
This paper is included in the Proceedings of the
11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’14).
April 2–4, 2014 • Seattle, WA, USA

ISBN 978-1-931971-09-6

Open access to the Proceedings of the
11th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’14)

is sponsored by USENIX

Software Dataplane Verification
Mihai Dobrescu and Katerina Argyraki, École Polytechnique Fédérale de Lausanne

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/dobrescu

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 101

Software Dataplane Verification

Mihai Dobrescu and Katerina Argyraki

EPFL, Switzerland

Abstract

Software dataplanes are emerging as an alternative to tra-
ditional hardware switches and routers, promising pro-
grammability and short time to market. These advan-
tages are set against the risk of disrupting the network
with bugs, unpredictable performance, or security vul-
nerabilities. We explore the feasibility of verifying soft-
ware dataplanes to ensure smooth network operation.
For general programs, verifiability and performance are
competing goals; we argue that software dataplanes are
different—we can write them in a way that enables veri-
fication and preserves performance. We present a verifi-
cation tool that takes as input a software dataplane, writ-
ten in a way that meets a given set of conditions, and
(dis)proves that the dataplane satisfies crash-freedom,
bounded-execution, and filtering properties. We evaluate
our tool on stateless and simple stateful Click pipelines;
we perform complete and sound verification of these
pipelines within tens of minutes, whereas a state-of-the-
art general-purpose tool fails to complete the same task
within several hours.

1 Introduction

Software dataplanes are emerging from both re-
search [17,26,27,37] and industry [2,3] backgrounds as a
more flexible alternative to traditional hardware switches
and routers. They promise to cut network provisioning
costs by half, by enabling dynamic allocation of packet-
processing tasks to network devices [42]; or to turn the
Internet into an evolvable architecture, by enabling con-
tinuous functionality update of devices located at strate-
gic network points [41].

Flexibility, however, typically comes at the cost of re-
liability. A system of non-trivial size that is subject to
frequent updates is typically plagued by behavior and
performance bugs, as well as security vulnerabilities. It
makes sense then that network operators are skeptical
about the vision of software dataplanes that are contin-
uously reprogrammed in response to user and operator
needs—as they were skeptical a decade ago toward ac-
tive networking. The question is, has anything changed?
Have software verification techniques matured enough to
enable us to reason about the behavior and performance
of software dataplanes? Or must we accept that fre-
quently reprogrammed software dataplanes will always
be less reliable than their static hardware counterparts?

The subject of this work is a verification tool that
takes as input the executable binary of a software data-
plane and proves that it does (or does not) satisfy a target
property; if the target property is not satisfied, the tool
should provide counter-examples, i.e., packet sequences
that cause the property to be violated. Developers of
packet-processing apps could use such a tool to produce
software with guarantees, e.g., that never seg-faults or
kernel-panics, no matter what traffic it receives. Network
operators could use the tool to verify that a new packet-
processing app they are considering for deployment will
not destabilize their network, e.g., it will not introduce
more than some known fixed amount of per-packet la-
tency. One might even envision markets for packet-
processing apps—similar to today’s smartphone/tablet
app markets—where network operators would shop for
new code to “drop” into their network devices. The op-
erators of such markets would need a verification tool to
certify that their apps will not disrupt their customers’
networks.

For general programs, verifiability and performance
are competing goals. Proving properties of real programs
(unlike searching for bugs) remains an elusive goal for
the systems community, at least for programs that consist
of more than a few hundred lines of code and are writ-
ten in a low-level language like C++. A high-level lan-
guage like Haskell can guarantee certain properties (like
the impossibility of buffer overflow) by construction, but
typically at the cost of performance.

For software dataplanes, it does not have to be this
way: we will argue that we can write them in a way that
enables verification and preserves performance. The key
question then is: what defines a “software dataplane” and
how much more restricted is it than a “general program”?
how much do we need to restrict our dataplane program-
ming model so that we can reconcile verifiability with
performance?

There are different ways to approach this question:
one could start from a restricted, easily verifiable model
and broaden it as much as possible without losing verifi-
ability; or, one could start from a popular, but not verifi-
able model and restrict it as little as necessary to achieve
verifiability. We chose the latter in an effort to be prac-
tical. We present in this paper the result of working it-
eratively on two tasks: designing a verification tool for
software dataplanes, while trying to identify a minimal
set of conditions that a software dataplane must meet in
order to be verifiable.

