
Software-Controlled Fault Tolerance
George A. Reis1 Jonathan Chang1 Neil Vachharajani1

Ram Rangan1 David I. August1 Shubhendu S. Mukherjee2

Traditional fault tolerance techniques typically utilize resources ineffectively because they cannot

adapt to the changing reliability and performance demands of a system. This paper proposes
software-controlled fault tolerance, a concept allowing designers and users to tailor their perfor-

mance and reliability for each situation. Several software-controllable fault detection techniques

are then presented: SWIFT, a software-only technique, and CRAFT, a suite of hybrid hardware/
software techniques. Finally, the paper introduces PROFiT, a technique which adjusts the level

of protection and performance at fine granularities through software control. When coupled with
software-controllable techniques like SWIFT and CRAFT, PROFiT offers attractive and novel

reliability options.

Categories and Subject Descriptors: C.4.2 [Performance of Systems]: Fault tolerance

General Terms: Reliability

Additional Key Words and Phrases: software-controlled fault tolerance, fault detection, reliability

1. INTRODUCTION

In recent decades, microprocessor performance has been increasing exponentially, due in
large part to smaller and faster transistors enabled by improved fabrication technology.
While such transistors yield performance enhancements, their lower threshold voltages
and tighter noise margins make them less reliable [Shivakumar et al. 2002; O’Gorman et al.
1996; Baumann 2001], rendering processors that use them more susceptible totransient
faults. Transient faults are intermittent faults caused by external events, such as energetic
particles striking the chip. These faults do not cause permanent damage, but may result in
incorrect program execution by altering signal transfers or stored values. If a fault of this
type ultimately affects program execution, it is considered asoft error.

Incorrect execution in high-availability and real-time applications can potentially result
in serious damage and thus these systems have the highest reliability requirements. These
systems will often resort to expensive hardware redundancy to ensure maximum reliability.
While several fault tolerance solutions have been proposed for high-end systems, the high
hardware costs of these solutions make them less than ideal for the desktop and embedded
computing markets.

These lower-end markets do not have reliability requirements that are as stringent as

1Liberty Research Group 2 FACT Group
Princeton University Intel Corporation
Princeton, NJ 08544 Hudson, MA 01749
{gareis,jcone,nvachhar,ram,august}@princeton.edu shubu.mukherjee@intel.com

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2005 ACM 1529-3785/2005/0700-0001 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005, Pages 1–28.

2 · Reis et al.

those for high-end, high-availability markets. However, during specific periods of time,
these systems may be required to perform critical tasks that require high reliability. For
instance, end-users will typically spend most of their time on applications that do not need
high reliability (reading the news, playing games), but occasionally, they will also need
high reliability (managing finances). It is only during this short period of time that high
reliability is needed.

Given such infrequent requirements for high reliability, it would be exceedingly prodi-
gal to use the massive hardware redundancy mechanisms used in high-availability systems.
Such schemes would only degrade performance, superfluously consume power, and in-
crease manufacturing costs beyond what is needed.Software-controlled reliability, which
allows software to direct the level of reliability, reduces cost by enabling fault detection
only when necessary. This allows the resources that would be unnecessarily applied to
fault detection to be leveraged for other computations, thus increasing performance, or
shut down, thus saving power.

We begin by presenting four fault detection techniques which allow for software control.
Each technique is a point in the design space representing a trade-off between hardware
cost, performance, and reliability of the system. The first technique, called SWIFT (Soft-
Ware Implemented Fault Tolerance) [Reis et al. 2005a], increases reliability by inserting
redundant code to compute duplicate versions of all register values and inserting validation
instructions before control flow and memory operations. The redundant and validation in-
structions are inserted by the compiler and are used to increase the reliability of systems
without any hardware requirements.

The last three techniques are hardware-software hybrid techniques collectively called
CRAFT (CompileR Assisted Fault Tolerance) [Reis et al. 2005b]. The CRAFT suite
is based on the SWIFT technique augmented with structures inspired by the hardware-
only Redundant MultiThreading (RMT) technique [Reinhardt and Mukherjee 2000]. The
CRAFT hybrid techniques provide increased reliability and performance over software-
only techniques, while incurring significantly lower hardware costs than hardware-only
techniques.

While the SWIFT and CRAFT techniques immediately provide application-level con-
trol, they also provide the ability to control reliability at a finer level. Just as it may be
desirable to only protect a single application on a system, it may be even more desirable
to only protect critical sections of that application. Therefore, we also explore techniques
to control the amount and type of protection offered by a program at fine granularities in
order to best meet the performance and reliability demands of a system as expressed via a
utility function. A profile is created to determine the vulnerability and performance trade-
offs for each program region and this profile is used to decide where to turn on and off
redundant execution. We call this software-controlled fault tolerance technique PROFiT,
for profile-guided fault tolerance

For fair, quantitative comparisons between SWIFT, CRAFT, both with and without
PROFiT, and other fault-tolerance systems, we measure theMean Work To Failure(MWTF)
for each of these systems, using the evaluation methodology first presented in previous
work [Reis et al. 2005b]. We analyzed the reliability of the integer register file of an
Intel R© ItaniumR© 2 processor for each of the techniques.

We show that the SWIFT software-only technique reduces output-corrupting faults by
9x over a system with no fault detection, from 17.75% to 1.95%, while increasing exe-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 3

cution time by 42.9%. The CRAFT hybrid techniques reduces output-corrupting faults to
0.71%, a 25x decrease, while increasing execution time by 31.4%. Adding PROFiT to
these techniques reduces the execution time by an additional 21.2% over the software-only
technique and 3.3% over the hybrid techniques (corresponding to normalized execution
times of 1.217 and 1.281 relative to no fault tolerance) while maintaining the same level of
reliability.

While the SWIFT and CRAFT techniques have been previously introduced [Reis et al.
2005a; Reis et al. 2005b], this paper provides a more accurate and in-depth analysis of
the performance and reliability of these systems. This paper introduces software control
in fault tolerance and exploits it using the PROFiT technique, which allows designers to
further fine-tune the trade-off between performance and reliability. PROFiT demonstrates
that software control can be used to build systems tailored to the performance, reliability,
and hardware requirements of the application.

The rest of the paper is organized as follows. Section 2 describes related work and Sec-
tion 3 provides background information for transient fault detection. Section 4 describes
the SWIFT software fault-detection system. Section 5 gives a detailed description of the
three hybrid CRAFT techniques. Section 6 describes the PROFiT technique for adjusting
the level of protection according to profiles. Section 7 describes the new framework for
evaluating reliability and introduces the MWTF metric. Section 8 evaluates the SWIFT and
CRAFT techniques, both with and without PROFiT. The paper concludes with Section 9.

2. RELATION TO PRIOR WORK

Redundancy techniques can be broadly classified into two kinds: hardware-based and
software-based. Several hardware redundancy approaches have been proposed. Mahmood
and McCluskey [1988] proposed using awatchdogprocessor to compare and validate the
outputs against the main running processor. Austin [1999] proposed DIVA, which uses a
main, high-performance, out-of-order processor core that executes instructions and a sec-
ond, simpler core to validate the execution. Real system implementations like the Compaq
NonStop Himalaya [Horst et al. 1990], IBM S/390 [Slegel et al. 1999], and Boeing 777
airplanes [Yeh 1996; 1998] replicated part or all of the processor and used checkers to
validate the redundant computations.

Several researchers have also made use of the multiplicity of hardware blocks readily
available on multi-threaded/multi-core architectures to implement redundancy. Saxena and
McCluskey [1998] were the first to use redundant threads to alleviate soft errors. Rotenberg
[1999] presented AR-SMT, which used Simultaneous MultiThreading (SMT) for redun-
dancy and leveraged the computations of the leading thread to increase the performance
of the trailing thread without loss of reliability. Reinhardt and Mukherjee [2000] proposed
simultaneous Redundant MultiThreading (RMT) which increases the performance of AR-
SMT and compares redundant streams before data is stored to memory. The SRTR proces-
sor proposed by Vijaykumar et al. [2002] adds fault recovery to RMT by delaying commit
and possibly rewinding to a known good state. Mukherjee et al. [2002] proposed a Chip-
level Redundantly Threaded multiprocessor (CRT) and Gomaa et al. [2003] expanded upon
that approach with CRTR to enable recovery. Ray et al. [2001] proposed modifying an out-
of-order superscalar processor’s microarchitectural components to implement redundancy.
At the functional-unit level Patel and Fung [1982] proposed a method to redundantly com-
pute with shifted operands (RESO) to detect faults to a datapath or arithmetic unit.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

4 · Reis et al.

All hardware-based approaches require the addition of some form of new hardware logic
to meet redundancy requirements. Software-only approaches, on the other hand, are at-
tractive because they come free of hardware cost. Shirvani et al. [2000] proposed a tech-
nique to enable ECC for memory data via a software-only technique. Oh and McCluskey
[2001] analyzed different options for procedure duplication and argument duplication at the
source-code level to enable software fault tolerance while minimizing energy utilization.
Rebaudengo et al. [2001] proposed a source-to-source pre-pass compiler to generate fault
detection code in a high level language. Bolchini and Salice [2001] proposed a software-
only method for VLIW architectures which used excess instruction slots for redundant ex-
ecution, but which lacked control-flow checking. Holm and Banerjee [1992] also proposed
a software-only technique for VLIW architectures which lacked control-flow checking.

Oh et al. [2002c] proposed a novel software redundancy approach (EDDI) wherein all
instructions are duplicated and appropriate “check” instructions are inserted for validation.
Oh et al. [2002b] extended this approach with ED4I which creates a different, but function-
ally equivalent program by mapping values in the original program to different values in
the duplicated program. Dean and Shen [1998] showed how to interleave different threads
of execution into a single thread to eliminate context switching overhead. The technique
was used to increase multi-application performance, but it could also be used for reliability
if the threads to be integrated were an original and redundant version of the same program,
and specific comparison instructions were included to check for faults.

