
Software Data Spreading: Leveraging Distributed
Caches to Improve Single Thread Performance

Md Kamruzzaman Steven Swanson Dean M. Tullsen
Computer Science and Engineering
University of California, San Diego

{mkamruzz,swanson,tullsen}@cs.ucsd.edu

Abstract
Single thread performance remains an important consideration
even for multicore, multiprocessor systems. As a result, techniques
for improving single thread performance using multiple cores have
received considerable attention. This work describes a technique,
software data spreading, that leverages the cache capacity of ex-
tra cores and extra sockets rather than their computational re-
sources. Software data spreading is a software-only technique that
uses compiler-directed thread migration to aggregate cache capac-
ity across cores and chips and improve performance. This paper de-
scribes an automated scheme that applies data spreading to various
types of loops. Experiments with a set of SPEC2000, SPEC2006,
NAS, and microbenchmark workloads show that data spreading can
provide speedup of over 2, averaging 17% for the SPEC and NAS
applications on two systems. In addition, despite using more cores
for the same computation, data spreading actually saves power
since it reduces access to DRAM.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors–Compilers

General Terms Languages, Performance

Keywords chip multiprocessors, compilers, single-thread perfor-
mance

1. Introduction
Hardware parallelism has become pervasive. Every high-
performance processor is now multicore, and multi-socket config-
urations are common even on personal machines. Current main-
stream offerings contain 4 to 16 execution cores on each processor
chip [1, 27], and there is no sign of the trend toward higher core
counts slowing.

This move allows users to benefit from the availability of in-
creasing transistor counts in the presence of thread-level paral-
lelism. However, it would be a mistake to assume that single-thread
or few-threads performance no longer matters in this new era. In
fact, just the opposite is true, and in some cases its importance will
increase: Amdahl’s law dictates that as architectures become more
parallel, the inherently serial portions of applications will eventu-
ally limit the performance of all but the most embarrassingly paral-
lel codes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

As available hardware parallelism continues to increase, we an-
ticipate the following three phenomena: (1) single thread perfor-
mance will remain important, (2) in many machines some (if not
most) of the cores will be idle, and (3) manual parallelization for
most programs will remain difficult. As a result we need automatic,
generally applicable techniques for accelerating single threads on
many-core systems. Automatic compiler-generated parallelism is
one solution, but is still not effective for a large number of appli-
cations. Therefore, we also need to pursue non-traditional paral-
lelization techniques – those which provide parallel speedup (many
cores run an application faster than a single core) without actually
offloading parallel computation to cores – techniques like helper
threading, speculative multithreading, etc.

These techniques exploit the computational ability of other
cores to accelerate the original thread. In this research, we intro-
duce the concept of software data spreading which exploits the ca-
pacity of remote caches to accelerate a single thread. By migrating
the thread among multiple cores with distinct caches, we can utilize
the combined cache space of all of those cores. Aggregating cache
capacity is of growing importance: Although total on-chip cache
capacity continues to grow with Moore’s law, the per-core cache
capacity is not keeping pace (e.g., 4MB total for the Intel Core 2
Duo at introduction vs. 8MB total for a quad-core Nehalem chip).
Previous work [4, 10, 22, 25] has attempted to aggregate cache
space through specialized hardware support.

Migrating a thread among multiple cores while it accesses large
data structures provides three primary advantages. First, when the
thread repeats a memory access pattern (e.g., during multiple in-
stances of a loop), we force the thread to periodically migrate be-
tween caches in the same pattern each time. As a result, the thread
tends to access the same portion of the data when it is running on
a specific core, resulting in lower miss rates. Second, even when
the computation moves completely unpredictably through the data
structures, periodic migrations result in more of the data structure
residing in the combined caches. As a result, many DRAM accesses
become faster (and more power efficient) cache-to-cache transfers.
Finally, judicious migration while accessing very large data struc-
tures (that tend to completely over-write the cache or caches) can,
in some cases, shield other data and allow it to remain in another
cache.

We have developed a compiler-based, software-only data
spreading system that identifies loops which have large data foot-
prints and suitable sharing patterns (e.g., high sharing between in-
stances of the same loop) and spreads those loops and the data they
access across multiple cores, both within a chip multiprocessor or
across multiple dies or sockets. Data spreading can be applied to
any system, multicore or multiprocessor, with private L2 or L3
caches. Our experiments with multiple Intel and AMD multipro-
cessor systems show that data spreading can speed up a range of

applications by an average of 17%. Most impressive, data spread-
ing achieves this speedup without any extra power consumption.
In fact, in the best case, it significantly reduces power by avoiding
DRAM accesses. Finally, data spreading requires no new hardware
support and, since it relies on the system’s default caching behavior,
does not threaten correctness.

This paper is organized as follows. Section 2 discusses related
research. Section 3 describes the motivation and basic data spread-
ing approach. Details of our experimental methodology are pre-
sented in Section 4. Section 5 describes the actual data spreading
algorithm, evaluating several design options and presenting initial
results. Section 6 examines software data spreading results more
closely across different systems and working set sizes. It also exam-
ines its power efficiency and applicability to multicores. Section 7
concludes.

2. Related Work
A number of compiler and architecture techniques have been pro-
posed to leverage available parallelism to speed up a single thread,
targeting either multithreaded processors or chip multiprocessors.
This includes speculative multithreading architectures [17, 26, 30,
31], in which separate portions of the serial execution stream are
executed (speculatively) in parallel, and it is only discovered later
whether the parallel execution was successful (i.e., it did not violate
any data or control dependences). More relevant to current multi-
core and multithreaded processors, however, is the work on helper
threading and speculative multithreading.

Helper threads [5–7, 13, 14, 21, 23, 37] execute in parallel with
the original thread, enabling that thread to run faster. Typically,
those threads precompute load addresses to prefetch data into a
shared level of the cache hierarchy before the main thread issues the
load instruction. In many cases, the prefetching thread is distilled
from instructions in the original thread [7, 37]. Kim and Yeung [14]
present algorithms for generating helper thread code statically in
the compiler, and Zhang, et al., [36] describe the generation of
helper threads in a dynamic compilation system.

Event-driven compilation systems [34–36] use idle cores to
invoke a compiler at run-time to perform optimizations in response
to events detected by hardware performance monitors. An event-
driven compiler could apply data spreading transparently at run
time.

