
Software Configuration Management :  
A Roadmap 

 
Jacky Estublier 

Dassault Systèmes / LSR, Grenoble University 
Bat C, BP 53 

38041 Grenoble 9 France 
Jacky.Estublier@imag.fr 

 
 

ABSTRACT 
This paper, in the first chapter summarizes the state of the 
art in SCM, showing the evolution along the last 25 years. 
Chapter 2 shows the current issues and current research 
work under way in the area. In chapter 3, the challenges 
SCM has to take up, as well as  SCM future research are 
discussed. 

Keywords 
Software configuration management, Version control, 
process support, concurrent engineering, federation, 
interoperability, architecture. 

1 WHAT IS SCM? 
Current definition would say that SCM is the control of the 
evolution of complex systems. More pragmatically, it is the 
discipline that enable us to keep evolving software products 
under control, and thus contributes to satisfying quality and 
delay constraints. 

SCM emerged as a discipline soon after the so called 
« software crisis » was identified, i.e. when it was 
understood that programming does not cover everything in 
Software Engineering (SE), and that other issues were 
hampering SE development, like architecture, building, 
evolution and so on. 

SCM emerged, during the late 70s and early 80s, as an 
attempt to address some of these issues; this is why there is 
no clear boundary to SCM topic coverage. In the early 80s 
SCM focussed in programming in the large (versioning, 
rebuilding, composition), in the 90s in programming in the 
many (process support, concurrent engineering), late 90s in 
programming in the wide (web remote engineering). 
Currently, a typical SCM system tries to provide services in 
the following areas: 

Managing a repository of components. There is a need 
for storing the different components of a software product 
and all their versions safely. This topic includes version 
management, product modeling and complex object 
management. 
 
 
 
 
 

Help engineers in their usual activities. SE involves 
applying tools to objects (files). SCM products try to 
provide engineers with the right objects, in the right 
location. This is often referred as workspace control. 
Compilation and derived object control is a major issue. 

Process control and support. Later (end 80s), it became 
clear that a, if not the, major issue is related to people. 
Traditionally, change control is an integral part of an SCM 
product; currently the tendency is to extend process support 
capability beyond these aspects. 

Short History 
In the 80s, the first systems were built in house and 
focussed closely on file control. Most of them were built as 
a set of Unix scripts over RCS (a simple version control 
tool) and Make (for derived object control). 

From this period we can mention DSEE [31], the only 
serious commercial product, which introduced the system 
model concept which was an Architecture Description 
Language ancestor; NSE [36] which introduced workspace 
and cooperative work control; Adele which introduced a 
specialized product model with automatic configuration 
building [15], and Aides de Camp (now TRUE software) 
which introduced the change set (see later). 

The first real SCM products appeared in the early 90s. 
These systems are much better. They often use a relational 
database but still rely on file control, they provide 
workspace support, but no or built-in process support. This 
generation included Clear Case [32] (DSEE successor) 
which introduced the virtual file system and Continuus 
[5][12] which introduced, with Adele, explicit process 
support [20]. Continuus and Clear Case are currently the 
market leaders. 

In the second half of the 90s, process support was added 
and most products matured. This period saw the 
consecration of SCM, as a mature, reliable and essential 
technology for successful software development; the SCM 
market was over $1 billion sales in 1998. Many observers 
consider SCM as one of the very few Software Engineering 
successes. 

Component Repository 
Most SCM products are based on a tiny core of concepts 
and mechanisms. Here is a summary of these concepts. 



Versioning 
In the early 70s, the first version control system appeared 
[35]. The idea is simple: each time a file is changed a 
revision is created. A file thus evolves as a succession of 
revisions, usually referred to by successive numbers (foo.1, 
foo.2 .). Then from any revision, a new line of change can 
be created, leading to a revision tree. Each line is called a 
branch (the branch issued from foo.2 is called foo.2.1, 
foo.2.2…). 

At the same time, 3 services were provided: History, delta, 
multi user management and a bit later, merging facilities. 
History simply records when and who created a revision 
along with a comment.  

Deltas were provided because two successive revisions are 
often very similar (98% similar in average)[22]. The idea is 
to store only differences (the 2% that are different). Of 
course, it vastly reduces the amount of required memory.  

Multi-user management consists in preventing  concurrent 
changes from overlapping each other. A user who wants to 
change a file creates a copy and sets a lock on that file 
(check-out); only that user can create a new revision for 
that file (check-in).  

Despite the fact that all this is 25 years old, it is still the 
base of the vast majority of today SCM systems. 

Product Model 
From the beginning, the focus was on file control. It is no 
surprise to see that, even today, the data model proposed by 
most vendors resemble a file system, plus a few attributes, 
often predefined. This is archaic and contrasts with today’s 
data modeling.  