102 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We fundamentally rely on the assumption that soft-
ware dataplanes follow a pipeline structure, i.e., they are
composed of distinct packet-processing elements (e.g.,
an IP lookup element, an element that performs Network
Address Translation or NAT) that are organized in a di-
rected graph and do not share mutable state. Intuitively,
the fact that there are no state interactions between ele-
ments (other than one passing a packet to another) makes
it feasible to reason about each element in isolation, as
opposed to having to reason about the entire pipeline
as a whole. Software dataplanes that are created with
Click [33] typically conform to this structure, and these
arguably constitute the majority of research prototypes.
We also know of at least one industry prototype that uses
Click [1], while the vision of a “composable” dataplane
put forward by Intel earlier this year [3] strongly implies
a pipeline structure as well.

We aim to prove properties that, in the case of hard-
ware dataplanes, are either taken for granted or can
be proved using practical techniques [28–30, 38, 43]:
crash-freedom, which means that no packet sequence
can cause the dataplane to stop executing; bounded-

execution, which means that no packet sequence can
cause the execution of more than a known, reasonable
number of instructions; or filtering properties, e.g., “any
packet with source IP A and destination IP B will be
dropped by the pipeline.”

In this paper, we describe a verification tool that
proves such properties for stateless pipelines (e.g., an IP
router or static firewall) and two simple stateful pipelines
(a NAT box and a traffic monitor). Certain proofs assume
arbitrary configuration1, while others assume a specific
one. For instance, we prove crash-freedom or bounded-
execution assuming arbitrary configuration, and such
proofs are useful independently of the frequency of con-
figuration changes. In contrast, proving that a pipeline
will drop a packet with given headers makes sense only
given a specific configuration, and such proofs are useful
when configuration changes relatively slowly.

We evaluate our tool by proving crash-freedom and
bounded-execution for different Click pipelines. Our
proofs complete within tens of minutes, whereas a state-
of-the-art general-purpose tool fails to complete the same
task within hours. Keeping verification time within min-
utes is necessary and sufficient given our goals: We en-
vision our tool being used by developers, for instance to
ensure that a new piece of packet-processing code cannot
seg-fault, or by network operators, for instance to ensure
that a given configuration change will not result in unde-
sirable network behavior. In both cases, having to wait
for hours would be impractical; waiting for tens of min-
utes is non-negligible, but on par with the experience of

1By “configuration” we mean all state that the control plane writes
into the dataplane, e.g., the contents of forwarding or filtering tables.

waiting for compilation to complete or configuration to
be downloaded to network devices.

Even though we focus on conceptually simple
pipelines, performing complete and sound verification on
them required overcoming significant challenges (deal-
ing with path explosion, loops, and large data struc-
tures). Our contribution is to address these challenges
by applying existing verification ideas (symbolic execu-
tion [10, 21] and compositionality [4, 20, 22]) and com-
bining them with certain domain specifics of packet-
processing software (pipeline structure, bounded loops
over packet contents, pre-allocated data structures that
expose a key/value store interface). We share common
ground with many verification tools, especially the ones
that use compositional symbolic execution [4, 22], but
those were designed for different goals (increase line
coverage or find bugs), so they do not solve our problem.

The rest of the paper is organized as follows: After
providing the necessary background (§2), we describe
our system (§3) and the properties that it can prove (§4).
Then we present our evaluation (§5), discuss limitations
(§6) and related work (§7), and conclude (§8).

2 Setup

In this section, we provide background on symbolic ex-
ecution (§2.1), summarize our approach (§2.2), and de-
scribe our basic assumption about the structure of soft-
ware dataplanes (§2.3).

2.1 Background

Symbolic Execution.

A program can be viewed as an “execution tree,”
where each node corresponds to a program state, and
each edge is associated with a basic block. Running the
program for a given input leads to the execution of a se-
quence of instructions that corresponds to a path through
the execution tree, from the root to a leaf. For example,
the program E1 in Fig. 1 may execute two instruction se-
quences: one for input in < 0 and the other for input
in ≥ 0; hence, its execution tree (shown to the right of
the program) consists of two edges, one for each “input
class” and instruction sequence.

Symbolic execution [10, 21] is a practical way of gen-
erating execution trees. During normal execution of a
program, each variable is assigned a concrete value, and
only a single path of the tree is executed. During sym-
bolic execution, a variable may be symbolic, i.e., as-
signed a set of values that is specified by an associated
constraint. For example, a symbolic integer x with asso-
ciated constraint x > 2 ∧ x < 5 is the set of concrete
values x = {3, 4}. A symbolic-execution engine can

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 103

take a program, make the program’s input symbolic, and
execute all the paths that are feasible given this input.

Consider the program E2 in Fig. 1 and assume that the
input in can take any integer value. To symbolically exe-
cute this program, we start at the root of the tree and exe-
cute all the feasible paths. As we go down each path, we
collect two pieces of information: the “path constraint”
specifies which values of in lead to this path, and the
“symbolic state” maps each variable to its current value
on this path. For example, at the end of path e4, the path
constraint is C = (in ≥ 0 ∧ in < 10), and the symbolic
state is S = {out = 10}; at the end of path e5, the path
constraint is C = (in ≥ 10), and the symbolic state is
S = {out = in}.