Chakraborty, et al., [16] present a technique called Computation
Spreading, which also tries to leverage other caches via migration.
They migrate threads so that some cores execute exclusively oper-
ating system code, and others execute exclusively user code. In this
way, they get separation of data that is not typically shared over
short time frames, and co-location of data more likely to be shared.
However, they do not achieve the spreading effect that is the pri-
mary contributor to our speedups.

Cooperative Caching [4] is an architectural technique with the
same goal as data spreading – using caches from neighboring cores
to support the execution of a single thread. They do this by allow-
ing caches to store data that have been evicted from other private
caches. Thus, caches that are lightly used or idle can act as large
victim caches [12]. However, this can only transform misses into
cache-to-cache transfers. In many cases, data spreading effectively
transforms misses into local hits. Other work [10, 22, 25] has sug-
gested blurring the distinction between private and shared caches
even further. However, each of these techniques require changes to
the architecture. Further, none of these hardware techniques work
across multiple chips.

There is a tremendous body of work on detecting parallelism in
sequentially-programmed code. In some ways our work is similar
in that we also detect the independence or lack of independence
of data touched by different segments of code, in the process of

applying our optimization. However, because the normal caching
system ensures correctness, we can observe this behavior at a much
coarser level and make decisions based on trends and tendencies
rather than guarantees.

There have also been several projects that attempt to share re-
sources across multiple cores in a single CMP to speed up a sin-
gle thread. The work in [29] exploits migration to aggregate cache
space, but again relies on hardware mechanisms. Our approach is
software only and works on current systems. Core fusion proces-
sors [11] take a different approach and allow multiple cores to be
dynamically combined into a single larger core. Conjoined core
designs [18] allow two cores to share even the lowest-level (L1)
caches. These approaches require significant changes to the hard-
ware and do not involve thread migration for sharing.

Cache blocking [20, 28] is a compilation technique that reorders
computation on a single core to increase locality and reduce cache
misses. Data spreading could actually be complementary to tech-
niques such as this, because they can reduce the reuse distance for
only a subset of the accesses, and must still incur some capacity
misses on any structure that does not fit in the cache.

3. Software data spreading
Software data spreading allows a single thread of computation to
benefit from the private cache capacity of idle cores in the system,
whether on the same processor or on other, idle sockets. As the
thread executes, it moves from core to core, spreading its accesses
across the caches. If we time the migrations correctly, the thread
can either avoid misses in the private cache it happens to be using
or have its misses serviced out of another core rather than from
main memory. This results in reduced execution time and energy
consumption, since accesses to main memory are both slow and
power-hungry.

Data spreading works best in systems with large private caches
(typically L2 or L3), spread across multiple cores, dies, or sockets.
As shared caches face scaling limitations, we expect private caches
(or caches shared among a subset of cores) to become more com-
mon. It also applies to any machine with multiple processors on
separate dies, since each die includes a private (relative to the other
dies or sockets) cache.

In the next three subsections, we give some examples of how
software data spreading applies in different scenarios, describe our
implementation of the data spreading mechanism, and then discuss
its potential impacts on performance and power efficiency.

3.1 Examples
Algorithm 1 contains a pair of loops that are good candidates for
spreading. It accesses two arrays, a and b, and we assume that the
combined size of both arrays is roughly eight times the capacity of
a single cache. To illustrate data spreading, we will assume (to keep
the example simple) a CMP with only private caches.

Algorithm 1 – Simple example code Data spreading can acceler-
ate this code if the working set does not fit in a single L2 cache.

for i = 1 to 100 do // Loop 0
for j = 1 to 1000 do // Loop 1
aj = aj−1 + aj+1

end for
for j = 1 to 2000 do // Loop 2
bj = bj−1 + bj+1

end for
end for

If this code executes on a single core, the cache miss rate will
be very high, since Loops 1 and 2 will destructively interfere.

Multiprocessor system

a b
CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

data structures

Periodic thread migrations

Figure 1. One iteration of the outer loop in Algorithm 1 with data
spreading across 8 cores.

However, if we have an 8-core CMP, the aggregate capacity of
the cores’ private caches is enough to hold both arrays, and there
will be no capacity misses. Our spreading technique allows us to
perform this distribution without any hardware support. Figure 1
illustrates the distribution of data across the private caches in the
system.

Data spreading may provide benefits even if the data structures
are too large to fit in the entire on-chip cache space. It will still col-
lect a larger portion of the data into the private caches. Alternately,
we could spread as much of b as will fit across all but one of the
caches, and isolate the rest of it to a single cache. Accesses to the
spread out portion will be fast, while the remainder will be slower.
If b is very large, then we can isolate execution of Loop 2 in a sin-
gle core, while spreading Loop 1 to take advantage of the remaining
caches. Loop 2 will “thrash” in its cache (this is unavoidable, since
b is large), but Loop 1 will remain largely unaffected. Our compi-
lation system does not currently support this last option.

Algorithm 2 – Data spreading can reduce the cost of misses for
irregular access patterns.

for i = 1 to 100 do
p = list
while p 6= null do
p = p→ next

end while
Shuffle(list)

end for

Software data spreading can also speed up irregular access pat-
terns. Algorithm 2 traverses a linked list that is too large to fit in
a single cache, then a second function shuffles the list. On a single
core, most of the accesses would miss in the cache. With spreading,
the number of misses to private cache remains mostly unchanged,
but nearly all of them (assuming the working set fits in the com-
bined caches) will be satisfied via cache-to-cache transfers, saving
an expensive off-chip access. Current multicores do not typically
support fast cache-to-cache transfers, so our experiments do not
show large gains in this case; however, we expect that to change
in future chips. Still, if the “shuffle” does not completely random-
ize the ordering, we will see gains even without fast cache-to-cache
transfers.

3.2 Implementing data spreading
The only support our implementation requires is from the operating
system: The OS must provide the means to “pin” a thread to a
particular (new) core, and a mechanism to determine how many
cores are available to the application. With this support, migrating
from one core to another requires a single system call. This support
already exists in most operating systems running on multicores or
multiprocessors.

The main challenge in software data spreading is determining
when to migrate. Our compiler profiles applications to identify the
data-intensive loops it will spread. Then it adds code to count loop
iterations and call the migration function periodically. Algorithm 3
shows the code from Algorithm 1 with the extra code for spreading
across eight caches. We discuss the loop selection process and
spreading policies in Section 5.