Composition 
A configuration is often defined as a set of files, which 
together constitute a valid software product. The question is 
twofold: (1) what is the real nature of a configuration, and 
(2) how to build it, prove its properties and so on. 

Surprisingly, in most systems, a configuration is not an 
object, but “something” special. It is a consequence of a 
weak data model in which complex objects and explicit 
relationships are not available. 

The traditional way to build a configuration is by changing 
an existing one. No correctness criteria are available. 

In the change-set approach, a change, even it involves 
many files, receives a logical name (like “FixBug243”). 
Later on, a configuration can be produced as a set of 
change-sets to add or remove from a base configuration 
(like “C2 = C1 + FixBug243 – Extention2”), C1 being  the 
base configuration and C2 the new one [23]. In the Adele 
system, a configuration is built interpreting a semantic 
description which looks like a query: the system is in 
charge of finding the needed components based on their 
attributes and their dependencies [16].  

None of these approaches is available in the vast majority 
of today’s systems [9]. 

Engineers Support 
Practitioners rejected the early systems because they were 
helping the configuration manager, and bothering 
everybody else. A major move toward acceptance was to 
consider the software programmer as a major target 
customer: helping him/her in the usual SE activity became 
a basic service. 

Building and Rebuilding 
The aim of rebuilding is to reduce compilation time after a 
change, i.e. to recompile, automatically, only what is 
needed. Make [24] is the ancestor of a large family of 
systems based on the knowledge of “dependencies” 
between files, and their last modification date. Make 
proved to be extremely successful and versatile, but 
difficult to use and inadequate in many respects.  All 
attempts to do substantially better have so far failed. Most 
systems “only” generate the makefiles. 

Workspace Support 
A workspace is simply a part of a file system where the 
files of interest (w.r.t. a given task like debug, develop etc) 
are located. The workspace acts as a sphere where the 
programmer can work, isolated from the outside world, for 
the task duration. The SCM system is responsible for 
providing the right files (often a configuration), in the right 
file system, to let users work (almost) independently, and to 
save the changes automatically when the job is done.  

It is this service that really convinced practitioners that 
SCM was there to help them. 

Cooperative Work Support 
A workspace is a support for concurrent engineering, since 
many concurrent workspaces may contain and change the 
same objects (files). Thus there is a need for (1) 
resynchronizing objects and (2) controlling concurrent 
work.  

Resynchronizing, so far, means merging source files. 
Mergers found in today tools simply compare (on a line by 
line basis) the two files to merge, and a file that is 
historically common to both (the common ancestor). If a 
line is present in a file but not in the common ancestor, it 
was added, and must be kept; if a line is present in the 
ancestor and not in the file, it was removed and must be 
removed. If changes occurred at different places, the 
merger is able to decide automatically what should be the 
merged file. This algorithm is simply a heuristic that 
provides in output a set of lines with absolutely no 
guaranties about correctness. Nevertheless mergers proved 
to work fine, to be very useful and became almost 
unavoidable. See a survey in [4]. 

Controlling concurrent work means defining who can 
perform a change, when, on which attribute of which 
object. It is one of the topics of process support that, 
currently, no tool really provides. 

Process Support 
Process support means (1) the “formal” definition of what 



is to be performed on what (a process model), and (2) the 
mechanisms to help/force reality to conform to this model. 

A State Transition Diagram (STD) describes, for a product 
type, the legal succession of states (and optionally which 
actions produce the transition), and thus describes the legal 
way to evolve for entities of that type. Since SCM aims to 
control software product evolution, it is no surprise many 
process models are based on STDs. It is a product-centered 
modeling. Indeed, experience shows that complex and fine-
grained process models can be define that way. 
Unfortunately, experience also shows that STDs do not 
provide a global view of a process, and that large processes 
are difficult to define using (only) STDs. 

The alternative way to model processes is the so-called 
activity centered modeling, in which the activity plays the 
central role, and models express the data and control flow 
between activities [34]. This kind of modeling is preferred 
if a global view is required, if a large process is to be 
structured, or if products are not the main concern. But this 
approach lacks precision for product control. Experience 
has demonstrated that both are needed, but integration is 
not easy and the few tools that intended to do so only 
propose 2 independent modeling [33]. High level process 
models mixing both are not currently available in 
commercial products, but have been experimented [20]. 

