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Abstract The MPEG Reconfigurable Video Coding
(RVC) framework is a new standard under devel-
opment by MPEG that aims at providing a unified
high-level specification of current and future MPEG
video coding technologies using dataflow models. In
this framework, a decoder is built as a configuration of
video coding modules taken from the standard MPEG
toolbox library or proprietary libraries. The elements
of the library are specified by a textual description that
expresses the I/O behavior of each module and by a
reference software written using a subset of the CAL
Actor Language named RVC-CAL. A decoder config-
uration is written in an XML dialect by connecting a
set of CAL modules. Code generators are fundamental
supports that enable the direct transformation of a high
level specification to efficient hardware and software
implementations. This paper presents a synthesis tool
that from a CAL dataflow program generates C code
and an associated SystemC model. The generated code
is validated against the original CAL description sim-
ulated using the Open Dataflow environment. Exper-
imental results of the translation of two descriptions
of an MPEG-4 Simple Profile decoder with different
granularities are shown and discussed.
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1 Introduction

Processor frequencies no longer double every two years
as predicted by Moore’s law. Multicore architectures
are now being proposed so that computational power
keeps increasing. The main issue of this approach is
that standard programming languages (C, C++, . . . ) are
sequential and not suitable for parallel multicore archi-
tectures. The dataflow programming concept consists of
describing an application with a directed graph where
edges represent the flow of data between operations.
Dataflow programming highlights the potential paral-
lelism of the application, which can be used to distribute
calculations over available cores.

MPEG is currently working on the development of
the RVC standard. The key concept behind this project
is to describe decoders using dataflow graphs: RVC
provides a high-level description of the MPEG stan-
dard written in a specific language called RVC-CAL.
Appropriate tools must implement the design flow and
provide the optimization steps necessary for efficient
implementations. Uniprocessor software code genera-
tion must be addressed before considering more com-
plex implementations (multicore or hardware/software
co-design). This paper presents a non-normative (in
terms of relation with the RVC standard) software code
generator called Cal2C that from a dataflow program
generates C code and an associated SystemC model.
We show that the algorithm described with RVC-CAL



J Sign Process Syst

can be automatically transformed, compiled and exe-
cuted efficiently on a uniprocessor system.

The paper is organized as follows: Section 2 presents
dataflow programming within the RVC-CAL environ-
ment. Section 3 describes the Cal2C software code
generator. Results obtained with Cal2C are shown in
Section 4. Section 5 outlines perspectives of future
work, while we conclude in Section 6.

2 Dataflow Programming for RVC

RVC aims at providing a system-level specification for
existing and future MPEG standards [11]. In RVC, an
abstract video decoder is built as a block diagram in
which blocks define processing entities, indifferently
called actors or Functional Units (FUs), and connec-
tions represent the data flow between actors. RVC
provides both a normative standard library of FUs
described with the RVC-CAL language, and a set of
decoder descriptions expressed as networks of FUs
using the FU Network Language (FNL).

RVC-CAL is a subset of the CAL Actor Language
(CAL) described by the RVC standard. It restricts the
datatypes, operators, and features that can be used
when describing an FU. CAL [3] is an actor-oriented
language created as part of the Ptolemy project [2],
a Java framework that supports heterogeneous mod-
eling, simulation, and design of concurrent dataflow
systems made of actors.

FNL is an XML dialect with which networks can be
described. FNL is based on a format used in the Open
Dataflow environment1 and standardized by MPEG.
FNL supports local variable declarations, instantiation
of blocks with parameters, and hierarchy: Blocks can
be FUs or networks. Contrarily to other languages
supported by OpenDF, FNL cannot create networks
programmatically (e.g. with for loops).

2.1 RVC-CAL Language

An RVC-CAL actor is a modular component that en-
capsulates its own state. It can neither access nor modify
the state of any other actor. An actor performs com-
putation as a sequence of atomic steps called firings.
During a firing, computation is done by one action,
chosen among the several actions an actor may have.
An action defines the amount of tokens consumed on
the input, may change the actor state, and may output
tokens using a function of inputs tokens and actor state.

