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Abstract
Networks using wormhole switching have traditionally

relied upon deadlock avoidance strategies for the design
of deadlock-free routing algorithms. More recently, dead-
lock recovery strategies have begun to gain acceptance. In
particular, progressive deadlock recovery techniques are
very attractive because they allocate a few dedicated re-
sources to quickly deliver deadlocked packets, instead of
killing them. Deadlock recovery is based on the assump-
tion that deadlocks are rare. Very recently, the frequency of
deadlock occurrence was measured [21, 18], showing that
deadlocks are highly unlikely when enough routing free-
dom is provided. However, deadlocks are more prone when
the network is close to or beyond saturation. Additionally,
some performance degradationhas been observed at satur-
ation. Similar performance degradation behavior at satur-
ation was also observed in networks using deadlock avoid-
ance strategies [9].

In this paper we take a different approach to handle
deadlocks and performance degradation. We propose the
use of an injection limitation mechanism that prevents
performance degradation near the saturation point and
reduces the probability of deadlock to negligible values
even when fully adaptive routing is used. We also propose
an improved deadlock detection mechanism that only uses
local information, detects all the deadlocks, and consid-
erably reduces the probability of false deadlock detection
over previous proposals. In the rare case when impend-
ing deadlock is detected, our proposed recovery technique
absorbs the deadlocked message at the current node and
later re-injects it for continued routing towards its destin-
ation. Performance evaluation results show that our new
approach to deadlock handling is more efficient than pre-
viously proposed techniques.
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1 Introduction

Wormhole switching [8] has become the most widely
used switching technique for multicomputers and distrib-
uted shared-memory multiprocessors, and it is also being
used for networks of workstations [5]. The use of virtual
channels can increase network throughput considerably by
dynamically sharing the physical bandwidth among sev-
eral messages [7]. However, it has been shown that virtual
channels are expensive, increasing node delay considerably
[6]. Therefore, the number of virtual channels per physical
channel should be kept small.

An alternative approach to increase throughput con-
sists of using adaptive routing [13]. However, deadlocks
must be handled efficiently. A deadlock occurs in an
interconnection network when no message is able to ad-
vance toward its destination because the network buffers
are full. A simple and effective approach to handle dead-
locks consists of restricting routing so that there are no
cyclic dependencies between channels [8]. A more effi-
cient approach consists of allowing the existence of cyc-
lic dependencies between channels while providing some
escape paths to avoid deadlock, therefore increasing rout-
ing flexibility [9, 11]. However, such deadlock avoidance
techniques require dedicated resources to provide those es-
cape paths. Usually, those dedicated resources are virtual
channels, thus preventing the use of all the virtual channels
for fully adaptive routing. Deadlock recovery strategies
overcome this constraint, but the cost associated with exist-
ing deadlock recovery strategies can be higher than neces-
sary, especially with regressive techniques which kill and
later re-inject deadlocked messages at the original source
node [19, 14]. Progressive deadlock recovery strategies,
like Disha [2, 3], are more efficient as only a few dedicated
resources are allocated to quickly deliver deadlocked pack-
ets, instead of killing them. One central buffer per node is
enough to route deadlocked messages to their destination
by preempting network bandwidth from non-deadlocked
packets only when impending deadlock is detected.
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Progressive deadlock recovery techniques usu-
ally achieve a higher performance than deadlock avoidance
techniques because they require less dedicated resources
to handle deadlocks [3]. However, both techniques may
produce severe performance degradation when the network
is close to saturation. Performance degradation at the sat-
uration point was studied in [9, 15] and, more recently,
in [21, 18]. In [9], this situation was described as occur-
ring when messages block cyclically faster than they are
drained using the escape path. Although this can be mitig-
ated by adding several virtual channels per physical chan-
nel, this solution is expensive and is overkill for most net-
works. In [21, 18], the frequency of deadlock occurrence
on k-ary n-cubes using a true fully adaptive minimal rout-
ing algorithm with deadlock recovery was measured. It was
shown that deadlocks rarely occur when sufficient routing
freedom is provided, but they are more likely to occur when
the network is close to or beyond saturation. Although
this suggests that deadlock recovery techniques are viable,
they suffer similar performance degradation at network sat-
uration due to the phenomenon described in [9]. In fact,
performance degradation at saturation can be more pro-
nounced in Disha-based recovery techniques than in dead-
lock avoidance-based techniques since less resources (and,
therefore, less bandwidth) are provided to drain cyclically
blocked messages [4]. Thus, regardless of the technique
used to handle deadlocks, performance degradation should
be addressed. Draining cyclically blocked messages may
require more bandwidth than is provided by existing dead-
lock recovery and deadlock avoidance techniques.