Choosing the loop’s period requires balancing two opposing
forces: Spreading data across as many cores as possible is desirable,
since it will spread cache pressure out evenly and avoid spurious
cache conflicts. However, a shorter period means additional thread
migrations, which can be expensive.

Algorithm 3 – Data spreading in action The code in Algorithm 1
after the data spreading transformation.

for i = 1 to 100 do
for cpu = 0 to 7 do

MigrateTo(cpu)
for j = 125× cpu to 125× (cpu+ 1) do
aj = aj−1 + aj+1

end for
end for
for cpu = 0 to 7 do

MigrateTo(cpu)
for j = 250× cpu to 250× (cpu+ 1) do
bj = bj−1 + bj+1

end for
end for

end for

3.3 The cost of data spreading
Like most optimizations, data spreading is not free. There are
three potential costs that we must manage to make the technique
profitable: its impact on the availability of other cores, the cost of
thread migration, and its impact on power and energy consumption.

Performance impact on other threads Since data spreading in-
creases the number of cores a thread is using, it could potentially in-
terfere with other threads’ performance. However, when idle cores
are unavailable, or better used for other purposes, we can forgo data
spreading – so the opportunity cost of using other cores is very
low. We assume the main thread queries the OS to find the number
of available cores. If it returns 0, the code runs without spreading
enabled, and the only sources of overhead are the quick (it sim-
ply returns null in this case) and infrequent calls to the Migrate To
function.

Thread migration cost This is the primary cost for implementing
data spreading in the systems we tested. GNU/Linux (starting with
Linux kernel 2.6) provides an API to pin threads to processors,
but it is an expensive operation. Linux 2.6.18 on an Intel Nehalem
processor takes about 14µs to perform one migration. If the other
core is in a sleep state, the cost could be even higher. The high
cost of migration in current systems restricts our ability to employ
data spreading successfully on a single CMP, as explored further
in Section 6.6. Proposals for hardware migration support such

System Information Intel Pentium-4 Intel Core2Quad Intel Nehalem AMD Opteron
CPU Model Northwood Harpertown Gainestown Opteron 2427
of Socket×# of Die×# of core 4×1×1 2×2×2 2×1×4 2×1×6
Last Level Cache 2M 6M (per die) 8M 6M
Cache to cache transfer latency 300-500 cycles 150-250 cycles 120-170 cycles 210-215 cycles
Memory access latency 400-500 cycles 300-350 cycles 200-240 cycles 230-260 cycles
Migration cost 14µs 10µs 14µs 9µs
Linux Kernel 2.6.9 2.6.28 2.6.18 2.6.29

Table 1. The multiprocessor system configurations used to test data spreading.

Benchmark Resident Benchmark Resident
Memory Memory

Art T 3 MB BT A 298 MB
Applu T 20 MB CG A 55 MB
Equake T 12 MB LU A 45 MB
Mcf T 45 MB MG A 437 MB
Swim T 56 MB SP A 79 MB
Art R 4 MB BT B 1200 MB
Applu R 180 MB CG B 399 MB
Equake R 49 MB LU B 173 MB
Mcf R 154 MB MG B 437 MB
Swim R 191 MB SP B 314 MB
Libq R 64 MB

Table 2. Resident memory requirements for benchmarks.

as [3] could reduce this significantly. A migration that requires OS
intervention can be made to cost on the order of 2µs on a 3 GHz
processor with OS changes but no hardware support [32].

The other cost of migration, besides the overhead of transferring
the thread context itself, is cold start effects – the cost of moving
frequently accessed data into the new cache, the loss of branch pre-
dictor state, BTB state, etc. Typically, cache state is the most ex-
pensive to move. Data spreading, when done correctly, minimizes
this cost by moving a thread to a location where future accesses are
already present in the cache (and away from a core where they are
not present).

Power cost In contrast to traditional parallelization and most
of the non-traditional parallelization techniques described in Sec-
tion 2, data spreading can have a positive effect on both power and
energy consumption. Other techniques achieve speedups by exe-
cuting instructions on otherwise unused cores, and those instruc-
tions can consume extra power and energy. The only extra instruc-
tions that data spreading executes are in the migration function that
moves threads between cores. More importantly, only one core is
actively executing at any time.

Most current multi-core processors lack the ability to power-
gate or even voltage-scale individual cores. In that case, one core
being active implies they are all powered (and therefore dissipating
leakage power). An idle core uses less power than a running core,
but that is true whether the same core is always idle or whether
activity (and, therefore, inactivity) shifts from core to core. Recent
processors, such as Nehalem [1], are able to voltage-scale individ-
ual cores, or even power-gate cores. This will lower the power con-
sumption of idle cores even further, strengthening the power argu-
ment for data spreading. Power gating will increase the migration
latency somewhat, but when data spreading is effective, the idle pe-
riods for each core are far longer than the time required to wake the
core from sleep [15, 19]. We can reduce this cost further by pre-
dictively waking the core several loop iterations before we plan to
migrate.

Section 6.4 quantifies the power benefits of data spreading.

3.4 Which cores to use
The largest gains from data spreading typically come from aggre-
gating the largest caches. For example, on a multi-socket Nehalem
architecture, we gain more from aggregating L3 caches across
sockets than from aggregating L2 caches on-chip. This will depend
on the application – if the working set fits in four L2 caches, but
not one, it will only gain from spreading at that level. Because of
the large working sets of the applications we study, we focus on
spreading at the socket level, except for Section 6.6. We also find
we typically gain from using the minimum number of cores to ag-
gregate the caches, because this reduces the frequency of migra-
tion. So for example, with two Nehalem sockets, our best gains
usually come from data spreading across two cores (one on each
socket), rather than across all eight cores. For the Core2Quad, we
use one core per die (two per socket), and on the Opteron, we use
one per socket. Tuning data spreading for individual loops and to
work across multiple levels of the memory hierarchy is the subject
of future work.

4. Methodology
To evaluate our approach to data spreading, we implement it un-
der Linux 2.6 on several real systems with Intel and AMD IA32
processors. The system configurations are given in Table 1. We
compute the latency information for our machines by running mi-
crobenchmarks. The migration cost shown here is the latency to call
the function sched setaffinity that changes the CPU affinity mask,
and causes thread migration. All experiments run under Linux 2.6.
We use gcc 4.1.2 with optimization flag -O3 for all of our compila-
tions, PIN 2.6 for profiling and analysis, and hardware performance
counters to measure cache miss rates.