1OpenDF is available on http://opendf.sf.net.

Figure 1 shows an actor A that makes use of both
functional and imperative features of RVC-CAL to
extract red, green, blue components and luminance
out of a pixel where colors are packed together. The
actor has a parameter COMPUTE_Y that states whether
luminance should be computed, and several constants
that contains the masks and shift offsets for the dif-
ferent components. Actor A’s single anonymous action
requires COUNT tokens on the PIX input port to fire.

The body of an action is the same as a proce-
dure’s body in most imperative programming lan-
guages. Variables may be declared and initialized
before any statement. Statements may be conditionals
(if/then/else), loops (for/while), calls to functions
and procedures, and assignments to local and state
variables, either scalar or array. The language is strictly
structured, in the sense that gotos are not allowed.
Similarly it is not possible to break, to continue or to
return a value. Needless to say, an actor cannot exit
either.

RVC-CAL also borrows from functional program-
ming. For instance pure (side-effect free) functions are
distinct from imperative procedures. The expressions
that can be written in conditions and in the right-

Figure 1 A sample actor showing both RVC-CAL programming
styles.

http://opendf.sf.net
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hand side of assignments resemble what is found in
functional languages. They include if/then/else con-
ditional expressions as well as generators. A generator
is a kind of inline for loop that creates a list whose
members are described by an expression.

The differences that are most significant between
CAL and RVC-CAL are: (1) RVC-CAL supports only
six types, which are divided into four primitive types
(bool, float, int, uint) and two extended types (List,
String) (2) all variables must be typed, this means that
integers, signed or not, must have a size, and lists must
be declared with the type of their elements and their
maximum size (3) type parameters (called generics in
Java or templates in C++) such as T in actor A [T]
must not be used in type expressions such as List[T]
(4) advanced features of CAL are prohibited, such as
channel selectors and multi-ports, or lambda-functions.

For instance CAL allows developers to use λ-
expressions. An example of a λ-expression is f (x, y) =
x + y, where f can be evaluated partially: We can write
g = f (5), which is equivalent to declare g(y) = 5 + y.
Compilers for languages that support λ-expressions
must use closures made of the code of the expression
and a set of variables and their values at the time
the closure is created. Hardware synthesis of programs
written in a functional language is easier if the language
is restricted, especially if closures are forbidden [4].
Indeed, closures require dynamic memory allocation
in the general case, something which is trivial in a
software environment but requires a heavy machinery
with hardware [15].

2.2 Semantics

In this document, we use the following conventions: a
designates an action and the set of all actions inside an
actor is written A. In the actor A of Fig. 2, A equals to
the set {a.x, a.y, b, c}.

Actions may be tagged. A tag is a non-empty list of
identifiers separated by colons. The tag of an action a is
written ta. |ta| denotes the length of ta. The empty tag ε

verifies |ε| = 0. The set of non-empty tags of an actor is
denoted T. There is a prefix relation, noted �, between
tags: t � t′ means that t is a prefix of t′. For instance with
tags a and a.x from actor A shown in Fig. 2, we have
a � a.x and a � a. A set of actions that start with the
same tag as an action a is described as follows:

t̂a = {ax ∈ A| ta � tax} (1)

An action may have firing conditions, called guards,
where the action firing depends on the values of input
tokens or the current state. When an actor fires, an
action has to be selected based on the number and

Figure 2 A sample actor showing action-level control structures.

values of tokens available and whether the guard is
true. Action selection may be further constrained using
a Finite State Machine (FSM), to select actions accord-
ing to the current state, and priority inequalities, to
impose a partial order among action tags. An FSM
is defined by the triple (S, s0, δ) where S is the set
of states, s0 ∈ S is the initial state, and δ is the state-
transition function: δ : S × T → S. Note that a state
transition allows a set of actions obtained with t̂ from
equation 1 to be fireable. Priorities have the form t1 >

t2. These inequalities induce a binary relation on the
actions as follows:

a1 > a2 ⇔ ∃ t1, t2 : t1 > t2 ∧ a1 ∈ t̂1 ∧ a2 ∈ t̂2

∨ ∃ a3 : a1 > a3 ∧ a3 > a2 (2)

FNL and RVC-CAL are expressive enough to create
dataflow programs that follow a variety of computation
models which differ by the trade-off they offer between
expressive power and analyzability [2]. A network can
be executed with the Synchronous Dataflow (SDF)
model [9] if all actions inside an actor have the same
token rates and at least one action may fire when actor
is executed.