Current State of Practice, as Seen by Practitioners. 
At SCM9 (September 99 in Toulouse France), attendees 
was asked to write down an answer to the 2 following 
questions: In your experience, (1) what are the most useful 
features, (2) what are the worse aspects, the most critical 
missing feature. It is interesting to note that the answers 
were pretty much consistent, coming from persons from 
different countries, different companies and using different 
tools. The answers were the following: 

Most useful / appreciated features. Clearly the number 1 
was change control, activity control, and workspace 
support. Then comes, in differing order: Global view, 
traceability etc. 

Worse aspect, most missing feature. Clearly the number 1 
was: Better and more flexible process support, concurrent 
and distributed engineering support. Then comes: 
scalability, efficiency, incrementality, cross platform 
capability, PDM compatibility, interoperability etc. 

It is interesting to see that both the most appreciated and 
the most criticized feature concern process support. Almost 
no comments concerned the basic aspects of SCM, like 
versioning and merging. Practitioners think tools are good 
and stable enough but still lack efficiency, scalability and 
interoperability with the other SE tools. 

It is likely that, in the near future, the distinctive features 
between tools will be, functionally, their strength in process 

support, technically, their capability to grow with the 
company needs to inter-operate with other company tools 
and to support concurrent, distributed and remote 
engineering. 

2 CURRENT RESEARCH WORK 
We can consider that SCM has reached a level of maturity, 
sufficient at least for practitioners to feel the tool really 
helps. Nevertheless, progress is still needed, but the major 
research activity has substantially changed. The following 
is an assessment of current research activity. 

The work performed in SCM so far avoids being dependent 
on any programming languages and any semantic aspect of 
the software product. The strength of SCM comes from this 
attitude; strong and general tools were built relying only on 
trivial things like files, suffixes and lines of code. Many 
weaknesses of SCM come from the same: too little 
knowledge of the software product. The challenges in the 
future will be to increase SCM power, thus to increase the 
knowledge on the product, without having to pay too much 
(in complexity, efficiency, generality) for the knowledge of 
specific syntax (e.g. programming languages) and 
semantics.  

Component Repository 
Versioning 
It was for long a major research topic in SCM. It seems no 
longer to be the case. In the 80s the major issues have been 
solved [30], including change set approaches and unified 
versioning i.e. all entities, including configurations, are 
typed and versioned in the same way [16]. Later on, it was 
shown that classic versioning and the so-called change 
oriented versioning can be unified and are complementary 
[10], [43]. In the future, all SCM tools will propose both. 

The current trend is to make a clear separation between the 
mechanisms (the tree of branches and revisions for 
example) and the meaning of versions; the goal being to 
hide the low level mechanisms (branches and revisions). 
One of the strong points of the change set approach is that 
the user has no insight into the way versions are stored, 
he/she only knows the logical changes. Similarly, in Adele, 
3 kinds of versioning have been defined, historical, logical 
and cooperative; each with different characteristics, 
methods and behavior; but all implemented using 
(invisible) branches and revisions [17]. 

Still, the deep understanding of versioning is missing. Why 
are 2 objects versions of each other? At least they share 
something (but what), and at least they differ in some way 
(but which one?). The current answer is: they share a 
number of lines! A better answer to both questions is a 
prerequisite for a good version management. 

Data Model, Product Model 
The weakest aspect in current SCM tools is the data model 
they use (an attributed file system). In the 80s and 90s a 



number of works proposed interesting data models 
including O.O. entity relationship and versioning 
[2][3][17][26][30]. Unfortunately no major commercial 
database fit the needs, and building a specific DBMS does 
not seems reasonable, given the efficiency, scalability and 
reliability requirements. Building an advanced data model 
on top of a relational one (like Metaphase did [1]), which is 
flexible, efficient and easy to use is not simple, if possible 
at all. 

Among the issues still under consideration, is where 
versioning is to be located: below the data model [26], as 
part of the data model [17], or on top of the data model. Of 
course, using a commercial DBMS imposes the third 
“choice”. This is not the good solution. 

A weak data model is a major problem because it hampers 
the other aspects, most notably process support, to reach a 
satisfactory level. Without good knowledge of the system 
to be managed, and thus a good model, no advanced SCM 
is possible. 

The interaction between the database community and SCM 
was not sufficient to produce convenient DBMSs; and it is 
unlikely there will be a serious DBMS tailored for SCM 
purposes in the near future.  

Composition, System Models 
Despite the work done in the 80s that has shown the 
feasibility of advanced configuration construction using 
configuration description languages [16] and later on the 
work on advanced system model [27][38], current tools do 
not use these features. There is still an important area of 
research here, at least to produce systems where these ideas 
can be put into practice. 

