
Software Behavior and Failure Clustering:
An Empirical Study of Fault Causality

Nicholas DiGiuseppe

Department of Informatics
University of California, Irvine
Irvine, California 92617-3440

Email: nicholas.digiuseppe@uci.edu

James A. Jones

Department of Informatics
University of California, Irvine
Irvine, California 92617-3440

Email: jajones@ics.uci.edu

Abstract—To cluster executions that exhibit faulty behavior
by the faults that cause them, researchers have proposed using
internal execution events, such as statement profiles, to (1)
measure execution similarities, (2) categorize executions based
on those similarity results, and (3) suggest the resulting cate-
gories as sets of executions exhibiting uniform fault behavior.
However, due to a paucity of evidence correlating profiles
and output behavior, researchers employ multiple simplifying
assumptions in order to justify such approaches. In this paper
we present an empirical study of profile correlation with
output behavior, and we reexamine the suitability of such
simplifying assumptions. We examine over 4 billion test-case
outputs and execution profiles from multiple programs with
over 9000 versions. Our data provides evidence that with
current techniques many executions should be omitted from
the clustering analysis to provide clusters that each represent
a single fault. In addition, our data reveals the previously
undocumented effects of multiple faults on failures, which has
implications for techniques’ ability (and inability) to properly
cluster. Our results suggest directions for the improvement
of future failure-clustering techniques that better account for
software-fault behavior.

Keywords-Execution Clustering; Failure Proximity; Fault
Understanding; Debugging;

I. INTRODUCTION

Fixing software faults is an expensive but necessary step

in software development. One study found that attempts

to reduce the number of delivered faults in software are

estimated to consume 50% – 80% of the development and

maintenance effort [3]. To alleviate this burden, researchers

created a variety of automated techniques which facilitate the

debugging process. Failure clustering is one such technique

enabling the grouping of test cases exhibiting similar pro-

gram behaviors. Failure clustering attempts to group failing

executions that fail due to the same fault. Failure-clustering

methods have been found to be successful [5], increase

speed of the product to delivery [11], and beneficial at

removing noise for other debugging methods like fault local-

ization [23]. The clustering of failures is typically performed

by inferring the semantic behavior of those failures from the

executed program features. Ideally, the clustering process

produces clusters that fail due to a single fault — we call

such single-fault clusters pure.
Previous researchers have focused primarily on program

spectra (e.g., [5, 14, 19, 20]) to categorize executions.

Harrold et al. [10] defined various program spectra, such as,

statement coverages, statement profiles, branch coverages,

data dependences, and execution traces, and discovered that,

“when failures exist on particular inputs, spectra differences

are likely also to exist on those inputs.” Yet Liblit et al. found

even though spectra differ, “in reality, we do not know which

failure is caused by which bug,” [15].

Researchers to date, typically employ at least one of three

simplifying assumptions: (1) program spectra (in our case,

statement profiles) can approximate the behavior semantics

of failing test cases, (2) cluster purity (whether failures

within a cluster are failing due to the same fault or faults) can

be ignored, and (3) each failure to be clustered is failing due

to a single fault. This work investigates the validity of these

assumptions, because they can greatly impact current failure-

clustering research and practice by providing guidance on

the creation of more pure and accurate clusters. In this paper,

we examine these three assumptions on three real-world

programs with a combination of over 9000 faulty versions

which took over 100 days of computational time.

One factor affecting failure clustering is the inherent

complexity of failure behavior in the presence of multiple

faults. To facilitate early work, despite many unknowns

in this problem space, researchers have continued to work

despite the lack of thorough understanding of how multiple

faults interact, and how those interactions can affect failure

clustering. However, in order to best inform future failure-

clustering efforts, we believe that it is vital to understand

how program-spectra relate to behavior semantics, specifi-

cally in the presence of multiple faults. Do similarities in

execution spectra approximate similarities in output fault

behavior? Does the use of program spectra result in clusters

of failures caused by the same faults? Do failures typically

exhibit the effects of a single fault or multiple faults? Such

questions, which are the subject of this work, are motivated

by the fact that program spectra are often the most detailed

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.31

192

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.31

191

and accessible information about program failures. Without

an understanding of how faults alter spectra, clustering

techniques will suffer unknown sources of inefficacy.

To gain such understanding, we present experiments that

examine the relationship between program-failure output and

statement profiles of real-world software, in detail. First, we

investigate program output to determine its suitability as

an oracle to evaluate spectra-based failure-clustering tech-

niques. Next, we investigate one of the most common pro-

gram spectra for performing failure clustering — execution

profiles — to analyze how accurately they represent failure

behavior. Then, we investigate features of execution-failure

behavior, which demonstrate that failure behavior, and thus

the ability to cluster, are more complex than assumed. Next,

we present results and assess the viability of commonly used

simplifying assumptions for failure-clustering research and

experimentation. Finally, we investigate the potential for a

pre-clustering phase, which may greatly reduce some of the

complexity that impacts failure clustering.

The main contributions of the paper are:

1) An in-depth analysis and discussion of the intricacy

and prevalence of complexity issues which are unre-

solved with current failure-clustering research. Current

research accepts simplifying assumptions to facilitate

early study. Our studies investigate these assumptions

and provide evidence that in part corroborates and

in part refutes the basis on which these assumptions

can and should be made. These results can inform

developers of new fruitful research topics in failure

clustering, and clarify what issues need to be overcome

to enable clustering methods to generate pure clusters

in real software.