An important property of the SDF model is that
liveness and boundedness can be decided at compile-
time. Actors can be scheduled statically at compile-time
and the memory requirement may be fixed a priori.

If actors contain state- and/or data-dependent fir-
ing conditions (called dynamic actors for short), then
Dataflow Process Networks (DPN) [10] must be used.
A DPN contains actors that communicate with each
other using unidirectional FIFOs, where reads are
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blocking and writes are non-blocking. Contrarily to
Kahn processes [7], actors may test an input for the
absence of data. DPNs must be scheduled dynamically,
hence actors are scheduled at runtime by an actor
scheduler.

Each time an actor is scheduled, if the input tokens
available and the actor state allow it, an action is fired.
Testing an action’s fireability is done by an action
scheduler according to Algorithm 1, which is a refor-
mulation of the conditions to fire an action as described
in the CAL Language Report [3].

Algorithm 1 selects an action as follows. If the actor
has a Finite State Machine (FSM), the set of eligible
actions at runtime is found by Algorithm 2, otherwise
the set equals A. The subset of eligible actions for
which the is_activable(a) function is true form the
activated set. This function returns true if there are
enough tokens to execute action a and the guard of
action a evaluates to true. The set of fireable actions is
computed by Algorithm 3 as the set of activated actions
with a priority greater or equal to the priority of all
other actions. Finally, the action selected to fire is any
fireable action.

Algorithm 1 Action Scheduler

Algorithm 2 founds the set of eligible actions. This
set contains the actions that can be fired according
to the FSM and the current state, in addition to all
anonymous actions. This allows high priority anony-
mous actions to run outside an FSM whenever needed
and can be used when one wishes to execute a given
action from different states without changing state and
without writing transitions.

Algorithm 2 select_eligible

With proper data structures, the set of transitions
is computed by select_eligible in O(1), and if the sub-
sets a ∈ t̂ have been pre-computed at compile-time the
eligible actions are found in O(n) on the order of
transitions.

Algorithm 3 determines the set of fireable actions at
runtime in a time O(n2) on the order of activated.

Algorithm 3 select_fireable

2.3 Motivations and Issues for Software Code
Generation

The main motivation for a software code generator
for RVC-CAL was that there did not exist one even
though it is necessary for successful development with
the language. Cal2HDL [6] is able to generate high-
speed VHDL from CAL, but this is far from an ideal
solution for two reasons. On the one hand synthesis
time is too long when developing an application. Sim-
ulation is an answer, but it runs very slowly, which
increases development time. A software code generator
is somewhere in-between by generating reasonably fast
code in a reasonable amount of time. On the other
hand the VHDL language is used as a description
language for programmable logic such as FPGAs, and
FPGAs are typically used as coprocessors to speed up
repetitive computations. A software code generator is
thus also necessary to obtain the software part of mixed
hardware/software programs from RVC-CAL.

Translating actors and networks to software raises a
number of issues. Contrarily to hardware code genera-
tion, having one thread per action in a software code
is not efficient. FPGAs can execute several pieces of
code in a truly parallel manner. Multi-core processors
also provide true parallelism to a lesser extent, but it
comes at a far higher cost because of the necessary
synchronizations between cores. To lower the impact
of this cost the pieces of code executed at the same time
must be large enough, yet data dependencies limit the
amount of available parallelism.