Construction of Proofs.

If we can execute all the feasible paths of a program
and verify that none of them violates a target property,
that constitutes proof that the entire program satisfies this
property. By constructing proofs in this manner, we can
also automatically determine all the problematic inputs
that prevent us from completing the proof.

However, proof by execution can be rarely used in
practice, because of path explosion [9]: The sheer num-
ber of feasible paths in a real program (even one that
consists of a few hundred lines of code) is typically so
large that it is impossible to execute all of them in use-
ful time. This is because the number of paths generally
grows exponentially in the number of branching points,
and real software has a branching point every few in-
structions. For instance, when Klee [10] symbolically
executes UNIX coreutils like nice or cat, it achieves
more than 70% line coverage, but executes less than 1%
of the feasible paths [35]. This is fine when the goal is
high line coverage or discovery of interesting paths (e.g.,
to uncover bugs), but not when the goal is to reason about
all feasible paths (i.e., to prove properties).

Researchers have been proposing smarter ways to ad-
dress path explosion [4,20,22,35], but constructing com-
plete and sound proofs for real programs that consist of
more than a few hundred lines of code still takes a lot of
manual effort [32].

2.2 Our Approach

We observe that symbolic execution is a good fit for
packet-processing pipelines, because their special struc-
ture can help sidestep path explosion. In a typical
pipeline, two elements (stages) never concurrently hold
read or write permissions to the same mutable state, re-
gardless of whether that state is a packet being processed
or some other data structure. This level of isolation can
help significantly with path explosion.

Our approach is to first analyze each pipeline element
in isolation, then compose the results to prove properties

about the entire pipeline. This reduces by an exponen-
tial factor the amount of work that needs to be done to
prove something about the pipeline: If each element has
n branches and roughly 2n paths, a pipeline of m such
elements has roughly 2m·n paths. Analyzing each ele-
ment in isolation—as opposed to the entire pipeline in
one piece—cuts the number of paths that need to be ex-
plored roughly from 2m·n to m · 2n. In the worst case,
the per-element analyses yield that every single pipeline
path warrants further analysis—so we end up having to
consider all the paths anyway. In practice, we expect that
most pipeline paths are irrelevant to the target property,
and we only need to consider a small fraction.

Our verifier relies on S2E [13], an automated path ex-
plorer with pluggable path analyzers: the explorer uses
symbolic execution to drive the target system down mul-
tiple execution paths, while the analyzers measure and/or
check properties of each such path. We chose S2E for
two reasons: First, it performs what is called “in-vivo”
(as opposed to “in-vitro”) program analysis, i.e., ana-
lyzes code that runs within a real (not modeled) software
stack; this enables us to analyze a software pipeline with-
out having to model the underlying system—libraries,
kernel, drivers, etc. Second, it can directly analyze bi-
naries (as opposed to source code); this enables us to an-
alyze proprietary packet-processing elements, for which
we do not have access to the source code. We use S2E
as a building block, to symbolically execute pieces of
packet-processing code and obtain, for each piece, a set
of path constraints and symbolic states.

2.3 Starting Point: Pipeline Structure

We focus on packet-processing pipelines that consist of
packet-processing elements, where each element may ac-
cess three types of state (Table 1):

Packet state is owned by exactly one element at any
point in time. It can be read or written only by its
owner; the current owner (and nobody else) may atomi-
cally transfer ownership to another element. Packet state
is used for communicating packet content and metadata
between elements. For each newly arrived packet, there
is typically an element that reads it from the network,
creates a packet object, and transfers object ownership
to the next element in the pipeline. Once an element has
transferred ownership of a packet, it cannot read or write
it any more.

Private state is owned by one element and never
changes ownership. It can be read or written only by its
owner, and it persists across the processing of multiple
packets. A typical example is a map in a NAT element,
or a flow table in a traffic-monitoring element.

Static state can be read by any element but not writ-
ten by any element. This state is immutable as far as the

104 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Written by Read by
Transferable
ownership

Packet state owner owner yes
Private state owner owner no
Static state – any –

Table 1: Types of packet-processing state.

pipeline is concerned. A typical example is an IP for-
warding table.

This structure is not accidental: it is a natural fit
for any platform that must perform high-performance
streaming. The alternative would be to allow multiple
stages of the pipeline to share read/write access to the
same data, which would necessarily require synchroniza-
tion and the unavoidable contention and complexity that
comes with it.

