
Software cost estimation

F J Heemstra

The paper gives an overview of the state o f the art o f software

cost estimation (SCE). The main questions to be answered in the

paper are: (I) What are the reasons for overruns o f budgets and

planned durations? (2) What are the prerequisites for estimating?

(3) How can software development effort be estimated? (4) What

can software project management expect from SCE models, how

accurate are estimations which are made using these kind o f

models, and what are the pros and cons o f cost estimation

models?

software, cost estimation, project control, software cost esti-

mation model

S I M P L E Q U E S T I O N S , D I F F I C U L T

ANSWERS

Judging by reports from everyday practice and findings

in the literature, software projects regularly get out of

hand and invariably the effort expended on development

exceeds the estimated effort, resulting in the software

being delivered after the planned date. There is no doubt

that SCE is a serious problem for software project

management. At first glance the questions to be

answered are simple: How much time and effort will it

cost to develop the software? What are the dominating

cost factors? What are the important risk factors? Unfor-

tunately, however, the answers are neither simple nor

easy.

The article gives an overview of the field of software

cost estimation (SCE). Special attention is paid to the

use of SCE models. These models are one of the

techniques project management can use to estimate

and control the effort and duration of software develop-

ment. The paper starts with a description of the import-

ance of accurate cost estimates. From this it will be clear

that SCE is not easy, and management is confronted

with many problems. In the following section some

reasons for the problems will be highlighted, the paper

going on to explain which prerequisites are necessary for

an estimate to be possible. It is important to have

knowledge about the product that must be developed,

the development process, the development means, the

development personnel, and the user organization. Also

it is necessary to have available a set of estimation

methods and techniques. An overview of the existing

Faculty of Public Administration and Public Policy, Twente Univer-
sity, POB 217, Enschede, The Netherlands

techniques for cost estimation is given in the fifth section,

and the sixth section describes the principles of cost

estimation models with an overview of models available

nowadays. The rest of the paper deals with one of

these techniques, that is to say parametric models.

The penultimate section offers a comparison of

SCE models, focusing mainly on the question 'How

accurate are estimates made as a result of using models?'

Despite the fact that software cost estimation is in its

infancy plus the shortcomings of the current SCE

models, the use of models has several advantages. The

last section deals with the pros and cons and gives a

critical evaluation of the state of the art of the use of

these models.

OVERSHOOTS OF SOFTWARE

D E V E L O P M E N T COSTS

Estimation of effort and duration of software develop-

ment has become a topic of growing importance. This is

not surprising. It often happens that software is more

expensive than estimated and completion is later than

planned. Moreover it turns out that much software does

not meet the demands of the customer. There are a

number of examples of such automation projects. The

development costs of the automation of the education

funding in The Netherlands proved to be three times as

much as expected. Delays and wrong payments are a

daily occurrence (Volkskrant , 24 June 1987). The devel-

opment of the software for the purpose of the house-rent

subsidies, produced to government order, proved to be

twice as much as planned (NRC Handelsblad, 28 Febru-

ary 1989). In September 1989 the Dutch media an-

nounced as front page news the results of a

governmental audit concerning the automation for the

police. It proved to be an expensive disaster. The devel-

opment costs of a computerized identifying system were

US$43 million instead of the estimated US$21 million.

Furthermore the system did not answer the formulated

goals. The findings of a well-known Dutch consultancy

organization (Berenschot) were that the costs of the

automation of the registration of the Dutch population

at the municipal offices were more than twice as much

as were estimated (Volkskrant , 5 January 1990). A few

years ago the estimates of the costs were about US$25

million. New calculations show that there is a deficit of

more than US$30 million.

A field study by the Eindhoven University of Technol-

ogy ~ gives an overview of the present state of the art of

Vol 34 No 10 October 1992 0950-5849/92/100627-13 © 1992 Butterworth-Heinemann Ltd 627

Software cost estimation

the estimation and control of software development

projects in 598 Dutch organizations. The most remark-

able conclusions are:

• 35% of the participating organizations do not make

an estimate

• 50% of the responding organizations record no data

on an ongoing project

• 57% do not use cost-accounting

• 80% of the projects executed by the participating

organizations have overruns of budgets and duration

• the mean overruns of budgets and duration are 50%

Van Lierop et al. 2 measured extensively whether

development activities were executed according to

plan. They investigated the reasons for the differences

between plan and reality, and overall 80 development

activities were measured. For all these activities 3203

hours were planned but 3838 hours were used, which

means an overshoot of 20% on average of the planned

number of hours. The duration of the activities (in

days) proved to be 28% longer on average than

planned. For all the activities 406 days of duration were

planned, while the actual number of days proved to be

526.

In the literature the impression is given, mistakenly,

that software development without overshoots of

plans and budgets is not possible. This impression

is inaccurate, and other measurements confirm this 3.

These show that 6% of all the activities had a shorter

duration than planned and 58% were executed

according to plan and were ready exactly on time.

With regard to the development effort, it appeared that

25% of the activities needed less effort than estimated

and 30% needed precisely the estimated effort. The

reasons for the differences between plan and reality

prove to be very specific for the development situation.

In the organization where the measurements were

taken the reasons were mainly related to things under-

estimation of the quantity of work, underestimation

of the complexity of the application, and specifications

which proved to be unrealistic from a technical point

of view. In other organizations, where similar measure-

ments were taken, other reasons were discovered. As
a result, other control actions are, of course, necessary.

This conclusion fits well with the results of research

carried out by Beers 4. Thirty experienced software

developers, project managers, and others, were asked

to give the reasons for unsuccessful software projects.
The answers can be summarized briefly as 'many minds,

many thoughts'. It was not possible to indicate just

one reason. A long list of all kinds of reasons were
given.

It is alarming that it is so difficult for organizations to
control the development of software. This is sufficient

reason to emphasize that software development

cost estimation and control should take its place as

a fully fledged branch within discipline of software
development.

WHAT MAKES SOFTWARE COST

ESTIMATION SO DIFFICULT?

The main question, when confronting the above-

mentioned problems, is what it is that makes software

cost estimation so difficult. There are many reasons

and, without going into detail, some can be listed as

follows:

(1) There is a lack of data on completed software

projects. This kind of data can support project

management in making estimates.

(2) Estimates are often done hurriedly, without an

appreciation for the effort required to do a credible

job. In addition, too often it is the case that an

estimate is needed before clear specifications of the

system requirements have been produced. There-

fore, a typical situation is that estimators are being

pressured to write an estimate too quickly for a

system that they do not fully understand.