Oh et al. also developed a pure software control-flow checking scheme (CFCSS) wherein
each control transfer generates a run-time signature that is validated by error checking code
generated by the compiler for every block [2002a]. Venkatasubramanian et al. [2003] pro-
posed a technique called Assertions for Control Flow Checking (ACFC) that assigns an
execution parity to each basic block and detects faults based on parity errors. Schuette and
Shen [1994] explored control-flow monitoring (ARC) to detect transient faults affecting the
program flow on a Multiflow TRACE 12/300 machine with little extra overhead. Ohlsson
and Rimen [1995] developed a technique to monitor software control flow signatures with-
out building a control flow graph, but requires additional hardware. A coprocessor is used
to dynamically compute the signature from the running instruction stream and watchdog
timer is used to detect the absence of block signatures.

SWIFT, unlike the related work, is a complete fault detection technique, incorporating
instruction duplication and data validation in a single-threaded context as well as a novel
form of control flow verification. The CRAFT techinques, which are based on the SWIFT
technique, are the first hybrid validation techniques to target the entire processor core.

3. PRELIMINARIES

Throughout this paper, we will assume aSingle Event Upsetfault model. That is, we will
assume that exactly one bit is flipped exactly once during a program’s execution. In this
model, any bit in the system at any given execution point can be classified as one of the
following [Mukherjee et al. 2003]:

ACE. These bits are required forArchitecturally Correct Execution(ACE). A transient
fault affecting an ACE bit will cause the program to execute incorrectly.

unACE. These bits are not required for ACE. A transient fault affecting an unACE bit
will not affect the program’s execution. For example, unACE bits occur in state elements
that hold dynamically dead information, logically masked values, or control flows that are

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 5

Y-branches [Wang et al. 2003]

Transient faults in ACE bits can also be further classified by how they manifest them-
selves in program output.

DUE. A transient fault on an ACE bit that is caught by a fault detection mechanism is a
Detected Unrecoverable Error(DUE). A detected error can only be considered DUE if it
is fail-stop, that is, if the detection occurs before any errors propagate outside a boundary
of protection. Obviously, no fault is a DUE in a non-fault-detecting system.

SDC. A transient fault on an ACE bit that isnot caught by a fault-detection mechanism
will causeSilent Data Corruption(SDC). This could manifest itself as a spurious excep-
tion, an incorrect return code, or corrupted program output. We can further sub-categorize
SDC intopotential SDC(pSDC), faults that cause an exception or an incorrect return code,
anddefinite SDC(dSDC), faults that silently corrupt program output [Reis et al. 2005b].
pSDC faults can possibly be detected if the program terminates in a manner that cannot
happen under normal execution and the execution did not corrupt any data.

Note that detected, recoverable errors are not considered errors. In this paper, we will
sometimes refer to a bit as being DUE or SDC. A DUE bit is an ACE bit which, if flipped
by a transient fault, would result in a DUE. Similarly, an SDC bit is an ACE bit which, if
flipped, would result in an SDC.

The goal of any fault-detection system is to convert a system’s SDC into DUE. Unfor-
tunately, fault-detection systems will have a highersoft error rate(SER), the sum of SDC
and DUE, than the original system. There are two principal reasons for this. First, most
practical fault-detection schemes may exhibitfalse DUE, which arise whenever the system
detects a fault in an unACE bit. This occurs because the system may not be able to deter-
mine whether a flipped bit is unACE, and thus may have to conservatively signal a fault.
Second, any type of fault detection necessarily introduces redundancy, and this increases
the number of bits present in the system. Since all bits in the system are susceptible to
transient faults, this also leads to a higher soft error rate.

Although redundancy techniques often increase the overall SER, they reduce SDC faults,
which are more deleterious than DUE. Consequently, system designers tolerate higher
incidents of DUE in order to reduce SDC. A typical SDC rate target is one fault per 1000
years, while a corresponding DUE rate target is two orders of magnitude larger (one fault
per 10 years) [Bossen 2002].

To measure a microarchitectural structure’s susceptibility to transient faults, the notion
of anarchitectural vulnerability factor(AVF) is used and is defined as follows:

AVF =
number of ACE bits in the structure
total number of bits in the structure

Just as ACE bits were further categorized into DUE bits and SDC bits, AVF can be
broken up into AVFDUE and AVFSDC by computing the ratio of DUE or SDC bits over
the total bits in the structure respectively.

The rest of this paper focuses on fault-detection techniques, although fault recovery may
also be desirable. Fault-detection techniques can often be extended to enable fault recovery,
as shown by the recovery techniques, SRTR and CRTR, that have been derived from the
detection-only redundant threading techniques SRT and CRT.

The techniques in this paper can tolerate transient faults that occur in the processor
core, including the processor’s pipeline, functional units, register state, etc. We define a

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

6 · Reis et al.

Sphere of Replication (SoR) [Reinhardt and Mukherjee 2000] to be the region in which
our technique tolerates faults. The Sphere of Replication in our system is the boundary
between the processor and memory, including the cache. The memory subsystem and
caches are not protected by these techniques, as they can be effectively protected by error
correcting codes (ECC).

4. SOFTWARE-ONLY FAULT DETECTION

In this section, we will describe our first low-cost fault-tolerance technique, SWIFT, a
software-only redundancy scheme. In this technique, the compiler enables program protec-
tion by building redundancy directly into the compiled code. The redundant codes do not
require any special microarchitectural hardware for their execution. The SWIFT technique
has two components - instruction duplication with validation and control flow checking.

4.1 Instruction Duplication

The SWIFT-enabled compiler duplicates the original program’s instructions and schedules
them along with the original instructions in the same execution thread. The original and
duplicate versions of instructions are register-allocated so that they do not interfere with
one another. At certain synchronization points in the combined program, validation code
sequences are inserted by the compiler to ensure that the data values being produced by the
original and redundant instructions agree with each other.

Since program correctness is defined by the output of a program, if we assume memory-
mapped I/O, then a program has executed correctly if all stores in the program have exe-
cuted correctly. Consequently, it is necessary to use store instructions as synchronization
points for comparison.

Figure 1 shows a sample code sequence before and after the SWIFT fault-detection
transformation. The add instruction is duplicated and inserted as instruction3. The dupli-
cate instruction uses redundant versions of the values in registersr2 andr3 , denoted by
r2’ andr3’ respectively. The result is stored inr1 ’s redundant version,r1’ .

Instructions1 and2 are inserted to validate and replicate the data of the load instruction.
Instruction1 is a comparison inserted to ensure that the address of the subsequent load
matches its duplicate version, while instruction2 copies the result of the load instruction
into a duplicate register.

The values ofr1 andr2 are used at the store instruction at the end of the example. Since
it is necessary to avoid storing incorrect values into memory or storing values to incorrect
addresses, we must check that both the address and value match their redundant copy. If a
difference is detected, then a fault has occurred and the appropriate handling code, whether
that be exiting or restarting the program or simply notifying another process, is executed
at instructions4 or 5. Otherwise, the store may proceed as normal.

Although in the example program an instruction is immediately followed by its dupli-
cate, an optimizing compiler (or dynamic hardware scheduler) is free to schedule the in-
structions to use additional available Instruction Level Parallelism (ILP) thus minimizing
the performance penalty of the transformation.

4.2 Control-Flow Checking

Unfortunately, it is insufficient to only compare the inputs of store instructions since misdi-
rected branches can cause stores to be skipped, incorrect stores to be executed, or incorrect
values to be ultimately fed to a store. To extend fault detection coverage to cases where

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 7

ld r3 = [r4]

add r1 = r2, r3

st [r1] = r2

(a) Original Code

1: br faultDet, r4 != r4’
ld r3 = [r4]

2: mov r3’= r3
add r1 = r2, r3

3: add r1’= r2’,r3’
4: br faultDet, r1 != r1’
5: br faultDet, r2 != r2’

st [r1] = r2

(b) SWIFT Code

Fig. 1. Duplication and Validation

branch instruction execution is compromised, we propose a control flow checking trans-
formation.

Explicit control-flow checking is not necessary in redundant multi-threading approaches
because each thread is executed with an independent program counter (PC). A fault that
causes one thread to follow a different control path will not divert the other thread. There-
fore, the fault will be detected when different store instructions or values are about to be
written to memory. For techniques that use redundant instructions within a single thread,
such as SWIFT, additional control-flow validation is needed because there is no redundant
hardware PC.

To verify that control is transferred to the appropriate control block, each block will be
assigned a unique signature. A designated general purpose register, which we will denote
pc’ , will hold the signature of the current block and will be used to detect control flow
faults. For every control transfer, the source block asserts the offset to its target using
another register,sigoff , and each target confirms the transfer by computing thepc’
from this offset and comparing it to the statically assigned signature. Conceptually, the
pc’ serves as a redundant copy of the program counter, whilesigoff functions as a
redundant computation of the control transfer. This control flow checking will catch faults
which divert the control flow to the incorrect direction of a branch, or to a completely
invalid branch target.

Consider the program shown in Figure 2. Instructions6 and12 are the redundant com-
putations of the original add instructions. Instruction8 uses an xor instruction to compute
the relationship between the signature of the current block (sig0) and the signature of the
branch target (sig1) and stores this result insigoff .

Since the original branch is guarded by the conditionr1==r5 , thesigoff redundant
control-flow computation should be guarded by the redundant conditionr1’==r5’ . This
is handled via instruction7. Instruction10, at the target of a control transfer, xorssigoff
with thepc’ to compute the signature of the new block (sig1). This signature is com-
pared with the statically assigned signature in instruction11 and a fault is detected if they
mismatch.