3 System

In this section, we describe our system: first how it lever-
ages the pipeline structure to sidestep inter-element path
explosion (§3.1); second, how it leverages other aspects
of packet processing to sidestep intra-element path ex-
plosion resulting from loops (§3.2), large data structures
(§3.3), and mutable state (§3.4).

As we describe each technique used by our system, we
also state any extra conditions (on top of pipeline struc-
ture) that this technique requires from the target software
in order to work well. If a software dataplane does not
meet these conditions, our tool may not be able to com-
plete a proof for this dataplane.

We will illustrate our system through Fig. 1, which
shows a pipeline consisting of two elements. We will
use the term segment to refer to an instruction sequence
through a single element, and the term path to refer to
an instruction sequence through the entire pipeline. The
input in corresponds to a newly received packet, and we
assume that this may contain anything, i.e., we make in

symbolic and unconstrained.
For illustration purposes, our examples simplify two

aspects of our system: first, our example input in is an
integer, whereas in reality the input packet object is an
array of bytes; second, our example code snippets consist
of pseudo-code, whereas in reality S2E takes as input
X86 code.

3.1 Pipeline Decomposition

Verification consists of two main steps: step 1 searches
inside each element, in isolation, for code that may vio-
late the target property, while step 2 determines which of
these potential violations are feasible once we assemble
the elements into a pipeline. More specifically, we cut
each pipeline path into element-level segments (Fig. 1).

out E1 (in):

 if in < 0 then

 out ← 0

 else

 out ← in

 end if

 return out

out E2 (in):

 assert in ≥ 0

 if in < 10 then

 out ← 10

 else

 out ← in

 end if

 return out

out ToyPipeline (in):

 out1 ← E1 (in)

 out2 ← E2 (out1)

 return out2

in
 <

 0
in ≥ 0

in
 <

 0

in
 ≥ 0

return 0 return in

0
≤

in
 <

 1
0 in

 ≥ 10

in
 <

 0

in
 ≥ 0

crash

return 10 return in

0
≤

in
’
<

10 in
’ ≥ 10

in
’
<

0 in
’ ≥ 0

��

0
≤

in
’
<

10 in
’ ≥ 10

in
’
<

0 in
’ ≥ 0

�� �� �� ��

��

�� ��

��

�� ��

Figure 1: A toy pipeline that consists of two elements.

In step 1, we obtain, for each segment, a logical expres-
sion that specifies how this segment transforms state; this
allows us to identify all the “suspect segments” that may
cause the target property to be violated. In step 2, we de-
termine which of the suspect segments are feasible and
indeed cause the target property to be violated, once we
assemble segments into paths.

In step 1, we analyze each element in isolation: First,
we symbolically execute the element assuming uncon-
strained symbolic input. Next, we conservatively tag as
“suspect” all the segments that may cause the target prop-
erty to be violated. For example, in Fig. 1, if the target
property is crash-freedom, segment e3 is tagged as sus-
pect, because, if executed, it leads to a crash.

If we stopped at step 1, our verification would catch
all property violations, but could yield false positives: If
this step does not yield any suspect segments for any el-
ement, then we have proved that the pipeline satisfies the
target property. For instance, if none of the elements ever
crashes for any input, we have proved that the pipeline
never crashes. However, a suspect segment does not nec-
essarily mean that the pipeline violates the target prop-
erty, because a segment that is feasible in the context of
an individual element may become infeasible in the con-
text of the full pipeline. For example, in Fig. 1, if we
consider element E2 alone, segment e3 leads to a crash;
however, in a pipeline where E2 always follows E1,
segment e3 becomes infeasible, and the pipeline never

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 105

crashes. In program-analysis terminology, in step 1, we
over-approximate, i.e., we execute some segments that
would never be executed within the pipeline that we are
aiming to verify.

Step 2 discards suspect segments that are infeasible in
the context of the pipeline: First, we construct each po-
tential path pi that includes at least one suspect segment;
each pi is a sequence of segments ej . Next, we compose
the path constraint and symbolic state for pi based on
the constraints and symbolic state of its constituent seg-
ments (that we have already obtained in step 1). Finally,
for every pi, we determine whether it is feasible (based
on its constraints) and whether it violates the target prop-
erty (based on its symbolic state). Note that the last step
does not require actually executing pi, only composing
the logical expressions of its constituent segments.

For example, here is how we prove that the pipeline in
Fig. 1 does not crash:

Step 1:

1. We symbolically execute E1 assuming input in can
take any integer value. We collect the following
constraints and symbolic state for its segments e1
and e2.

• C1(in) = (in < 0), S1(in) = {out = 0}.

• C2(in) = (in ≥ 0), S2(in) = {out = in}.

2. We symbolically execute E2 assuming input in can
take any integer value. We collect the following
constraints and symbolic state for its segments e3,
e4, and e5:

• C3(in) = (in < 0), S3(in) = {crash}.