3 Cal2C Software Code Generator

Cal2C is open-source software under a BSD-like li-
cense programmed in Objective Caml, a functional ML-
like language. Cal2C takes as input CAL actors and
FNL networks and generates one C file per actor and
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a single C/C++ file from all the networks. We chose
to use C as the target language for our software code
generator because this language has become universal
for software development and as a consequence there
are libraries and compilers available for almost every
platform. Figure 3 presents an overview of the process
detailed in the following sections.

A hierarchical network composed of several net-
works and actors is flattened, and transformed to a
C/C++ actor scheduler (Section 3.1). Each CAL actor
is parsed to an abstract representation called Abstract
Syntax Tree (AST), which is transformed by instan-
tiation using parameters from the flat network, and
translated to C (Section 3.2). The structure of the code
generated is discussed in Section 3.3.

3.1 FNL Code Generation

Flattening an FNL network facilitates the actor code
generation. Actors instances are renamed to ensure
they have unique names, and actors are closed, which
means their parameters are replaced by constant val-
ues. This has three consequences: (1) there can be a
direct mapping between an actor instance and a C file
generated, (2) the state variables of an actor can simply
become global variables, (3) the generated code is more
efficient because all uses of a parameter can be replaced
by its value.

On the contrary, dealing with a hierarchical network
is more complicated. Parameters have to be carried
all the way through the hierarchy. The state of actors
must be dynamically allocated each time an actor is
instantiated, and given as a parameter to every action
of the actor. The code that would be generated for

Ai AST AST AST actions

action
scheduler

N1

. . . flatten Nf AST
actor

scheduler

Nn

Actor code generation

i ∈ [1 m]

parse instantiate transform

FNL code generation

parameterize

C file

C/C++ file

Cal2C Generated
files

..

Figure 3 Code generation for m actors and n networks.

a given network would be cleaner however, because
there would be less code and it would be more struc-
tured. We deliberately chose to have a more efficient
and cleaner code in actors at the expense of the network
generated code’s quality.

The flat network is used to automatically create an
actor scheduler written in SystemC [5], a uniproces-
sor simulation framework. We chose SystemC because
it provides us with a user-level scheduler, threads,
FIFOs, and a model that closely matches ours: An
actor becomes a SC_MODULE, input and output ports
sc_ports, connections sc_fifos. A restriction of
SystemC compared to FNL networks is that broadcast
(multiple connections from a single output port to sev-
eral input ports) is not supported, so special “broad-
cast” actors are inserted.

The actor scheduler implements Dataflow Process
Networks (DPN) semantics on top of the SystemC
model. sc_fifos cannot peek data, so it is necessary to
add a buffer per FIFO to store the tokens peeked. Also,
sc_fifos have blocking reads and writes while the
DPN model has non-blocking writes. Therefore, after
an action is found to be fireable, the action scheduler
must test whether there is enough room to store the
tokens the action will produce. Note that contrarily to
RVC-CAL, unrestricted CAL does not make it possi-
ble to know in advance the number of tokens that may
be produced by an action. Lack of room in output ports
means that writing would block, which is not allowed
by DPN semantics. The action scheduler thus simply
indicates that the actor cannot fire and that it must
wait. At this point, SystemC’s scheduler suspends the
actor, and attempts to fire another one picked from the
list of currently sleeping actors.

SystemC sc_fifos admit a maximum size that must
be specified at compile-time. FIFOs should be big
enough for the network to be executed without artifi-
cially deadlocking, which occurs when an actor cannot
write to a FIFO and no other actor can be fired to con-
sume tokens from the same FIFO. With this in mind,
choosing too big a size for every FIFO in the network
will induce high latency and low average throughput
with the current actor scheduler implementation. The
user can use a default size for all FIFOs and fine-tune
some particular FIFOs if necessary.