2) A novel study into software behavior with respect to

clustering. Through an examination of outputs and

profiles we identify and classify four previously un-

explored categories of failure behavior. Additionally,

we represent a possible oracle for failure clustering

which demonstrates the need for a pre-clustering step

which can remove failures that contribute to cluster

impurity. This possible oracle could illuminate ways

that current failure clustering research can better ap-

proximate perfect clustering.

3) A pilot study, which presents evidence of heuristics

that can allow clustering to more closely approximate

actual software behavior through an examination of

software profiles and our new software behavior data.

This pilot study provides guidance for new research

areas focusing on cluster purity along with enabling

current failure clustering methods to have a greater

degree of cluster purity.

II. BACKGROUND

Execution clustering attempts to group together executions

based upon their semantic behavior. In practice, this means

that executions are clustered by utilizing their execution

profiles (gathered from instrumented versions of the code)

as a proxy for measuring the behavior of executions. An

early instance of such work was performed by Podgurski

et al. [21], in which they attempted to determine an ex-

ecution’s pass/fail status through profile clustering. They

later found that identifying pass/fail status was, “not likely,

because failures are often caused by small defects in a large

program” [20]. Podgurski insinuates that because a fault has

little impact on the overall profile, it is difficult to distinguish

a failing from a passing profile. However Dickinson, along

with Podgurski et al. found that “well over half of the near-

est neighbors of failures were failures,” [5] and, “executions

which do fail have unusual properties that may be reflected

in execution profiles” [6]. These later results contradict and

expand upon Podgurski’s earlier findings, suggesting that

profiles might be an effective identifier of failures.

An extension of execution clustering research is failure

clustering. Failure clustering undertakes to categorize dif-

ferent failing executions according to those that failed due

to the same fault(s). Failure clustering uses many of the same

methods as execution clustering, primarily the comparison

of program spectra to locate unique properties that each fault

exhibits. One complication found by Liu et al. [16] is that

failing profiles that fail due to the same fault can be quite

different and the, “due-to” relationship between failing cases

and underlying faults are, “hard” to identify [16].

While many different spectra have been used to isolate this

due-to relationship, failure clustering has mainly followed

one of two hierarchical methods in its clustering algorithm,

agglomerative or divisive clustering. Divisive, or top-down

clustering starts with all failures in the same cluster, and

at each iteration splits the most dissimilar cluster into two.

Agglomerative, or bottom-up clustering is very similar but

executes this process in reverse. Agglomerative clustering

begins with every failure in its own cluster, and at each

iteration the two most common clusters are merged. Both of

these algorithms recursively repeat until clustering is deemed

to be complete. In many clustering techniques, the goal for

the number of resulting clusters, or K, is pre-specified, often

arbitrarily, prior to program execution.

Many researchers use this arbitrary K stopping point

because it remains unclear exactly how many clusters should

be generated. Researchers agree on the ideal of cluster purity
— each resulting cluster should represent only one fault.

Unfortunately, previous work performed by the authors, [7]

found that faults commonly obfuscate other faults, making a

determination of the quantity of faults in a program almost

impossible with current techniques. Further complicating

this process are situations where a failure is the result of mul-

tiple faults, resulting in confusion regarding which cluster

the execution aligns with. To simplify these additional layers

of complexity and facilitate preliminary study researchers

have typically employed at least one of three assumptions.

193192

The first assumption is that program spectra approx-

imates fault causality (e.g., [2, 6, 11, 16, 21]). This as-

sumption is generally made to facilitate automation. The

second assumption is that cluster purity can be ignored. In

the evaluation of these techniques there is no consideration

given to the purity of the clusters (e.g., [6, 11]). These

evaluations determine success if clusters are composed of

executions with similar program spectra or can be effectively

used for a client analysis, irrespective of how many faults

are contained in each cluster. The third assumption is

that every failure is caused by only a single fault. In these

evaluations, the researchers filter the failures so that each

failure executes no more than a single fault (e.g., [2, 16, 21]).

Although their evaluation metrics account for cluster purity,

their experimental procedures remove any failures that were

caused by multiple faults, thus eliminating the concerns for

non-singularity of fault-to-failure effects.

Multiple problems arise when using these assumptions.

One issue is almost all real-world programs contain mul-

tiple faults, and faults are not independent. Debroy and

Wong [4] and the authors [7] found when examining the

Siemens suite and real-world programs, respectively, faults

almost always interact to alter program behavior. Further,

the authors showed real-world programs with multiple faults

almost always exhibit fault-detection interference — faults

interfere with other faults’ ability to be localized through

program spectra [8]. Thus, the single-fault-to-failure as-

sumption reduces the problem space by removing multiple-

fault failures, which makes these clustering techniques un-

usable at worst, and untested at best with respect to real-

world (i.e., multiple fault) software. One issue stemming

from ignoring cluster purity is not accurately measuring the

accuracy of the resulting clusters from failure clustering.

There is no conclusive data that spectra similarity represents

fault synonymy. Without a quantitative analysis of cluster

purity, it becomes difficult to compare metric effectiveness

or determine if a metric is accurate.

III. OUTPUT AS ORACLE FOR FAILURE CAUSALITY

In order to demonstrate our analysis, as well as the

strengths and the limitations of each approach, we present

an example scenario. Figure 1 presents three versions of

the same program, each version in a major column. The

program, Inc_or_Double takes a boolean and an integer

as input. If the boolean is true, the program should increment

and return the integer, otherwise the program should double

and return the integer. Each version executes the same test

suite, presented in the minor columns to the right of each

version of the program. The inputs are listed below the name

of each test case. For each test case we show its profile,

output, and faults that caused failure. In Version 1 and 2

there exists a single fault, fault f1 and fault f2 respectively.