(3) Clear, complete and reliable specifications are

difficult to formulate, especially at the start of a

project. Changes, adaptations and additions are

more the rule than the exception: as a consequence

plans and budgets must be adapted too.

(4) Characteristics of software and software develop-

ment make estimating difficult. For example, the

level of abstraction, complexity, measurability of

product and process, innovative aspects, etc.

(5) A great number of factors have an influence on the

effort and time to develop software. These factors

are called 'cost drivers'. Examples are size and

complexity of the software, commitment and par-

ticipation of the user organization, experience of

the development team. In general these cost drivers

are difficult to determine in operation.

(6) Rapid changes in information technology (IT) and

the methodology of software development are a

problem for a stabilization of the estimation pro-

cess. For example, it is difficult to predict the

influence of new workbenches, fourth and fifth

generation languages, prototyping strategies, and

so on.

(7) An estimator (mostly the project manager) cannot

have much experience in developing estimates, es-

pecially for large projects. How many 'large'

projects can someone manage in, for example, 10

years?

(8) An apparent bias of software developers towards

underestimation. An estimator is likely to consider
how long a certain portion of the software would

take and then to extrapolate this estimate to the rest

of the system, ignoring the non-linear aspects of

software development, for example co-ordination

and management.

(9) The estimator estimates the time it would take to
perform the task personally, ignoring the fact that

a lot of work will be done by less experienced
people, and junior staff with a lower productivity

rate.

628 Information and Software Technology

F J HEEMSTRA

(10) There exists a serious mis-assumption of a linear

relation between the required capacity per unit of

time and the available time. This would mean that

software developed by 25 people in two years could

be accomplished by 50 people in one year. The

assumption is seriously wrong. According to

Brooks 5 the crucial corollary is: 'Adding people to

a late project only makes it later'.

(11) The estimator tends to reduce the estimates to some

degree, in order to make the bid more acceptable.

P R E R E Q U I S I T E S F O R S O F T W A R E C O S T

E S T I M A T I O N

There are many ways to get to grips with the SCE

problems. From an organizational perspective there are

numerous ways to improve software project manage-

ment: allocation of responsibilities; decision-making;

organizing project work; monitoring and auditing of

development tasks. Also software cost estimation can be

looked at from a sociological and psychological point of

view. This refers, for example, to commitment, organiz-

ing group cohesion, style of leadership, and so on. The

technical side of the job is also an important issue to take

into consideration. For example, the availability of good

equipment such as design, programming, test and docu-

mentation tools, hardware facilities, etc.

There are many factors that have an influence on the

effort and duration of software development. Several

prerequisites must be fulfilled to address the problems

listed above and to guarantee a sound basis for predict-

ing effort, duration and the capacity to develop the

software. These prerequisites are:

Insight in the characteristics of:

• the product (software) that has to

be developed

• the production means

• the production personnel

• the organization of the production

• the user/user organization

W H A T

WITH WH A T

WHO

HOW

FOR WHOM

Availability of:

• Techniques and tools for software cost estimation.

In this section the attention will be focused on the

WHAT, WITH WHAT, WHO, HOW and FOR

WHOM factors, referred to as cost drivers in the litera-

ture. In the next section, SCE techniques and tools will

be discussed.

There are many cost drivers. A study by Noth and

Kretzschmar 6 found that more than 1200 different

drivers were mentioned. Although there was consider-

able overlap in meaning, it is impossible to take them

all into consideration during SCE. It is important for

an organization to consider what are the most

dominant cost factors. Within the context of this paper

it is impossible to give an extended overview of the

overwhelming number of drivers, so concentration will

be on:

• a way of structuring the cost drivers

• listing the drivers which are commonly regarded as

important

• some general considerations

Table 1 presents a structure of cost drivers in five

categories. For each category the most important drivers

are listed. From the literature and practice it is known

that it is not easy to handle the cost drivers. When

making an estimate one has to know which cost drivers

are the most important in the specific situation, what the

values are of the drivers, and what the influences are on

effort and duration. In answering these questions it is

important to pay attention to several issues:

Definition There is a lack of clear and accepted defi-

nitions for drivers, such as size, quality, complexity,

experience, etc.

Quantification The majority of the cost drivers are

hard to quantify. Often one has to use measures such as

many, moderate, few, etc.

Table 1. A structure of important cost drivers 7

WHAT WITH WHAT WHO HOW FOR WHOM
(product) (means) (personnel) (project) (user)

Size of the software Computer constraints Quality of Requirements Participation
---execution time personnel project duration

Required quality --response time --stretch out
--memory capacity ---compression

Requirements volatility

Software complexity

Level of reuse

Amount of documentation

Type of application

User of tools

Use of modern
programming techniques
--information hiding
----chief prog. team
--structured program
--top-down design

Number of users
Experience of
personnel Stability of user

Basis for organization,
Quality project control procedures, way
management --matrix org. of working

--project org.
Availability --prototyping Experience of user
for project --incremental with automation,

--linear devel, level of education
--software devel, in automation

Vol 34 No 10 October 1992 629

Software cost estimation

Objectivity Subjectivity is a potential risk factor. What

may be complex for developer A is not complex for

developer B.

Correlation It is difficult to consider one driver by

itself. A change in the value of driver A may have

consequences in the values of several other cost drivers.

This is a difficulty from the viewpoint of measurability.

Relation between driver and effort For estimation it is

important to predict the relation between, for example,

software size and the required effort, a specified quality

level and required effort, etc. From the literature we

know that there is little clarity about these relations.

Calibration It is impossible to talk about "the most

important' cost drivers in isolation. It differs from

situation to situation.

Effectivity and efficiency There is conflict between
effectivity and efficiency. From an effectivity perspective

it is worthwhile to pay a lot of attention to, for example,

user participation. For the efficiency of a project it is

justifiable to avoid user involvement.

Human factors Almost all research agrees on the dom-

inating influence of cost drivers, such as experience and

quality of the personnel. This means that investment in

'good' developers is important.

Reuse In many studies reuse is regarded as (one of) the

most important factors to increase productivity s-~°.

S O F T W A R E C O S T E S T I M A T I O N :

T E C H N I Q U E S A N D T O O L S

In the literature you can find a great number of tech-

niques for estimating software development costs. Most

of them are a combination of the following primary
techniquesn:

(1) Estimates made by an expert.