Notice that with this transformation, any faults that affect branch execution will be de-
tected sincepc’ will eventually contain an incorrect value. Therefore, this control trans-
formation robustly protects against transient faults. As a specific example, suppose a tran-
sient fault occurred tor5 so thatr5 incorrectly equalsr1 and the branch instruction
spuriously executes. The control flow checking detects this case because the duplicate ver-
sions,r1’ andr5’ , will not be equal and so thesigoff register will not be updated.
After instruction10 executes, thepc’ will contain the wrong value and an error will be

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

8 · Reis et al.

add r1 = r1, r3

br L1, r1 == r5
...
L1:

add r6 = r1, r2

(a) Original Code

add r1 = r1, r3
6: add r1’= r1’,r3’
7: br L1’, r1’ != r5’
8: xor sigoff = sig0,sig1
9: L1’:

br L1, r1 == r5
...
L1:

10: xor pc’ = pc’,sigoff
11: br faultDet, pc’ != sig1

add r6 = r1, r2
12: add r6’= r1’,r2’

(b) SWIFT Code

Fig. 2. Control Flow Checking

signaled at instruction12.

4.3 Undetected Errors

Although SWIFT’s protection is quite robust, there are twofundamentallimitations to
SWIFT:

(1) Since redundancy is introduced solely via software instructions, any time a fault af-
fects the value used by the store without affecting the value used by the compare, an
error may go undetected. For simple microarchitectures, this is largely equivalent to
saying that an error may go undetected if a fault occurs after the validation instruction
and before the store instruction. In more complicated microarchitectures, errors to a
register may manifest themselves on some instructions and not others due to the mod-
ern design of instruction windows and bypass networks. In these situations, it is more
difficult to enumerate the conditions under which a store can be affected without its
corresponding validation instructions being affected.

(2) A strike to an instruction’s opcode bits may change a non-store instruction into a store
instruction. Since store instructions are not duplicated by the compiler, there is no way
of detecting and recovering from this situation. The incorrect store instruction will be
free to execute and the value it stores will corrupt memory and can result in silent
data corruption. A non-branch instruction may be converted to a branch instruction
by a single bit flip, in which case the program is susceptible to the control-flow issues
discussed below.

The aforementioned errors are fundamental errors in the sense that every software-only
scheme (and even many hardware-only schemes) will be plagued by them to some degree.
In addition to these errors, there are four vulnerabilities which are a function of SWIFT’s
implementation:

(3) If a control-flow error occurs such that the program branches directly to a store in-
struction, system call instruction, or other potentially disastrous instruction before the
signature can be verified, then a potentially erroneous value may propagate to memory.
The effect of this can be minimized by performing validation checks as close as possi-
ble to every potentially output-corrupting instruction. This will reduce the window of
vulnerability, although not eliminate it, as well as increase performance overhead.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 9

(4) Intra-block control-flow errors may also go undetected. For example, in Figure 2, if
instruction7 is affected such that it jumps to the first add instruction of the block,
immediately before6, the control signatures will be unchanged and still valid, but the
original and redundant additions will be incorrectly computed one extra time, corrupt-
ing the values ofr1 andr1’ . This type of limitation cannot be avoided by adding
extra validation instructions, but can be minimized by the compiler’s scheduling algo-
rithm [Oh et al. 2002a].

(5) Our control-flow scheme may also not be able to protect against all errors on indirect
call/branch computations. To ameliorate the situation somewhat, one could simply du-
plicate the computation path of the call target and compare the original and redundant
call targets before executing the branch. In other situations, this vulnerability can be
easily closed such as when the call target is computed via a jump table (such as those
used to implementswitch statements). One simply needs to have the redundant
computation consult a table of signatures instead of the original jump table.

(6) Instead of duplicating load instructions, SWIFT simply adds a move instruction to
copy the loaded value into a redundant register, as in instruction2 of Figure 1. Before
the copy is performed, the program only has one version of the loaded value. If a fault
occurs to this value before it is copied, then the incorrect value will be propagated
to the redundant register. Since both copies will now be corrupted, the error will go
undetected.

4.4 Multibit Errors

The above code transformations are sufficient to catch single-bit faults in all but a few
rare corner cases. However, it is less effective at detecting multibit faults. There are two
possible ways in which multibit faults can cause problems. The first is when the same bit
is flipped in both the original and redundant computation. The second occurs when a bit is
flipped in either the original or redundant computation and the comparison is also flipped
such that it does not branch to the error code. Fortunately, these patterns of multibit errors
are unlikely enough to be safely ignored.1

4.5 Function Calls

Since function calls may affect program output, incorrect function parameter values may
result in incorrect program output. One approach to solve this is simply to make function
calls synchronization points. Before any function call, all input operands are checked
against their redundant copies. If any mismatch, a fault is detected, otherwise, the original
versions are passed as the parameters to the function. At the beginning of the function, the
parameters must be reduplicated into original and redundant versions. Similarly, on return,
only one version of the return values will be returned. These must then be duplicated into
redundant versions for the remaining redundant code to function.

This synchronization adds performance overhead and introduces points of vulnerability.
Since only one version of the parameters is sent to the function, faults that occur on the
parameters after the checks made by the caller and before the duplication by the callee will
not be caught.

1Although we do not give the details here, it is clear that the probability ofn upset events decreases exponentially
with n.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

10 · Reis et al.

1: br faultDet, r1 != r1’
2: br faultDet, r2 != r2’
3: st [r1] = r2

(a) SWIFT Code

3: st [r1] = r2
4: st’[r1’]= r2’

(b) CRAFT:CSB Code

Fig. 3. The CRAFT:CSB transformation.

To handle function calls more efficiently and effectively, the calling convention can be
altered to pass multiple sets of computed arguments to a function and to return multiple
return values from a function. However, only arguments passed in registers need be du-
plicated. Arguments that are passed via memory do not need to be replicated because the
loads and stores will be validated during the normal course of execution as explained in
Section 4.1.

Doubling the number of arguments and return values incurs the additional pressure of
having twice as many input and output registers, but it ensures that fault detection is pre-
served across function calls. Note that interaction with unmodified libraries is possible,
provided that the compiler knows which of the two calling conventions to use.

5. HYBRID REDUNDANCY TECHNIQUES

This section presents three low-cost hybrid hardware/software redundancy techniques called
CRAFT (CompileR-Assisted Fault Tolerance). CRAFT is built on top of SWIFT, with min-
imal hardware adaptations from RMT to create systems with near-perfect reliability, low
performance degradation, and low hardware cost. A more detailed description of these
techniques can be found in previous work [Reis et al. 2005b].

The CRAFT techniques, besides benefiting from the redundant execution provided by
SWIFT, use low-cost microarchitectural enhancements to tackle the cases where software-
only techniques cannot guarantee fault coverage.

5.1 CRAFT: Checking Store Buffer (CSB)

As noted in Section 4.3, in SWIFT, stores are single points-of-failure and make the ap-
plication vulnerable to strikes in the time interval between the validation and the use of a
register values. For example, consider the code snippet given in Figure 3(a). Ifr1 receives
a strike after instruction 1 is executed but before instruction 3 is executed, then the value
will be stored to the incorrect address. Similarly, if a fault occurs onr2 after instruction 2
but before instruction 3 then an incorrect value will be stored to memory.

In order to protect data going to memory, in the CRAFT:CSB technique, the compiler
duplicates store instructions in the same way that it duplicates all other instructions, except
that store instructions are also tagged with a single-bit version name, indicating whether a
store is an original or a duplicate. Figure 3(b) shows the result of this transformation. The
original store (instruction 3) is duplicated and tagged to form instruction 4.

Code thus modified is then run on hardware with an augmented store buffer called the
Checking Store Buffer(CSB). The CSB functions much as a normal store buffer, except
that it does not commit entries to memory until they are validated. An entry becomes
validated once the original and the duplicate version of the store have been sent to the store
buffer, and the addresses and values of the two stores match perfectly.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 11

1: br faultDet, r4 != r4’
2: ld r3 = [r4]
3: mov r3’ = r3

(a) SWIFT Code

2: ld r3 = [r4]

4: ld r3’= [r4’]

(b) CRAFT:LVQ Code

Fig. 4. The CRAFT:LVQ transformation.

The CSB can be implemented by augmenting the normal store buffer with a tail pointer
for each version and avalidated bit for each buffer entry. An arriving store first reads
the entry pointed to by the corresponding tail pointer. If the entry is empty, then the store
is written in it, and itsvalidated bit is set to false. If the entry is not empty, then it is
assumed that the store occupying it is the corresponding store from the other version. In
this case, the addresses and values of the two stores are validated using simple comparators
built into each buffer slot. If a mismatch occurs, then a fault is signaled. If the two stores
match, the incoming store is discarded, and thevalidated bit of the already present
store is turned on. The appropriate tail pointer is incremented modulo the store buffer
size on every arriving store instruction. When a store reaches the head of the store buffer,
it is allowed to write to the memory subsystem if and only if itsvalidated bit is set.
Otherwise, the store stays in the store buffer until a fault is raised or the corresponding
store from the other version comes along.

The store buffer is consideredcloggedif it is full and the validated bit at the head of
the store buffer is unset. Note that both tail pointers must be checked when determining
whether the store buffer is full, since either version 1 or version 2 stores may be the first
to appear at the store buffer. A buffer clogged condition could occur because of faults
resulting in bad control flow, version bit-flips, or opcode bit-flips, all of which result in
differences in the stream of stores from the two versions. If such a condition is detected at
any point, then a fault is signaled. To prevent spurious fault signaling, the compiler must
ensure that the difference between the number of version 1 stores and version 2 stores at
any location in the code does not exceed the size of the store buffer.

The use of hardware to do the validation allows us to optimize the generated code as
we can now remove the software validation code (instructions 1 and 2). These modest
hardware additions allow the system to detect faults in store addresses and data, as well
as dangerous opcode bit-flips, thus protecting against vulnerabilities (1) and (2) mentioned
in Section 4.3. Although this technique duplicates all stores, no extra memory traffic is
created, since there is only one memory transaction for each pair of stores in the code.
Furthermore, CRAFT:CSB code also exhibits greater scheduling flexibility since each pair
of stores and the instructions they depend on can now be scheduled independently, whereas
in SWIFT, store instructions are synchronization points. The net result is a system with
enhanced reliability, higher performance, and only modest additional hardware costs.