In Version 3, both faults are present.

Below the bold horizontal line, we present four methods,

each in its own row, for comparing test cases (or, more

generally, executions). The former pair of methods (i.e., first

two rows) each compares test cases within a version. The

latter pair of methods (i.e., last two rows) each compares

test cases across versions. The within methods are generally

possible in practice when attempting to cluster test cases.

In contrast, the across methods are generally infeasible in

practice because developers would be unable to generate

versions of their software containing different subsets of

their faults until they found and identified each individual

fault, at which point failure clustering would be unnecessary.

Additionally, across-version profile-based clustering would

require mapping program elements between the differing

versions with potentially altered control flow. The across
methods are the methods that we are evaluating in this work

for their potential for providing oracles for failure-clustering

research, as well as providing a means to assess the viability

of the failure-clustering assumptions.

In these rows of methods, lines are drawn for each

comparison performed: solid lines connect executions that

are deemed similar and dashed lines connect executions

that are deemed dissimilar. Below the comparisons, the

composition of the resulting clusters are presented in braces,

as well as the deduced cause of the failures in that cluster.

For traditional failure-clustering activities (i.e., the first two

rows), the faults that cause failures cannot be known simply

from the cluster.

The first method of each method-type (i.e., within and

across) compares the output of each test case. The second

method of each method-type (i.e., within and across) com-

pares the profile of each test case.

We form clusters based on the similarities found (repre-

sented as bold lines). Although execution clustering is typ-

ically performed using hierarchical clustering (as described

in Section II), for the purpose of clarity, we express within-

version clustering by the sets of executions that are deemed

similar. For example, for the within-version output-clustering

method on Version 2, T1 and T4 are deemed similar, and

T2 and T3 are not similar with any other test case. As such,

the resulting clusters are {T1, T4}, {T2}, and {T3}.

In contrast, we perform across-version clustering by com-

paring test-case behavior — whether output or profile —

for a particular version containing a set of known faults

with all versions containing every subset of its faults. For

example, Version 3 (which contains both faults, f1 and f2)

has the behavior of each test case compared with that same

test case’s behavior executed on Version 1 (which contains

only f1) and Version 2 (which contains only f2). For the

across-version output-clustering method, the output of test

case T3 executed on Version 3 is compared with: (1) the

output of T3 on Version 2, which is found to be similar;

and (2) the output of T3 on Version 1, which is found to

be dissimilar. Because similarity for T3 is found only with

194193

Inc_or_Double(bool op, int x)
if (op)

return x++;
else

return x*3 // fault f1
output

T1 T2 T3 T4
True, 2 True, 8 False, 3False, 1 Inc_or_Double(bool op, int x)

if (!op) // fault f2
return x++;

else
return x*2

output

T1 T2 T3 T4
True, 2 True, 8 False, 3False, 1 Inc_or_Double(bool op, int x)

if (!op) // fault f2
return x++;

else
return x*3 // fault f1

output

T1 T2 T3 T4
True, 2 True, 8 False, 3False, 1

3 9 3 9

Version 1 Version 2 Version 3

4 16 2 4 6 24 2 4

Clustering:
output comparisons
within a version

Clustering:
profile comparisons
within a version

{T1, T3}
cause:

unknown

{T2, T4}
cause:

unknown

{T1, T2}
pass

{T3, T4}
cause:

unknown

{T2}
cause:

unknown

{T1, T4}
cause:

unknown

{T3}
cause:

unknown

{T2}
cause:

unknown

{T4}
cause:

unknown

{T3}
cause:

unknown

{T1}
cause:

unknown

{T1, T2}
cause:

unknown

{T3, T4}
cause:

unknown

{T1, T2}
cause:

unknown

{T3, T4}
cause:

unknown

Clustering oracle:
output comparisons
across versions

{T3, T4}
cause:

f2

Clustering oracle:
profile comparisons
across versions

{T1, T2, T3, T4}
cause: f2

{T1, T2}
cause:

f1 and f2

cause of failure cause of failure cause of failurepass pass f1 f1 f2 f2 f2 f2 f1, f2 f1, f2 f2 f2

Figure 1: Three versions of the same program, with each combination of two faults. Comparisons (dashed lines for dissimilar

and solid lines for similar) are made both within a version (traditional failure clustering) and across versions (failure-causality

oracles). Resulting clusters shown in braces.

Version 2, and that version contains only f2, we deduce that

T3 failed due to f2. Test case T4 exhibits this same quality

of failing specifically due to f2. As a consequence of their

equivalently deduced fault causality, T3 and T4 are clustered.

Because the output of T1 and T2 on Version 3 are found

to be dissimilar with their output of either Versions 1 or

2, their behavior cannot be attributed to either f1 or f2. As

such, we deduce that they failed due to the presence of both

faults and thus are clustered together. That is, their failure

behavior cannot be witnessed with any subset of the faults

in the program.

When assessing these methods on the example, we ob-

serve that on Version 3, the within-version output cluster-

ing failed to identify meaningful clusters, but the profile

clustering produced correct clusters. In contrast, the across-

version output clustering produced the correct clusters, and

the profile clustering failed to recognize the difference in be-

havior caused by f1. Thus, while output clustering performed

poorly within a version, it performed well across versions,

which motivates its use as an oracle for failure causality.