(2) Estimates based on reasoning by analogy.
(3) Estimates based on Price-to-Win.

(4) Estimates based on available capacity.

(5) Estimates based on the use of parametric models.

Furthermore two main approaches can be distinguished:

(1) Top-down

In the top-down approach the estimation of the

overall project is derived from the global character-

istics of the product. The total estimated cost is then

split up among the various components.

(2) Bottom-up

In the bottom-up approach the cost of each individ-

ual component is estimated by the person who will
be responsible for developing the component. The

individual estimated costs are summed to get the

overall cost estimate of the project.

The reliability of estimates based on expert judgement

(1) depends a great deal to the degree in which a new

project conforms with the experience and the ability of

the expert to remember facts of historical projects.

Mostly the estimates are qualitative and not objective.

An important problem in using this method is that it is

difficult for someone else to reproduce and use the

knowledge and experience of an expert. This can lead to

misleading situations where the rules of thumb of an

expert are becoming general rules and used in inapplic-

able situations. Despite the disadvantages, this technique

is usually used in situations where a first indication of

effort and time is needed, especially in the first phases of

software development in which the specifications of the

product are vague and continually adapted.

The foundation of a cost estimation technique based

on reasoning by analogy (2) is an analysed database of

similar historical projects or similar project parts or

modules. To find a similarity between a new project and

one or more completed projects it is necessary to collect

and record data and characteristics of old projects.

The Price-to-Win (3) technique can hardly be called an

SCE technique. Primarily commercial motives play an

important part in using this approach. It is remarkable

that the estimates of organizations which use Price-to-

Win are no less accurate than organizations which use
other methods 7.

The basis of the estimation method which regards

SCE as a capacity (4) problem is the availability of

means, especially of personnel. An example is: 'Regard-

ing our capacity planning, three men are available for

the new project over the next four months. So the

planned effort will be 12 man months'. If the specifica-

tions of the software are not clear, this method can be

successful. An unfavourable side-effect is that in situ-

ations of overestimation the planned effort will be used

completely. This effect is based on Parkinson's law that

'Work expands to fill the available volume'.

In parametric models (5) the development time and

effort is estimated as a function of a number of variables.

These variables represent the most important cost driv-
ers. The nucleus of an estimation model is a number of

algorithms and parameters. The values of the parameters

and the kind of algorithms are, to a significant extent,

based on the contents of a database of completed

projects. In the next section a more comprehensive

explanation of estimation models is given.

As mentioned earlier only 65% of the organizations

which participated on the field study estimate a software

project. Table 2 shows the frequency of use of the

different techniques. The figures show that most organ-

izations make use of data from past projects in some

way. Obviously this works on an informal basis, because

only 50% of the participating organizations record data

from completed projects. Estimates based on expert
judgement and the capacity method prove to be quite

popular despite the disadvantages of these methods.

630 Information and Software Technology

F J HEEMSTRA

Table 2. Use of cost estimation techniques (an organization can
use more than one technique)

Use(%)

Expert judgement 25.5
Analogy method 60.8
Price-to-Win 8.9
Capacity problem 20.8
Parametric models 13.7

The next sections of this paper focus on the use of SCE

models. There was a rapid growth of models in the

1970s. In the 1980s and the 1990s, however, few new

models have been developed despite the increasing im-

portance of controlling and estimating software develop-

ment. Most of the 1970 models are of no interest to

present industrial practitioners. There is a tendency

towards automated versions (tools) of (combinations or

refinements) existing models. An important question is

whether this kind of model can solve all of the problems

discussed above.

S O F T W A R E C O S T E S T I M A T I O N

M O D E L S

In this section, one estimation technique, namely SCE

models, will be discussed and the principles of SCE

models described, making a distinction between sizing

and productivity models. The characteristics of some

well-known models will also be given.

T h e p r i n c i p l e s o f S C E m o d e l s

Most models found nowadays are two-stage models 7.

The first stage is a sizer and the second stage provides

a productivity adjustment factor.

In the first stage an estimate regarding the size of the

product to be developed is obtained. In practice several

sizing techniques are used. The most well-known sizers
nowadays are function points 12 and lines of code II. But

other sizing techniques like 'software science '13 and

DeMarco's Bang method ~4,15, have been defined. The

result of a sizing model is the size/volume of the software

to be developed, expressed as the number of lines of

source code, number of statements, or the number of
functions points.

In the second stage it is estimated how much time and

effort it will cost to develop the software of the estimated

size. First, the estimate of the size is converted into an

estimate in nominal man-months of effort. As this

nominal effort takes no advantage of knowledge con-

cerning the specific characteristics of the software-

product, the way the software-product will be developed

and the production means, a number of cost influencing

factors (cost drivers) are added to the model. The effect

of these cost drivers must be estimated. This effect is

often called a productivity adjustment factor. Appli-

cation of this correction factor to the nominal estimation

of effort provides a more realistic estimate.

Some models, like FPA 16, are focused more on the

sizing stage. Others, like the well-known COCOMO

model" on the productivity stage and some tools, such

as Before You Leap 17 combine two models to cover both

stages. Figure 1 shows the two stages in SCE models.

Figure 2 shows the sizing and the productivity stages

in the context of general cost estimation. In Figure 2 five

components of the general cost estimation structure are

shown. Besides the sizing and productivity components,

a phase distribution and sensitivity/risk analysis com-

ponent are distinguished. In the phase distribution com-

ponent the total effort and duration is split up over the

phases and activities of a project. This division has to be

based on empirical data of past projects. The sensitivity

and risk analysis phase supports project m a n a g e m e n t -

especially at the start of a project when the uncertainty

is great - - in determining the risk factors of a project and

the sensitivity of the estimates to the cost drivers settings.

Again data on past projects provide an important input

for this component. Before using a model for the first

time validation is necessary, and it may also be necessary

to calibrate the model. Mostly the environment in

which the SCE model has been developed and the

database of completed projects on which the model

is based will differ from the project characteristics of

the environment(s) in which the model is to be used.

To make validation and calibration possible, data on

historical projects have to be available in an organiz-

ation. As already mentioned, this information is often
lacking.

Most of the tools implementing SCE models do not

support project management in all of these steps. The

seven steps are:

(1) Creation of database of completed projects.

(2) Size estimation.

(3) Productivity estimation.

(4) Phase distribution.

(5) Sensitivity and risk analysis.

(6) Validation.

(7) Calibration.