A system model describes, at a high abstraction level, a 
software product in terms of its components and their 
relationships. A system model looks very much like an 
Architecture Description Language (ADL) [25], or a 
Configurable Distributed System (CDS) formalism. This 
analogy has been analyzed in [41] and has led to the 
following: 

 ADL SCM CDS 
Composition *** * ** 
Behavior *   

Consistency ** * * 
Building  *** * 
Versioning  *** * 
Selection  **  

 

In this table, we roughly assess the capabilities of three 
different streams of work, all related to modeling software 

systems. The basic concepts of a typical ADL are 
components, connectors and configurations. ADLs try to 
define some behavior and consistency constraints. ADLs 
have a static view of software, whereas CDSs have a 
dynamic view i.e. how the system evolves and reconfigures 
at execution. They concentrate on the description of how 
components can be dynamically instantiated and connected. 

Each category of system proposes software description 
formalisms; the number of dots (0 to 3) indicates the extent 
to which the formalism proposed is convenient for the 
description of each aspect. SCM systems are essentially 
good for building and versioning, while ADL focuses on 
composition and consistency, and CDS on dynamic 
composition.  

It is interesting to see that each kind of system focuses on 
different aspects, and none covers all the needs. The use of 
3 different languages for describing the “same” thing with 
substantial overlapping is a waste of energy and is highly 
error prone. Fundamental work is needed to define if a 
single language is enough or/and to define complementary 
and coordinated formalisms controlling in a clear way 
different aspects of a system (more likely). This is an 
essential research task that spans other major research areas 
in SE. 

Engineer Help 
Building 
The goal of a rebuilding system is first to minimize the 
number of recompilations after a change, second to propose 
a formalism describing the (compilation) dependencies, 
which is easy to use and maintain. In both respects Make is 
far from ideal. Many work has been done to propose a 
better system than Make. Currently over 30 different 
flavors of Make have been proposed and used, including 
Vmake, Imake, gnuMake and Odin [8][42]. Few original 
propositions have been made.  

Language dependent systems have been proposed (smart 
recompilation): knowing the change and the real 
dependencies, allows us to reduce the number of files to 
recompile. Unfortunately the time required by source code 
analysis is often larger than the time saved by avoiding a 
few files from being recompiled. Here again, the limit of 
what can be done without syntactic or semantic knowledge 
seems to have been reached, and source code analysis is too 
expensive with respect to the expected advantage (after all, 
the issue is to reduce rebuild time). 

The current solution is to generate the Makefiles based on 
the information the SCM tool has. It solves the issue related 
to formalism, not efficiency. There is a clear need to do 
better than Make; but it is a serious challenge. 

Workspace Support 
The current view of a workspace is rather simplistic: a set 
of files and directories. What practitioners require is much 



more: they want a given (version of) a complex object, at 
least a configuration, to be available for their tools, at a 
given location. 

Each SE tool requires “its” objects to be under a specific 
format. Most SE tools only know about files (editor, 
compilers), but a few require those files to be under 
specific names, directories and formats (many development 
environments) while others require objects to be in a 
DBMS under a given schema. 

What is required are objects (i.e. containing literals, object 
references and other objects) that can be represented under 
the required format and at the required location (computer).  

In current implementations, all workspaces are managed by 
a central DB, which limits scalability, impedes 
heterogeneity, and severely reduces efficiency and 
availability. We need truly distributed, heterogeneous and 
efficient workspaces, which means each workspace must be 
autonomous and rely on “its” own local store, not on a 
centralized SCM system [22]. 

Cooperative and Remote Work Support 
In SE, as well as in any engineering domain, the reduction 
of the product life cycle (a few months between releases), 
together with the increase in product complexity and team 
size have dramatically increased the pressure for more 
concurrent work; but concurrent work is poorly supported 
at present. The traditional locking schema has been 
replaced by file merging but not much more is available. 

There is a need to be able to define, at high level, the 
cooperation strategies, the work organization and 
coordination, the procedures by which somebody, at a 
given point is time, is able to ”see” an object, to change 
some of its attributes, not some others; to resynchronize 
with somebody, not somebody else and so on.  

Fundamentally, concurrent engineering relies on the 
capability to merge pieces of work done in a concurrent 
way on the same object. Merging objects is thus a central 
issue, but objects contain attributes; merging objects means 
merging their attributes. Some attributes have an exact 
merge (like composition), others approximate (like source 
code), and others not at all. Currently, only file merging for 
source code, using the trivial line based heuristic technique 
is available. Unfortunately, syntactic or semantic mergers, 
while available for a long time (early 80s), are too slow to 
be used, at least for programs [4]. May be web-based 
applications can develop and use XML / Html mergers. 
Anyway, current mergers only deal with source code, 
which is only one of the many object’s attributes; they are 
not object mergers. Object mergers, as available for a long 
time in Adele, will soon become a reality. 