Conversely, profile clustering performs well within a version,

but less effectively across versions, but may still be a

candidate as an oracle. In our experiment, we utilize output

as the oracle and evaluate profiles as an approximation,

which can also be used in intra-version clustering.

IV. EXPERIMENT

To understand software behavior in the presence of mul-

tiple faults and the implications for failure clustering, we

conducted an experiment. Our experiment assesses the im-

pact of multiple faults and evaluates the viability of the past

assumptions for failure clustering. We present our research

questions in Table I.
In this section, we first discuss the subjects used in our

experiment. Next, we discuss our independent variable along

with our four dependent variables. Finally, we discuss the

setup of the experiment.

A. Objects for Analysis
To enable understanding of failure behavior in the pres-

ence of multiple faults, we evaluated three real-world sub-

jects, Gzip version 1.0.7, Sed version 3.02, and Space, that

are commonly used in software-testing research. Gzip and

Sed are Unix utilities of medium size. Gzip contains 7928

LOC and 214 test cases; and Sed contains 10154 LOC

and 362 test cases. Space originates from the European

Space Agency and contains 6445 LOC and over 13000

test cases. To enable the experiment to scale — it required

months of computational time (explained in Section IV-C)

— we randomly sampled and used 500 of Space’s test

cases. All were downloaded from the Subject Infrastructure

Repository [9] along with their faulty versions and test cases.
As with previous work (e.g.,[8, 12, 13, 17, 23]), we

excluded faulty versions that caused no failures or were not

covered by any test cases. Excluded faults were replaced

with mutants so that the subjects had a similar quantity of

faults. Thus, our programs contained some real faults, and

some mutants. Recent work by Ali et al. [1] found that

mutants were identified with similar rates as real faults.

195194

Table I: Research questions addressed in this experiment.

RQ1: Does program spectra (in our case, coverage

profiles) approximate fault causality?

RQ2: Can cluster purity (whether failures within a

cluster are failing due to the same fault or

faults) be ignored in evaluations?

RQ3: Are almost all failures caused by a single

fault?

However, to ensure these mutants are representational of

real faults, we follow the methods described by Offutt et
al. [18]. Offutt’s methods dictate random line selection and

random mutation based upon the set of possible mutations

enumerated in his study.

B. Variables and Measures

Our primary goal is to understand the impact of the

behavior of faulty software on failure clustering. To accom-

plish this, we utilize one independent and four dependent

variables. Our independent variable is the quantity of faults.

Our four dependent variables are the quantity of failures

that exhibit each of four new categories of failure behavior,

which are identified in this work. We name these four

failure-behavior categories: Singleton, Combo, Tie, and New
failures. These failure categories correspond to how test-case

outputs and profiles are affected by multiple faults and are

useful in assessing our research questions. Output compar-

isons check for equality, whereas profile comparisons check

for similarity. Our profile similarity metric is described later

in this section.

Singleton failures occur when the output (profile) of a

multi-fault version is equal (similar) to only one single fault

that composed it. Combo failures occur when the output

(profile) of a multi-fault version is equal (similar) to only

one multi-fault subset that composed it. Tie failures occur

when the output (profile) of a multi-fault version is equal

(similar) to multiple different fault subsets that composed

it. New failures occur when the output (profile) is not equal

(is not similar) to any fault subset that composed it — that

is, that the current combination of faults that compose the

multi-fault version produces behavior that no subset of those

faults exhibited.

To demonstrate these classifications more simply, we

present an example in Table II. In the “Faults Contained”

column, we present the faults which are present in a pro-

gram. The remaining columns have a test case with its

corresponding behavior, represented as a letter. The primary
version in this example contains faults F1, F2, and F3. Each

possible version of the same program containing a sub-

combination of the primary version’s faults is represented in

the remaining rows, along with its behavior. The behavior of

the sub-combination version is compared with the primary

Table II: Example showing all four types of behavior.

Faults Output for: Output for: Output for: Output for:
Contained Test Case 1 Test Case 2 Test Case 3 Test Case 4
F1, F2, F3 A B C A

F1 A X C D
F2 F F F D
F3 G G H G

F1, F2 J J J A
F1, F3 R R R R
F2, F3 Q Q C Q

Category Singleton New Failure Tie Combo

version, for each test case. In Test Case 1, the output for

the primary version matches exactly with only the version

containing fault F1. Because the primary version’s output is

equal to only one sub-version, and the sub-version contains

one fault, we call the behavior of Test Case 1 a Singleton

failure. In Test Case 2, no output in any sub-version equaled

the output from the primary version. In other words, every

single fault in the primary version acted upon the program to

alter its behavior and thus is called a New failure. Examining

Test Case 3, we see that the primary version’s output equals

two sub-versions’ outputs, the first containing fault F1 and

the second containing faults F2 and F3, and one set of

faults is not subsumed by the other. In other words, different

versions managed to create the exact same output, and one is

not a subset of the other. We cannot determine which group

of faults caused this output — F1 alone, or F2 and F3. Thus,

it is a Tie failure. Finally, in Test Case 4 we see that the

primary version’s output equals the sub-version containing

F1 and F2. Because this sub-version contains multiple faults,

and it is the only sub-version which equals the primary

version, we call this a Combo failure. Combo is used here

to denote that a combination of faults created this output

through their interaction.