In this paper, a different approach is taken to handle
both deadlocks and performance degradation. We propose
the use of the injection limitation mechanism proposed in
[15] to prevent performance degradation near the saturation
point. It consists of limiting message injection when the
network is heavily loaded. As a by-product, the probability
of deadlock is reduced to negligible levels even when fully
adaptive routing is used with only a few virtual channels.
We also propose an improved deadlock detection mechan-
ism that uses only local information to more accurately de-
tect deadlocks and considerably reduce false deadlock de-
tection over previous proposals [14, 2]. In the rare cases
when deadlocks are suspected, we propose a new software-
based progressive recovery technique that absorbs (as op-
posed to killing) the deadlocked message at the current
node and later re-injects it from the current node for con-
tinued routing towards its destination. This technique has
some points in common with the software-based fault-
tolerant routing mechanism proposed in [20]. Indeed, both
techniques can be combined for increased performance and
reliability. Thus, our new progressive deadlock recovery
technique incorporates simple mechanisms that minimize
performance degradation at saturation as well as the occur-
rence of deadlocks, improves deadlock detection and sim-
plifies the recovery procedure. The main contributions of

this paper are a software-based progressive deadlock recov-
ery technique that requires no buffers to handle deadlocks
(although it requires some buffer space in the local node),
an improved deadlock detection mechanism, and a detailed
study of the behavior of those mechanisms.

Section 2 gives background on deadlock avoidance and
recovery techniques, highlighting the motivation for this
work. Section 3 describes the message injection limita-
tion mechanism used to reduce deadlock probability and
performance degradation. Section 4 presents our improved
deadlock detection mechanism that more accurately differ-
entiates between false deadlock (congestion) and true dead-
locks. Section 5 presents our simpler yet efficient software-
based deadlock recovery strategy that benefits from the
other mechanisms proposed in this paper. Section 6 gives
the performance results of true fully adaptive routing with
our proposed deadlock recovery mechanisms compared
against previously proposed adaptive routing algorithms
using other deadlock avoidance techniques. Finally, some
conclusions are drawn in Section 7.

2 Background
As presented in [4], the theory of deadlock avoidance

proposed in [9] can be easily extended to support progress-
ive deadlock recovery. Indeed, both deadlock handling
techniques are very similar from a theoretical point of view.
Both of them allow fully adaptive routingon some set of re-
sources while providingdedicated resources to escape from
deadlock. The theories proposed in [9, 4] provide a static
view of the network, allowing one to formally prove that
escape resources are enough to avoid or recover from any
deadlocked configuration: if several messages block cyc-
lically waiting for resources held by other messages, these
theories guarantee that some resources will become avail-
able sooner or later and that all the messages will be able
to proceed. However, from a more practical point of view,
guaranteeing that escape resources will become available
sooner or later may not yield the highest performance.