These models and mechanisms must be able to model and 
control development strategies like “open source”, virtual 

enterprise, and remote teams as well as in house critical 
software. Technically they must cope with distributed and 
remote site, efficiency, availability and confidentiality. This 
is another challenge [22]. 

Process Support 
SCM is the only place where software process technology 
proved to be applicable and successful. For example, 
change control is a process that can be found in all tools; 
cooperative engineering is another specific process.  

Nevertheless, it is a domain where there is considerable 
room for improvement. STDs as well as triggers are clearly 
only a tiny part of the answer. Activity based approaches, 
alone, are not sufficient. Good integration between the 
different approaches is still needed. It is a challenge to have 
both high level model (for concurrent activity, versioning 
issues and so on) and efficient process engine for their 
execution. 

There is a need to define high level and specific formalisms 
in which the different aspects of SCM processes can be 
modeled, executed, tailored, measured, and enhanced. 
Today solutions are partial, low level, and often inadequate. 
Major research work is needed in this area. 

3 SCM CHALLENGES 
The presentation above, as well as most work in SCM 
research, has a major flaw. It considers SCM in isolation; 
SCM tools are too often monolithic and their capability to 
inter-operate is limited. During the last years, things have 
dramatically changed; SCM tools are one among a growing 
number of other tools and thus are challenged in a number 
of dimensions. 

Functional Challenges 
The first challenge is to address the issues raised above, 
namely to find or to put into production advanced concepts 
and mechanisms for 

• data model, with complex objects, explicit 
relationships, files, 

• versioning, homogeneous for all type of objects and 
relationship, 

• configuration control, with  automatic selection and 
consistency criteria, 

• rebuilding, multi-platform, efficient with high level 
formalism, 

• work spaces, distributed, scalable, heterogeneous and 
autonomous, 

• concurrent engineering with high level models and 
scalable solutions, 

• process control with multiple views, hybrid approaches 
and high level models. 

Efficiency, Scalability, Availability. 
All the above issues are by themselves challenging, but it is 



of critical importance to understand that a (the?) major 
limitation today is related to efficiency. Checking out a 
configuration, or labeling it, takes from minutes to hours, 
rebuilding takes from hours to days; dynamic selection or 
controlling concurrent engineering slows down 
substantially the work and so on. Computing time is an 
important overhead in software development, and 
practitioners do not accept to be slowed down any further. 

The real challenge is to find novel, powerful and elegant 
solutions that are highly efficient, available, reliable and 
scalable. In any of the above bullets, these characteristics 
must be given top priority.  

Data Management 
A large number of tools and environments manage a local 
data repository, sometimes versioned. Usual examples 
include a programming environment or 4GL tools. The 
difficulty is to find a way to make all these repositories 
inter-operable in order to avoid (too much) duplication and 
inconsistency.  The real challenge is to make compatible 
(enough) the many different definitions, formats and 
versioning approaches. We have known for a long time this 
is a tough issue. 

Process Management 
A growing number of tools include a process, in an explicit 
formalism or not; they are called Process Sensitive Systems 
(PSS). Today a large number of PSSs are present in 
industry, like planners, mail systems, GroupWare, 
workflow, project managers, business tools and so on. The 
data and concepts on which PSSs and an SCM system 
operate are roughly the same (task, time, resource, and 
data). From change control up to marketing strategies, the 
company processes are forming a continuum with large 
overlap between the processes managed by the different 
PSSs. Companies will require to cover the complete 
process spectrum, with minimum redundancy and 
overhead, but sill using the specialized tools they are used 
to. SCM is nothing else than one of these. 

There is fundamental work to do to make PSSs inter-
operate in a clear and clean way. 

PDM vs. SCM 
The definition of SCM says “the control of the evolution of 
complex systems”. This covers many engineering 
disciplines, not only software engineering. Indeed other 
type of engineering -electrical, mechanical, 3D design and 
so on- have developed their own tools, with leaders like 
Metaphase or Sherpa [1][14][30]. Let us call these tools 
Product Data Management (PDM) tools. 

Both domains look very similar, but have at least two 
fundamental differences. First, in PDM, there is a clear 
distinction between the design (e.g. a bicycle design) and 
the product itself (a given bicycle).  In software the design 
(the program) and the product (the software product) are 

almost the same; the later can be derived from the former at 
almost no cost. Second, in PDM, the product (will) have a 
physical existence, which confers unquestionable (spatial, 
mechanical) properties and constraints. For that reason, in 
PDM, the main structure is always its part structure (a 
bicycle has 2 wheels, a frame). In software there is no such 
“obvious” real structure; parts are arbitrary abstractions 
with loose relationships. Perhaps for these reasons product 
models in DPM are more advanced than in SCM[21]. 