• C4(in) = (in ≥ 0 ∧ in < 10),
S4(in) = {out = 10}.

• C5(in) = (in ≥ 10), S5(in) = {out = in}.

3. We tag segment e3 as suspect.

Step 2:

1. The paths that include the suspect segment are p1
(i.e., sequence < e1, e3 >) and p4 (i.e., sequence
< e2, e3 >).

2. We compute p1’s path constraint as C ∗

1
(in) =

C1(in) ∧ C3(S1(in) [out]) =

C1(in) ∧ C3(0) = (in < 0) ∧ (0 < 0) = False.

3. We compute p4’s path constraint as C ∗

4
(in) =

C2(in) ∧ C3(S2(in) [out]) =

C2(in) ∧ C3(in) = (in ≥ 0) ∧ (in < 0) = False.

4. Both path p1’s and path p4’s constraints always
evaluate to false, hence p1 and p4 are infeasible, i.e.,
there are no feasible paths that include suspect seg-
ments, hence the platform never crashes.

Pipeline decomposition enables us to prove properties
about the pipeline without having to consider every sin-
gle pipeline path; but it still requires us to consider every
single element segment. This is not straightforward for
elements that involve loops, large data structures, and/or
mutable private state. We will next discuss how we ad-
dress each of these scenarios.

3.2 Loops

In general, loops can be a challenge for program veri-
fication, especially when the number of loop iterations
depends on the input. For example, a loop of t iterations,
where t is a 64-bit unsigned integer input, can yield 264

execution paths.
In contrast to general programs, a software dataplane

typically will not contain input-dependent loops with
such a large number of maximum iterations. A worst-
case realistic example is a packet-processing element that
loops over the bytes of a packet for encryption or com-
pression; in this case, the number of loop iterations is
bounded by the maximum packet size, typically 1500.

Still, loops can create an impractical number of seg-
ments within an element. Consider an element that im-
plements the processing of IP options: for each received
packet, it loops over the options stored in the packet’s
IP header and performs the processing required by each
specified option type. If the processing of one option
yields up to 2n segments, then the processing of t op-
tions yields up to 2t·n segments. For example, in the IP-
options element that comes with the Click distribution,
the processing of 3 options yields millions of segments
that—we estimated—would take months to symbolically
execute.

To address this, we reuse the idea of decomposition,
this time applying it not to the entire pipeline, but to
each loop: If a loop has t iterations, we view it as a
“mini-pipeline” that consists of t “mini-elements,” each
one corresponding to one iteration of the loop. We have
described how, if we have a pipeline of m elements,
we symbolically execute each element in isolation, then
compose the results to reason about the entire pipeline.
Similarly, if we have a loop of t mini-elements (iter-
ations), we symbolically execute each mini-element in
isolation, then compose the results to reason about the
entire loop. Unlike a pipeline that consists of different
element types, a loop of t iterations consists of the same
mini-element type, repeated t times; hence, for each
loop, we only need to symbolically execute one mini-
element.

106 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

This brings us to our first extra condition on packet-
processing code: To use decomposition as we do, the
only mutable state shared across components must be
the packet object itself. For instance, to decompose
a pipeline into individual elements, we rely on the fact
that the only mutable state shared across elements is the
packet object. Similarly, to decompose a loop into in-
dividual iterations, the only mutable state shared across
iterations must be part of the packet object.

For example, consider again an IP-options element:
Such an element typically includes a next variable,
which points to the IP-header location that stores the next
option to be processed; each iteration of the main loop
starts by reading this variable and ends by incrementing
it. In a conventional element, next would be a local vari-
able. In our verification-optimized element, next is part
of the packet metadata, hence part of packet. And since,
in step 1, we make packet symbolic and unconstrained,
next is also symbolic and unconstrained, allowing us to
reason about the behavior of one iteration of the main
loop, assuming that iteration may start reading from any-

where in the IP header.

Condition 1 Any mutable state shared across loop iter-

ations is part of the packet metadata.

To make a packet-processing element satisfy this con-
dition, a developer needs to identify any variables that are
read and written across loop iterations and make these
variables part of the packet metadata. For the Click IP-
options element, this process required changing 26 lines
(12%) of the code and took less than an hour. Alter-
natively, this can be done automatically by a compiler
(that would force developers to explicitly declare muta-
ble state shared across iterations of a loop). Either way,
this condition does not restrict the functionality that a
packet-processing element can implement; it only forces
the developer to create—either manually or with com-
piler help—an explicit interface between loop iterations.