The action scheduler of each actor needs to check
the presence and values of tokens on its input ports, get
tokens from its input ports, and put tokens on its output
ports. All these operations are dependent of the API
that is used by the actor scheduler. To keep the actor
code generic and actor scheduler-agnostic, actor sched-
uler and action scheduler exchange data through a set
of well-defined functions. These functions are declared
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in the action scheduler and defined (implemented) by
the actor scheduler. The functions have the following
signatures:

– int hasTokens_Ai_pj(int n) returns 1 if the input
port pj of actor Ai has at least n tokens present and
0 otherwise.

– void peek_Ai_pj(int n, T[] tokens) peeks n tokens
from the port pj of actor Ai and puts them into
tokens.

– void read_Ai_pj(int n, T[] tokens) reads n tokens
from the port pj of actor Ai and puts them into
tokens.

– int hasRoom_Ai_pj(int n) returns 1 if the output
port pj of actor Ai has room for at least n tokens
and 0 otherwise.

– void write_Ai_pj(int n, T[] tokens) writes n
tokens to the port pj of actor Ai.

Note that the functions hasTokens, peek_Ai_pj,
and read_Ai_pj must use a “snapshot” of the tokens
available on all input ports of actor Ai at a time t
because the firability of all actions shall be evaluated
in the exact same conditions. This is the case with
our implementation of DPN using SystemC because
we allow the scheduler to switch to another actor only
when the so-called actor cannot fire. This guarantees
that the state of FIFOs will not change while an action
scheduler examines them.

3.2 Actor Code Generation

The first stage of the compilation process is to parse
each CAL actor to an Abstract Syntax Tree (AST). To
this end we used a LL(k) parser bundled with OCaml
called Camlp4. The grammar parsed is embedded in the
code where a Syntax Directed Translation generates
a node for each grammar rule or group of rules. For
instance a simplified version of the AST generated for
the CAL statement x := if a > b then a else
b end is shown in Fig. 4.

After parsing the AST is modified when the ac-
tor is instantiated. Instantiation closes the actor i.e.
it removes its parameters and replaces them by local

Figure 4 AST of x := if
a > b then a else b
end.

StmtAssignVar

ExprIf

ExprBOp

ExprVar BOpGT ExprVar

variable declarations whose values are specified in the
parent network.

The next step is a series of transformations to the
AST. The first one is type checking. It begins by anno-
tating every expression in the AST with the type found
according to the inference rules of the type system. An
inference rule has the general form:

Γ 
 P
Γ 
 expr : t

(3)

It is read as follows: under the assumptions about the
types of the variables in Γ , if the premises P are true,
then the expression expr is well-typed and has type t.
If an expression cannot be typed it is invalid according
to the type system and it is not possible to generate
code for the actor. If all expressions are well-typed,
Cal2C checks that expressions assigned to variables
have types that are compatible with the types of the so-
called variables. If this is not the case, then compilation
stops.

Once the AST is proven to be correctly typed, we
apply a constant propagation algorithm. Such an algo-
rithm is able to find values that are constant for all
executions and propagate them through the program.
Constant propagation is necessary to ensure a success-
ful compilation of the C code. Variables of an actor can
be initialized from the initial value of other variables of
the actor, especially the variables initialized from para-
meters that are also variable declarations at this stage.
Actor variables are translated to C global declarations,
but in C global declarations cannot reference other
global variables, even if they are constant. Propagating
those constants solves the problem.

The last transformation converts the typed CAL
AST to an Intermediate Representation closer to C. To
our knowledge, CIL [12] (C Intermediate Language)
is the framework that is best-suited for our purpose
because it has a robust Intermediate Representation
and the code it generates is a lot more readable than
what SUIF [16] or LLVM [8] can generate. Before
converting CAL to CIL names of variables, actions,
etc. must be altered to be valid C identifiers. Some
characters that are allowed in CAL identifiers but not
in C (for instance ‘.’ or ‘$’) must be replaced. After that,
Cal2C transforms CAL functional expressions into CIL
imperative constructs: ifs for if-then-else expressions,
for loops for list generators. In the process tempo-
rary variables are created to hold temporary results
in compound expressions. Figure 5 presents the CIL
representation obtained from the CAL AST shown in
Fig. 4. C code is obtained by calling the pretty-printer
of the CIL API on the CIL tree.
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Figure 5 CIL AST obtained from the CAL AST of Fig. 4.