Consider a network using unrestricted fully adaptive
wormhole routingover virtual channel resources. The rout-
ing flexibility provided by this algorithm produces cyclic
dependencies between channels in most topologies. When
the network is heavily loaded (close to or beyond the sat-
uration point), messages block cyclically very quickly. If
escape resources are not able to drain messages from those
cycles fast enough, messages will have to wait for a long
time. As a consequence, those blocked messages will
occupy channel bandwidth and, thus, decrease network
throughput considerably. Additionally, the latency of those
messages will also increase considerably. This behavior
was first described in [9]. The important point here is that
at least one of the following must occur to mitigate this be-
havior: either escape resources must provide enough band-
width to drain messages blocking cyclically (regardless of
whether deadlock avoidance or recovery is used) or a mech-
anism(s) must prevent the build-up of cyclically blocked
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messages that would subsequently need to be drained.
Deadlock avoidance and progressive deadlock recov-

ery techniques mainly differ in the way they supply es-
cape paths and in when those paths are used. Consider
first how escape paths are supplied. Deadlock avoidance
techniques have traditionally relied upon virtual channels
to supply escape paths [9, 11]. Progressive deadlock re-
covery techniques like Disha [2, 3, 4] use a flit-sized cent-
ral buffer to supply the escape paths and route over these
buffers by preempting network bandwidth from nondead-
locked packets so as to quickly resolve impending dead-
lock. In both cases, escape paths are implemented as ad-
ditional dedicated resources in the router (although Disha-
based recovery requires less router resources and, there-
fore, achieves higher performance before network satura-
tion). Consider next the issue of when escape paths are
used. Deadlock avoidance techniques typically allow the
immediate use of escape resources when a message is
blocked (although it is possible to limit their use by using
time-outs [10]). Deadlock recovery techniques, however,
generally limit the use of escape resources allowing only
those messages suspected of being involved in deadlock to
use them; otherwise, the limited bandwidth offered by re-
covery resources would quickly saturate. Existing dead-
lock detection mechanisms use only crude time-out inform-
ation on blocked messages and do not use other relevant in-
formation such as physical channel activity. This makes the
mechanism susceptible to mistaking congestion for dead-
locks, particularly when messages are blocked for long
periods of time waiting for resources occupied by longmes-
sages which are not blocked.

We believe a simple injection limitation mechanism can
keep the network below its saturation point to prevent the
build-up of cyclically blocked messages that could lead to
deadlock formation and/or performance degradation. We
also believe that deadlock detection can be made more ac-
curate to keep recovery resources from becoming saturated
with nondeadlocked messages by associating the time-out
mechanism with physical channel inactivity instead of just
message blocking. These fine-tuning mechanisms minim-
ize the probability of packets recovering from suspected
deadlocks to such infinitesimal levels that allow the router
to be simplified by not requiring any edge or central buffers
to supply escape/recovery paths. We believe that the buf-
fer space already provided at each node can be utilized as a
low-cost solution to this even more highly improbable case.
Simulation results confirm our belief that highest possible
performance without degradation can be achieved.

3 Message Injection Limitation
In this section, we briefly describe the message injec-

tion limitation proposed in [15]. As we mentioned above,
there is some performance degradation when the network
reaches saturation. The problem can be stated as follows:
Latency increases with network traffic until a certain point
(saturation point) is reached, at which time the latency

value increases considerably while throughput (accepted
traffic) tails off. In other words, accepted traffic noticeably
decreases when the saturation point is reached.

Performance degradation within the network
occurs when routing algorithms allow cyclic dependencies
between channels. When traffic becomes high, messages
block cyclically faster than they are drained by the escape
paths, thus increasing latency and decreasing throughput.
Provided that there are some escape resources to drain mes-
sages blocking cyclically, deadlock cannot occur, but mes-
sages wait for a long time in the network. One solution
to this problem is to increase routing freedom by adding
more virtual channels [9, 21, 18]; then messages will have
less probability of being involved in cyclic dependencies.
However, an excessive number of virtual channels could
lead to a reduced clock frequency [6].

Another solution is to control network traffic to ensure
that it is always under the performance degradation point.
But traffic is often global in nature. Thus, it is not feas-
ible to easily measure it at each node. As an approximation,
traffic can be estimated locally by counting the number of
busy virtual output channels at each node [15]. We have
found that the average number of busy virtual output chan-
nels at each router monotonically increases with network
load. Hence, we can establish that there is a useful correl-
ation between the number of busy virtual channels and the
network tending to saturation. This allows us to approxim-
ate global traffic rate by simply monitoring the number of
busy virtual output channels local to a router. We use this in
implementing our injection limitation mechanism to avert
network saturation.