3.3 Data Structures

Symbolic-execution engines lack the semantics to reason
about data structures in a scalable manner. For instance,
symbolically executing an element that uses a packet’s
destination IP address to index an array with a thou-
sand entries will cause a symbolic-execution engine to
essentially branch into a thousand different segments—
independently from the array content or the logic of the
code that uses the returned value. So, if we naïvely feed
an element with a forwarding or filtering table of more
than a few hundred entries to a symbolic-execution en-
gine, step 1 of our verification process will not complete
in useful time.

value = read (key)
write (key, value)

{True, False} = test (key)
expire (key, value)

Figure 2: An interface for dataplane data structures.

To address this, when we reason about an element, we
abstract away any data-structure access; this allows us
to symbolically execute the element and identify suspect
segments, without requiring the symbolic-execution en-
gine to handle any data structures. To reason about the
data structures themselves, we rely on other means, e.g.,
manual or static analysis; this restricts us to using only
data structures that are manually or statically verifiable,
but we have evidence that these are typically sufficient
for packet-processing functionality.

This brings us to our second extra condition on packet-
processing code: To reason about different components
of the same executable separately, there must exist a
well-defined interface between them. For instance, to
reason about each pipeline element separately and com-
pose the results, we rely on the existence of a well-
defined interface between each pair of elements, which
specifies all the state that can be exchanged between
them (the packet object). Similarly, to reason about a
data structure separately from the element that uses it
and compose the results, the data structure must expose
a well-defined interface to the element.

We need an interface that abstracts a data structure as
a key/value store that supports at least read, write, mem-
bership test, and expiration. The first three operations
are straightforward; the last one—expiration—allows an
element to indicate that a {key, value} pair will not be
accessed by the element any more, hence is ready to be
removed and processed by the higher layers. For exam-
ple, suppose an element maintains a data structure with
per-flow packet counters; when a flow completes (e.g.,
because a FIN packet from that flow is observed), the el-
ement can use the expiration operation to signal this com-
pletion to the control-plane process that manages traffic
statistics.

Condition 2 Elements use data structures that expose a

key/value-store interface like the one in Fig. 2.

Moreover, we need data structures that expose the
above interface and can be verified in useful time. When
we say that a data structure is “verified,” we mean that
the implementation of the interface exposed by the data
structure is proved to satisfy crash-freedom, bounded-
execution, and correctness. The latter depends on the
particular semantics of the data structure, e.g., a hash-
table should satisfy the following property: a “write (
key, value)” followed by a “read (key)” should return

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 107

“value.” If an element uses only data structures for which
these properties hold, then, when we reason about the el-
ement, we can abstract away all the data-structure imple-
mentations and consider only the rest of the element code
plus the data-structure interfaces.

Condition 3 Elements use data structures that are im-

plemented on top of verifiable building blocks, e.g., pre-

allocated arrays.

As evidence that such data structures exist, we imple-
mented a hash table and a longest-prefix-match table that
satisfy crash-freedom and bounded-execution. They both
consist of chains of pre-allocated arrays. Our hash table
is a sequence of K such arrays; when adding the k-th
key/value pair that hashes to the same index, if k ≤ K,
the new pair is stored in the k-th array, otherwise it can-
not be added (the write operation returns False). For the
longest-prefix-match table, we use the idea of “flatten-
ing” of all entries to /24 prefixes [25].

We chose arrays as the main building block, because
they combine two desirable properties: (a) They enable
line-rate access to packet-processing state, because of
their O(1) lookup time. (b) They are easy to verify, be-
cause of the simplicity of their semantics. For example,
a write to an array (that is within the array bounds) is
guaranteed not to cause a crash and not to cause the exe-
cution of more than a known number of instructions that
depends on the particular CPU architecture. In contrast,
a write to a dynamically-growing data structure, e.g., a
linked list or a radix trie, may result in a variable num-
ber of memory allocations, deallocations and accesses,
which can fail in unpredictable ways.

Conditions 2 and 3 introduce two kinds of overhead:
First, existing elements may need to be rewritten to

satisfy them; this involves replacing existing data struc-
tures with ones that satisfy the two conditions and chang-
ing any line of code that accesses a data structure. We
have not yet applied our approach widely enough to
have statistically meaningful results on the correspond-
ing amount of effort. In one case (Click IP lookup el-
ement), we had to change about 130 lines (20%) of the
code, which took a few hours. In another case (Click
NAT element), we had to write the element from scratch
(because most of the NAT code is about accessing data
structures), which took a couple of days. To reduce this
overhead, part of our work is to create a library of data
structures that satisfy the two conditions.