Unification of both fields is needed because software 
constitutes a growing part of almost any industrial product. 
Unfortunately, vendors are not headed in this direction, 
because of deep underlying difficulties, and for efficiency 
and usability reasons. 

Web Support 
The web had two effects on SCM: local, distributed and 
remote development can be made similar (see the 
workspace and scalability discussion). Distributed work 
space control will involve creating an infrastructure for the 
management of multiple copies of objects, with the 
distinctive feature that they can have different values, 
different formats, and can (must) be resynchronized. This 
kind of service is required by any application dealing with 
concurrent engineering and thus deserves to become a 
standard service on the net; for instance a CORBA service. 
http extensions (WebDav) [7][47] are going in that 
direction.  

 On the other hand, the web produced a new kind of 
artifact: the web pages. Web pages are released but 
evolving products, containing essential pieces of 
information, and highly related with other pages. They 
clearly require configuration control. But when comparing 
a web page with a source file, the differences are easy to 
notice: The number of pages is 100 times larger than the 
number of files, the time between changes is 10 times 
shorter, the number of contributors is 100 times larger, they 
are not computer specialists and so on [13]. 

Solutions used for software cannot be used as they are. 
New ideas and techniques have to be invented, new tools to 
be built. This market is booming and solutions are urgently 
required. Many observers estimate this market is even now 
larger than software development, and it increases much 
faster ($5 billion sales are expected by 2002 (Marry Lynch 
co)). Products coming from other communities like 
document managers are entering this promising market. 
Even if SCM vendors have some experience it is unclear 
who will take that huge market.  

Growing Number of Features 
SCM tools, as many others, are facing the problem of 
becoming too big. The tendency is to include more and 
more services, and to (try to) address more and more 
domains. In recent years distributed development has been 
integrated, then remote development, then change control, 
then process support, then Web support and so on. On other 



dimensions, architecture languages, dynamic reconfiguring 
systems, deployment and so on are also candidates for 
integration inside an SCM. 

This is an indication of success, but also worrying. The 
challenge is to find a new architecture for SCM allowing it 
to break the systems into independent pieces, and to 
compose your SCM system from the features that are 
currently required. Having a low introduction cost, and the 
ability to evolve, extend and scale up with the company is a 
major challenge that no tool currently meets. This 
challenge can be addressed only by changing deeply the 
architecture and philosophy of SCM systems. 

4 CONCLUSION 
Despite the many limitations and expected improvements 
discussed in this paper SCM proved to be one of the very 
few successful software engineering technologies. Indeed, 
the market is booming, with over $1 billion sales in 1998 
and has excellent perspectives since only about 25% of 
mainframes, 15-20% of workstations and 5-10% of 
development PCs currrently has today an SCM system. 
Forecasts are about $2.1 Billions sales by 2000 and $3.3 
Billions by 2002 [37]. 

It may appear that most of SCM research was performed in 
the 80s, and only tool improvement can be expected in the 
future. I do not support this view; I have tried to identify 
the areas for further research in the usual SCM core topics. 
Even if few new ideas have been proposed and few serious 
experiments have been performed in recent years, I think 
that much is still to be done both to find new concepts and 
better implementations. Unfortunately, too often, this work 
requires heavy developments and experimentation, which 
currently dissuade most academic researchers. 

The future of SCM research and tools is unclear. The basic 
services will become understood, mature and stable enough 
to be standardized. They will fall into the public domain, as 
basic services anyone can expect from a platform, for 
instance versioning, rebuilding, basic work space support 
and so on. Vendors will lose their control on these low 
level services. 

Vendor added value will come from their ability to build, 
above this level, an SCM system providing core topic 
advanced services, targeted toward a specific client: a 
specific data model and versioning capability, specific 
concurrent engineering facilities and so on. A major change 
is that that second layer will be considered as a basic SE 
platform kernel, rather than a stand alone product. The 
issue will be to standardize and “componentize” SCM 
systems in a way allowing us to build easily, tailored and 
highly efficient solutions. 

Indeed, above this kernel, will be plugged a number of 
specific tools dedicated to a facet of SE, like process 
support, concurrent engineering control, project support; or 

dedicated toward a specific application domain like Web 
support, PDM control, deployment, electrical or 
mechanical tools and so on.  SCM research and vendors are 
currently starting to address all these issues, but with 
limited scope, and not necessarily with all the requisite 
expertise. On this layer, for each tool, it is unclear who will 
take the lead, not necessarily SCM vendors. The way all 
these tools will cooperate, to build a fully fledged, 
evolutive and efficient SE environment, is an active 
research topic (mega programming, COTS federations etc).  
This last issue, interoperability control, can become another 
area where SCM research and tools can contribute; further, 
as quoted in [28] “several researchers believe that 
Configuration Management environments are the real 
process-centered environments”. 