Calibration and risk and sensitivity analysis are es-

pecially lacking.

SCE models

Figure I. Structuring of SCE models

based on source lines of code

based on function points

~ n o t based on source lines based on functional primitives
of code ~ etc.

Vol 34 No 10 October 1992 631

Software cost estimation

Development
organization

Io= .soo, I
past projects I

Validation and re(calibration)

Cost drivers of the new
software product/project

Figure 2. General cost estimation structure

Characteristics of the
software to develop

1
w I=] Sizing stage]= Size drivers

ISize of the software

~1 Productivity I
q stage

IEstimate of effort and time

distribution

I Phase distribution of development
Ceffort, time and resources

Sensitivity I
and risk
analysis

I
Estimation of risks,
feasibility etc.

An overview of SCE models

In the past 10 years a number of SCE models have been

developed. This section does not give an exhaustive

treatment of all the models: the overview is limited to

one example of a sizing model, one productivity model,

some models which are relevant from an historical point

of view, well documented and within the experience of

the author, and some models which introduce new ideas.

The COnstructive COst MOdel (COCOMO)
C O C O M O 11'18 is the best documented and most trans-

parent model currently available. The main focus in

COCOMO is upon estimating the influence of 15 cost

drivers on the development effort. Before this can be

done, an estimate of the software size must be available.

COCOMO does not support the sizing estimation stage:

it only gives several equations based on 63 completed

projects at TRW. The equations represent the relations

between size and effort and between effort and develop-

ment time. The equations are shown in Table 3. A

distinction is made between three development

modes: the organic mode (stable development environ-

ment, less innovative, relatively small size); the embed-
ded mode (developing within tight constraints,

innovative, complex, high volatility of requirements);

and the semi-detached mode (between organic and

embedded mode).

The nominal effort is adjusted by the influence of 15

cost drivers. In Table 4 the 15 COCOMO cost drivers are

listed with the adjustment for each driver value. For
example: where the required reliability of the software is

determined to be very high, the nominal effort has to be

multiplied by 1.40. Furthermore COCOMO provides

tables to apportion the adjusted estimated effort and

development over the project phases and, in the detailed

version of the model, to refine the adjustment for each

phase. For example: the quality of the programmer has

less influence in the feasibility phase than in the design

phase. Thus phase dependent adjustment factors are

used in the detailed model.

Function point analysis (FPA)

FPA has been developed by Albrecht 16 of IBM, and

made widely available through the user groups Guide and

Share. Albrecht was looking for a method to measure

productivity in software development. For that purpose

he developed FPA as an alternative measure to the

number of lines of code. The method is programming

language or fourth generation tool independent. The

method has been refined several times by Rudolph t9"2°,
Albrecht and Gaffney 12, and Symons 2t'22. The principle

of FPA is simple and is based on the number of

'functions' the software has to fulfil. These functions are

Table 3. The relation between the nominal effort and size and
between development time and effort. KDSI ----- number of deliv-
ered source instructions/lO00

Development Man-month Development time
mode (nominal) (nominal)

Organic 3.2*KDSP °5 2.5*MM (nom) °'38
Semi-detached 3.0*KDSI H2 2.5*MM (nom) °35
Embedded 2.8*KDSI 1-2° 2.5*MM (nom) °32

632 Information and Software Technology

F J HEEMSTRA

Table 4. The COCOMO cost drivers and their influence on the nominal effort

Very
Cost drivers low Low

Value of the cost drivers

Very Extra
Average High high high

Required reliability
Database size
Complexity software
Constraints execution time
Memory constraints
Hardware volatility
Response time constraints
Quality analysts
Experience with application
Quality programmers
Hardware experience
Programming language experience
Use modern programming techniques
Use software tools
Project duration constraints

0.75 0.88 1.00 1.15 ! .40
0.94 1.00 1.08 1.16

0.70 0.85 1.00 1.15 1.30
1.00 1.11 1.30

1.00 1.06 1.21

0.87 1.00 1.15 !.30
0.87 1.00 1.07 1.15

1.46 1.19 1.00 0.86 0.71
1.29 1.13 1.00 0.91 0.82
1.42 1.17 1.00 0.86 0.70
1.21 1.10 1.00 0.90
1.14 1.07 1.00 0.95
1.24 1.10 1.00 0.91 0.82

1.24 1.10 1.00 0.91 0.83
1.23 1.08 1.00 1.04 1.10

1.65

1.66

1.56

related to the types of data the software uses and

generates. Within FPA the software is characterized by

the five functions:

• the external input type

• the external output type

• the external inquiry type

• the logical internal file type

• the external interface file type

For each of these five types the number of simple,

average and complex occurrences that are expected in

the software is estimated. By weighting each number

with an appropriate weight a number is obtained, the

unadjusted number of function points. This indication

for nominal size is then adjusted, using 14 technical

characteristics. Figure 3 gives an overview of function

point analysis.

PRICE-S

The PRICE-S model (Programming Review of

Information Costing and Evalua t ion- -Sof tware) is

developed and supported by RCA PRICE Systems.

An important disadvantage with regard to COCOMO

and FPA is that the underlying concepts and ideas

are not publicly defined and the users are presented

with the model as a black box. The user of PRICE

sends the input to a time-sharing computer in the

USA, UK, or France and gets back his estimates

immediately. Despite this disadvantage and the high

rental price, there are many users, especially in America.

There is, however, an important motivation for

American companies to use the model. The US Depart-

ment of Defense demands a PRICE estimate for all

quotations for a software project. PRICE has separate

sizer and productivity function.

The P U T N A M model

This SCE model was developed by Putnam in 197423. He

based his model on the work of Norden 34. For many

projects at IBM, Norden plotted frequency distributions,

in which he showed how many people were allocated

to the development and maintenance of a software

product during the life-cycle. The curves he made fitted

very well with the Rayleigh curves. His findings were

merely empirical. He found no explanations for the

shape of the effort curve. On the assumptions of Norden,

Putnam formulated his model. There is not enough space

in this paper to explain the principles of the model and

the reader is referred to Putnam 23'24, Putnam and

Fitzsimmons z5 and Londeix 26.

Before You Leap (BYL)

BYL is a commercial package based on a link-up

between FPA and C O C O M O 17. BYL starts with a

calculation of the amount of net function points.