When the number of busy virtual output channels sur-
passes a threshold value, the router prevents the injection
of new messages, keeping them at the source node. If we
properly select the threshold value, there is a high prob-
ability that the network will never reach saturation and
performance degradation can be mitigated. A simple im-
plementation of this mechanism requires only a register
which holds the threshold value, a comparator, and a
counter associated with each router, which are not in the
critical path. The counter is incremented each time a suc-
cessful route is established (another output virtual channel
becomes occupied) and is decremented when the tail of a
message leaves the router. Of course, this mechanism will
increase the delay of those messages that are not injected
into the network at once, but the average message delay
can actually be less than that obtained by the same adaptive
algorithm without the injection limitation mechanism be-
cause of the degradation mentioned above. Results show
that performance degradation as measured by the tailing-
off of throughput is eliminated completely [15]. Moreover,
the increment in message latency produced by the injec-
tion limitation is negligible for the whole range of network
traffic. In [16] we present an in-depth discussion of this and
other message injection limitation mechanisms.
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4 Improved Deadlock Detection Mechanism
Previously proposed deadlock detection mechanisms

are based on measuring the inactivity time of blocked mes-
sages [2, 14]. In this section, we describe a more accur-
ate deadlock detection mechanism that better distinguishes
between messages blocked due to network congestion and
messages blocked due to likely impending deadlock.

A deadlock detection mechanism should have two im-
portant features. First, it should be simple; it should not
add needless complexity to the network that could reduce
performance and/or increase cost. Second, it should be im-
plemented as a distributed mechanism, working only with
local information available at each router.

Instead of measuring the time a message is blocked, the
proposed mechanism measures the time that channels re-
quested by messages are inactive due to the current mes-
sages occupying them remaining blocked. Transmission
activity is monitored in all the virtual output channels that
can be used by a given blocked message. A message is
only presumed to be deadlocked if all the alternative virtual
output channels that are requested by that message contain
blocked messages. It should be noted that when the rout-
ing algorithm uses all the virtual channels in each physical
channel in the same way, it is only necessary to monitor
activity in the physical channels. This is the case for true
fully adaptive routing.

This mechanism can be implemented as follows. A
counter is associated with each output physical channel.
This counter is incremented every clock cycle and is reset
when a flit is transmitted across the physical channel. Thus,
the counter contains the number of cycles that this channel
is inactive. Note that this counter also indicates the number
of cycles since the last flit transmission across any of the
virtual channels in that physical channel. This time is con-
tinuously compared with a given threshold. If it is greater
than this threshold, a one-bit flag (inactivity flag) is set in-
dicating that the physical output channel is inactive. The
flag is reset when a flit is transmitted across the physical
channel.

The routing control unit is assigned to message headers
in a round-robin fashion. Blocked headers are also routed
in order to determine whether some of the output channels
requested by them became free. Every time a message is
routed, if all the feasible virtual output channels are busy,
then the inactivity flags associated with the corresponding
physical output channels are checked. If all of these flags
are set, then there is no activity through any of the feasible
physical output channels, and the message is presumed to
be involved in a deadlock.

It is important to note that the counters and inactivity
flags are associated with physical output channels, instead
of virtual channels. This is only correct if the routing al-
gorithm can use all the virtual channels of a given physical
channel in the same way as with true fully adaptive routing.
This considerably simplifies the implementation.

In order to implement the mechanism, the only required
hardware is a counter, a comparator and a single bit latch
associated with each physical output channel. If we want
a programmable threshold, then another register is needed.
However, in order to simplify the comparison between the
counter and threshold value, it is recommendable to se-
lect a power of two for the threshold value. In this case,
a single output bit of the counters is enough to indicate that
the threshold has been reached. No comparators and re-
gisters are needed. In addition, the router must be modi-
fied to check the inactivity flags every time an unsuccessful
routing is made.