3.3 Structure of the Code Generated for an Actor

As shown in Fig. 3 the code generated for actions is
separated from the code generated for the action sched-
uler. Each action becomes a functionally equivalent
C function, and the action scheduler is implemented
in yet another function. The rationale for separating
actions from the action scheduler is two-folded: (1) the
generated code is smaller than if the code for actions
were generated inside the action scheduler, because
actions may be referenced several times in a Finite
State Machine (2) the generated code is easier to read
because it has a structure similar to the original CAL
code. Additionally, this does not impact performance
because an optimizing compiler will automatically
inline small-enough functions.

Figure 6 shows how the a.x action of actor A de-
tailed in Fig. 2 is translated to C. The function wears
a name deduced from the CAL name with respect to
the rules defined in Section 3.2, i.e. the dot in a.x is
replaced with an underscore. The function starts by
reading tokens from the ports it uses, and puts them
into local arrays. The function then executes the C
equivalent of the CAL action body and finally writes
tokens to output ports.

The action scheduler for an actor A is a function
A_scheduler() called every time an actor fires. This
function is an implementation of Algorithm 1 described

Figure 6 Action a.x
translated to a functionally-
equivalent C function.

void a_x ( )
{

unsigned s h o rt I1 [ 2 ] ;
unsigned char I2 [ 5 ] ;
i n t O[ 8 ] ;

read_A_I1 ( 2 , I 1 ) ;
read_A_I2 ( 5 , I 2 ) ;

. . .

write_A_O ( 8 , I 2 ) ;
}

in Section 2.2 that selects a fireable action if input to-
kens and actor state allow it. Because action scheduler
functions are virtually called all the time during the
execution of a network, it is crucial they be as fast as
possible.

The following describes how to generate optimal
code to compute the different steps of Algorithm 1.
The implementation of select_eligible(A) is detailed in
Section 3.5. This function selects the actions eligible
according to the current FSM, or every action if the
actor has no FSM. is_activable(a) is translated to C
conditions that are evaluated at runtime each time the
action scheduler is run, and are true if (1) there are
enough tokens to execute action a and (2) the guard
of action a evaluates to true. Testing the number and
values of tokens on port j of actor i is done by calling
the functions from the actor scheduler presented in
Section 3.1, hasTokens_Ai_pj and peek_Ai_pj. The
last step is finding the fireable actions, i.e. the actions in
activated with the highest priority. This is done by the
select_fireable function described in Section 3.4.

3.4 Computing Select_Fireable at Compile-Time

Computing the set of fireable actions can be done in the
generated code with if-then-else statements by sorting
actions by priority at compile time. To this end a total
order of priorities is obtained from the partial order
priority relations by topologically sorting a Directed
Acyclic Graph (DAG) created by Algorithm 4.

Algorithm 4 Creating a DAG from priorities

Algorithm 4 works on a directed graph G = (V, E)

where V ⊆ T is the set of vertices and E ⊆ V2 is the
set of edges. A vertex is a tag involved in a priority
relation. An edge from source to target is equivalent
to the priority relation source > target. The graph G
is initially filled from the priority relations. The second
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b a c

a • x a •y

(a) initial graph

b a c

a • x a •y

(b) final graph

Figure 7 From a sparsely-connected priority graph to a DAG
(a, b).

for loop iterates over each tag ta′ present in the graph.
If there exists in the graph a tag ta that is the longest
strict prefix of ta′ , the algorithm adds edges between the
predecessors of ta and the tag ta′ and between the tag ta′

and the successors of ta.
Figure 7 presents the initial graph created from the

priorities of the sample actor given in Fig. 2 after
the first step of Algorithm 4 and the final graph after
the second step of the algorithm. The final graph is
sorted by topological order that gives a total order from
the priorities that were stated: [b ; a.x; a.y; c]. Since the
actor does not define any relations between a and a.x
or a and a.y, the topological order of the graph will
yield either [b ; a; a.x; a.y; c] or [b ; a.x; a; a.y; c]. In the
present example this is not relevant because there is
no action a. If there was one however, this would lead
to non-deterministic behavior, in which case the code
generator or simulator is free to choose whether to test
a before a.x. In our case the choice is made by the
underlying graph library ocamlgraph [1], using a lexical
order over vertices with the same topological rank.