When comparing profiles, our goal, like previous re-

searchers, is to find profiles that have similar semantic

behavior. To this end, we first normalized loop and method

profiles by dividing all their elements by the profile count

of their header. We then compare the Euclidean distance, D
between two profiles. To determine whether two profiles are

deemed as similar given D, we compute a threshold for a

given program and test case. Each test case’s threshold was

gained by randomly sampling 5% of all versions and using

the maximum distance between any two sampled versions.

To be conservative, we consider profiles similar if D is less

than 1% of the maximum distance.

C. Experimental Setup

To examine software behavior for multiple faults and as-

sess the three assumptions of previous research discussed in

Section II, we designed an experiment that enables detailed

comparisons of output and profiles as the quantity of faults

changes. Our experiment tracks patterns in software behavior

196195

1, 2, 3, 4

1, 2, 3

1, 2

1

1, 2, 4 2, 3, 4 1, 3, 4

1, 3 3, 41, 4 2, 3 2, 4

2 3 4

1, 2, 3, 4

1, 2, 3

1, 2

1

1, 2, 4 2, 3, 4 1, 3, 4

1, 3 3, 41, 4 2, 3 2, 4

2 3 4

1, 2, 3, 4

1, 2, 3

1, 2

1

1, 2, 4 2, 3, 4 1, 3, 4

1, 3 3, 41, 4 2, 3 2, 4

2 3 4

1, 2, 3, 4

1, 2, 3

1, 2

1

1, 2, 4 2, 3, 4 1, 3, 4

1, 3 3, 41, 4 2, 3 2, 4

2 3 4

Figure 2: An example of our comparison process. The upper-

right graph contains the comparisons for the four fault

version, the bottom-left graph contains the comparisons for

one three-fault version, and the bottom-right graph contains

the comparisons for one two-fault version. The upper-left

graph contains all the comparisons for all four-fault, three-

fault, and two-fault versions.

as software becomes more faulty. First, we select ten faults

at random and generate a version containing those faults.

Then, we create a version for each possible sub-combination

of faults. We made all the single faults versions, (10 choose

1), then all the two faults versions (10 choose 2), and on

up to the nine fault versions (10 choose 9) that could be

generated from the ten fault version. Next, for each version,

we executed the entire test suite storing the output and profile

for each test case. Profiles were gathered with the GNU C

compiler, Gcc, and the Gcov utility.

Then, for every faulty version, f we compare each output

(profile) with every output (profile) from the versions that

contained faults that were subsets of f . Figure 2 depicts

this process. In this example the primary program contains

four faults: 1, 2, 3 and 4. We first need to compare each

two-fault version with its sub-versions. The figure shows the

version that contains faults 1 and 2 being compared with the

the versions that contain only fault 1 and only fault 2. We

repeat such comparisons for all two-fault versions (although

the figure doesn’t show this for space sake), then compare

the three-fault versions. The figure compares the version

containing faults 1, 2, and 3 with the versions containing

faults 1,2; 1,3; 2,3; 1; 2; and 3. We would repeat this type

of comparison for every three-fault version (although the

figure doesn’t show this for space sake). Finally, we need to

compare the four fault version, with the versions containing

1,2,3; 1,2,4; 2,3,4; 1,3,4; 1,2; 1,3; 1,4; 2,3; 2,4; 3,4; 1; 2; 3;

and 4. Thus, we compare each version with all the versions

containing any subset of contained faults. The number of

comparisons required is precisely defined as

C = 2T
n∑

i=2

i−1∑
j=1

(
n

i

)(
n

j

)
(1)

where C is the total number of comparisons, T is the size

of the test suite, and n is the maximum quantity of faults

existing for any version. The multiplier of 2 is included to

reflect the fact that both output and profile comparisons

are performed. Thus we compare each version’s output

and profile with every possible sub-version’s corresponding

output and profile. This quantity of comparisons enables (1)

the identification of output or profile changes as faults are

inserted in the program and (2) the analysis of how faults

affect the output and profile. A list of possible changes

to output or profiles is found in Table II and explained

previously in Section IV-B.

Each iteration entails creating a random ten-fault version

for Gzip, Sed, or Space, creating all possible sub-versions,

and performing all comparisons. Each iteration took roughly

11 days for Gzip, 14 days for Sed, and 10 days for Space.

For each each iteration, 1023 unique versions are created,

Gzip performs 112,103,900 comparisons of profiles and out-

puts while Sed performs 190,157,550, and Space performs

26,192,500,000 (due to differences in their test suite size).

To gather our data we executed nine iterations — three for

each subject — generated 9207 versions, and performed

4,533,921,750 comparisons, which required roughly 2,520

hours, or 105 days of computational time. The experiments

were run on an Intel Core2 Duo CPU at 2.66GHz.

V. RESULTS

We present our results relating profiles and output in

Figures 3, 4, and 5. Figures 3a, 4a, and 5a display the soft-

ware behavior using the output, and Figures 3b, 4b, and 5b

display the software behavior approximated by profiles. For

each figure the horizontal axis represents our independent

variable: the quantity of faults in the base version. Along

the vertical axis we represent the average frequency of each

of our dependent variables as a percentage for all iterations.

At every coordinate along the horizontal axis, there can

be four bars, each representing a single type of software

behavior: singleton, tie, combo, and new failure, as shown

in the legend. Each bar aggregates all faulty versions that

contain the same quantity of faults. For example, the bars at

quantity 3 would include results for the program containing

faults {f1, f2, f3}, {f2, f3, f4}, {f1, f2, f4}, and so on.

The Gzip figures demonstrate a monotonically increasing

number of Combo failures as the quantity of faults increases

in the base version, while the Singleton failures decrease for

both output and profiles. Also, the approximation of Gzip’s

profiles to output is fairly accurate.