Finally, it should be noted that the mechanism will detect
all possible deadlocks, but also some false deadlocks de-
pending on the threshold used. Thus, the mechanism must
be properly tuned, choosing the appropriate threshold.

5 Software-Based Deadlock Recovery
Wormhole networks have traditionallyrelied upon dead-

lock avoidance for the design of deadlock-free routing
strategies [17]. Thus, routing algorithms usually have some
constraints in order to avoid deadlocks. Recently, the fre-
quency of deadlock occurrence in k-ary n-cube networks
using wormhole switching was measured emperically [21,
18]. From this study, we know that deadlocks are very
rare, especially when two or more virtual channels are used
with true fully adaptive routing. Moreover, the message
injection limitation mechanism described in Section 3 can
be used to further reduce the probability of reaching dead-
locked configurations.

Let us assume that true fully adaptive minimal routing
is used. This routing algorithm imposes no restrictions on
the use of virtual and physical channels, except that paths
should be minimal. Also, let us assume that message in-
jection is limited by using the mechanism proposed in Sec-
tion 3. The mechanism described in Section 4 is used for
deadlock detection. Although deadlock detection is highly
improbable, it could still be detected. So, a recovery mech-
anism is required.

It is easy to see that in a deadlocked configuration, at
least one of the messages involved in it will have its header
at the head of an input buffer, waiting for an output chan-
nel. Also, the proposed deadlock detection mechanism
only presumes that a message is deadlocked if its header is
being routed (it is at the head of an input buffer). Thus, all
we have to do in order to recover from deadlock is to re-
move that message from the network by ejecting it at the
current node. This can be easily accomplished by the router
when it detects a possibly deadlocked message. The router
selects the internal memory channel at the current node for
this message, as if this node were its destination. A con-
trol bit is required to distinguish between normal and dead-
locked messages.

Finally, removed messages must be re-injected into the
network at a later time. This is also easy to accomplish.
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If the software messaging layer detects reception of a mes-
sage whose destination is not the current node, it must in-
ject the message again into the network. The true message
destination can be found in the message header.

The proposed mechanism is a low-cost progressive
deadlock recovery technique. Instead of killingdeadlocked
messages [14, 19], it absorbs them at the current node, al-
lowing them to make progress at a later time. The main
advantage of this technique is its simplicity. The proposed
recovery mechanism does not even require dedicated buf-
fers in the router to recover from deadlock. It is enough
to have some buffer space in the local node. Moreover,
programmable network interfaces based on powerful pro-
cesssors and large buffer memory are emerging as a viable
host for communication operations [5], being the future
host for message handlers without involving the processor.
These network interfaces meet the buffer requirements of
software-based deadlock recovery. By keeping the dead-
lock recovery operations in the interface, we gain some effi-
ciencies, since messages do not have to traverse the I/O bus
and the memory hierarchy of the local node. Therefore, this
mechanism provides improvement over Disha by requiring
a simpler router design. However, the software-based re-
covery mechanism assumes that a processor is associated
with every node, and this is not true for all networks. In
those cases, Disha should be preferred. On the other hand,
the described mechanism is a software solution which is al-
ways slower than a hardware one. However, taking into ac-
count that deadlocks are not frequent, the proposed mech-
anism will not be used frequently. It may even happen that
deadlocks are never detected, provided that the other mech-
anisms proposed in this paper are properly tuned. Addition-
ally, routing can be done without any restrictions, increas-
ing overall performance. Thus, the mechanism proposed in
this paper makes the common case fast.

It must be noted that the proposed recovery strategy does
not increase performance over Disha [2, 3], but it eliminates
the requirement of using buffers (edge or central) for dead-
lock recovery. In addition, this mechanism provides more
routing flexibilitybecause it allows unrestricted use of non-
minimal paths. However, Disha only allows non-minimal
paths to normal messages; routing of deadlocked messages
requires minimal paths. This property is interesting for
the implementation of fault-tolerant routing. Moreover, the
software-based deadlock recovery mechanism proposed in
this paper can be easily combined with the software-based
fault-tolerant routing strategy proposed in [20]. As this
deadlock recovery technique imposes no routing restric-
tions, non-minimal routing could be used in the presence of
faults, thus improving fault tolerance and performance with
respect to [20]. Fault tolerant routing is beyond the scope
of this paper and is the subject of future research.