3.5 Computing Select_Eligible at Compile-Time

By transforming select_eligible into adequate C code,
the set of eligible actions is computed in O(1).

In the translation of an FSM (S, s0, δ), the set of
states S becomes a C enum filled with the states.
State names are modified to provide valid C identi-
fiers. Cal2C creates a switch statements with as many
cases as there are states; they are labeled with cre-
ated identifiers. The current state is available through
an integer variable named state whose range is the
enum.state is initialized to the initial state s0.

swi t ch ( s t a t e ) {
case s0 :

i f ( i s _ a c t i v a b l e _ A _ b ( ) ) {
A_b ( ) ;
s t a t e = s0 ;

} e l s e i f ( i s _ a c t i v a b l e _ A _ a _ x ( ) ) {
A _a_x ( ) ;
s t a t e = s1 ;

} e l s e i f ( i s _ a c t i v a b l e _ A _ a _ y ( ) ) {
A _a_y ( ) ;
s t a t e = s1 ;

}
break ;

case s1 :
i f ( i s _ a c t i v a b l e _ A _ c ( ) ) {

A_c ( ) ;
s t a t e = s0 ;

}
}

Figure 8 FSM of Fig. 2 translated to C.

Each triple (s f , tai , st) of the state transition function
δ is transformed as follows. Inside the case sf , the set
of eligible actions is defined as

eligible =
n⋃

i=1

t̂ai (4)

As explained in Section 3.4, actions of eligible are
sorted by priority and translated to if-then-else state-
ments. The state-transition is done by an assignment
state = st; added at the end of each then branch.
As an example, the translation of the FSM of the actor
of Fig. 2 is presented on Fig. 8.

4 Case Study: Two MPEG-4 SP Decoders

Cal2C is able to successfully translate two different
MPEG-4 Simple Profile decoder descriptions. These
decoders differ both from the topology of the network
and from the granularity of actors. The first decoder
D1 contains 54 actors that come from the Video Tool
Library, the normative FU database [14]. Y, Cb and Cr
components are decoded separately, exposing coarse
grain parallelism in the network. Similarly actors ex-
pose only coarse-grain parallelism. For instance, the
Inverse Discrete Cosine Transform (IDCT) is imple-
mented with a single actor that performs the IDCT
using an 8-point based sequential algorithm in a single
action.

The second decoder D2 is a proprietary decoder
from Xilinx, available in the OpenDF project [6]. Being
targeted at hardware it emphasizes fine-grain paral-
lelism and pipelining. It decodes Y, Cb and Cr compo-
nents serially, and its IDCT is a network that performs
computations at pixel level. This decoder totals up 32
actors.
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Table 1 Runtime of MPEG-4 SP decoder’s descriptions.

Decoder Throughput
OpenDF Cal2C Cal2HDL

D1 20 4318 –
D2 16 3614 290000

The video sequence used in the experiment is “Fore-
man” with 300 frames, 176 × 144 (QCIF), IPPP mode,
encoded at 30 fps. These experiments were run on an
Intel E8500 Core2Duo processor at 3.2 GHz. Only one
of the cores was used by generated software because
of SystemC. The throughputs of the two descriptions
are expressed in macroblocks per second and compared
in Table 1. The first column gives the throughput of
the CAL model simulated using the Open Dataflow
runtime environment. The second column gives the
throughput of the binary programs compiled from the
code generated by Cal2C using Microsoft Visual Stu-
dio 2008 with maximal optimizations. The third col-
umn gives the throughput of the circuit synthesized
from Cal2HDL on a Xilinx Virtex-2 (this result comes
from [6]).