Our benchmark applications are a set of memory intensive ap-
plications from Spec2000 [8], and the serial version of NAS [2].
We also pick one Spec2006 [9] integer benchmark Libquantum,
since it is easy to vary its working set size. To identify the memory
intensive benchmarks we use the cycle accurate simulator, SMT-
SIM [33] (configured to roughly match one of our real experimen-
tal machines) to identify those workloads that achieve at least 75%
speedup with a perfect L1 data cache. Our rationale for selecting
this set of workloads is that if a workload shows little benefit from a
perfect memory hierarchy, there is no reason to expect data spread-
ing to offer any benefit. Furthermore, since it is a software-only
technique, there is no danger of it penalizing workloads – if it is
not useful for a particular application it should not be applied. Our
system currently works on C code. We were able to convert For-
tran77 code using an f2c converter, but we were not able to convert
Fortran90 code, which excludes some of the SPEC benchmarks.

For the SPEC benchmarks, we profile using the train input, and
experiment with the reference input – for some experiments we
also run the train inputs, just to get more variation in working set
size. When train performs better than ref, it is typically because the
working set falls in the optimal range, rather than due to increased
profile accuracy. For NAS, we profile using the W input, and ex-
periment with both the A and B inputs. We do all the experiments

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Art Applu Equake Mcf Swim Libq BT CG LU MG SP

Pe
rc

en
t o

f L
oo

ps

ES>75%
ES<=75%
ES<=50%
ES<=25%

Figure 2. Epoch sharing breakdown of data intensive applications.

main

main main main main main smvp

main main main main main smvp

 100 100 100 100 100

0

 88 89 93 91 86 61

100

Figure 3. Loop nest tree annotated with epoch sharing values for
the main kernel of equake.

multiple times and use the average execution time as our result. The
results presented here are all normalized with respect to unmodified
code.

5. Data Spreading in the Compiler
Our software data spreading compilation system involves a profil-
ing step, a loop identification and selection stage, and a loop trans-
formation step. This section describes and evaluates options for all
three steps.

5.1 Profile collection and program structure analysis
Our system uses PIN [24] to statically identify loops, profile the
program, and collect information about all the loops that make up a
program’s execution. Each time a loop executes, an event we term
a loop epoch, we count the number of iterations it executes, the
set of cache lines it accesses, and the number of memory accesses
it makes each iteration. The profiling part takes 50 times that of
normal execution time for a program.

We profile unoptimized code to simplify the process of iden-
tifying loops in the binary and connecting them with the source
code. This is necessary as the compiler does optimizations like
loop unrolling and function inlining. However, with some compiler
support, profiling on optimized code would be possible. After we
transform loops based on this analysis, full optimization is applied
to generate code for our measurements.

For each loop, `, we calculate its total memory footprint as the
set of cache lines ` touches across all its epochs and its epoch
footprint as the lines ` touches during the execution of a single
epoch. We also define M` to be the maximum footprint size for
any epoch of ` and Nl to be the number of iterations in that epoch.

We use this data to compute the epoch sharing ratio (ES) for
each loop. Intuitively, epoch sharing is a measure of the degree to
which multiple epochs of the same loop touch the same data. Loops
with large ES values are good candidates for spreading, because

once the first epoch fetches the epoch-shared data into the caches,
the following epochs will likely reap significant benefit when they
access the same data.

To compute the ES for a loop, we start by calculating, for each
loop epoch, the fraction of that epoch’s footprint that overlaps with
the union of the footprints of all previous epochs of the same loop.
The final ES is the average of this value over all the epochs of
the loop. Formally, if ` has k epochs and the corresponding epoch
footprints are e0, e1, . . . , ek−1, the epoch sharing of ` is

ES(`) =

Pk−1
i=0 S(

S
j<i ej , ei)

k − 1
.

where

S(ei, ej) =
|ea ∩ eb| × 100

|ea ∪ eb|
Here S(ea, eb) denotes the sharing between two epochs a and b
with footprints ea and eb.

For example, in Algorithm 1, loops 1 and 2 each have epoch
sharing of 100, since they always touch the same data. Loops with
only one epoch have an epoch sharing of zero in our analysis.
We find epoch sharing to be a very common characteristic of
loops in data intensive applications. In Figure 2, we compute the
epoch sharing breakdown of loops with more than 1 epoch. It
clearly shows that loops reuse data heavily. Even for an irregular
benchmark like mcf, we see that 61% of loops have epoch sharing
of more than 75%.

We use the profile data to create a dynamic loop nesting tree for
the application. Each node in the tree represents a single loop, and
its children are the loops nested within it. We ignore function call
boundaries when creating the tree (i.e., if a loop calls a function that
contains loops, those loops are directly nested within the calling
loop). Our analysis does not currently handle recursion, so we
ignore back edges in the loop nest tree. Figure 3 shows the loop nest
tree of equake from Spec2000 [8], annotated with epoch sharing
values.

Clearly, data spreading is most effective on loops with large
memory footprints and high epoch sharing. If an inner loop (child
loop) has high epoch sharing, it is likely that the outer (parent)
loop also exhibits high epoch sharing. However, it does not work to
spread both loops, as the migrations in the inner loop will just over-
ride the outer loop migration commands. For example, the outer
loop in Algorithm 1 inherits all of its epoch sharing from the in-
ner loops, and spreading the outer loop would actually hurt per-
formance. Even when both parent and child loop have significant
epoch sharing, and the parent does not inherit the sharing from the
child, the child is often a better candidate to spread (assuming its

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Art_R Applu_R Equake_R Mcf_R Swim_R Libq_R BT_B CG_B LU_B MG_B SP_B Average

Sp
ee

du
p

FP16 FP32

FP64 ES25-FP32

ES75-FP32 ES25-FP32-MG

Figure 4. Wall clock speedup for all policies for the Core2Quad system

Policy Description
FP16 Epoch foot print ≥ 16KB
FP32 Epoch foot print ≥ 32KB
FP64 Epoch foot print ≥ 64KB
ES25-FP32 Epoch foot print ≥ 32KB and ES ≥25%
ES75-FP32 Epoch foot print ≥ 32KB and ES ≥75%
ES25-FP32-MG Epoch foot print ≥ 32KB and ES ≥25%

and Epochs/sec ≤ 1000

Table 3. Loop selection policies.

working set exceeds the cache size). Currently, we always spread
the child in this situation.