6 Performance Evaluation
In this section, we evaluate by simulation the behavior

of true fully adaptive routing algorithms using the deadlock

recovery strategy proposed in this paper.
The evaluation methodology used is based on the one

proposed in [9]. The most important performance meas-
ures are latency (time required to transmit a message) and
throughput (maximum traffic accepted by the network).
Traffic is the flit reception rate. Latency is measured in
cycles. Traffic is measured in flits per node per cycle.

Taking into account the sizes of current multicomputers
and the studies about the optimal number of dimensions [1],
we have evaluated the performance of the new algorithms
on a 8-ary 3-cube network (512 nodes).

6.1 Network Model
Our simulator models the network at the flit level. Each

node of the network consists of a processor, its local
memory and a router. The router contains a routing control
unit, a switch, and several physical channels. The processor
is connected to its router by four independent channels.

The routingcontrol unit computes the output channel for
a message as a function of its destination node, the cur-
rent node and the output channel status. The routing al-
gorithm can use any minimal path to forward a message to-
ward its destination. In addition, several virtual channels
per physical channel can be used. In other words, all vir-
tual channels in all the feasible directions can be used. This
algorithm is referred to as True Fully Adaptive Routing al-
gorithm (TFAR). The routing control unit can process only
one message header at a time. It is assigned to waiting mes-
sages in a demand-slotted round-robin fashion (including
those messages generated in the local processor). When a
message gets the routing control unit but it cannot be routed
because all the alternative output channels are busy, it must
wait in the input buffer until its next turn. The deadlock re-
covery strategy proposed in Section 5 is used, together with
the deadlock detection mechanism described in Section 4.

The internal router switch is a crossbar. Thus, it allows
multiple messages to traverse it simultaneously without in-
terference. It is configured by the routing control unit each
time a successful routing is made.

Physical channels can be split into several virtual chan-
nels. Virtual channels are assigned to the physical link us-
ing a demand-slotted round-robinarbitration scheme. Each
virtual channel has an associated buffer with capacity for
four flits.

6.2 Message Generation
Message traffic and message length depend on the ap-

plications. For each simulation run, message generation
rate is assumed to be constant and the same for all the nodes.
Once the network has reached a steady state, the flit gen-
eration rate is equal to the flit reception rate (traffic). We
evaluate the full range of traffic, from low load to satura-
tion. Message destination is randomly chosen among all
the nodes. Short messages (16 flits), long messages (64
flits) and bimodal message lengths (60% of 16-flit mes-
sages and 40% of 64-flit messages) are considered.
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Figure 1: Busy output channels versus traffic for a 512-
node 3-D torus with a true fully adaptive routing algorithm
with 2 virtual channels per physical channel.

6.3 Adjusting Message Injection Limitation
In this section, we select the appropriate threshold for

the message injection limitation mechanism described in
Section 3.

As an example, Figure 1 shows the average number of
busy virtual output channels versus traffic for the TFAR
routingalgorithm with 2 virtual channels per physical chan-
nel. The number of busy virtual output channels when the
network is close to saturation is almost the same for all the
message lengths analyzed. In particular, there are almost 6
busy channels on average. The plot for the TFAR algorithm
with 3 virtual channels per physical channel (not shown)
has a similar shape. In this case, there are 9 busy virtual
output channels when the network is saturated. The optimal
value for the injection limitation threshold should be close
to these values. In Figure 2 we can see the performance of
the TFAR algorithm with 2 virtual channels per physical
channelwith several injection limitation thresholds. Tak-
ing into account that the results do not depend on mes-
sage length, for the sake of shortness, the results are only
shown for one message length. In order to remove the
performance degradation of the routingalgorithm, message
injection must be avoided if the number of busy output
channels exceeds 4 virtual channels. For the TFAR rout-
ing algorithm with 3 virtual channels per physical channel,
message injection must be avoided if the number of busy
output channels exceeds 8 virtual channels. These values
of busy virtual output channels were used as thresholds for
the message injection limitation mechanism in the simula-
tion results presented in Sections 6.4 and 6.5.
6.4 Frequency of Deadlock Detection