This amount is then translated into source lines of

code, taking in account the language used. For

Cobol, for instance, one function point is equal to

105 SLOC, for LISP 64, etc. This estimate of the size

in SLOC is precisely the necessary input for

COCOMO and the COCOMO part of BYL, taking

into account the influence on effort of the 15 COCOMO

cost drivers, calculates the estimates of costs and time-

scale.

Estimaes

Estimacs has been developed by H. R u b i n 27-29 and

Computer Associates 3°, and is available as a software

package. The model consists of nine modules: a function

point module; a risk module; an effort module (to

estimate development and maintenance effort), etc. The

most important and extensive module is Effort. The user

has to answer 25 input questions. These questions are

partly related to the complexity of the user-organization

and partly to the complexity and size of the software to

be developed. The way Estimacs translates the input to

an estimation of effort is not clear. Like many other

models, Estimacs is a 'closed model'.

Vol 34 No 10 October 1992 633

Software cost estimation

Function count , Max range: Factor * 2 ,

Level of information processing function
Type

ID Description Simple Average Complex Total

IT External input --*3 *4 *6
OT External output --*4 *5 *7

FT Logical internal file --*7 *10 "15 = - -
El External interface file --*5 *7 *10 = - -
QT External inquiry --*3 *4 *6

Maximum

range
factor 2.5

FC Total unadjusted function points

General information processing characteristics

Characteristics DI Characteristics DI

C1 Data communications --- C8 On-line update ---
C2 Distributed functions --- C9 Complex processing ---
C3 Performance --- C 10 Re-usability ---
C4 Heavily used configuration --- C11 Installation ease ---
C5 Transaction rate --- C12 Operational ease ---
C6 On-line data entry --- C13 Multiple sites ---
C7 End-user efficiency --- C14 Facilitate change ---

PC Total degree of influence ---

DI Values

Not present or no influence = 0
Insignificant influence = 1
Moderate influence = 2

FC (Function count) =
PC (Process complexity) =
PCA (Process complexity adjustment) =
FP (Function point measure) =

Figure 3. Overview o f function point analysis

Average influence
Significant influence
Strong influence, throughout

Total unadjusted function points
Total degree of influence
0.65 + 0.01 * PC
FC * PCA

= 3
= 4
= 5

SPQR-20

SPQR stands for Software Productivity, Quality

and Reliability. The model has been developed by

C. Jones 31. SPQR claims to be applicable for all kinds

of software projects as well as an estimate of dur-

ation, costs and effort to develop software; the

model also gives an estimate of maintenance costs.

SPQR uses FPA to size the volume of a program.

The model is based on an extensive database of

past projects. There are four versions of model,

SPQR 10, 20, 50 and 100 (the numbers stand for

the number of questions the model user has to

answer and gives an indication of the degree of

refinement of the versions). SPQR-20 is the only

commercially available version at the moment, not

marketed by C. Jones any more but overtaken by his

Checkmark product.

BIS-Estimator

BIS-Estimator is completely different from the

previously described models. According to the

documentation 32 the model claims to be a 'knowledge-

based tool'. This cannot be fully confirmed, because

the principles of the model are secret for the most

part. The model starts with a 'soft ' estimate. This is

a rough estimate of duration and effort based on (far

too few) input questions. Next a 'hard ' estimate is

made for each phase. Based on the estimates by

phase, by means of extrapolation, an estimate of

the complete project is made. The 'hard ' estimate

has to be made at the start of and/or during each

phase. The model has facilities to base the estimate

upon a comparison with a number of projects, selected

by the model user. A positive feature of the model is

the evolutionary approach. This means that the

estimation process changes during software develop-

ment. As a result of the kind of questions, data and

considerations, an estimate is based on the model

changes for each phase.

Several models and computerized versions (tools) are

available, but just a few of these have been described

briefly above. Without going into detail, Table 5 gives a

more extensive list of models and tools. The reader is

referred to publications in the literature for a more

comprehensive description of each. The models in the list

are in chronological order (year of publication). The first

11 are ancient models and of no current interest to

practitioners.

634 Information and Software Technology

F J HEEMSTRA

COMPARISON OF SCE MODELS

During the past few years several empirical studies have

been carried out to validate the various SCE models.

Validation is important but difficult to do, because of the

demand to capture large amounts of data about com-

pleted software projects. As mentioned before, data

collection is not common in the software community. It

is labour and time-intensive and requires an attitude not

only focused on the constructive part but also on the

analytical part of software engineering. Furthermore

data collection, usable for validating SCE, is limited to

a relative small number of software development organ-

izations. Only a few organizations realize large software

Table 5. SCE models and tools with references

Model Source

projects each year. Nevertheless, a number of validation

research investigations have been carried out. In this

section some of them will be discussed.

The models discussed earlier differ considerably. Ex-

periments show that estimates made by the different

models for the same project vary strongly. Furthermore

the estimates differ very much from the real development

cost and duration. To give an opinion upon the quality

of SCE models, it must be known what kind of demands

have to be made upon these models. In Table 6 an

overview of these demands/requirements is presented.