Second, implementing sophisticated data structures on
top of pre-allocated arrays typically requires more mem-
ory than conventional implementations. For instance, the
original Click NAT element stores per-connection state
in a hash table, implemented as an array of dynamically
growing linked lists (when adding the k-th key/value pair
that hashes to the same index, the new pair is stored as

the k-th item of a linked list). In contrast, our NAT ele-
ment uses the hash-table implementation outlined above,
with K = 3 pre-allocated arrays (this value makes the
probability of dropping a connection negligible). Hence,
our NAT element may use up to 3 times more memory to
store the same amount of state. In our opinion, sacrific-
ing memory for verifiability is worth considering given
the relative costs of memory and the human support for
dealing with network problems.

3.4 Mutable Private State

Mutable private state is hard to reason about because it
may depend on a sequence of observed packets (as op-
posed to the currently observed packet alone). For in-
stance, if an element maintains connection state or traffic
statistics, then its private state is a function of all traffic
observed since the element was initialized. Hence, it is
not enough to reason about the segments of the element
that can result from all possible contents of the current
packet; we need to reason about the segments that can
result from all possible contents of all possible packet se-
quences that can be observed by the element. The chal-
lenge is that symbolic-execution engines (and verifica-
tion tools in general) are not yet at the point where they
can handle symbolic inputs of arbitrary length in a scal-
able manner.

We can currently verify two kinds of elements that
maintain mutable state: a NAT element (maintains per-
connection state and rewrites packet headers accord-
ingly) and a traffic monitor (collects per-flow statistics).
We believe that our approach can be generalized to other
elements, but we do not expect to be able to perform
complete and sound verification of an element that per-
forms arbitrary state manipulation—claiming that would
be close to claiming that we could verify arbitrary soft-
ware.

Our approach is to break verification step 1 (§3.1) into
two sub-steps: the first one searches for “suspect” values
of the private state that would cause the target property
to be violated, while the second one determines which
of these potential violations are feasible given the logic
of the element. In the first sub-step, we assume that the
private state can take any value allowed by its type (i.e.,
we over-approximate). In the second sub-step, we take
into account the fact that private state cannot, in reality,
take any value, but is restricted by the particular type of
state manipulation performed by the given element.

So far, we have not needed to exercise the second sub-
step in practice: in the two stateful elements that we have
experimented with, the first sub-step did not reveal any
suspect states, hence the second one was not exercised.
We describe both sub-steps through a manufactured ex-
ample in our technical report [16].

108 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 Target Properties

In this section, we describe the three target properties
that our current prototype can (dis)prove. These prop-
erties are expressed imperatively using the S2E analyzer
interface [13].

Crash-freedom.

We say that a pipeline is crash-free when it is guar-
anteed not to execute any instruction that would cause it
to terminate abnormally, e.g., an assertion with a false
argument or a division by zero. The definition of “abnor-
mal termination” depends on the environment where the
pipeline runs: in the case of user-mode Click, it is the re-
ceipt of a signal (e.g., SIGSEGV, SIGABRT, SIGFPE)
that is not handled by the Click process and causes the
process to terminate; in the case of kernel-mode Click, it
is a call to the kernel’s panic method. As stated in §2.2,
our verifier is built on top of an in-vivo path explorer,
which can detect any of these conditions.

We prove crash-freedom for a pipeline given an arbi-
trary input packet and arbitrary configuration state. If a
pipeline does not include any instruction that may cause
abnormal termination, proving crash-freedom is trivial.
On the other hand, if a pipeline does include an instruc-
tion that may cause abnormal termination, that does not
necessarily mean that this instruction may be executed.
So, proving crash-freedom is equivalent to proving that
any such instruction will never be executed, and proving
lack of crash-freedom is equivalent to providing a spe-
cific packet and specific state that causes such an instruc-
tion to be executed.

Bounded-execution.

We say that a pipeline satisfies bounded-execution

when it is guaranteed to execute no more than Imax in-
structions per packet. This ensures that no packet is ever
caught in an infinite loop. It can also be used to pro-
duce a “latency envelope,” i.e., argue that once a packet
enters the pipeline, it will exit within a bounded amount
of time. To translate instruction sequences into latency
bounds, we need to map each instruction to the mini-
mum and maximum number of cycles that it can take to
complete, which can be typically obtained from the CPU
and/or chip manual.

We prove bounded-execution for a pipeline given an
arbitrary input packet and arbitrary configuration state.
We find the longest path of a pipeline as follows: In step
1 of the verification process, when we symbolically ex-
ecute an element, we also record the length (number of
instructions) of each of its segments. In step 2, we search
for the longest feasible path by considering different seg-
ment combinations. We use a simple search heuristic that
first checks if the path that consists of the longest seg-
ment of each element is feasible (if yes, we are done),

then checks if any path that involves either the first or
second longest segment of each element is feasible, and
so on. In the worst case, we have to check all possible
segment combinations; in practice, we find the longest
feasible path after considering only a few combinations.

Filtering.