5.2 Baseline spreading slgorithm
Our baseline algorithm takes three parameters to do loop selection
– an epoch sharing threshold, Emin, a minimum footprint size,
Fmin, and a maximum migration frequency. We examined other
inputs, such as sharing with siblings, etc., but found that our best
algorithms used just these three. The algorithm examines the nodes
of the loop nest graph in reverse topological order, starting at the
leaves and working toward the root. The algorithm selects a loop
for spreading if a) none of its descendants have been selected and
b) its epoch sharing and epoch footprints are larger than Emin and
Fmin, respectively. Typically, Fmin would be set to a value smaller
than the cache, given that the profiled working set is not necessarily
indicative of the working set size of future runs.

Once the candidate loops are finalized, we do simple source
to source transformations. For loops with known iteration bounds
before entering the loop, we spread it using Algorithm 3. For loops
with unknown iteration bounds, we need to know the expected
iteration count – Nl from the profile.

5.3 Candidate loop selection
The basic algorithm described above provides three parameters that
we can tune to improve performance. Table 3 lists the settings
we evaluate. Table 4 gives the number of selected loops for each
policy on our benchmarks, and shows how loops are filtered across
different policies. For instance, FP16 admits just 24% of all loops,
indicating that there are a significant number of loops with very
small footprints. Policy ES25-FP32-MG is more restrictive, and
includes only 15% of all static loops.

Figure 4 shows the performance improvement for all six policies
shown in Table 3, run on a 2-socket (4 die) Core2Quad machine.
The first three policies filter loops based solely on footprint size.

Bench Total FP16 FP32 FP64 ES25 ES75 ES25
mark Loops FP32 FP32 FP32

MG
Art 84 32 32 31 20 20 20
Applu 199 23 23 19 12 11 12
Equake 121 27 27 27 6 6 6
Mcf 70 22 19 19 11 7 9
Swim 69 16 14 12 9 9 9
Libq 63 16 16 16 14 9 14
BT 243 56 52 50 43 43 43
CG 63 30 26 20 14 14 14
LU 190 41 35 27 15 15 15
MG 82 15 15 15 8 5 6
SP 333 82 82 76 72 72 72

Table 4. Number of selected loops for different selection policies.

Allowing loops with very small foot prints (<16KB) degrades
performance by 18%, but performance improves by 3% on average
if we require footprints to be at least 64KB.

The next three policies use the epoch sharing threshold to filter
loops that do not benefit from data spreading because they touch
different data during each epoch. Although without ES consider-
ations, the FP64 limit outperformed FP32, we find that using a
more liberal policy (FP32) and then letting the ES restriction pare
down the list was preferable. Limiting epoch sharing to at least 25%
works well, and the ES25-FP32 policy provides a small speedup
(compared to a slowdown for FP32). Increasing the ES limit to 75%
reduces the slowdown of two benchmarks– Swim and MG by filter-
ing some loops that cause too frequent migrations. The last policy,
which also guards against too-frequent migrations, improves per-
formance further (up to an 8% speedup), in large part by eliminat-
ing slowdowns where data spreading does not work well. This pol-
icy eliminates loops whose epochs occur more than once per mil-
lisecond. This caps migration overhead at 5% of execution time.
Ultimately, we see that a combination of large footprint, high ES
sharing and avoiding too-frequent migrations yields the best candi-
dates for spreading.

LU clearly gains the most from software data spreading. As we
explore in Section 6, performance is highly sensitive to working set
size. Unfortunately, LU is the only one of these applications with
a significant data structure in the sweet spot – between the size of
one and four caches. But we also get reasonable gains on BT and
libquantum.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Art_
T

App
lu_

T

Equ
ak

e_
T

Mcf_
T

Swim
_T

Art_
R

App
lu_

R

Equ
ak

e_
R

Mcf_
R

Swim
_R

Lib
q_

R

BT_A

CG_A

LU
_A

MG_A

SP_A

BT_B

CG_B

LU
_B

MG_B

SP_B

Ave
rag

e

Sp
ee

du
p

Pentium4
Core2Quad
Nehalem
Opteron

Figure 5. Speedup across different machines using the ES25-FP32-MG policy.

Swim and Mcf each see little or no benefit for any of the policies.
Swim has a very large working set of around 191MB, so even
using four caches (combined cache space 24MB) data spreading
fails to keep sufficient useful data. In the case of Mcf, most of the
data accesses are irregular, and we do not see benefit because of
expensive cache-to-cache transfer in our real experimental system.

For current systems, migration overhead has a significant im-
pact on the performance of data spreading. In our measurements,
the split of user vs. kernel time provides insight into these costs.
For policy FP16, the most aggressive, LU sees a 14% user time
speedup, but the increase in kernel time due to OS migration code
resulted in a wallclock slowdown of 31%. This implies techniques
that reduce migration costs [3, 32] will increase the benefits of
data spreading and compilers can apply the technique more aggres-
sively. Section 6.5 explores this further.

5.4 Loop spreading policies
Once we have selected a loop for spreading, we must determine
how and when to migrate. We considered several different policies,
but the results in this paper only reflect one. That policy is also our
simplest.

The balanced policy spreads loop iterations evenly across the
available cores. Our results for more complex policies failed to
show significant or consistent gains. For example, policies that
considered the size of the cache more explicitly tended to reduce
sharing between sibling loops. For example, the first one quarter
of loop A tended to touch the same data as the first one quarter of
loop B. With balanced, those data all go into the same cache. With
other policies, we might migrate at different points in the two loops
depending on how much other data was being touched. The results
shown in this paper all use the balanced policy.

6. Understanding Data Spreading
This section strives to acquire a deeper understanding of data
spreading, particularly in light of the uneven performance gains
demonstrated in the previous section. It uses microbenchmarks,
kernels, and one full benchmark running on a whole suite of real
machines to examine the interplay of working set size and data
spreading effectiveness. It also measures data spreading’s impact
on power and energy. Finally, it examines data spreading’s sensitiv-
ity to migration overhead, especially for spreading within a CMP.

6.1 Diverse memory hierarchies
Results for our benchmark suite on four different machine archi-
tectures are shown in Figure 5. Here we see that each machine gets

speedup from data spreading, but the speedups are not very pre-
dictable. In most cases, speedup is simply a case of whether or not
the key data structures fit in the aggregated caches. Since each of
these architectures has a different cache hierarchy, the results var-
ied. We see, though, that across a diverse range of working sets, per-
formance improved overall. Both the Pentium 4 and the Core2Quad
systems achieve an average speedup of 13%.