As we will further explore in Section 8, with the CRAFT:CSB transformation, the
AVFSDC is reduced by 96.0% versus 89.0% for SWIFT, while performance degradation is
reduced to 33.4% versus 42.9% for SWIFT.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

12 · Reis et al.

5.2 CRAFT: Load Value Queue (LVQ)

In SWIFT, load values need to be duplicated to enable redundant computation. SWIFT
accomplishes this by generating a move instruction after every load. This is shown as
instruction 3 in Figure 4(a). Furthermore, the load address must be validated prior to the
load; this validation is done by instruction 1.

This produces two windows of vulnerability, namely vulnerabilities (1) in (6) in Section
4.3. If a fault occurs tor4 after instruction 1 but before instruction 2, then the load in-
struction will load from an incorrect address. If a fault occurs tor3 after instruction 2 but
before instruction 3, then a faulty value will be duplicated into both streams of computation
and the fault will go undetected.

In order to remove these windows of vulnerability, we must execute a redundant load
instruction and apply the transformation shown in Figure 4(b). Instead of copying the value
from a single load (instruction 3), we would ideally simply execute a second, redundant
load (instruction 4). Unfortunately, merely duplicating load instructions will not provide
us with correct redundant execution in practice. Treating both versions of a load as normal
loads will lead to problems in multi-programmed environments as any intervening writes
by another process to the same memory location can result in a false DUE. In such cases,
the technique prevents the program from running to completion even though no faults have
been actually introduced into the program’s execution.

We make use of a protected hardware structure called theLoad Value Queue(LVQ)
to enable redundant load execution. The LVQ only accesses memory for the original load
instruction and bypasses the load value for the duplicate load from the LVQ. An LVQ entry
is deallocated if and only if both the original and duplicate versions of a load have executed
successfully. A duplicate load can successfully bypass the load value from the LVQ if and
only if its address matches that of the original load buffered in the LVQ. If the addresses
mismatch, a fault has occurred and we signal a fault. Loads from different versions may be
scheduled independently, but they must maintain the same relative ordering across the two
versions. Additionally, for out-of-order architectures, the hardware must ensure that loads
and their duplicates both access the same entry in the load value queue.

The duplicated loads and the LVQ provide completely redundant load instruction execu-
tion. Since the address validation is now done in hardware, the software address validation
in instruction 1 of Figure 4 can now be removed. The LVQ also allows the compiler more
freedom in scheduling instructions around loads, just as the checking store buffer allows
the compiler to schedule stores more freely. Since the duplicate load instruction will al-
ways be served from the LVQ, it will never cause a cache miss and or additional memory
bus traffic.

With the CRAFT:LVQ transformation, the AVFSDC is reduced by 89.4% versus 89.0%
for SWIFT, while performance degradation is reduced to 37.6% versus 42.9% for SWIFT.

5.3 CRAFT: CSB + LVQ

The third and final CRAFT technique duplicates both store and load instructions and adds
both the checking store buffer and the load value queue enhancements simultaneously to a
software-only fault detection system such as SWIFT.

Combining the CSB and the LVQ yields a system which reduces SDC by 90.5% com-
pared to 89.0% for SWIFT. Furthermore, CRAFT:CSB+LVQ’s performance degradation
is reduced to 31.4% versus 42.9% for SWIFT.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 13

6. PROFIT

SWIFT and CRAFT, while being able to greatly reduce the number of undetected errors,
also have the feature of being software-controllable. This makes it possible for a software-
controlled fault tolerance technique to precisely manage the level of performance and reli-
ability within a program. An instance of such a technique is PROFiT, an algorithm which
uses a program’s reliability profile to fine-tune the tradeoff between protection and perfor-
mance. PROFiT relies on the fact that regions of code may differ intrinsically in terms of
reliability. Regions can differ in their natural robustness against transient faults, and they
can differ in their response to various fault-detection schemes. For example, a function
which computes a high degree of dynamically dead or logically masked data may naturally
mask many transient faults and not require much protection. On the other hand, a function
which is dominated by control flow and which contains few dynamic instances of store
instructions may not need any protection for stores but may instead require large amounts
of control-flow checking.

In general, programs will exhibit a wide variety of reliability behaviors. A one-size-fits-
all application of any given reliability technique will be either inefficient and over-protect
some regions or will leave other regions unnecessarily vulnerable. Customizing reliability
for each of these regions is the goal of the PROFiT algorithm. By tailoring the reliability to
the particular qualities of the region in question, we can obtain reliability comparable to any
of the aforementioned protection techniques while simultaneously improving performance.

PROFiT operates under the supposition of the existence of a user-definedutility func-
tion. This utility function should serve as a metric for how desirable a particular version of
a program is. For this paper, we will consider utility functions that are functions of the exe-
cution time of the program, the AVFSDC of the program, and the AVFDUE of the program.
These three factors are used because they are usually regarded as the most critical design
decisions of a system with fault detection. However, the techniques we will illustrate can
be easily extended to utility functions that are functions of other factors such as static size
and power.

6.1 Optimization

PROFiT is an optimization problem; a variety of optimization techniques have been de-
vised to solve such problems. For the purposes of this paper, we will make use of gradi-
ent descent. Gradient descent in general, like most optimization algorithms may become
trapped in a local minimum and consequently not find the global minimum. The general
procedure works as follows. For each iteration, givenxn, the previous iteration’s result, an
x′ is found such that

∇x′U(xn) = max
x
∇xU(xn)

wherex is chosen from some set of vectors, usually the unit circle. If∇x′U(xn) ≤ 0
for all x′, then the procedure is complete andxn is the local maximum. Otherwise,xn is
“adjusted” byx′ to yield the next iteration’s result,xn+1, and the procedure is repeated.

To see how this applies to optimization of reliability and performance, we will introduce
the notationX \ FY to represent versionX of a program with all instances of function
F replaced withF from versionY . For example,X \ main V will mean “replacemain
in X with the main from binaryV.” In our specific application, different versions of a
function will correspond to functions with varying levels of protection. We will also use

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

14 · Reis et al.

(1) X ← PNOFT

(2) ∇U ← 0

(3) foreach(F, V) ∈ (functions(P), versions(P))

(4) if U(X \ FV)− U(X) < ∇U

(5) ∇U ← U(X \ FV)− U(X)

(6) F ∗
V ∗ ← FV

(7) end foreach
(8) if ∇U > 0 then
(9) X ← X \ F ∗

V ∗

(10) goto 2
(11) otherwise
(12) PPROFiT← X

Fig. 5. The PROFiT algorithm.

“functions(P)” to denote the set of functions inP , and “versions(P)” to denote the set of
versions ofP . Our algorithm for a programP is given in Figure 5.

Every gradient descent must begin with an initial guess at the solution. In our case, a
simple choice for the initial guess would be the normal, unprotected version of the binary.
Finding the point at which the gradient is minimized is simple in this case, because the
set of possible directions in which one can move is always finite. We can simply traverse
the entire space searching for the adjacent vector which nets the largest increase in utility,
which occurs in steps 3 through 7. Line 2 initializes a∇U which is used to track the largest
increase in utility among all functions and versions. For each tuple consisting of a function
and a version, the utility of swapping in that tuple is computed. The increase in utility is
compared against∇U in line 4. If the proposed swap is better than any heretofore seen
swap, then line 5 records the new change in utility while line 6 records the swap. Finally,
in line 8, we check if there were any proposed swaps which actually improved utility. If
not, we can terminate the loop. Otherwise, we reiterate.

6.2 Estimating Utilities

The inner loop of the above procedure compares the utility of swapping each function with
one function from another version of the program. To be tractable, this relies on our ability
to quickly estimate the change in utility, namelyU(X \ FV)− U(X). Or more precisely,
sinceU is a function of the execution time, AVFSDC , and AVFDUE of the program, we
need only to be able to estimate those three values quickly at the function granularity.

Such an estimation can be done quickly if we assume that all functions are decoupled
with respect to those three variables. In other words, replacing a function with a different
version of that function should only affect the performance, AVFSDC , and AVFDUE of
that function. When we speak of the AVF of a function, we refer to the contribution to the
system’s overall AVF of those microarchitectural state bits that exist during the execution
of that function.

For performance, the major inter-function effects on performance are the state of the
cache and the branch predictors. However, since all accesses to memory are identical in
all versions of the program, the cache will remain largely unaffected. Branch prediction
cannot be decoupled so easily, but we can assume that its effects are small and that the
change in the runtime of a function between different levels of protection is dominated by
the execution of the duplicate instructions.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 15

In the software and hybrid techniques, functions are synchronization points, so the
AVFSDC and AVFDUE will be largely decoupled as well. As explained in Section 4.5,
the caller of a function compares the arguments of the function to the duplicate version
and reports a fault if a mismatch occurs. Otherwise, it passes the original version of the
arguments to the function. The body of the function then duplicates its operands so that
a redundant thread of execution can occur within the function itself. Therefore, if a fault
occurs in the operand to a function, it must be detected by the caller, otherwise the fault
will go undetected. Similarly, if a fault occurs in a return value of a function, it must be
detected by the function itself, otherwise the fault will go undetected. Since memory does
not have a redundant duplicate, any errant stores within the function will not be detected
outside the function.

The same can be said for erroneous control-flow changes which branch to an address
outside of the current function. If a function erroneously branches to a function with
control-flow checking, then the fault will be caught by the second function. On the other
hand, if a function erroneously branches to a function without control-flow checking, then
the fault may never be caught. In either case, the result is independent of whether or not
the first function has control-flow checking. In summary, if a faulty value in a function is
not detected by that function, it will never be detected by any other function, which means
that the AVFSDC and AVFDUE of each function is decoupled from all other functions.

Due to this decoupling, we can write the following simple relations:

tX\FV
= tX + tFV

− tFX

SDCX\FV
= SDCX + SDCFV

− SDCFX

DUEX\FV
= DUEX + DUEFV

−DUEFX

whereFX denotes the version of functionF in X. Therefore, we can quickly calculate
the utility of each permutation so long as we knowtFV

, SDCFV
, andDUEFV

for each
function and reliability version. In the following section, we will present a methodology
for rapidly measuring theSDCFV

andDUEFV
of each function.