These requirements are a part of an evaluation method

for SCE models. This method has been developed by

Heemstra, Kusters and van Genuchten I and used to

SDC

TRW Wolverton

TELECOTE

BOEING

IBM/FSD

DOTY

ESDI

SLIM

Surbock
GRC

Grumman

PRICE-S
FPA

SLICE

FAST
Baily/Basili

COCOMO
SOFTCOST

BANG

JS 3/System-4/Seer

COPMO

GECOMO
ESTIMACS
BYL
SPQR/Checkmark
Jeffery

ESTIMATE/1
BIS
SECOMO

Nelson, E A Management handbook for the estimation of computer programming costs, AD-A648750, Systems
Development Corporation (1966)
Wolverton, R W 'The cost of development large-scale software' IEEE Trans. on computers, Vol c-23, No 6
(June 1974)
Frederic, B C A professional model for estimating computer program development costs. Telecote Research Inc.
(1974)
Black, R K D, Curnow, R P, Katz, R and Gray, M D 'BCS software production data' Final technical report,
RADC-TR-77-116, Boeing Computer Services Inc. (March 1977)
Walston, C E and Felix, C P 'A method of programming measurement and estimating' IBM System J. Vol 16
(1977)
Herd, J R, Postak, J N, Russell, W E and Stewart, K R 'Software cost estimation--study results. Final
technical report, RA-DC-TR-77-220, Vol 1, DOTY Associates, Inc., Rockville, MD (1977)
Duquette, J A and Bourbon, G A 'ESD, A computerized model for estimating software life cycle costs'
FSD-TR-235 Vol 1 (April 1978)
Putnam, L H 'A general empirical solution to the macro software sizing and estimating problem' IEEE Trans.
Soft. Eng. SE-4, 4 (1978)
Surbock, E K Management software development Projekten Berlin (1978) (In German)
Carriere, W M and Thibodeau, R 'Development of a logistic software cost estimating technique for foreign
military sales' GRC Report CR-3-839 (1979)
Sandier, G and Bachowitz, B 'Software cost models--Grumman experience' IEEE, quantitative software
model conference (1979)
Freiman, F R and Park, R E 'The Price software cost model: RCA government systems division' IEEE (1979)
Albrecht, A J 'Measuring application development productivity' Proc. of Joint SHARE~GUIDE~IBM
application development syrup. (October 1979)
Kustanowitz, A L 'System life cycle estimation (SLICE): a new approach to estimating resources for
application program development' IEEE first international computer software and application conference,
Chicago (1980)
Freiman, F R 'The FAST methodology' J. ofparametrics, Vol 1 No 2 (1981)
Bailey, J W and Basili V R 'A meta-model for software development resource expenditures' Proc. 5th Int.
Conf. Soft. Engin., IEEE (1981)
Boehm, B W Software engineering economics Prentice-Hall (1981)
Tausworthe, R C 'Deep space network software cost estimation model' Publication 81-7, Jet Propulsion
Laboratory, Pasadena, CA (1981)
DeMarco, T Controlling software projects: management, measurement and estimation Yourdon Press, New
York (1982)
Jensen, R W 'An improved macrolevel software development resource estimation model' Proc. 5th ISPA Conf.
St Louis MO (1983)
Thebaut, S M and Shen, V Y 'An analytic resource model for large-scale software development' Inf. Proc.
Management, Vol 20 No 1-2 (1984)
Gecomo 'Software tools for professionals' GEC Software Documentation, G & C Company, London (1985)
Computer Associates. CA-Estimacs User Guide, Release 5.0 (July 1986)
Before You Leap. User's Guide, Gordon Group (1986)
Jones, C Programming productivity McGraw-Hill (1986)
Jeffery, D R 'A software development productivity model for MIS environments' J. of Systems and Software
7 (1987)
Estimate/1. Documentative Method/l: Automated Project Estimating Aid. Arthur Anderson (1987)
BIS/Estimator. User Manual, version 4.4, BIS Applied System Ltd (1987)
Goethert, W B 'SECOMO' in Boehm, B W Documentation of the seminar: software cost estimation using
COCOMO and ADA COCOMO, SAL, London. 1988' ITT Research Institute, Data & Analysis Center for
Software.

Vol 34 No 10 October 1992 635

Software cost estimation

Table 6. Requirements for SCE models

Model requirements Application requirements Implementation requirements

Linked to software control method
Applicability at the start of a project
Fit with the data that is available during

development
Possible to adjust estimate due to changing

objectives
Definition of domain model is suitable for

Possibilities for calibration
Accuracy of the estimations

User-friendliness of the tool
Possibilities for sensitivity analyses
Possibilities for risk analysis
Open model, is it possible to see

how the results were obtained
Clarity of input definition
Completeness and detail of output

evaluate the eight models descr ibed above. The results o f

that eva lua t ion are presented in Table 7 and descr ibed

in more deta i l in Heems t r a 7. F r o m the table it can be

seen tha t there are only few plusses. The conclus ion is

that the qual i ty o f the models is p o o r and much improve-

men t is necessary. The accuracy o f the es t imat ions were

eva lua ted by several tests. The way the tests were

executed and the results ob ta ined will be described. The

object ives o f the tests were:

• to de te rmine the accuracy o f the es t imate using SCE

models in a semi-real is t ic s i tua t ion

• to de te rmine whether these models will be accepted by

pro jec t m a n a g e m e n t

Af te r a severe selection p rocedure only two SCE models

remained. These were the BYL and Es t imacs models .

D u r i n g the tests 14 exper ienced pro jec t leaders were

asked to make a n u m b e r o f es t imates for a project tha t

had actual ly been carr ied out. The pro jec t was descr ibed

as if it was at the s tar t o f the project . The project leaders

had to make three est imates. The first es t imate o f effort

and du ra t i on (the ' m a n u a l ' es t imate) was made on the

basis o f the pro jec t leaders ' knowledge and experience.

Next , two es t imates were made using the models se-

lected. In conclusion, a final es t imate was made on the

basis o f the project leaders ' knowledge and experience

toge ther with the mode l est imates. Each es t imate was

evalua ted direct ly using a quest ionnaire , and the tests

ended with a discussion session. The results are pre-

sented in Table 8.

The real effort and du ra t ion were eight m a n - m o n t h s

and six months . The main conclusions o f the exper iment

were tha t on the basis o f the differences found between

the est imates and reali ty, it has no t been shown tha t the

selected models can be used for a rel iable es t imat ion tool

at an ear ly stage o f sof tware development . Al l in all, the

project leaders were not wildly enthusiast ic abou t these

tools, but they were, nevertheless, felt to be acceptable

as a check-l is t and as a means o f communica t ion . I t

should be ment ioned tha t the selected project is small.

M o s t models are ca l ibra ted on da t a f rom medium/ la rge

projects .

K e me re r 33 shows tha t es t imates o f different models

can differ considerably . F o r each mode l he invest igated

the difference between actual and es t imated number o f

man-mon ths . He used C O C O M O , Estimacs, F P A and

P u t n a m ' s mode l to es t imate the required effort o f 15

a l r eady realized projects. F r o m Table 9 it can be seen

tha t for bo th C O C O M O and P u t n a m ' s mode l there were

sharp overes t imat ions . F P A and Est imacs gave dis t inct ly

bet ter results with overshoots o f 100% and 85%, re-

spectively. A s imilar s tudy was carr ied out by Rub in 29.

A project descr ip t ion was sent to Jensen (Jensen's

model) , Greene (Pu tnam ' s mode l S L I M) and R o o k

(G E C O M O) and to h imself (Rub in ' s model Estimacs).