In this section we tune the deadlock detection mechan-
ism proposed in Section 4. Tables 1 and 2 show the num-
ber of messages detected as possibly deadlocked for differ-
ent values of the threshold for the TFAR routing algorithm
with 2 virtual channels per physical channel, measured in
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Figure 2: Average message latency versus traffic for a 512-
node 3-D torus with a true fully adaptive routing algorithm
with 2 virtual channels per physical channel.

Threshold 64 cycles 32 cycles 16 cycles
Traffic NDM Tout NDM Tout NDM Tout

0.30 0 0 0 2 0 11
0.35 0 1 0 4 0 15
0.40 0 2 2 11 2 30
0.44 0 13 4 43 11 107

Table 1: Number of messages detected as possibly dead-
locked for the new detection mechanism (NDM) and previ-
ously proposed mechanism based on time-outs (Tout). True
fully adaptive routing algorithm with 2 virtual channels per
physical channel is used with 16-flit messages.

clock cycles. A message is included in the count if it has
been detected as possibly deadlocked using the indicated
threshold in any of the checkpoints. The tables show the
values for the new detection mechanism proposed in this
paper (NDM) and previously proposed mechanisms based
on time-outs (Tout). However, no message deadlocked dur-
ing the simulations, since all messages arrived at their des-
tinations. The statistics have been gathered periodically
during the simulations. The simulations have been run for a
number of cycles high enough to deliver 100,000 messages.
As we can see in Table 1, the routing algorithm with 2 vir-
tual channels per physical channel and short messages re-
quires a threshold not lower than 64 cycles in order to avoid
false deadlock detections using the NDM. From Table 2, if
messages are long, the threshold must be 4 times higher (�
256 cycles), matching the relationship between lengths for
long and short messages. Similar thresholds are required
when 3 virtual channels per physical channel are used in the
true fully adaptive routing algorithm.

Therefore, the optimal value for the threshold depends
on message length. The only simple solution consists of
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Threshold 256 cycles 128 cycles 64 cycles
Traffic NDM Tout NDM Tout NDM Tout

0.23 0 0 0 1 0 4
0.29 0 0 0 1 0 6
0.35 0 0 0 2 0 10
0.41 0 4 0 10 2 32
0.43 0 13 3 40 9 96

Table 2: Number of messages detected as possibly dead-
locked for the new detection mechanism (NDM) and previ-
ously proposed mechanism based on time-outs (Tout). True
fully adaptive routing algorithm with 2 virtual channels per
physical channel is used with 64-flit messages.

splitting messages into fixed length packets. However, the
proposed mechanism considerably reduces the number of
false deadlock detections over crude time-outs. Moreover,
no deadlocks are detected even when the network reaches
the saturation point, provided that the threshold is prop-
erly tuned. This is not the case for detection mechan-
isms based on crude time-outs. These mechanisms detect a
much higher number of false deadlocks for the same time-
out value. Additionally, the number of detected deadlocks
increases very quickly when the network approaches satur-
ation. Hence, the proposed deadlock detection mechanism
considerably improves over previously proposed ones.

We are currently evaluating the influence of message
destination distribution on the deadlock detection mechan-
ism. Also, we are trying to improve this mechanism to
make it less dependent on message length.

6.5 Performance Comparison
In this section we compare the performance of true fully

adaptive routing and the proposed progressive deadlock re-
covery mechanism with previously proposed fully adaptive
routing algorithms using deadlock avoidance [12]. Note
that preemptive progressive deadlock recovery techniques
(like Disha [3]) achieve the same performance as the pro-
posed recovery mechanism, assuming that both of them use
the same injection limitation and deadlock detection mech-
anisms and that the additional router complexity required
in Disha does not impact clock frequency.