7. A METHODOLOGY FOR MEASURING RELIABILITY

Mean Time To Failure (MTTF) and AVF are two commonly used metrics to encompass
reliability. However, MTTF and AVF are not appropriate in all cases. In this section, to
make the evaluation of the techniques in this paper possible, we present Mean Work To
Failure, a metric that generalizes MTTF to make it applicable to a wider class of fault-
detection systems. We also provide a new framework to accurately and rapidly measure
reliability using fault injection and programs run to completion.

7.1 Mean Work To Failure

MTTF is generally accepted as the appropriate metric for system reliability. Unfortunately,
this metric does not capture the trade-off between reliability and performance. For exam-
ple, suppose that system A and system B were being compared, and that system A were
twice as fast but half as “reliable” as system B. Specifically, let

MTTFA =
1
2
·MTTFB tA =

1
2
· tB

We ask what the probability of a fault occurring during the execution of the program is
for each system. Although B has double the MTTF of A, it must run for twice as long, and

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

16 · Reis et al.

so the probability of failurefor the programis equal for A and B. In this sense, they are
equally reliable. However, the MTTF metric would counterintuitively select the slower of
the two systems, B, as the most reliable. In order to address this, Weaver et al. introduced
the alternativeMean Instructions To Failure(MITF) metric [Weaver et al. 2004].

While this metric does capture the trade-off between performance and reliability for
hardware fault-tolerance techniques (i.e. those which do not change the programs being
executed, but which may affect IPC), it is still inadequate for the general case where the
program binary, and hence the number of instructions committed, can vary.

To adequately describe the reliability for hardwareand software fault-tolerance tech-
niques, we introduce a generalization of MITF calledMean Work To Failure(MWTF).

MWTF =
amount of work completed

number of errors encountered
= (raw error rate× AVF × execution time)−1

The execution time corresponds to the time to complete one unit of work. A unit of
work is a general concept whose specific definition depends on the application. The unit
of work should be chosen so that it is consistent across evaluations of the systems under
consideration. For example, if one chooses a unit of work to be a single instruction, then
the equation reduces to MITF. This is appropriate for hardware fault-detection evaluation
because the program binaries are fixed and an instruction represents a constant unit of
work. In a server application it may be best to define a unit of work as a transaction.
In other cases, work may be better defined as the execution of a program or a suite of
benchmarks. With this latter definition of work, it is obvious that halving the AVF while
doubling execution time will not increase the metric. Regardless of the method (hardware
or software) by which AVF or execution time is affected, the metric accurately captures
the reliability or the system. Such a metric is crucial when comparing hardware, software,
and hybrid systems.

7.2 Measuring MWTF

To compute the MWTF, one must have an estimate for the number of errors encountered
while running a program a fixed number of times or, alternatively, the AVF of the sys-
tem. We present a framework that improves upon the speed and accuracy of existing AVF
measurement techniques, especially for software-only and hybrid techniques. Currently,
researchers generally use one of two methods for estimating AVF.

The first method involves labeling bits as unACE, SDC, or DUE and running a detailed
simulation to measure the frequency of each type of bit for a given structure. This method-
ology is problematic when used to analyze software-only or hybrid systems. In these cases,
since it is often difficult to categorize bits as either unACE, SDC or DUE, conservative as-
sumptions are made. In SWIFT, for example, many opcode bits are DUE bits because
changes to instructions will be caught on comparison, but certain corner cases, like those
that change an instruction into a store instruction, are SDC bits. An opcode bit flip that
changes an add instruction into a subtract may cause an SDC outcome, but if it changes
a signed add to an unsigned add, it may not. Identifying all these cases is non-trivial, but
conservatively assuming that all opcode bits are SDC may cause many DUE and unACE
bits to be incorrectly reported as SDC. The resulting SDC-AVF from this technique is
then a very loose upper bound. AVF categorization has been successfully used for evalu-
ating hardware fault-detection systems that cover all single-bit errors and have few corner

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 17

0

10

20

30
SD

C

0 1000 2000 3000 4000 5000
of fault injections

µ
+1.96σ
−1.96σ

Fig. 6. SDC vs. number of fault injections for 124.m88ksim. The mean SDC (middle line) rapidly converges to
the final value. The upper and lower lines represent the bounds of the 95% confidence interval.

cases. When used to compare software or hybrid techniques, the complexity of correctly
categorizing faults becomes a burden.

Another method, fault injection, provides an alternative. Fault injection is performed
by inserting faults into a model of a microarchitecture and then observing their effects on
the system [Czeck and Siewiorek 1990; Kim and Somani 2002; Wang et al. 2004]. Since
the microarchitectural models required for this are very detailed, the simulation speeds
are often too slow to execute entire benchmarks, let alone benchmark suites. It is com-
mon to simulate for a fixed number of cycles and then to compare the architectural state
to the known correct state. Such a comparison is useful for determining if microarchitec-
tural faults affect architectural state. However, this comparison does not precisely indicate
whether a flipped bit is unACE, SDC, or DUE.

To avoid these shortcomings, we inject faultsand run all benchmarks to completion. In
conventional fault injection systems, this would lead to unmanageable simulation times.
However, a key insight facilitates tremendous simulation speedups. We recognize that all
microarchitectural faults will have no effect unless they ultimately manifest themselves in
architectural state. Consequently, when a particular fault only affects architectural state,
detailed cycle-accurate simulation is no longer necessary and a much faster functional
(ISA) model can be used.

Our technique consists of two phases. The first involves a detailed microarchitectural
simulation. During the microarchitectural simulation, bits in a particular structure in which
we desire to inject faults are randomly chosen. Each chosen bit is then tracked until all
effects of the transient fault on this bit manifest themselves as architectural state. The list of
architectural state that would be modified is recorded for the next phase. The second phase
uses architectural fault simulation for each bit chosen during the first phase by altering
the affected architectural state as determined by the microarchitectural simulation. The
program is run to completion and the final result is verified to determine the fault category
of the bit: unACE, DUE, or SDC.

To show that randomly chosen fault injections do indeed converge to an accurate value,
we performed 5000 fault-injection runs for the benchmark 124.m88ksim. More details on
our fault injections will be given in Section 8. For now, simply note that Figure 6 shows
the SDC, and its 95% confidence interval, as a function of the number of fault injections.
The confidence interval is± 2.00% after 946 fault injections,± 1.50% after 1650 fault
injections, and± 1.00% after 3875 fault injections. The mean stabilizes very quickly; we
have found that on the order of 1000 fault injections are required to obtain a reasonably

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

18 · Reis et al.

Name Description PROFIT SWPROFIT CRPROFIT

NOFT No fault detection X X X
SWIFT:ST Software-only store checking X X
SWIFT:CF Software-only control-flow checking X X
SWIFT SWIFT:ST + SWIFT:CF X X
CRAFT:CSB SWIFT + Checking Store Buffer X X
CRAFT:LVQ SWIFT + Load Value Queue X X
CRAFT:CSB+LVQ CRAFT:CSB + CRAFT:LVQ X X

Table I. Summary of techniques evaluated.

accurate estimate of SDC, although more injections could certainly be run if an experiment
were to require a higher degree of accuracy.

8. EVALUATION

This section evaluates the SWIFT and CRAFT techniques, both with and without the
PROFiT algorithm applied to them, comparing the performance, reliability and hardware
cost of these options. Since SWIFT consists of two orthogonal techniques, namely store
checking and control-flow checking, we generated binaries having only store checking
code (SWIFT:ST), binaries having only control-flow checking code (SWIFT:CF), as well
as binaries having both store checking and control-flow checking (SWIFT). We also eval-
uated all three hybrid techniques: CRAFT with the Checking Store Buffer (CRAFT:CSB),
CRAFT with the Load Value Queue (CRAFT:LVQ), and CRAFT with both structures
(CRAFT:CSB+LVQ).

We applied the PROFiT algorithm three times, each time allowing it to choose from a
different set of reliability options. We allowed PROFiT to select from the entire space of
reliability options (PROFIT), only software-only techniques (SWPROFIT), or only hybrid
techniques (CRPROFIT). This is summarized in Table I.

8.1 PROFiT Utility Function

Although PROFiT can be applied to any arbitrary utility function, we will now present a
particularly salient utility function which was used for evaluation purposes. We begin with
the goal of minimizing the product of the execution time and the inverse of the MWTF:

U(X) = −t2X · AVFX ∝ tX
MWTFX

wheretX is the execution time of a program on a particular permutation of functions,
X. This function captures both the reliability of the system in terms of MWTFX and
the performance of the system in terms of tX . Most designers, however, will make a
distinction between AVFDUE and AVFSDC . Typically, server architects will accept a DUE
rate of once per 10 years while only accepting an SDC rate of once per 1000 years [Bossen
2002]. Therefore, in our utility function, we make SDC 100 times more important than
DUE. Finally, we take the negative in order to transform the minimization problem into a
maximization problem (i.e. the typical sense of utility).

With the available reliability options, the utility function we choose to maximize is then:

U(X) = −t2X · (AVFSDCX
+

AVFDUEX

100
)

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 19

1.0

1.5

2.0

12
4.m

88
ksi

m

12
9.c

om
pre

ss

16
4.g

zip
17

9.a
rt

18
3.e

qu
ake

19
7.p

ars
er

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

g7
21

dec

g7
21

enc ras
ta

GeoM
ean

SWIFT
SWIFT:ST
SWIFT:CF
CRAFT:CSB
CRAFT:LVQ
CRAFT:CSB+LVQ
SWPROFiT
CRPROFiT
PROFiT

Fig. 7. Normalized execution times by system and benchmark.

8.2 Performance

In order to evaluate the performance of the all of the techniques, we generated redundant
codes by modifying a pre-release version of the OpenIMPACT compiler for the IA-64
architecture targeting the IntelR© ItaniumR© 2 processor. The baseline binaries are aggres-
sively optimized OpenIMPACT compilations without any additional redundancy.