Nevertheless, in the near future, provided the number of 
core topic issues yet to be solved and the efficiency, 
scalability and usability issues, no one of these evolutions 
will be seriously addressed by SCM vendors. SCM tools 
will still grow, propose proprietary solutions and still 
consider SCM as an isolated domain. SCM research should 
take the opportunity that many SCM challenges are 
currently under work in other SE domains, to foster a 
synergy between these research domains and SCM, 
bringing in the experience and know-how that made the 
strength of SCM, showing a path toward the useful and 
successful tools software engineering  needs. 

REFERENCES 
[1] 1 “A Comprehensive Configuration Management 

Solution, Metaphase Product Structure Manager and 
Advanced Product Configurator”, Metaphase Technology, 
MW00206-A. 

[2] A. Bjornersledl and C. Hullen. Version control in an 
Object-Oriented Architecture. In Won Kim and Frederick 
H. Lochowsky. editors. Objects-Oriented concepts, 
databases and application. Chapter 18, pages 451-485, 
Adisson-Wesley. 1990. 

[3] E. Bratsberg. Unified Class Evolution by Object Oriented 
views. Proc of the 11th Conf on the relationship approach. 
LNCS N0645, Springer Verlag, Oct 1992. 

[4] J. Buffenbarger. Syntactic Software Mergin. SCM5, 
Seattle June 1995, pp153-172. Springer Verlag LNCS 
1005. 

[5] M. Cagan and A. Wright. Untangling configuration 
management: Mechanism and methodology in CM 
systems. In Proc. 4th Int. Workshop on Conf. Man. SCM4. 
Baltimore 1993. Springer Verlag LNCS, pp35-53. 

[6] “ClearGuide: Product Overview”. Technical report, Atria 
Software, Inc.  

[7] G. Clemm. Versioning Extensions to WebDav. Rational 
Software. May 1999. http://www.ietf.org/internet-
drafts/draft-ietf-webdav-versioning-02.txt 

[8] G. Clemm. The Odin System. SCM5, Seattle June 1995, 
pp241-263. Springer Verlag LNCS 1005. 

[9] R. Conradi and B. Westfechtel. “Configuring Versioned 
Software Product”. In SCM-6 Workshop. pp. 88-109. 
Springer LNCS 1167. Berlin, March 1996. 



[10] R. Conradi and B. Westfechtel. “Toward an Uniform 
Model for Software Configuration Management”. In 
SCM-7 Workshop.pages 1-17. Springer LNCS 1235. May 
1997. 

[11] S. Dami, J. Estublier and M. Amiour. “APEL: a 
Graphical Yet Executable Formalism for Process 
Modeling”. Automated Software Engineering journal, 
January 1998.  

[12] S. Dart. “Concepts in Configuration Management 
Systems”. Proc. of the 3rd. Intl. Workshop on Software 
Configuration Management. Trondheim, Norway, june, 
1991.  

[13] S. Dart. Content Change Management: Problems for Web 
Systems. In Proc SCM9, Toulouse, France, September 
1999. pp1-17. Springer Verlag LNCS 1675.  

[14] “EDL/Metaphase, Overview”, Metaphase Technology, 
MW00200-A, 29 pages. 

[15] J. Estublier. « A configuration manager: The Adele 
Database of Programs ». In Proceedings of the workshop 
on Software Environments for Programming-in-the-Large. 
Pages 140-147. Harwichport, Massachussets, June 1985. 

[16] J. Estublier, N. Belkhatir. Experience with a data base of 
programs. Proc. ACM Sigsoft/Sigpal conf. On practical 
Software Development Environments, pp84-91. Palo Alto, 
Dec 9-11, 1986. 

[17] J. Estublier and R. Casallas. “The Adele Software 
Configuration Manager”. Configuration Management, 
Edited by W. Tichy; J. Wiley and Sons. 1994. Trends in 
software. 

[18] J. Estublier and R. Casallas. “Three Dimensional 
Versioning”. In SCM-4 and SCM-5 Workshops. J. 
Estublier editor, September, 1995. Springer LNCS 1005, 
pp118-136. 

[19] J. Estublier. “Workspace Management in Software 
Engineering Environments”. in SCM-6 Workshop. 
Springer LNCS 1167. Berlin, Germany, March 1996.  

