativity are required to see how to transfer it. People speak of AI as if it were some magic body
of new ideas. There is good work in AI-1 but nothing so magic it will allow the solution of the SDI battle-
management problem.
I find the approaches taken in AI-2 to be dangerous and much of the work misleading. The rules that one obtains
by studying people turn out to be inconsistent, incomplete, and inaccurate. Heuristic programs are developed by
a trial and error process in which a new rule is added whenever one finds a case that is not handled by the old
rules. This approach usually yields a program whose behavior is poorly understood and hard to predict. AI-2
researchers accept this evolutionary approach to programming as normal and proper. I trust such programs even
less than I trust unstructured conventional programs. One never knows when the program will fail.
On occasion I have had to examine closely the claims of a worker in AI-2. I have always been disappointed. On
close examination the heuristics turned out to handle a small number of obvious cases but failed to work in
general. The author was able to demonstrate spectacular behavior on the cases that the program handled
correctly. He marked the other cases as extensions for future researchers. In fact, the techniques being used often
do not generalize and the improved  program  never  appears.

IV. What about expert systems?
Lately we have heard a great deal about the success of a particular class of rule-based systems known as expert
systems. Every discussion cites one example of such a system that is being used to solve real problems by people
other than its developer. That example is always the same—a program designed to find configurations for VAX
computers. To many of us, that does not sound like a difficult problem; it sounds like the kind of problem that is
amenable to algorithmic solution because VAX systems are constructed from wellunderstood, well-designed
components. Recently I read a paper that reported that this program had become a maintenance nightmare. It was
poorly understood, badly structured, and hence hard to change. I have good reason to believe that it could be
replaced by a better program written using good software engineering techniques instead of heuristic techniques.
SDI presents a problem that may be more difficult than those being tackled in AI-1 and expert systems. Workers
in those areas attack problems that now require human expertise. Some of the problems in SDI are in areas
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where we now have no human experts. Do we now have humans who can, with high reliability and confidence,
look at missiles in ballistic flight and distinguish warheads from decoys?

V. Conclusion
Artificial intelligence has the same relation to intelligence as artificial flowers have to flowers. From a distance
they may appear much alike, but when closely examined they are quite different. I don't think we can learn much
about one by studying the other. Al offers no magic technology to solve our problem. Heuristic techniques do
not yield systems that one can trust.

Can automatic programming solve the SDI software problem?

I. Introduction
Throughout my career in computing I have heard people claim that the solution to the software problem is
automatic programming. All that one has to do is write the specifications for the software, and the computer will
find a program. Can we expect such technology to produce reliable programs for SDI?

II. Some perspective on automatic programming
The oldest paper known to me that discusses automatic programming was written in the 1940s by Saul Gorn
when he was working at the Aberdeen Proving Ground. This paper, entitled "Is Automatic Programming
Feasible?" was classified for a while. It answered the question positively.
At that time, programs were fed into computers on paper tapes. The programmer worked the punch directly and
actually looked at the holes in the tape. I have seen programmers "patch" programs by literally patching the
paper tape.
The automatic programming system considered by Gorn in that paper was an assembler in today's terminology.
All that one would have to do with his automatic programming system would be to write a code such as CLA,
and the computer would automatically punch the proper holes in the tape. In this way, the programmer's task
would be performed automatically by the computer.
In later years the phrase was used to refer to program generation from languages such as IT, FORTRAN, and
ALGOL. In each case, the programmer entered a specification of what he wanted, and the computer produced
the program in the language of the machine.
In short, automatic programming always has been a euphemism for programming with a higher-level language
than was then available to the programmer. Research in automatic programming is simply research in the
implementation of higher-level programming languages.

III. Is automatic programming feasible? What does that mean?
Of course automatic programming is feasible. We have known for years that we can implement higher-level
programming languages. The only real question was the efficiency of the resulting programs. Usually, if the
input "specification" is not a description of an algorithm, the resulting program is woefully inefficient. I do not
believe that the use of nonalgorithmic specifications as a programming langauge will prove practical for systems
with limited computer capacity and hard realtime deadlines. When the input specification is a description of an
algorithm, writing the specification is really writing a program. There will be no substantial change from our
present capability.