In particular, the TFAR routing algorithm for a k-ary n-
cube with 2 and 3 virtual channels per physical channel
with the message injection limitation mechanism described
in Section 3 and the deadlock recovery mechanism pro-
posed in Section 5 is compared against the deterministic
routing algorithm (Det) proposed in [8] and the fully ad-
aptive routing algorithm (FAR) proposed in [12]. The de-
terministic algorithm uses two virtual channels per phys-
ical channel, while the fully adaptive one uses three virtual
channels per physical channel. For message ejection and
re-injection at intermediate nodes, we assumed a delay of
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Figure 3: Average message latency versus traffic for a 512-
node 3-D torus using different routing algorithms (Determ-
inistic, Fully Adaptive Routing (FAR), and True Fully Ad-
aptive Routing (TFAR). Short messages are assumed.

200 cycles. The threshold for deadlock detection was four
times the size of the longest message.

Taking into account that the results for the three mes-
sage lengths considered have the same shape, for the sake
of shortness, we will only show the results for short mes-
sages in Figure 3. The TFAR routing algorithm achieves
a throughput three times higher than the deterministic al-
gorithm, with the same number of virtual channels. The
fully adaptive routing algorithm with 3 virtual channels
achieves only a slightly higher throughput than the true
fully adaptive routingalgorithm with only two virtual chan-
nels. The best results are achieved by the true fullyadaptive
routingalgorithmwith 3 virtual channels per physical chan-
nel, which achieves about a 15% more throughput than the
fully adaptive one and lower latency than any other routing
algorithm for the full range of traffic. No deadlocks were
detected during the simulations. In addition, the true fully
adaptive routing algorithm has no performance degradation
at saturation. These results show the effectiveness of the
proposed mechanisms for message injection limitation and
deadlock detection, therefore enabling the use of simple
software-based deadlock recovery mechanisms.

7 Conclusions
In this paper, we proposed a set of mechanisms that min-

imize the hardware requirements to handle deadlocks. In
particular, we proposed an injection limitation mechanism
that reduces the probability of deadlock to negligible val-
ues, and eliminates performance degradation at the satur-
ation point. This mechanism only requires measuring the
number of busy output channels at each node. We also
proposed an improved deadlock detection mechanism that
considerably reduces the probability of false deadlock de-
tection. It is based on monitoring flit advancement across
the channels requested by blocked messages. Both mech-
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anisms are tunable through simulation. The combination
of these two mechanisms is so effective that no deadlocks
were detected during the simulations, even when using a
true fully adaptive routing algorithm. Hence, these mech-
anisms enable the use of simple and inexpensive techniques
for deadlock recovery. Thus, we proposed a software-based
progressive deadlock recovery mechanism that requires no
buffers to recover from deadlocks. It is based on the ab-
sorption of messages detected as being deadlocked at the
current node and their re-injection into the network. Al-
though the absorption of messages incurs a high latency,
false deadlock detection has been reduced to negligible val-
ues, making software-based deadlock recovery feasible. In
addition, this deadlock recovery mechanism can be eas-
ily combined with the software-based fault-tolerant routing
strategy proposed in [20].

The proposed mechanisms were combined with a true
fully adaptive routing algorithm for the 3D-torus that can
route messages following any minimal path. Any number
of virtual channels per physical channel can be used. This
routing algorithm was evaluated and compared with other
well-known routing algorithms (deterministic [8] and fully
adaptive with a deadlock avoidance mechanism [12]). The
results show that the true fully adaptive routing algorithm
achieves a reduction in message latency for the full range
of traffic while increasing throughputfor both short (16-flit)
and long (64-flit) messages.

In conclusion, we proposed a set of mechanisms to
handle deadlocks that require a very small amount of
hardware, eliminate performance degradation at saturation
point, reduce the frequency of deadlock to negligible val-
ues, and considerably reduce the probability of false dead-
lock detection. To the best of our knowledge, this is the first
feasible deadlock handling technique for wormhole net-
works that requires no dedicated buffer resources to handle
deadlocks.
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