6.2 Microbenchmarks
To further understand the sensitivity of these techniques to working
set size, we focus on a more restrictive set of benchmarks that give
us the ability to modify the working set size continuously. First, we
create two microbenchmarks – one accesses data sequentially, the
other chases pointers through memory at random. Both perform the
same set of accesses on each iteration through an outer loop. We ran
these benchmarks on four different machines, as shown in Figure 6.
The Core2Quad results (Figure 6b) illustrate the phenomenon well.
Without data spreading, when the working set fits in the cache,
throughput is high, but it degrades quickly when the working set
overflows the cache. With data spreading, there is a cost when
the data fit in a single cache, and it asymptotically matches the
baseline when the working set is very large. But in between, data
spreading significantly extends the region where we maintain close
to full throughput. This is true both for sequential access (where the
hardware prefetcher is actively assisting performance) and random
access (where it is not). All four machines show a similar effect.

Also notice that the data spreading curves do not drop as sharply
as the baseline – we continue to get some performance even after
the working set no longer fits fully in the aggregated caches.

6.3 Applications
We can perform similar experiments for two full applications with
easily configurable working sets – the 2D Jacobi kernel and the
SPEC2006 libquantum application. For these, we show speedup of
data spreading over the baseline for a given working set size.

The Jacobi results are shown in Figure 7. The graph shows
speedup for the region between the size of a single cache and
the size of the aggregated caches that data spreading operates on.
On either side of this “hump” data spreading offers no benefits.
All the machines achieve speedups between 1.25 (Nehalem) and
3.5 (Pentium 4). The Pentium 4 does especially well because it
has the highest latency to main memory. The Core2Quad delivers
improvements over the widest range – from 5 to 35 MB.

Results for libquantum from the SPEC2006 Integer benchmark
suite are in Figure 8. Libquantum is a more complex computation
with multiple, and varied, spread loops. Although the complexity

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

O
pe

ra
tio

ns
 p

er
 µ

s

Working Set (MB)

(a) Pentium 4

Seq-Base
Seq-DS
Rand-Base
Rand-DS

0

25

50

75

100

125

150

175

200

225

250

0 4 8 12 16 20 24 28 32 36

O
pe

ra
tio

ns
 p

er
 µ

s

Working Set (MB)

(b) Core2Quad

Seq-Base
Seq-DS
Rand-Base
Rand-DS

0

25

50

75

100

125

150

175

200

225

250

0 4 8 12 16 20 24 28 32

O
pe

ra
tio

ns
 p

er
 µ

s

Working Set (MB)

(c) Nehalem

Seq-Base
Seq-DS
Rand-Base
Rand-DS

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

O
pe

ra
tio

ns
 p

er
 µ

s

Working Set (MB)

(d) Opteron

Seq-Base
Seq-DS
Rand-Base
Rand-DS

Figure 6. Data spreading throughput for sequential and random access for different machines. The ’-Base’ data are for code that does not
perform data spreading.

of the application adds some noise to the results, the same trends
emerge: Data spreading provides speedup after the local cache is
exhausted, again extending the high-IPC range of the benchmark
across a wider range of input sizes. The Core2Quad achieves over
3× speedup for this application.

These results all point to the same conclusion. While data
spreading does not always provide speedups over non-spread code,
it consistently makes the application’s performance significantly
more robust in the face of varying working set size. In the best case,
data spreading achieves dramatic speedups – it achieves parallel-
type speedups on parallel machines, without ever requiring paral-
lel execution. This last point makes the optimization particularly
attractive from an energy efficiency standpoint, which is explored
further in the next section.

6.4 Power
On the surface, using multiple cores to execute a single thread does
not appear to be a power-conserving optimization. However, just
the opposite is true, since only one core is ever active at any time.
Indeed, data spreading can save power (and energy) by eliminating
accesses to DRAM.

We use a power meter on two of our experimental systems to
quantify this effect for our random access microbenchmark. We
measure total power of the entire system. Figure 11 shows the
results. Where data spreading is effective, the power savings is
dramatic. Spreading on the Core2quad saves up to 51W, or 81%
of non-idle system power. For the Opteron, the savings are smaller
– 13W, or 72% of non-idle power. The results also show the cost
of the unnecessary migrations: At 2MB, migrations increase power

consumption by up to 7W and 2W on the Core2Quad and Opteron,
respectively.

From this graph, we see the dramatic impact on power when
DRAM accesses are made unnecessary. This bodes for our real
applications, where DRAM accesses are consistently reduced, in
some cases by an order of magnitude. Figure 12 shows the normal-
ized (to no data spreading) last level cache (LLC) misses for the
Core2Quad system. These results correlate well with the speedup
results in Figure 5. Note that spreading-induced coherence (cache-
to-cache) transfers show up as misses, even though in some ma-
chines they will be faster (and lower power) than memory misses.
Data spreading converts 80 and 90% of misses into local hits for
LU (B input) and applu (train input), respectively. For 11 of our 21
benchmarks data spreading eliminates 20% of misses or more.

6.5 Migration overhead
Data spreading’s primary overhead comes from the migrations it re-
quires, especially the software overhead. Triggering these switches
with the sched setaffinity system call incurs a fixed overhead of 9 to
14 µs (Table 1), since it requires a trap to the operating system. If
context switches occur too frequently, this overhead will eliminate
the benefits of data spreading. Increasing the number of cores ex-
acerbates this problems, since the frequency of context switching
increases linearly with the core count. This is unfortunate, since
spreading across more cores also increases the amount of cache ca-
pacity that data spreading can exploit.

To reduce the migration overhead, we developed a userspace
context switch mechanism (User-CS in the figures, as opposed to
OS-CS) that uses user space migrations (via setcontext() and
getcontext()) and spin locks to reduce migration costs to just

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50

Sp
ee

du
p

Working Set (MB)

P4
Core2Quad
Nehalem
Opteron

Figure 7. Speedup across different machines for 2D Jacobi
with data spreading.

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Sp
ee

du
p

Resident Memory (MB)

P4
Core2Quad
Nehalem
Opteron

Figure 8. Speedup across different machines for libquan-
tum.