The fidelity of the generated code can be tested in
two ways. The first one is a general method that allows
a single actor to be tested. In the simulator, tokens
read and written by an actor A to test are recorded
in separate files, say fin and fout. The designer then
generates code for a simple network that contains three
actors, a source actor that produces tokens read from
fin, the A actor, and a sink actor that compares tokens
produced by A against tokens in fout. The second way
of testing the fidelity of the generated code for a whole
decoder is to match decoded macroblocks against a
reference YUV file.

Results show that not only is Cal2C robust enough
to successfully generate code for both decoders, but it
also generates code that decodes the sample QCIF se-
quence at 30 fps in both cases. Results also indicate that
the code generated from coarse grain actors performs
better than code generated from fine grain actors. This
is due to the fact that in our current implementation
an actor performs computation in its own thread, which
means the coarser the actor the more work it will do
without triggering a context switch.

5 Perspectives

As said in Section 3.1, SystemC is a good choice for
easily implementing DPNs, but it is far from an ideal
solution. Each actor, or SC_MODULE, is executed in its
own thread. Each time an actor must wait, several

context switches occur because the SystemC scheduler
does not take the dataflow nature of the model into ac-
count, and schedules any sleeping actor even if it could
clearly not fire (e.g. no data on its input ports). When
networks contain tens of threads (like the decoders we
tested), those context switches adds a visible overhead.
Another limitation of SystemC is that FIFOs can be
read from/written to only one token at a time by calling
read/write functions, which is a double source of over-
head. The cost of calling a function only to load/store
an integer is not negligible, and neither are the memory
copies between SystemC FIFOs and peekable buffers.

We believe that it is necessary to implement our own
user-level scheduler. A decent DPN scheduler should
have the three following characteristics: (1) no use of
threads, (2) specific to the network it is generated for,
(3) direct access to peekable FIFOs via pointers.

The DPN model was chosen to be as general as pos-
sible. Indeed, our initial goal was to create a compiler
that translated any actor that could be written with the
RVC-CAL language. The selected computation model
considers all actors as dynamic and schedules them
at runtime. This overhead may be reduced by using
restricted dataflow computation models when possible,
such as the SDF model. Even though a network may
not be statically schedulable as a whole, regions of the
network may be. The SDF model allows for compile-
time analysis, making it possible to statically schedule
such regions at compile-time with bounded memory.
The scheduler is turned into a simple sequencer that
executes periodically actors in a predefined order in-
side a single thread. We plan to implement analysis
techniques in Cal2C that would detect such statically
schedulable regions, which may improve significantly
the efficiency of the compiled program.

As a matter of fact, the SDF model also has advan-
tages for scheduling and code generation in the context
of multi-core targets. For instance, PREESM [13] is a
tool that schedules and maps actors at compile-time
over multicore targets and generate optimized distrib-
uted code (including communication and synchroniza-
tion between cores). Our final goal is to provide a com-
plete framework using Cal2C, PREESM and Cal2HDL
to generate efficient code for heterogeneous platforms
with multicores and programmable logic devices.

6 Conclusion

This paper presents a software code generator that
automatically translates dataflow programs written in
RVC-CAL to C and a SystemC model. We show how
to generate readable C code from the actions and
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action scheduler of actors, and define a clear interface
between the actor scheduler and the action schedulers.
Cal2C successfully translates two descriptions of an
MPEG-4 SP decoder. The results obtained so far show
the efficiency of the generated code considering it uses
a uniprocessor simulation framework. Perspectives are
given to improve the efficiency of the generated code.

Another contribution is that the results presented
here show that a network of RVC-CAL FUs provided
by the MPEG group can be translated automatically
into an efficient software implementation. This specifi-
cation can also be translated into RTL code targeting
FPGAs leading to smaller and faster design than a
handmade VHDL reference design [6]. In our opin-
ion, RVC-CAL is a high-level language well suited for
functional description and for fast prototyping meth-
ods that aim to provide hardware/software optimized
implementations.
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