IV. Will automatic programming lead to more reliable programs?
The use of improved languages has led to a reduction in the amount of detail that a programmer must handle and
hence to an improvement in reliability. However, extant programming languages, while far from perfect, are not
that bad. Unless we move to nonalgorithmic specifications as an input to these systems, I do not expect a drastic
improvement to result from this research.
On the other hand, our experience in writing nonalgorithmic specifications has shown that people make mistakes
in writing them just as they do in writing algorithms. The effect of such work on reliability is not yet clear.

V. Will automatic programming lead to a reliable SDI battle-management system?
I believe that the claims that have been made for automatic programming systems are greatly exaggerated.
Automatic programming in a way that is substantially different from what we do today is not likely to become a
practial tool for real-time systems like the SDI battlemanagement system. Moreover, one of the basic problems
with SDI is that we do not have the information to write specifications that we can trust. In such a situation,
automatic programming is no help at all.
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Can program veriffcation make the SDI software reliable?

I. Introduction
Programs are mathematical objects. They have meanings that are mathematical objects. Program specifications
are mathematical objects. Should it not be possible to prove that a program will meet its specification? This has
been a topic of research now for at least 25 years. If we can prove programs correct, could we not prove the SDI
software correct? If it was proved correct, could we not rely on it to defend us in time of need?

II. What can we prove?
We can prove that certain small programs in special programming languages meet a specification. The word
small is a relative one. Those working in verification would consider a 500-line program to be large. In
discussing SDI software, we would consider a 500-line program to be small. The programs whose proofs I have
seen have been well under 500 lines. They have performed easily defined mathematical tasks. They have been
written without use of side effects, an important tool in practical programs.
Proofs for programs such as a model of the earth's gravity field do not have these properties. Such programs are
larger; their specifications are not as neat or mathematically formalizable. They are often written in
programming languages whose semantics are difficult to formalize. I have seen no proof of such a program.
Not only are manual proofs limited to programs of small size with mathematical specifications; machine theorem
provers and verifiers are also strictly limited in the size of the program that they can handle. The size of
programs that they can handle is several orders of magnitude different from the size of the programs that would
constitute the SDI battle-management system.

III. Do we have the specifications?
In the case of SDI we do not have the specifications against which a proof could be applied. Even if size were
not a problem, the lack of specifications would make the notion of a formal proof meaningless. If we wrote a
formal specification for the software, we would have no way of proving that a program that satisfied the
specification would actually do what we expected it to do. The specification itself might be wrong or incomplete.

IV. Can we have faith in proofs?
Proofs increase our confidence in a program, but we have no basis for complete confidence. Even in pure
mathematics there are many cases of proofs that were published with errors. Proofs tend to be reliable when they
are small, well polished, and carefully read. They are not reliable when they are large, complex, and not read by
anyone but their author. That is what would happen with any attempt to prove even a portion of the SDI software
correct.

V. What about concurrency?
The proof techniques that are most practical are restricted to sequential programs. Recent work on proofs of
systems of concurrent processes has focused on message-passing protocols rather than processes that cooperate
using shared memory. There are some techniques that can be applied with shared memory, but they are more
difficult than proofs for sequential programs or proofs for programs that are restricted to communication over
message channels.

VI. What about programs that are supposed to be robust?
One of the major problems with the SDI software is that it should function with part of its equipment destroyed
or disabled by enemy action. In 20 years of watching attempts to prove programs correct, I have seen only one
attempt at proving that a program would get the correct answer in the event of a hardware failure. That proof
made extremely unrealistic assumptions. We have no techniques for proving the correctness of programs in the
presence of unknown hardware failures and errors in input data.
VII. Conclusion
It is inconceivable to me that one could provide a convincing proof of correctness of even a small portion of the
SDI software. Given our inability to specify the requirements of the software, I do not know what such a proof
would mean if I had it.

Is SDIO an efficient way to fund worthwhile research?