0
25
50
75

100
125
150
175
200
225
250
275

0 5 10 15 20 25 30

O
pe

ra
tio

ns
 p

er
 µ

s

Working Set (MB)

OS-CS Seq
User-CS Seq
OS-CS Rand
User-CS Rand

Figure 9. Userspace and OS directed thread migration in
Core2Quad for the microbenchmarks.

Ar
t_

T
Ap

pl
u_

T
Eq

ua
ke

_T
M

cf
_T

Sw
im

_T
Ar

t_
R

Ap
pl

u_
R

Eq
ua

ke
_R

M
cf

_R
Sw

im
_R

Li
bq

_R
BT

_A
C

G
_A

LU
_A

M
G

_A
SP

_A
BT

_B
C

G
_B

LU
_B

M
G

_B
SP

_B
Av

er
ag

e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

User-CS
OS-CS

Sp
ee
du
p

Figure 10. Speedup in Core2Quad using user space thread
migration.

180

200

220

240

260

280

300

320

340

360

380

400

0 5 10 15 20 25 30 35 40

Po
w

er
 (W

at
ts

)

Working Set (MB)

Core2Quad Base Core2Quad DS
Opteron Base Opteron DS
Core2quad Idle Opteron Idle

Figure 11. Power requirements for random access in Core2Quad
and Opteron

1-3µs. Idle cores spin until called upon to wake up and acquire the
context of the running thread.

Figure 9 compares the performance of both migration schemes
for our microbenchmarks on the Core2Quad. The User-CS scheme
increases performance by 5% for working set sizes up to 10 MB
(12% for 4 MB or less) for sequential accesses and by up to 2%
for working set sizes under 12 MB (6% 4 MB or less) for random
accesses. The gain is larger for smaller working sets because mi-
gration occurs more frequently in this case.

Figure 10 shows the comparison between User-CS and OS-CS
for the full benchmark suite on the Core2Quad system. Overall,
User-CS gives us a 17% speedup on average (compared to 13%
average speedup by OS-CS). Again, user-CS provides the greatest
new boost for small working sets (like the train input sets); it
also reduces or eliminates performance degradation we previously

Ar
t_
T

Ap
pl
u_
T

Eq
ua
ke
_T

M
cf
_T

Sw
im
_T

Ar
t_
R

Ap
pl
u_
R

Eq
ua
ke
_R

M
cf
_R

Sw
im
_R

Li
bq
_R

BT
_A

C
G
_A

LU
_A

M
G
_A

SP
_A

BT
_B

C
G
_B

LU
_B

M
G
_B

SP
_B

0

0.2

0.4

0.6

0.8

1

1.2

No
rm

al
iz

ed
 L

LC
 M

is
s

Figure 12. Reduction of last-level cache misses for Core2Quad.

observed when we were experiencing frequent migrations (e.g.,
SP).

The P4 machine also sees 4% additional speedup when we use
user-level migration. However, we do not notice significant changes
for Opteron or Nehalem. In these machines, we use two cores (vs.
4 cores used in Core2Quad and P4) which reduces the frequency of
migrations by half.

User-level migration, as demonstrated here, is a reasonable ap-
proach when performance is the highest goal. However, the idle,
spinning threads may reduce the power savings that data spreading
can deliver.

6.6 Data spreading in CMPs
So far we have applied data spreading across sockets and dies,
but data spreading can also be applied in multicore architectures.
However the smaller private caches in these architectures mean that
working sets small enough to fit into the aggregate on-chip private

0

25

50

75

100

125

150

175

200

225

250

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

O
pe

ra
tio

ns
 p

er
 µ

s

Working Set (MB)

(a) Opteron

Seq-Base
Seq-DS
Rand-Base
Rand-DS

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

O
pe

ra
tio

ns
 p

er
 µ

s

Working Set (MB)

(b) Nehalem

Seq-Base
Seq-DS
Rand-Base
Rand-DS

Figure 13. CMP data spreading throughput for sequential and random access on a 6-core Opteron and 4-core Nehalem

Ar
t_

T
Ap

pl
u_

T
Eq

ua
ke

_T
M

cf
_T

Sw
im

_T
Ar

t_
R

Ap
pl

u_
R

Eq
ua

ke
_R

M
cf

_R
Sw

im
_R

Li
bq

_R
BT

_A
C

G
_A

LU
_A

M
G

_A
SP

_A
BT

_B
C

G
_B

LU
_B

M
G

_B
SP

_B
Av

er
ag

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sp
ee
du
p

Figure 14. Data spreading performance on a single 6-core Opteron
CMP.
caches will induce frequent migrations. Therefore, data spreading
requires the use of a fast migration mechanism (like User-CS) to
realize performance gains.

To evaluate CMP data spreading we ran experiments on the Ne-
halem (4 core) and Opteron (6 core) machines. Nehalem has 256K
private L2 caches per core whereas the Opteron has 512K private
L2 caches. Figure 13 shows the results for the microbenchmarks
on both machines. The combined cache space in Nehalem is 1M, so
the benefit comes when the working set lies between 300K and 1M.
The combined cache space in Opteron is 3M and so data spreading
improves performance over a broader region.

Figure 14 shows the performance improvement for different
benchmarks on Opteron while spreading is deployed within the sin-
gle socket. Overall we see 6% average performance improvement
and, as expected, the speedup mainly occurs for smaller working
sets.

7. Conclusion
This paper presents a new compiler optimization, software data
spreading, targeted at multiprocessors and multicore processors. It
uses thread migration to allow a single thread to utilize the space of
multiple private caches. This allows the program to transform off-
chip accesses into local cache hits when the data access pattern is
highly repetitious. In the case where it is not predictably repeatable,
it still turns DRAM accesses into cache-to-cache transfers. Using
an approach that relies on profiling to identify loops with large data
footprints and to characterize their sharing patterns, we identify
for each application a small set of loops that are spread across
multiple caches via migration. We achieve average speedups of

17% using four processors. Speedups on the SPEC2006 libquantum
benchmark are as high as 3.3x, depending on the input size. Data
spreading can also provide significant power and energy savings
since it actively uses only one core at a time and can dramatically
reduce memory accesses.

Acknowledgments
The authors would like to thank the anonymous reviewers for
many useful suggestions. They would also like to thank Jeff Brown
for frequent help with the simulation tools, Sajia Akhter for help
with some of the graphics, and Nathan Goulding with the writing.
This work was supported by NSF grants CCF-0702349 and NSF-
0643880.