We evaluated the performance for a set of benchmarks drawn from SPEC CPUINT2000,
SPEC CPUFP2000, SPEC CPUINT95, and MediaBench [Lee et al. 1997] suites. Perfor-
mance numbers were obtained by running the resulting binaries on an HP workstation
zx6000 with 2 900Mhz IntelR© ItaniumR© 2 processors running Redhat Advanced Worksta-
tion 2.1 with 4GB of memory. Theperfmon utility was used to measure the CPU cycles
for each benchmark executed.

The results in Figure 7 show the execution times for SWIFT, CRAFT, and PROFiT
binaries normalized to the baseline execution runs. The normalized execution times for
SWIFT have a geometric mean of 1.429, while the performance for each of the CRAFT
techniques were 1.334, 1.376, and 1.314 for the addition of the CSB, LVQ, and both CSB
and LVQ respectively. The hybrid CRAFT techniques perform better than the software-
only SWIFT technique because the use of hardware structures in CRAFT eliminates certain
scheduling constraints and also removes the need for some of the comparison instructions.

The variations of the SWIFT technique, SWIFT:ST and SWIFT:CF have normalized
execution times of 1.270 and 1.251. These techniques have greater performance than full
SWIFT and all CRAFT versions because they protect only a subset of the program cal-
culations and thus need only to execute a subset of duplicated instructions. The reduced
protection leads directly to increased performance.

The PROFiT algorithms are able to provide better performance than any of the full re-
liability techniques (which exclude SWIFT:CF and SWIFT:ST). PROFiT maximized the
utility function by trading off performance for reliability in a sophisticated way. SW-
PROFiT outperforms SWIFT (1.217 vs. 1.429), CRPROFiT outperforms all CRAFT ver-
sions (1.281 vs. 1.314) and full PROFiT performs just as well as CRPROFiT.

It is notable that in some instances, such as 179.art and 256.bzip, the performance re-
mained the same or even improved after a reliability transformation. We discovered that
the baseline version of these benchmarks suffered heavily from load-use stalls. There-
fore, inserting instructions between the load and the use will not have any negative impact
on performance. In fact, these perturbations in the schedule may even slightly improve
performance.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

20 · Reis et al.

Hardware-only redundancy techniques, such as lockstepping and RMT, typically have
a smaller performance penalty than software-only approaches. The RMT hardware tech-
nique has been shown to suffer a 32% slowdown when compared to a non-redundant single-
threaded core and a 40% slowdown when compared to a non-redundant multi-threaded
core. These numbers correspond to normalized execution times of 1.47x and 1.67x re-
spectively. Although the evaluation of the CRAFT techniques were done on an IntelR©

ItaniumR© 2 processor and the RMT implementation on a Compaq EV8 processor, we be-
lieve a comparison of the results from across the two evaluations is still meaningful and
instructive. The normalized execution times for CRAFT are similar to those for RMT,
and since we believe that the CRAFT techniques will perform similarly on aggressive out-
of-order processor, CRAFT can be expected to yield performance comparable to RMT
techniques. More importantly, these hardware-only approaches cannot be easily altered
to enable software controllability and thus are unable to fully reap the benefits of tuning
reliability to work in concert with the inherent redundancy and sensitivity of the code.

8.3 Reliability

The AVF and MWTF reliability metrics were also measured for the all of the SWIFT,
CRAFT, and PROFiT variations. The reliability was evaluated using the fault injection
methodology presented in Section 7.2. We first evaluate the AVF of the different systems,
and then the MWTF (of which AVF is one component).

8.3.1 Architectural Vulnerability Factor.We evaluated the AVF of the integer register
file for each of our techniques and benchmarks. We chose to fully investigate the integer
register file because its AVF is an order of magnitude greater than that of most other struc-
tures. An evaluation of the AVF of other structures and a comparison to the AVF of the
integer register has been previously reported by Reis et al. [2005b].

We conducted 5,000 separate injection experiments for each benchmark for each system
we evaluated (except SWIFT:CF and SWIFTBR which had 1,000 injections), for a total
of 504,000 individual injection runs. We randomly selected a point in time uniformly
distributed across the run time of the program. We executed the program, and at that point
in time, we selected one random bit from one random physical register and inverted that
bit to simulate a transient fault. We then continued executing the program to completion
and noted the output and exit status.

We evaluated the reliability of the systems using an IntelR© ItaniumR© 2 as the baseline
microarchitecture. The Liberty Simulation Environment’s (LSE) simulator builder [Vach-
harajani et al. 2002; Vachharajani et al. 2004] was used to construct our cycle-accurate
performance models. Our baseline machine models the real hardware with extremely
high fidelity; its cycles per instruction (CPI) matches that of a real IntelR© ItaniumR© 2
to within 5.4% absolute error [Penry et al. 2005]. For details of the IA64 architecture and
the IntelR© ItaniumR© 2 processor implementation, please refer to the Architecture Software
Developer’s Manual [Intel Corporation 2002].

The IntelR© ItaniumR© 2 integer register file is composed of 128 65-bit registers, 64 bits
for the integer data and 1 bit for the NaT (Not a Thing) bit. In the microarchitectural
simulation, any of the127× 65 = 8255 bits of the integer register file could be flipped in
any cycle. One register,r0 , cannot be affected by a transient fault since it always contains
the constant value zero, but the other 127 registers are vulnerable.

After a fault was injected, the microarchitectural simulator monitored the bit for the

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 21

60

80

100

N S T C B L +WR P N S T C B L +WR P N S T C B L +WR P N S T C B L +WR P N S T C B L +WR P N S T C B L +WR P N S T C B L +WR P N S T C B L +WR P N S T C B L +WR P N S T C B L +WR P N S T C B L +WR P N S T C B L +WR P N S T C B L +WR P

12
4.m

88
ksi

m

12
9.c

om
pre

ss

16
4.g

zip
17

9.a
rt

18
3.e

qu
ake

19
7.p

ars
er

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

g7
21

dec

g7
21

enc ras
ta

Aver
age

SDC

DUE

unACE

Fig. 8. AVF of the Integer Register File. Bars from left to right: No fault tolerance (N), SWIFT (S),
SWIFT:ST (T), SWIFT:CF (B), CRAFT:CSB (C), CRAFT:LVQ (L), CRAFT:CSB+LVQ (+), PROFiT:SWIFT
(W), PROFiT:CRAFT (R), PROFiT:SWIFT+CRAFT (P)

first use of the corrupted register. Instructions in-flight past the REG stage (register read)
either already have their input values or will obtain their input values from the bypass
logic. In either case, the register file will not be accessed and so the transient fault will
not affect these instructions. The microarchitectural simulation recorded the first instance
of an instruction consuming the corrupted register, if one existed. The fault may never
propagate to an instruction if the register is written to after the fault but before it is read.
If the fault was never propagated, then it had no effect on architecturally correct execution
(i.e. was unACE).

If the corrupted register was determined to be consumed, then native IntelR© ItaniumR© 2
execution was continued until program completion. By allowing the program to run to
completion, we determined if the corrupted and consumed bit caused a fault in the final
output. As previously mentioned in Section 7.2, a fault affecting architectural state does
not necessarily affect program correctness. If the native run resulted in correct output,
the corrupted bit was considered an unACE bit. If a fault was detected, then the bit was
considered DUE. Otherwise, the bit was considered SDC.

If the program ran to completion, but produced the wrong output, the corrupted bit was
considered a dSDC bit. Certain corrupted bits caused the program to terminate with a
noticeable event. Those bits were considered pSDC because the error can potentially be
detected by the noticiable event. We consider segmentation faults, illegal bus exceptions,
floating point exceptions, NaT consumption faults, and self-termination due to application-
level checking as pSDC events. Programs whose execution time exceeded 100 times the
normal execution time were deemed to be in an infinite loop and considered pSDC. Al-
though pSDC could potentially be considered DUE, for brevity’s sake we shall bucket
pSDC and dSDC together as simply SDC for the remainder of this paper.

Figure 8 shows the AVF for each of the benchmarks and systems evaluated. The stacked
bar graph represents percentage of bits in the register file that are the SDC, DUE, and
unACE. For each benchmark and each of the ten systems, the distribution of bits is re-
ported. In each of the benchmarks, the reliability techniques greatly reduce the amount of
SDC bits (top crosshatch bar) compared with the unprotected baseline. SDC bits represent
on average 17.15% of the unprotected case, whereas they represent 2.80% of the bits for
SWIFT:CF, and 0.71% for the CRAFT:CSB and PROFiT techniques. Even the reliability
technique with the worst SDC percentage reduces that SDC by a factor of 6.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

22 · Reis et al.

1

10

100

1000

12
4.m

88
ksi

m

12
9.c

om
pre

ss

16
4.g

zip
17

9.a
rt

18
3.e

qu
ake

19
7.p

ars
er

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

g7
21

dec

g7
21

enc ras
ta

GeoM
ean

SWIFT
SWIFT:ST
SWIFT:CF
CRAFT:CSB
CRAFT:LVQ
CRAFT:CSB+LVQ
SWPROFiT
CRPROFiT
PROFiT

Fig. 9. Normalized Mean Work To SDC Failure for the Integer Register File

Despite the high reliability of CRAFT:CSB+LVQ, the SDC is still nonzero. This is
due to two reasons. The first is that in order to maintain the calling convention, argument
passing cannot be duplicated. Before entering a function, argument registers are checked
against their duplicate counterparts to ensure their values match. Then, after entering the
function, the parameters are copied into duplicate registers for use by the subsequent re-
dundant code. A transient fault on one of the parameters to the function after the check,
but before the copy, will lead to that fault going undetected.