[20] J. Estublier and S. Dami and M. Amiour. High Level 
Process Modeling for SCM Systems. SCM 7, LNCS 1235. 
pages 81--98, May, Boston, USA, 1997 

[21] J. Estublier and J.M. Favre and P. Morat. Toward PDM / 
SCM: integration?. In proc SCM8, Bruxelles, Belgium, 
July 1998. Springer Verlag, LNCS 1439, pp75-95. 

[22] J. Estublier. Distributed Objects for concurrent 
engineering. In Proc SCM9, Toulouse, France, September 
1999. pp172-186. Springer Verlag LNCS 1675, pp192-
196. 

[23] P. Feiler. Configuration management models in 
commercial environments. Technical report CMU/SEI-91-
TR-7. SEI 1991. 

[24] S. Feldman. A program for maintaining computer 
programs. Software practice and experience, April 1979. 

[25] D. Garland. Software Architecture : A Roadmap. In this 
issue. 

[26] B. Gulla, E.A. Carlson, D. Yeh. Change-Oriented version 
description in EPOS. Software Engineering Journal, 
6(6):378-386, Nov 1991. 

[27] . Gulla, J. Gorman. Experience with the use of a 
Configuration Language. In SCM-6 Workshop, Berlin, 
Germany, March, 1996. Springer Verlag LNCS1167, 

pp198-219. 

[28] A. Fuggetta. Software Process : A Roadmap. In this issue. 

[29] J. Hunt, K. Vo, W. Tichy. Delta Algorithms: An empirical 
evaluation. ACM Transactions on Software Engineering 
and Methodology. È(2): 192-214, April 1998. 

[30] R.H. Katz. Toward a unified framework for version 
modeling in engineering databases. ACM Computing 
surveys. 22(4): 375-408, 1990. 

[31] D. B. Leblang. and G.D. McLean. Configuration 
Management for large-scale software development efforts. 
In Proceedings of the workshop on Software 
Environments for Programming-in-the-Large. Pages 122-
127. Harwichport, Massachussets, Jume 1985. 

[32] D. B. Leblang. “The CM Challenge: Configuration 
Management that Works”. Configuration Management, 
Edited by W. Tichy; J. Wiley and Sons. 1994. Trends in 
software. 

[33] D.B. Leblang. Managing the Software Development 
Process with ClearGuide. SCM 7, LNCS 1235. pages=66, 
80, May, Boston, USA, 1997 

[34] J. Micallef and G. M. Clemm. “The Asgard System: 
Activity-Based Configuration Management”. In SCM-6 
Workshop, Berlin, Germany, March, 1996. Springer 
Verlag LNCS1167, pp175-187. 

[35] M. Rochkind. The Source Code Control System. IEEE 
Trans.  on Soft. Eng.. Vol SE-1, pp364-370, Dec 1975 

[36] Sun Microsystem. Introduction to the NSE. Network 
Software Environment: Reference Manual. Sun. Part N° 
800-2095, March 1988. 

[37] OVUM. Configuration Management. 1999. 

[38] E. Triggeseth, B. Gulla, R. Conradi. Modelling systems 
with variability Using the PROTEUS Configuration 
Language. In SCM 7, LNCS 1005. pp. 216-240, Seattle. 
May 1995. 

[39] Walter F Tichy. Design implementation and evaluation of 
a revision control system. In Proc.6th Int. Conf. Software 
Eng., Tokyo, September 1982. 

[40] Walter F. Tichy. Tools for software configuration 
management. In Proc. of the Int. Workshop on Software 
Version and Configuration Control, pp. 1–20, Grassau, 
January 1988 

[41] A.van der Hoek and D.M. Heimbigner and A.L. Wolf. 
Versioned Software Architecture. ISAW3, nov, 1998, 
pages         73—76. 

[42] R.C. Water. Automated software management based on 
structural models. Software Practice and Experience. 
1989. 

[43] D.W. Weber. Change Sets versus Change Packages: 
Comparing Implementation of Change-Based SCM. 
SCM7, Boston, May 1997, Springer Verlag LNCS 1235, 
pp25-36. 

[44] L. Wingerd, S. Seiwald. Constructing a large product with 
Jam. SCM7, Boston, May 1997, Springer Verlag LNCS 
1235, pp36-49. 

[45] C. Went, B. Wonsierwicz. Source Control + Tools = 
Stable system. Proc. Fourth Computer Software and 
Application System Development. March 1983. 

[46] Jim Whitehead. Goals for a Configuration Management 



Network protocol.In SCM9, LNCS 1675, pages 186-204, 
Toulouse September 1999. 

[47] WebDav. HTTP extentions for distributed Authoring. RFC 
2518. http://andrew2.andrew.cmu.edu/rfc/rfc2518.htm. 
February 1999.     