References
[1] First the tick, now the tock: Next generation Intel microarchitecture

(Nehalem). 2008. Intel White paper.
[2] D. H. Bailey, E. Barzcz, L. Dagum, and H. D. Simon. NAS parallel

benchmark results. IEEE Concurrency, February 1993.
[3] J. A. Brown and D. M. Tullsen. The Shared-Thread Multiprocessor.

In International Conference on Supercomputing, June 2008.
[4] J. Chang and G. S. Sohi. Cooperative caching for chip multiproces-

sors. In Proceedings of the 33rd annual International Symposium on
Computer Architecture, June 2006.

[5] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Simultane-
ous subordinate microthreading (ssmt). In Proceedings of the interna-
tional symposium on Computer Architecture, May 1999.

[6] J. Collins, D. Tullsen, H. Wang, and J. Shen. Dynamic speculative
precompuation. In Proceedings of the International Symposium on
Microarchitecture, December 2001.

[7] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery,
and J. Shen. Speculative precomputation: Long-range prefetching of
delinquent loads. In Proceedings of the International Symposium on
Computer Architecture, July 2001.

[8] J. L. Henning. SPEC CPU2000: Measuring cpu performance in the
new millennium. Computer, July 2000.

[9] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH
Comput. Archit. News, September 2006.

[10] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. Keckler. A
NUCA substrate for flexible CMP cache sharing. In International
Conference on Supercomputing, June 2005.

[11] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core fusion:
accommodating software diversity in chip multiprocessors. SIGARCH
Comput. Archit. News, May 2007.

[12] N. P. Jouppi. Improving direct-mapped cache performance by the ad-
dition of a small fully-associative cache and prefetch buffers. In Pro-

ceedings of the international symposium on Computer Architecture,
June 1990.

[13] D. Kim, S. Liao, P. Wang, J. Cuvillo, X. Tian, X. Zou, H. Wang, D. Ye-
ung, M. Girkar, and J. Shen. Physical experiment with prefetching
helper threads on Intel’s hyper-threaded processors. In International
Symposium on Code Generation and Optimization, March 2004.

[14] D. Kim and D. Yeung. Design and evaluation of compiler algorithm
for pre-execution. In Proceedings of the international conference
on Architectural support for programming languages and operating
systems, October 2002.

[15] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. System level analysis
of fast, per-core dvfs using on-chip switching regulators. Proceedings
of the 14th International Symposium on High Performance Computer
Architecture, February 2008.

[16] Koushik Chakraborty and Philip M. Wells and Gurindar S. Sohi.
Computation spreading: Employing hardware migration to specialize
CMP cores on-the-fly. In Proceedings of the international conference
on Architectural support for programming languages and operating
systems, November 2006.

[17] V. Krishnan and J. Torrellas. A chip-multiprocessor architecture
with speculative multithreading”. IEEE Transactions on Computers,
September 1999.

[18] R. Kumar, N. P. Jouppi, and D. M. Tullsen. Conjoined-core chip
multiprocessing. In Proceedings of the International Symposium on
Microarchitecture, December 2004.

[19] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas. Single-isa heterogeneous multi-core architectures for multi-
threaded workload performance. In Proceedings of the 31st Annual
International Symposium on Computer Architecture, June 2004.

[20] M. Lam, E. Rothberg, and M. Wolf. The cache performance and op-
timization of blocked algorithms. In Proceedings of the international
conference on Architectural support for programming languages and
operating systems, April 1991.

[21] S. Liao, P. Wang, H. Wang, G. Hoflehner, D. Lavery, and J. Shen. Post-
pass binary adaptation for software-based speculative precomputation.
In Proceedings of the conference on Programming Language Design
and Implementation, October 2002.

[22] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing the last
line of defense before hitting the memory wall for cmps. In Proceed-
ings of the 10th International Symposium on High Performance Com-
puter Architecture, February 2004.

[23] C.-K. Luk. Tolerating memory latency through software-controlled
pre-execution in simultaneous multithreading processors. In Proceed-
ings of the International Symposium on Computer Architecture, July
2001.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In Proceedings of
the 2005 conference on Programming Language Design and Imple-
mentation, June 2005.

[25] M. Zhang and K. Asanovic. Victim replication: Maximizing capacity
while hiding wire delay in tiled chip multiprocessors. In Proceedings
of the 32nd annual International Symposium on Computer Architec-
ture, June 2005.

[26] P. Marcuello, A. González, and J. Tubella. Speculative multithreaded
processors. In 12th International Conference on Supercomputing,
November 1998.

[27] H. McGhan. Niagara 2 opens the floodgates. Microprocessor Reports,
November 2006.

[28] A. McKeller and E. Coffman. The organization of matrices and matrix
operations in a paged multiprogramming environment. Communica-
tions of the ACM, Mar. 1969.

[29] P. Michaud. Exploiting the cache capacity of a single-chip multi-core
processor with execution migration. In Proceedings of the 10th In-
ternational Symposium on High Performance Computer Architecture,
February 2004.

[30] C. G. Quiñones, C. Madriles, J. Sánchez, P. Marcuello, A. González,
and D. M. Tullsen. Mitosis compiler: an infrastructure for speculative
threading based on pre-computation slices. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, June
2005.

[31] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar proces-
sors. In Proceedings of the International Symposium on Computer
Architecture, June 1995.

[32] R. Strong, J. Mudigonda, J. C. Mogul, N. Binkert, and D. Tullsen. Fast
switching of threads between cores. SIGOPS Oper. Syst. Rev., April
2009.

[33] D. M. Tullsen. Simulation and modeling of a simultaneous multi-
threading processor. In Proceedings of the 22nd Annual Computer
Measurement Group Conference, December 1996.

[34] W. Zhang, B. Calder, and D. Tullsen. A self-repairing prefetcher in
an event-driven dynamic optimization framework. In International
Symposium on Code Generation and Optimization, March 2006.

[35] W. Zhang, B. Calder, and D. M. Tullsen. An event-driven multi-
threaded dynamic optimization framework. In Proceedings of the 14th
International Conference on Parallel Architectures and Compilation
Techniques, September 2005.

[36] W. Zhang, D. Tullsen, and B. Calder. Accelerating and adapting pre-
computation threads for efficient prefetching. In Proceedings of the
International Symposium on High Performance Computer Architec-
ture, January 2007.

[37] C. Zilles and G. Sohi. Execution-based prediction using speculative
slices. In Proceedings of the International Symposium on Computer
Architecture, July 2001.