The second source of SDC errors arises from the exceptions that terminate the program.
For example, if a fault occurs to data that feeds the denominator of a divide instruction, that
fault could create a divide-by-zero exception and terminate the program. The techniques do
not validate the source operands to divide instructions, only data being written to memory
or affecting control flow. Another type of exception that will terminate the program is
a segmentation fault. Segmentation faults are particularly onerous in CRAFT:LVQ and
CRAFT:LVQ+CSB. Recall from Section 5.2 that the code which uses the load value queue
does not check the address before issuing the load instruction, leaving validation to the
hardware structure. Since the first load is sent to memory directly, while the second is
shunted from the LVQ, a fault on the address of the first load may cause a segmentation
fault. This increases the AVFSDC of techniques which incorporate the load value queue.

The reliability of the PROFiT builds are also given in Figure 8. Clearly, both PROFiT
and SWIFT builds are much more reliable than NOFT builds, which have an AVFSDC

of approximately 15%. The AVFSDC of PROFiT and SWIFT are statistically identical at
approximately 1.7%. But observe that the AVFDUE of PROFiT, 25.2%, is significantly
smaller than the AVFDUE of SWIFT, 26.6%. Therefore, the number of false DUE detec-
tions is reduced and the amount of work that can be accomplished before the raising of a
fault-detection exception is increased. Note that both SWIFT:ST and SWIFT:CF have an
even lower AVFDUE at the expense of a higher AVFSDC .

8.3.2 Mean Work To Failure.By combining the performance and the AVF of our tech-
niques, we can compute the Mean Work To Failure as described in Section 7. Figure 9
shows the normalized Mean Work To Failure for each of the techniques we have analyzed.
All of the techniques increase the MWTF by at least 5x, with CRAFT:CSB and PROFiT
increasing MWTF by 23.4x and 41.4x respectively.

The increase in MWTF is due to the large decrease in the average number of SDC bits for
the integer register file. However, this improvement in MWTF is tempered by the longer
execution times that the reliability techniques incur. For example, while the SWIFT:CF

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 23

0

5

10

15
SD

C+
D

U
E/

10
0

1 1.1 1.2 1.3 1.4 1.5 1.6
Normalized Execution Time

Fig. 10. Reliability as a function of constrained performance.

technique reduces AVFSDC by a factor of 6x, the MWTF only increases by a factor of 5x.
The CRAFT:CSB technique realizes a 23.4x increase in MWTF because of the large

decrease in SDC and only modest increase in execution time. The PROFiT technique
has approximately the same AVFSDC as the CRAFT:CSB technique, but the selective
application of redundancy is able to decrease the execution time relative to the CRAFT
technique alone. This results in a higher MWTF for PROFiT.

8.4 Hardware

Hardware cost is an important consideration for processor architects trying to meet soft-
error goals. Software-controlled reliability and performance optimization algorithms like
PROFiT incur zero hardware cost. The SWIFT technique, which is a software-only tech-
nique, incurs no hardware cost. The CRAFT techniques, which build on SWIFT, require
the addition of simple low-cost hardware structures, namely the checking store buffer (CSB)
and the load value queue (LVQ), which were inspired by RMT implementations. Overall,
these techniques incur very low hardware costs compared to expensive implementations
like RMT, while achieving comparable levels of reliability and performance.

8.5 PROFiT with Strict Performance Budget

Often, designers will be faced with a fixed performance budget. In such cases, no matter
what the reliability cost, the performance degradation may not exceed a fixed amount.
PROFiT is applicable in such cases, by simply assigning a utility of−∞ to configurations
which exceed the performance budget.

Figure 10 shows the average weighted AVF across all benchmarks for various levels
of performance constraint. It is notable PROFiT is able to greatly reduce the SDC with
less than 15% performance degradation. Also note that there are inflection points around
1.10, 1.30, and 1.40 where the slope of the curvature changes. This implies that the set
of functions which are both more reliable and within the performance budget does not
increase significantly between 1.40 and 1.60. This is as expected, since all of our protection
schemes can be implemented in such a budget, thus making all permutations available for
selection. Between 1.10 and 1.30, the slope of the line is also less steep than at other points
in the graph, indicating a paucity of functions in this region of the reliability/performance
space.

This phenomenon is further elucidated upon in Figure 11, which shows the cumulative

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

24 · Reis et al.

0.0

5.0 ·109

1.0 ·1010

1.5 ·1010

2.0 ·1010

Ex
ec

ut
io

n
Ti

m
e

(C
yc

le
s)

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
W

SWIFT
SWIFT:ST
SWIFT:CF
CRAFT:CSB
CRAFT:LVQ
CRAFT:CSB+LVQ

Fig. 11. CDF of functions vs. W weighted by execution profile.

distribution, weighted by execution profile, of functions which satisfy

tprotected

(MWTFprotected)W
<

toriginal

(MWTForiginal)W

for various values ofW . This represents the weight given to reliability versus performance
for each function when regarded in isolation.

The most significant behavior occurs atW = 0. In this neighborhood, MWTF is
weighted so as to be relatively insignificant, putting more emphasis on performance. After
this initial rise, the curve begins to level off, becoming nearly flat by the timeW = 1.
At this point, MWTF and execution time are inversely proportional: a 10% increase in
execution time is met with a 10% increase in MWTF.

This graph implies that nearly all functions of any significance cross theirtipping point,
the point at which a transition to a fault-tolerant version becomes desirable, in the positive
neighborhood around zero. That is to say that MWTF can be vastly improved with little
impact on performance. This can be deduced from the MWTF and performance numbers
presented earlier; execution time increases of 0.5x lead to orders of magnitude improve-
ment in MWTF. One should only very rarely need to pay a linear performance penalty for
reliability.

8.6 Case study: 124.m88ksim

We examine some of these phenomena within the context of specific example, namely,
124.m88ksim. 124.m88ksim is especially instructive because it clearly demonstrates some
of the phenomena which the PROFiT technique attempts to exploit. Figure 12 shows the
top three functions which contribute to execution time and AVF for this benchmark. Each
of these three functions has distinctly different behavior.

The lower-right function,loadmem , is by far the least reliable without any fault protec-
tion. However, when fault protection is added, the reliability increases drastically, while
the performance is nearly unaffected. On the graph, this type of change is represented by
the line with a steep slope. This corresponds to a function in theW = 0 region of Fig-
ure 11. This function performs many irregular loads, and so much of the time is dominated
by load-use stalls. When a protection technique is added, it can perform the redundant
computation in the slots that would otherwise be empty and thus not significantly degrade
the overall execution time.

The center function,Data path , follows a very different trend thanloadmem . Whereas
loadmem ’s versions are positioned vertically above the baseline,Data path ’s versions
are positioned along a diagonal axis above and to the right, implying a larger decrease in
performance for added reliability. This smaller slope shows that the reliability improve-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 25

0

5

R
el

ia
b

il
it

y
(%

S
D
C
F

+
D
U
E
F
/
10

0
)

0 1 · 107 2 · 107 3 · 107

Execution Time (Cycles)

Data path

alignd

loadmem

NOFT
SWIFT:ST
SWIFT:CF
CRAFT:CSB+LVQ
SWIFT
CRAFT:LVQ
CRAFT:CSB

Fig. 12. A scatter plot of SDC vs. execution time in cycles for selected functions of the benchmark 124.m88ksim.
The large, labeled circles represent versions of the function without any fault-detection transformation applied to
them. The different versions of that function are joined to it by lines. The light-grey contour lines delineate the
level curves of our utility function.

ment per unit of performance degradation is much smaller than withloadmem . In fact,
the slope of the rays indicate that this function can be more closely binned in theW = 1
point in Figure 11.Data path has a mix of irregular data accesses, irregular control flow,
function calls, and logical computation.

The last function,alignd , mostly resemblesData path , except for one aberrant
point directly above the unprotected function which correspondes to SWIFT without control-
flow checking. Observe that since all other protected versions of the function have control-
flow checking, the performance impact of control-flow is the dominating factor. On the
other hand, reliability is not dominated by control-flow, since all versions have approxi-
mately the same reliability.alignd consists mainly of a short, counted, hot loop contain-
ing a dependent chain of logical operations. Since operations within the loop are depen-
dent, the code cannot execute faster than 1 IPC. Thus, in the six-wide IntelR© ItaniumR© 2,
there are many empty slots, which the redundant computation can exploit. Therefore, the
performance penalty of duplicating the backwards slice of the store instructions is much
smaller than that of checking control-flow, which is frequent and regular.

9. CONCLUSION

In this paper, we demonstrated that SWIFT, a software-only fault-detection technique, and
CRAFT, a set of hybrid fault-detection systems, are able to vastly reduce the number of
undetected faults with very little or no hardware overhead. In order to properly measure
the reliability of SWIFT and CRAFT, we introduced the notion of Mean Work To Failure,
a metric which is able to faithfully portray the reliability for software-only and hybrid tech-
niques. We also presented a fault injection methodology which produces highly accurate
results with fast simulation time.

Using these techniques, we determined that SWIFT reduced the number of output cor-
rupting faults by 89.0% with a 42.9% performance degradation. Meanwhile, CRAFT was

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

26 · Reis et al.

able to further reduce execution time by 11.5% and decrease the number of output corrupt-
ing faults by 63.6% over SWIFT alone.

More importantly, SWIFT and CRAFT enabled the software-controlled fault tolerance
introduced in this paper. We proposed an implementation of software-controlled fault toler-
ance, called PROFiT, a profile-guided compiler technique for determining which portions
of code are most vulnerable and adjusting the protection accordingly. PROFiT was able to
reduce the execution time by 21.2% and 3.3% for the software and hybrid techniques while
having no deleterious impact on reliability. PROFiT demonstrates that software-controlled
fault tolerance offers designers more flexibility in their application of fault-detection tech-
niques and encourages further forays into software-controlled fault tolerance.

Acknowledgments

We thank Santosh Pande, John Sias, Robert Cohn, the anonymous reviewers, as well as
the entire Liberty Research Group for their support during this work. This work has been
supported by the National Science Foundation (CNS-0305617 and a Graduate Research
Fellowship) and Intel Corporation. Opinions, findings, conclusions, and recommendations
expressed throughout this work are not necessarily the views of the National Science Foun-
dation or Intel Corporation.