The subject of this section is not computer science. Instead, it discusses an issue of concern to all modern
scientists: the mechanism that determines what research will be done. These remarks are based on nearly 20
years of experience with DoD funding as well as experience with other funding mechanisms in several countries.
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I. The proposal
In several dicussions of this problem, I have found people telling me they knew the SDIO software could not be
built but felt the project should continue because it might fund some good research. In this section I want to
discuss that point of view.

II. The moral issue
There is an obvious moral issue raised by this position. The American people and their representatives have been
willing to spend huge amounts of money on this project because of the hope that has been offered. Is it honest to
take the attitude expressed above? Is it wise to have our policymakers make decisions on the assumption that
such a system might be possible? I am not an expert on moral or political issues and offer no answers to these
questions.

III. Is DoD  sponsoring of soflware research effective?
I can raise another problem with this position. Is the SDIO an effective way to get good research done?
Throughout many years of association with DoD I have been astounded at the amount of money that has been
wasted in ineffective research projects. In my first contact with the U.S. Navy, I watched millions of dollars
spent on a wild computer design that had absolutely no technical merit. It was abandoned many years after its
lack of merit became clear. As a consultant for both the Navy and a number of contractors, I have seen expensive
software research that produces very large reports with very little content. I have seen those large, expensive
reports put on shelves and never used. I have seen many almost identical efforts carried out independently and
redundantly. I have seen talented professionals take approaches that they considered unwise because their
"customers" asked for it. I have seen their customers take positions they do not understand because they thought
that the contractors believed in them.
In computer software, the DoD contracting and funding scheme is remarkably ineffective because the
bureaucrats who run it do not understand what they are buying.

IV. Who can judge research?
The most difficult and crucial step in research is identifying and defining the problem. Successful researchers are
usually those who have the insight to find a problem that is both solvable and important.
For applied research, additional judgment is needed. A problem may be an important one in theory, but there
may be restrictions that prevent the use of its solution in practice. Only people closely familiar with the practical
aspects of the problem can judge whether or not they could use the results of a research project.
Applied research must be judged by teams that include both successful  researchers and experienced system
engineers. They must have ample opportunity to meet, be fully informed, and have clearly defined
responsibilities.

V. Who judges research in DoD?
 Although there are a few notable exceptions within DoD, the majority of those who manage its applied research
program are neither successful researchers nor people with extensive system-building experience. There are
outstanding researchers who work for DoD, but most of them work in laboratories, not in the funding agencies.
There are many accomplished system builders who work for DoD, but their managers often consider them too
valuable to allow them to spend their time reviewing research proposals. The people who end up making funding
decisions in DoD are very often unsuccessful researchers, unsuccessful system builders, and people who enter
bureaucracy immediately after their education. We call them technocrats.
Technocrats are bombarded with weighty volumes of highly detailed proposals that they are ill prepared to
judge. They do not have the time to study and think; they are forced to rely on the advice of others. When they
look for advice, they look for people that they know well, whether or not they are people whose areas of
expertise are appropriate, and whether or not they have unbiased positions on the subject.
Most technocrats are honest and hard-working, but they are not capable of doing what is needed. The result is a
very inefficient research program. I am convinced that there is now much more money being spent on software
research than can be usefully spent. Very little of the work that is sponsored leads to results that are useful. Many
useful results go unnoticed because the good work is buried in the rest.

VI. The SDIO
The SDIO is a typical organization of technocrats. It is so involved in the advocacy of the program that it cannot
judge the quality of the research involved.
The SDIO panel on battle-management computing contains not one person who has built  actual
battlemanagement software. It contains no experts on trajectory computations, pattern recognition, or other areas
critical to this problem. All of its members stand to profit from continuation of the program.
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VII. Alternatives
If there is good research being funded by SDIO, that research has an applicability that is far broader than the SDI
itself . It should be managed by teams of scientists and engineers as part of a well-organized research program.
There is no need to create a special organization to judge this research. To do so is counterproductive. It can only
make the program less efficient.

VIII. Conclusion
There is no justification for continuing with the pretense that the SDI battle-management software can be built
just to obtain funding for otherwise worthwhile programs. DoD's overall approach to research management
requires a thorough evaluation and review by people outside the DoD.
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