Table 7. Evaluation of models

Models

Requirements COCOMO PRICE PUTNAM FPA BYL ESTIMACS SPQR BIS

Model requirements
Linked to software control method + +
Applicable at an early stage + + + + + -
Using available data + + +
Adjustment to objectives + + + + + +
Definition of scope/domain + - - + + - - - + +

Application requirements
Calibration - - + + - -
Accuracy nt nt nt nt t t nt nt

Implementation requirements
User friendliness + + - + + + + + + +
Sensitivity analysis + + + + + - -
Risk analysis + + +
Open model/traceability + + + + + + + + - - +
Definition input + + - + + - + + + +
Completeness and detail output + + + - - + + + + + + + +

+ + =satisfies the requirement; + =sufficient; - =insufficient; - - =the model does not satisfy the requirement; nt = the model was not tested
on accuracy; t = the models were tested

636 Information and Software Technology

F J HEEMSTRA

Table 8. Some results of the tests. Duration is given in months,

effort in man-months

Variable /~ ~r

Effort
Manual estimate 28.4 18.3
BYL estimate 27.7 14.0
Estimacs estimate 48.5 13.9
Final estimate 27.7 12.8

Duration
Manual estimate 11.2 3.7
BYL estimate 8.5 2.4
Final estimate 12.1 3.4

The main purpose was to compare and contrast the

different sort of information required by the four

models. Also a comparison was made between the

estimates obtained using the models, that is to say

the number of man-months and the duration for

the development of the selected project. From Table 10

it can be seen that the estimates vary significantly.

Also Rubin's explanation is that the models are based

on different databases of completed projects and

have not been calibrated and the four participants

made different assumptions in choosing the settings of

the cost drivers.

T H E I M P O R T A N C E O F S C E M O D E L S

The field study, mentioned earlier in the paper, shows

that SCE models are currently not generally accepted in

organizations surveyed. Only 51 of the 364 organizations

that estimate software development use models. An

analysis showed that these 51 model-users make no

better estimates than the non-model-users. These results

are disappointing at first glance. It does not mean,

however, that it makes no sense to spend further re-

search effort on models. All the investigations mentioned

before agree that the poor quality is primarily due to

using the models wrongly. For example: use of models

requires organizational bounded data of past projects.

Most of the time models are used without calibration. If

models cannot be adapted the result will be less accurate

estimates. The majority of the models do not support

calibration.

It is worth while to promote the development of better

estimation tools, despite the shortcomings of the existing

models. In this section some arguments are put forward

that underline the necessity to invest more effort and

time in the development of SCE models.

In making an estimate, especially at an early stage

of development, a lot of uncertainty and fuzziness

exists. It is not known which cost drivers play a part

in the estimation and what the influence of the cost

drivers will be. There are many participants involved

in the project (project manager, customer, developer,

user, etc.). Often they all have their own hidden

agendas and goals conflicting with each other (minimal-

ization of the costs, maximalization of the quality,

minimalization of the duration, optimal use of

Table 9. Estimates of the actual and estimated number of

man-months using four different models

Averages for all projects

Actual Estimated (Estimated
number number divided by

Models of MM of MM actual) * 100%

GECOMO 219.25 1291.75 607.85
Putnam 219.25 2060.17 771.87
FPA 260.30 533.23 167.29
Estimacs 287.97 354.77 85.48

employees, etc.). For project management it is difficult

to predict the progress of a project in such fuzzy

situations. To make point estimations like 'duration

will be 321 man-months of which 110 for analysis, 70

for design, etc.', will be of less importance. Such

exact figures do not fit in with the nature of the

problem. Project management will be more interested

in a number of scenarios from which alternatives can

be chosen and in the sensitiveness of an estimation

to specific cost drivers. For example: what will be

the result on the duration of the addition of two

more analysts to the project: what will be the influence

on effort if the available development time will be

decreased sharply; what will be the result on effort

and duration if the complexity of the software to

be developed has been estimated too high or too low,

etc. An approach of the estimation problem like

this gives project management more insight and feeling

for alternative solutions. Furthermore this approach

offers a proper basis for project control. If an estimate

proves to be sensible for changes of a specific cost

driver, this provides a warning for project management

to pay full attention to this cost driver during develop-

ment.

Often project management will be confronted with

little tolerance in defined duration, price and quality. In

such cases project management wants support in choos-

ing the values of the decision variables. What are the

available possible choices to meet the given objectives.

Which personnel in combination with which tools and

by means of which kind of project organization are

suitable as possible solutions. The conclusion is that

there is no need for a rigid 'calculation tool'. This does

not fit with the characteristics of the estimation problem,

namely uncertainty, fuzziness, little structuring, and

unclear and incomplete specifications.

An important prerequisite for successful estimation is

the development, acceptance and use of a uniform set of

Table 10. Comparison of SCE models by Rubin z9

Effort Duration

Mode Jensen 940 MM 31 m
Putnam 200 MM 17 m
GECOMO 363 MM 23 m
Estimacs 17 100 hrs 16 m

MM = man-months; m = months

Vol 34 No 10 October 1992 637

Software cost estimation

definitions and standards. This results in agreements

such as:

• How many times an estimate is made for a project.

For example: five times for each project that costs

more than 12 man-months.

• In what phases during execution an estimate is made.

For example: during the feasibility study, during the

specification phase and after finishing the design.

• Which employees are involved in the estimation pro-

cess. For example: project management, customers,

developers.

• What will be estimated. For example: all development

activities with regard to the phases feasibility, specifi-

cation, design, etc. or all activities including training,

documentation, etc.

• The output of an estimate. For example: costs in

dollars, effort in man-months, duration in months.

• The factors which can be regarded as the most import-

ant cost drivers and have to be recorded. For example:

size, reliability, type of application, quality of person-

nel, etc.

• A set of definitions. For example: volume will be

expressed in function points, documentation contains

o f . . . , high complexity means etc.

The result will be a comprehensive list of standardized

agreements. It is important that these are really applied

in the subsequent project. An SCE model that meets

requirements such as a set of clear definitions, measur-

able and relevant cost drivers, flexibility with regards to

other control methods, etc. will result in a more struc-

tural approach to software cost estimation and control.

C O N C L U S I O N S A N D

R E C O M M E N D A T I O N S

In this final section some concrete guidelines for con-

trolling and estimating software development will be

offered. Most of these guidelines have been discussed at

different levels of detail in the previous sections.

to use data collected from other organizations. The

relevant data are different for each organization.