REFERENCES

AUSTIN, T. M. 1999. DIVA: a reliable substrate for deep submicron microarchitecture design. InProceedings
of the 32nd annual ACM/IEEE international symposium on Microarchitecture. IEEE Computer Society, 196–
207.

BAUMANN , R. C. 2001. Soft errors in advanced semiconductor devices-part I: the three radiation sources.IEEE
Transactions on Device and Materials Reliability 1,1 (March), 17–22.

BOLCHINI , C. AND SALICE , F. 2001. A software methodology for detecting hardware faults in vliw data paths.
In IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.

BOSSEN, D. C. 2002. CMOS soft errors and server design. InIEEE 2002 Reliability Physics Tutorial Notes,
Reliability Fundamentals. 121 07.1 – 12107.6.

CZECK, E. W. AND SIEWIOREK, D. 1990. Effects of transient gate-level faults on program behavior. In
Proceedings of the 1990 International Symposium on Fault-Tolerant Computing. 236–243.

DEAN, A. G. AND SHEN, J. P. 1998. Techniques for software thread integration in real-time embedded systems.
In Proceedings of the IEEE Real-Time Systems Symposium. IEEE Computer Society, Washington, DC, USA,
322.

GOMAA , M., SCARBROUGH, C., VIJAYKUMAR , T. N., AND POMERANZ, I. 2003. Transient-fault recovery for
chip multiprocessors. InProceedings of the 30th annual international symposium on Computer architecture.
ACM Press, 98–109.

HOLM , J. G. AND BANERJEE, P. 1992. Low cost concurrent error detection in a VLIW architecture using
replicated instructions. InProceedings of the 1992 International Conference on Parallel Processing. Vol. 1.
192–195.

HORST, R. W., HARRIS, R. L., AND JARDINE, R. L. 1990. Multiple instruction issue in the NonStop Cyclone
processor. InProceedings of the 17th International Symposium on Computer Architecture. 216–226.

INTEL CORPORATION. 2002. Intel Itanium Architecture Software Developer’s Manual, Volumes 1-3. Santa
Clara, CA.

K IM , S. AND SOMANI , A. K. 2002. Soft error sensitivity characterization for microprocessor dependability
enhancement strategy. InProceedings of the 2002 International Conference on Dependable Systems and
Networks. 416–425.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH , W. 1997. Mediabench: A tool for evaluating and synthe-
sizing multimedia and communications systems. InProceedings of the 30th Annual International Symposium
on Microarchitecture. 330–335.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

Software-Controlled Fault Tolerance · 27

MAHMOOD, A. AND MCCLUSKEY, E. J. 1988. Concurrent error detection using watchdog processors-a survey.
IEEE Transactions on Computers 37,2, 160–174.

MUKHERJEE, S. S., KONTZ, M., AND REINHARDT, S. K. 2002. Detailed design and evaluation of redun-
dant multithreading alternatives. InProceedings of the 29th annual international symposium on Computer
architecture. IEEE Computer Society, 99–110.

MUKHERJEE, S. S., WEAVER, C., EMER, J., REINHARDT, S. K.,AND AUSTIN, T. 2003. A systematic method-
ology to compute the architectural vulnerability factors for a high-performance microprocessor. InProceed-
ings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society,
29.

O’GORMAN, T. J., ROSS, J. M., TABER, A. H., ZIEGLER, J. F., MUHLFELD, H. P., MONTROSE, I. C. J.,
CURTIS, H. W., AND WALSH, J. L. 1996. Field testing for cosmic ray soft errors in semiconductor memories.
In IBM Journal of Research and Development. 41–49.

OH, N. AND MCCLUSKEY, E. J. 2001. Low energy error detection technique using procedure call duplication.
In Proceedings of the 2001 International Symposium on Dependable Systems and Networks.

OH, N., SHIRVANI , P. P.,AND MCCLUSKEY, E. J. 2002a. Control-flow checking by software signatures. In
IEEE Transactions on Reliability. Vol. 51. 111–122.

OH, N., SHIRVANI , P. P.,AND MCCLUSKEY, E. J. 2002b. ED4I: Error detection by diverse data and duplicated
instructions. InIEEE Transactions on Computers. Vol. 51. 180 – 199.

OH, N., SHIRVANI , P. P.,AND MCCLUSKEY, E. J. 2002c. Error detection by duplicated instructions in super-
scalar processors. InIEEE Transactions on Reliability. Vol. 51. 63–75.

OHLSSON, J.AND RIMEN , M. 1995. Implicit signature checking. InInternational Conference on Fault-Tolerant
Computing.

PATEL , J. H.AND FUNG, L. Y. 1982. Concurrent error detection in alu’s by recomputing with shifted operands.
IEEE Transactions on Computers 31,7, 589–595.

PENRY, D. A., VACHHARAJANI , M., AND AUGUST, D. I. 2005. Rapid development of a flexible validated
processor model. InProceedings of the 2005 Workshop on Modeling, Benchmarking, and Simulation (MOBS).

RAY, J., HOE, J. C.,AND FALSAFI , B. 2001. Dual use of superscalar datapath for transient-fault detection and
recovery. InProceedings of the 34th annual ACM/IEEE international symposium on Microarchitecture. IEEE
Computer Society, 214–224.

REBAUDENGO, M., REORDA, M. S., VIOLANTE , M., AND TORCHIANO, M. 2001. A source-to-source com-
piler for generating dependable software. InIEEE International Workshop on Source Code Analysis and
Manipulation. 33–42.

REINHARDT, S. K. AND MUKHERJEE, S. S. 2000. Transient fault detection via simultaneous multithreading.
In Proceedings of the 27th annual international symposium on Computer architecture. ACM Press, 25–36.

REIS, G. A., CHANG, J., VACHHARAJANI , N., RANGAN , R., AND AUGUST, D. I. 2005a. SWIFT: Software
implemented fault tolerance. InProceedings of the 3rd International Symposium on Code Generation and
Optimization.

REIS, G. A., CHANG, J., VACHHARAJANI , N., RANGAN , R., AUGUST, D. I., AND MUKHERJEE, S. S. 2005b.
Design and evaluation of hybrid fault-detection systems. InProceedings of the 32th Annual International
Symposium on Computer Architecture. 148–159.

ROTENBERG, E. 1999. AR-SMT: A microarchitectural approach to fault tolerance in microprocessors. InPro-
ceedings of the Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing. IEEE Computer
Society, 84.

SAXENA , N. AND MCCLUSKEY, E. J. 1998. Dependable adaptive computing systems – the ROAR project. In
International Conference on Systems, Man, and Cybernetics. 2172–2177.

SCHUETTE, M. A. AND SHEN, J. P. 1994. Exploiting instruction-level parallelism for integrated control-flow
monitoring. InIEEE Transactions on Computers. Vol. 43. 129–133.

SHIRVANI , P. P., SAXENA , N., AND MCCLUSKEY, E. J. 2000. Software-implemented EDAC protection against
SEUs. InIEEE Transactions on Reliability. Vol. 49. 273–284.

SHIVAKUMAR , P., KISTLER, M., KECKLER, S. W., BURGER, D., AND ALVISI , L. 2002. Modeling the effect
of technology trends on the soft error rate of combinational logic. InProceedings of the 2002 International
Conference on Dependable Systems and Networks. 389–399.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

28 · Reis et al.

SLEGEL, T. J., AVERILL III, R. M., CHECK, M. A., GIAMEI , B. C., KRUMM , B. W., KRYGOWSKI, C. A.,
L I , W. H., LIPTAY, J. S., MACDOUGALL , J. D., MCPHERSON, T. J., NAVARRO, J. A., SCHWARZ, E. M.,
SHUM , K., AND WEBB, C. F. 1999. IBM’s S/390 G5 Microprocessor design. InIEEE Micro. Vol. 19. 12–23.

VACHHARAJANI , M., VACHHARAJANI , N., AND AUGUST, D. I. 2004. The Liberty Structural Specification
Language: A high-level modeling language for component reuse. InProceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation (PLDI). 195–206.

VACHHARAJANI , M., VACHHARAJANI , N., PENRY, D. A., BLOME, J. A.,AND AUGUST, D. I. 2002. Microar-
chitectural exploration with Liberty. InProceedings of the 35th International Symposium on Microarchitecture
(MICRO). 271–282.

VENKATASUBRAMANIAN , R., HAYES, J. P.,AND MURRAY, B. T. 2003. Low-cost on-line fault detection using
control flow assertions. InProceedings of the 9th IEEE International On-Line Testing Symposium. 137–143.

V IJAYKUMAR , T. N., POMERANZ, I., AND CHENG, K. 2002. Transient-fault recovery using simultaneous
multithreading. InProceedings of the 29th annual international symposium on Computer architecture. IEEE
Computer Society, 87–98.

WANG, N., FERTIG, M., AND PATEL , S. J. 2003. Y-branches: When you come to a fork in the road, take it.
In Proceedings of the 12th International Conference on Parallel Architectures and Compilation Techniques.
56–67.

WANG, N. J., QUEK, J., RAFACZ, T. M., AND PATEL , S. J. 2004. Characterizing the effects of transient
faults on a high-performance processor pipeline. InProceedings of the 2004 International Conference on
Dependendable Systems and Networks. 61–72.

WEAVER, C., EMER, J., MUKHERJEE, S. S.,AND REINHARDT, S. K. 2004. Techniques to reduce the soft
error rate of a high-performance microprocessor. InProceedings of the 31st Annual International Symposium
on Computer Architecture (ISCA).

YEH, Y. 1996. Triple-triple redundant 777 primary flight computer. InProceedings of the 1996 IEEE Aerospace
Applications Conference. Vol. 1. 293–307.

YEH, Y. 1998. Design considerations in Boeing 777 fly-by-wire computers. InProceedings of the Third IEEE
International High-Assurance Systems Engineering Symposium. 64 – 72.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, December 2005.