The Sed figures demonstrate a monotonically increasing

number of Singleton failures, at fault quantities greater than

1, which by definition always produce 100% Singletons.

197196

Singleton Tie Combo New

0 1 2 3 4 5 6 7 8 9 10
Quantity of Faults

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

(a)

0 1 2 3 4 5 6 7 8 9 10
Quantity of Faults

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

(b)

Figure 3: Average software behavior for outputs (a) and profiles (b) of Gzip.

0 1 2 3 4 5 6 7 8 9 10
Quantity of Faults

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

(a)

0 1 2 3 4 5 6 7 8 9 10
Quantity of Faults

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

(b)

Figure 4: Average software behavior for outputs (a) and profiles (b) of Sed.

0 1 2 3 4 5 6 7 8 9 10
Quantity of Faults

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

(a)

0 1 2 3 4 5 6 7 8 9 10
Quantity of Faults

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

(b)

Figure 5: Average software behavior for outputs (a) and profiles (b) of Space.

Sed also exhibits a monotonically decreasing number of Tie

failures. The Sed profile figure exhibits an initial decrease in

ties and then increases, while demonstrating an initial rise

in singletons and then a decrease. The profile approximation

is generally accurate, but less so than the other subjects.

Much like Sed, the Space figures demonstrate decreasing

numbers of Tie failures, and increasing number of Singleton

failures, as the fault quantity in the base version increases.

The approximation of the Space profiles closely matches the

results for output.
These results demonstrate a few trends. The first is

that Sed and Space exhibit similar multi-fault interaction,

whereas Gzip behaved differently. Gzip produces a majority

of combos, a smaller set of singletons, and only a small

percentage of ties or new failures, whereas our other two

subjects primarily produce ties and singletons and only a

small subset of combos. Such differences suggest that multi-

fault interaction and behavior is program-specific.
Gzip demonstrates highly similar output and profile re-

198197

sults. Both output and profile results exhibit that failures

caused by the interaction of subsets of all faults (i.e., Combo

failure) is proportional to the quantity of faults present.

Additionally, only in rare cases does Gzip fail due to all

faults (i.e., New failure). We speculate that this paucity of

New failures is due to the difficulty of individual test cases

executing all faults in the program.

Sed demonstrates a slightly more pronounced difference

between its output and profile results. The output results sug-

gest that failures caused by individual faults (i.e., Singleton

failures) are proportional to the quantity of faults present.

Upon further investigation, we found this phenomenon to

be due to an increasing likelihood to include a fault that

produces behavior in the program that precludes other faults

manifesting (otherwise known as fault obfuscation [7, 8]).

This phenomenon is discussed more in Section VI-A.

Space demonstrates highly similar output and profile

results. Both output and profile results exhibit that as more

faults are added, the program is more likely to fail due to

a single fault (i.e., Singleton failures). Much like Sed, we

found the presence of dominating faults, which were more

likely to be included as the fault quantity increased.

VI. DISCUSSION AND ANALYSIS

In order to better understand the results from Section V,

we present an interpretation and analysis here. We discuss

the results, the complexity that is found within them, and

how those complexities affect the three assumptions for fail-

ure clustering made by past researchers. In this section, we

also present a pilot study in which we analyze a lightweight

heuristic that may enable more pure clusters.

A. Questioning Assumptions

To assess the viability of the first assumption — that

execution profiles accurately approximate fault causality —

and to answer the research question RQ1, we compare the

output results with the profile results. For two of the three

subjects, Space and Gzip, the profile results closely approx-

imate the output results, and for Sed, the profile results are

a reasonably accurate approximation. These results suggest

that profiles are useful approximations of output behavior.

However, we investigated several output-to-profile execution

pairs and found that while the profile-based execution behav-

iors were correctly categorized, the set of faults deduced as

the failure cause differed. For example, at the 10-fault level

for Gzip, where most failures are categorized as Combos,

the output oracle specified that Fault 12 and Fault 18 were

together causing most failures, whereas the profile results

blamed Fault 3, Fault 11, Fault 12, Fault 13, and Fault 18.

Although the profile-based assessment of the faults causing

failures subsumed the output-oracle, many spurious faults

were also blamed.

To RQ1, we assess: Profiles can accurately approxi-

mate the general behavior of failures, however do suffer

from a degree of inaccuracy in terms of fault-causality

approximation.

To assess the viability of the second assumption — cluster

purity can be ignored — and to answer the research question

RQ2, we observe the ratio of Singleton failures in the

presence of multiple faults. Although we did not perform

traditional within-version clustering in our experiment, our

results for our subject programs exhibited many Combo and

Tie failures, which would likely cause clusters to be impure.

However, our results also demonstrate the high degree of

Singleton failures, especially when the number of faults

present in the program is high, for two of our three programs.

To RQ2, we assess: The high degree of failures caused

by multiple faults suggest that clusters are unlikely to

be pure. Future research is advised to evaluate cluster

purity rather than assume it.

To assess the viability of the third assumption — failures

that are caused by multiple faults can be ignored and

discarded, a priori, from an evaluation — and to answer

research question RQ3, we compare the number of Singleton

failures with the combined numbers of Combo, New, and

Tie failures. Our results suggest that the prevalence of

failures caused by multiple failures may be program-specific.