Use more than one estimation technique

A lot of research shows that the quality of the current

estimation techniques is poor. The lack of accurate and

reliable estimation techniques combined with the finan-

cial, technical, organizational and social risks of soft-

ware projects, require a frequent estimation during the

development of an application and the use of more than

one estimation technique. More and different techniques

are required, especially at the milestones of the develop-

ment phases. The level of knowledge of the software

whose cost we are trying to estimate is growing during

a project. A possibility is to use another model during a

project, because more information and more accurate

information is available; a cascade of techniques- for

example Wide Band Delphi, Estimacs, DeMarco,

C O C O M O - is a possible solution.

Cost estimation needs commitment

Software development has to be done by highly qualified

professionals. For such people some characteristics are

relevant, such as:

• individuality in work performance is important

• a good professional result of their work is important

• professionals want to be consulted in decisions, work

planning, the desired result, etc.

• professionals do not want to be disturbed by manage-

ment during the execution of their work

It is not wise to confront professional developers with a

plan and estimate without any consultation. A hierarchi-

cal leadership is not suitable. In consulting the develop-

ers not only their expertise is used but also their

involvement in the estimation process is increased. This

results in a higher commitment than is necessary for the

success of a project.

Determine the level o f uncertainty

High uncertainty needs another approach of cost esti-

mation and control than does low uncertainty. High

uncertainty corresponds with risk analysis, estimating

and margins, exploration oriented problem-solving,

expert-oriented estimating techniques, etc. Low uncer-

tainty corresponds with cost estimation models (calcu-

lation tools), experiences from past projects, realization

oriented problem-solving, the estimate is regarded as a

norm, etc.

Cost estimation and data collection

Collection of data of completed projects is necessary for

successful cost estimation. Cost models, estimation by
analogy and experts require such data. It is no solution

Cost estimation: a management problem

Software cost estimation is often wrongly regarded as a

technical problem that can be solved with calculation

models, a set of metrics and procedures. However, the

opposite is true. The 'human aspects' are much more

important. The quality, experience and composition of

the project team, the degree in which the project leader

can motivate, kindle enthusiasm and commit his devel-
opers, has more influence on delivering the software in

time and within budget than the use of rigid calculations.

R E F E R E N C E S

1 Heemstra, F J, Kusters, R and van Genuchten, M 'Selections
of software cost estimation models' Report TUE/BDK
University of Technology Eindhoven (1989)

638 Information and Software Technology

F J HEEMSTRA

2 Lierop van, F L G, Voikers, R S A, Genuchten, M van and
Heemstra, F J 'Has someone seen the software?' Informatie
Vol 33 No 3 (1991) (In Dutch)

3 Genuchten, van M I J M 'Towards a software factory' PhD
Thesis, University of Technology Eindhoven (1991)

4 Beers 'Problems, planning and knowledge, a study of the
processes behind success and failure of an automation
project' PhD Series in general management, No 1 Faculty
Industrial Engineering/Rotterdam School of Management,
Erasmus University Rotterdam (1991) (In Dutch)

5 Brooks, F B The mythical manmonth. Essays on software
engineering Addison-Wesley (1975)

6 Noth, T and Kretzsclunar, M Estimation of software devel-
opment projects Springer-Verlag (1984) (In German)

7 Hecmstra, F J How expensive is software? Estimation and
control of software-development Kluwer (1989) (In Dutch)

8 Druffel, L E 'Strategies for a DoD Software initiative' CSS
DUSD(RAT) Washington, DC (1982)

9 Conte, S D, Dunsmore, H F and Shen, V Y Software
engineering metrics and models Benjamin Cummins (1986)

10 Reifer, D J 'The economics of software reuse' Proc. 14th
Annual ISPA Conf., New Orleans (May 1991)

11 Boehm, B W Software engineering economics Prentice-Hall
(1981)

12 Albrecht, A J and Gaffney, J E 'Software function, source
lines of code, and development effort prediction: a software
science validation' IEEE Trans. Soft. Eng. Vol SE-9 No 6
(1983)

13 Halstead, M H Elements of software science North-Holland
(1977)

14 DeMareo, T Controlling software projects: management,
measurement and estimation Yourdon Press, New York
(1982)

15 DeMareo, T 'An algorithm for sizing software products'
Performance Evaluation Review 12 pp 13-22 (1984)

16 Albrecht, A J 'Measuring application development pro-
ductivity' Proc. Joint SHARE~GUIDE~IBM application
development syrup. (October 1979)

17 Gordon 'Before You Leap' User's Guide Gordon Group
(1986)

18 Boehm, B W 'Software engineering economics' IEEE Trans.
Soft. Eng. Vol 10 No 1 (January 1984)

19 Rudolph, E E 'Productivity in computer application devel-
opment, Department of Management Studies' Working
paper No 9 University of Auckland (March 1983)

20 Rudolph, E E 'Function point analyses, cookbook' own
edition from Rudolph (March 1983)

21 Symons, C R 'Function point analysis: difficulties and
improvements' IEEE Trans. Soft. Eng. Vol 14 No l (Janu-
ary 1988)

22 Symons, C R Software sizing and estimating---MARK H
FPA Wiley (1991)

23 Putnam, L H 'A general empirical solution to the macro
software sizing and estimating problem' IEEE Trans. Soft.
Eng. SE-4, 4 (1978)

24 Putnam, L 'Software costing estimating and life cycle
control' IEEE Computer Society Press (1980)

25 Putnam, L H and Fitzsimmons, A 'Estimating software
costs' Datamation (Sept. Oct. Nov. 1979)

26 Londeix, B Cost estimation for software development
Addison-Wesley (1987)

27 Rubin, H A 'Interactive macro-estimation of software life
cycle parameters via personal computer: a technique for
improving customer/developer communication' Proc.
Symp. on application & assessment of automated tools for
software development, IEEE, San Francisco (1983)

28 Rubin, H A 'Macro and micro-estimation of maintenance
effort: the estimacs maintenance models' IEEE (1984)

29 Rubin, H A 'A comparison of cost estimation tools' Proc.
8th Int. Conf. Soft. Eng. IEEE (1985)

30 Computer Associates CA-Estimacs User Guide Release 5.0
(July 1986)

31 Jones, C Programming productivity McGraw-Hill (1986)
32 BIS/Estimatnr User manual version 4.4. BIS Applied Sys-

tem Ltd. (1987)
33 Kemerer, C F 'An empirical validation of software cost

estimation models' Communications of the ACM Vol 30
No 5 (May 1987)

34 Norden, P V Useful tools for project management (Oper-
ations research in research and development) Wiley (1963)

Vol 34 No 10 October 1992 639