Whereas Sed and Space exhibit relatively few failures caused

by multiple faults at higher fault quantities, Gzip exhibited

mostly failures due to multiple faults. For Sed and Space,

evaluations that ignored multiple-fault failures would remove

a small, but sizable, portion of test cases from evaluation.

For Gzip, several versions would be left with no failures at

all — or, at least, an unrepresentative and small sample of

the population.

In further examinations of the Singleton failures, we found

an interesting phenomenon: fault domination. For example,

for Sed, several of the Singleton failures contained its Fault

20. We found that sub-versions that contain Fault 20, almost

always demonstrate Singleton behavior: Fault 20 solely

causes those failures. That is, it prevented the behaviors

of the other faults from manifesting. This phenomenon has

been observed and reported by past researchers: Zheng et
al. [23] and DiGiuseppe and Jones [7, 8]. We also observed

the prevalence of fault domination in Space. Although fault

domination gives some confidence in the ability to discard

failures caused by multiple faults, in order to simplify

experimentation, a non-trivial number of failures will be dis-

carded and thus may bias experimental results. Additionally,

subject-program choice may play a significant factor in such

decisions, and may even prohibit evaluation in cases where

all or almost all failures are caused by multiple faults.

199198

To RQ3, we assess: Experimental procedures that

prescribe the elimination of failures caused by multiple

faults are likely to introduce bias in the results and may

even prohibit evaluation.

B. Seeking the Pure Cluster

Ideally, clustering techniques would enable the production

of clusters that are pure (i.e., all failures are caused by

exactly the same faults) and the composition of those clusters

contains only Singleton failures (i.e., failures that fail due

to a single fault). Researchers have found that failures

that contain multiple faults are more difficult and time-

consuming to debug (e.g., [7, 8, 13, 22, 23]). Unfortunately,

our subjects demonstrated large quantities of non-Singleton

failures.

In order to facilitate research to produce pure, single-

fault clusters, we investigated the possibility to heuristically

identify non-Singleton (i.e., Combo, Tie, and New) failures.

If such a heuristic could be found to be adequately effective,

a “pre-clustering” might be performed in order to remove

non-Singleton failures from clustering, and thus eliminate

the concern for the third assumption (and its impact on

experiments addressed by RQ3) and enable more pure

clusters, and thus easier debugging.

C. Looking for Purity in All the Wrong Places

To assess the potential for future lightweight heuristics

that can distinguish Singleton failures from non-Singleton

failures, we performed a pilot study to examine a measurable

execution characteristic, which we speculated may be a

useful indicator. The statement-instance count for each test

case was captured. We define a statement-instance as a single

execution of a single statement: in other words, the total

statement-instance count can be computed by summing the

statement-profile count for every statement. Our intuition

was that test-case failures that have higher total statement-

instances (i.e., longer-running executions, which executed

more code) were more likely to have executed more faults.

If our intuitions proved true, we speculated, we may be able

to automatically and heuristically produce pre-clustering

techniques that discard test-case executions that were more

likely to be caused by more than one fault.

With these intuitions, we examined our subjects’ data at

the 10-fault level and classified them according to our output

oracle for fault causality. We present the data for our pilot

study in Table III, which shows the average and standard

deviation statement-instance counts for each Singleton, Tie,

and Combo failures.

The results show that for Gzip, Combo failures do indeed

show longer executions, but strangely, Singleton failures

were also lengthy, and Ties were remarkably short. For Sed,

the results were quite different: Combos were the shortest,

and Singletons and Ties were, on average, almost five times

as long. And, for Space, the results were yet again different:

Table III: Average and standard deviation of execution length

for each failure category at the 10-fault level.

Gzip Sed Space
Singletonavg 205,669 1549 6175

Singletonstd 63,994 899 3168
Tieavg 304 1543 5408
Tiestd 218 568 2556
Comboavg 323,827 361 .
Combostd 137,516 172 .

Singletons were long, and so too were Ties (and Combo

failures did not exist at the 10-fault level).

D. Divining Purity Clues

Despite our inability to find a generalizable early indicator

of the number of faults causing failure, the results are nev-

ertheless interesting. These results demonstrate a clear dif-

ference in the length of execution for each of the categories

for at least two of the three subject programs. Although

the results do not follow our intuition, this within-subject

differentiation across categories is a potentially promising

aspect to be further explored in future research, and may be

a factor that should be considered in the effort to produce

pure failure clusters. The results here hint at the possibility

to unravel these behaviors toward that goal.

VII. THREATS TO VALIDITY

One difficulty in constructing external validity for this

work is the generalizabilty our results. We only use three

subjects and due to the diversity of software sizes and

complexity, it is difficult to assure that our results create

a representational set. However, while we only use three

subjects, all are real-world programs. Further, we executed

more than 4 billion comparisons with roughly 105 days of

computational time. This large quantity of data gives us

confidence that our results are similar to programs of relative

size and complexity. Another complication with our external

validity is that some results gained seem fairly program spe-

cific. However while each programs gave different results,

all indicate similar answers for our three research questions.

A difficulty in creating construct validity for this work lies

in our use of mutants. Although the majority of our faults are

real, a small subset are mutants to create enough diversity

to enable our experiment. This work investigates the impact

of fault behavior and fault interaction on failure clustering,

and by definition, mutants are not true faults. However, a

recent study by Ali et al. [1] found that mutants were often

found with the same frequency as real faults when using fault

localization tools, which utilize the same program spectra

as this work. Further, Offutt et al. [18] created a framework

to create mutants which are representational of real faults.

To ensure our mutants behaved similarly to real faults, we

follow the methods outlined by Offutt.

200199

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present an empirical study, which

demonstrates the effects of multiple faults on failure be-

havior. We examine the assumptions made by past failure-

clustering research, describe a novel experiment, classify

failure behaviors, present a potential oracle for failure clus-

tering, and provide a pilot study that examines a potential

factor for promoting failure-cluster purity.

In our analysis of the simplifying assumptions of previous

research, we found that program spectra can perform quite
well at classifying semantic behavior. We found that profiles

were able to fairly accurately approximate the type of

behavior (singleton, tie, combo, or new failure), though of-

ten produce inaccurate fault-causality determinations, which

may indicate some limitations for its use in failure clustering.

We identified dangers in the assumption of cluster purity,

and we found evidence that ignoring multiple-fault failures
in research experiments may introduce bias and produce
results that do not generalize.

Further, our demonstration of output as a potential failure-

causality oracle allows for an automated analysis of semantic

program behavior and provides new insights into how to

improve failure clustering.

Lastly, our pilot study offers promise that lightweight

heuristics — such as statement-instance execution count —

may provide indications that enable future techniques to

filter test-case failures that are likely to be caused by multiple

faults. If such a pre-clustering stage is made possible,

cluster purity (and the resulting benefits for debugging) may

be more achievable. These results open new avenues for

research along with providing specific direction for how

failure clustering can improve.

While we examined software behavioral patterns with

respect to failure clustering, more research is needed. We

plan on performing similar experiments on more subjects to

gain a better understanding and attempt to locate software-

behavior generalizations. Further work also needs to be done

on lightweight heuristics that can be used in a pre-clustering

step to remove failures caused by multiple faults. We intend

to perform a comparative analysis of multiple heuristics and

measure their contributions.

IX. ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-

tional Science Foundation under award CCF-1116943, and

by a Google Research Award.

REFERENCES

[1] S. Ali, J. H. Andrews, T. Dhandapani, and W. Wang. Evaluating
the accuracy of fault localization techniques. In Proceedings of the
2009 IEEE/ACM International Conference on Automated Software
Engineering, 2009.

[2] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active learning for
automatic classification of software behavior. In Proceedings of the
2004 ACM SIGSOFT international symposium on Software testing
and analysis, 2004.

[3] J. S. Collofello and S. N. Woodfield. Evaluating the effectiveness of
reliability-assurance techniques. J. Syst. Softw., 1989.

[4] V. Debroy and W. E. Wong. Insights on fault interference for programs
with multiple bugs. In Proceedings of the International Symposium
on Software Reliability Engineering, 2009.

[5] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster
analysis of execution profiles. In Proceedings of the International
Conference on Software Engineering, 2001.

[6] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure: the
distribution of program failures in a profile space. In Proceedings of
the International Symposium on Foundations of Software Engineering,
2001.

[7] N. DiGiuseppe and J. A. Jones. Fault interaction and its repercus-
sions. In Proceedings of the International Conference on Software
Maintenance, 2011.

[8] N. DiGiuseppe and J. A. Jones. On the influence of multiple
faults on coverage-based fault localization. In Proceedings of the
9th ACM/IEEE International Symposium on Software Testing and
Analysis, 2011.

[9] H. Do, S. Elbaum, and G. Rothermel. Infrastructure support for
controlled experimentation with software testing and regression test-
ing techniques. In Proceedings of the International Symposium on
Empirical Software Engineering, 2004.

[10] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi. An empirical
investigation of program spectra. In Proceedings of the 1998 ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering, 1998.

[11] J. A. Jones, J. F. Bowring, and M. J. Harrold. Debugging in parallel.
In ISSTA ’07: Proceedings of the 2007 international symposium on
Software testing and analysis, 2007.

[12] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In Proceedings of the Interna-
tional Conference on Automated Software Engineering, 2005.

[13] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proceedings of the 24th
International Conference on Software Engineering, 2002.

[14] D. Leon, A. Podgurski, and L. J. White. Multivariate visualization in
observation-based testing. In Proceedings of the 22nd international
conference on Software engineering, 2000.

[15] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In Proceedings of the Conference
on Programming Language Design and Implementation, 2005.

[16] C. Liu and J. Han. Failure proximity: A fault localization-based
approach. In Proceedings of the International Symposium on the
Foundations of Software Engineering, 2006.

[17] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER: statistical
model-based bug localization. In Proceedings of 10th European
Software Engineering Conference and 13th Foundations on Software
Engineering, 2005.

[18] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf.
An experimental determination of sufficient mutant operators. ACM
Trans. Softw. Eng. Methodol., 5, 1996.

[19] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun,
and B. Wang. Automated support for classifying software failure
reports. In Proceedings of the International Conference on Software
Engineering, 2003.

[20] A. Podgurski, W. Masri, Y. McCleese, F. G. Wolff, and C. Yang.
Estimation of software reliability by stratified sampling. ACM Trans.
Softw. Eng. Methodol., 8, 1999.

[21] A. Podgurski and C. Yang. Partition testing, stratified sampling, and
cluster analysis. In Proceedings of the symposium on Foundations of
software engineering, 1993.

[22] M. Srivastav, Y. Singh, C. Gupta, and D. Chauhan. Complexity esti-
mation approach for debugging in parallel. In Computer Research and
Development, 2010 Second International Conference on Computer
Research and Development, 2010.

[23] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken.
Statistical debugging: simultaneous identification of multiple bugs.
In Proceedings of the 23rd international conference on Machine
learning, 2006.

201200