Given a pipeline with specific configuration state, can
we guarantee that a packet that enters the pipeline with
source IP A and destination IP B will be dropped?

We leverage existing work that answers this type of
question for hardware dataplanes [28–30, 38, 43]. This
work abstracts each network device as a function that
maps an input packet header to an output port, and then it
composes different device functions to reason about the
entire network; the mapping function of each device is
determined by the contents of its forwarding table. In
contrast, we abstract each packet-processing element as
a function that maps an input packet header to an output
port, and then we compose different element functions
to reason about the entire pipeline; the mapping func-
tion of each element is automatically derived by sym-
bolically executing the element’s code given an arbitrary
input packet.

The main difference lies in the derivation of the map-
ping function of each packet-processing element (that we
do by symbolically executing the element in isolation).
This is useful in cases where an element, e.g., includes
a line of code that drops all packets with source IP A,
even though the device’s forwarding table indicates oth-
erwise. Composing element functions to reason about a
pipeline is equivalent to composing device functions to
reason about a network, and we can reuse the algorithms
proposed by the above work.

5 Evaluation

We tested our system on pipelines created with Click. In
each tested pipeline, packets are generated by a “genera-
tor” element and dropped by a “sink” element; what we
verify is the packet-processing code between generator
and sink. We answer the following questions: Can we
perform complete and sound verification of software dat-
aplanes (§5.1)? How does verification time increase with
pipeline length (§5.2)? Can we use our tool to uncover
bugs, useful performance characteristics, or unintended
dataplane behavior (§5.3)?

5.1 Feasibility

We verified pipelines that consist of various combina-
tions of the elements in Table 2. The table indicates the
origin of each element (whether it is an original Click el-
ement, one that we modified, or one that we wrote from

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 109

Element
New LoC

Loops
Data Mutable

(% of total) Structs State
Click:
Classifier
CheckIPhdr
EthEncap
EthDecap
DecTTL
DropBcast

Click+:
IPoptions 26 (12%) X
IPlookup 130 (20%) X

Ours:
NAT 870 X X
TrafficMonitor 650 X X

Table 2: Verified packet-processing elements. “Click” in-
dicates an unmodified element from Click distribution 2.0.1;
“Click+” indicates an element from the same distribution that
we modified modestly; “ours” indicates an element that we
wrote from scratch. “New LoC” is the number of lines of code
that we modified or introduced in each element. “X”s indicate
which technique(s) we applied to each element.

scratch). Our modifications consisted of loop rewriting
and replacing data structures with our verifiable ones.
The table also indicates the number of new lines of code
(LoC) and which of our techniques were needed to com-
plete step 1 of the verification process for each element.

For each pipeline, we proved crash-freedom and
bounded-execution. More generally, for each pipeline,
we were able to answer questions of the following kind:
can line X in element Y be executed with arguments Z
in the context of this pipeline? if yes, what is a packet
that would cause this line to be executed with these argu-
ments?

5.2 Scalability

We now examine how verification time increases with
pipeline length. Given the intended uses of our tool, it
should not take more than a few tens of minutes to prove
a target property per pipeline. We first look at meaningful
pipelines (that it makes sense to actually deploy), then at
microbenchmarks that illustrate different aspects of our
system. To show the benefit of our domain-specific tech-
niques, we use as a baseline vanilla S2E—a state-of-the-
art, publicly available verification framework for general
software. We refer to our tool as “dataplane-specific ver-
ification” and to S2E as “generic verification.” We feed
the same code to the two systems.

Meaningful Pipelines.

We consider three meaningful pipelines: (a) edge

router implements a standard IP router (the first 8 ele-
ments in Table 2) with a small forwarding table (10 en-
tries); (b) core router is similar but has a large forwarding

(a) IP router. For the dataplane-specific tool, the results are the same for
the edge and core pipelines.

(b) Network gateway

5
states

21
states

1813
states

7445
states

5
states

10
states

123
states

236
states

0

5

10

15

20

25

IP_dst +IP_src +port_dst +port_src

Ve
rif
ic
at
io
n
tim

e
(m

in
ut
es
)

Filter criteria

generic dataplane specific

(c) Pipeline microbenchmark

12h+

0

100

200

300

400

500

600

700

1 2 3

Ve
rif
ic
at
io
n
tim

e
(m

in
ut
es
)

Number of loop iterations

generic dataplane specific

(d) Loop microbenchmark

Figure 3: Verification time as a function of pipeline length.
“preproc” consists of the first 3 elements in Table 2.

table (100, 000 entries); (c) network gateway implements
NAT and per-flow statistics collection. Each of them
presents an extra verification challenge: the first one in-

110 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cludes a loop (in IPoptions), the second one a large data
structure (in IPlookup), and the third one mutable private
state (in NAT and TrafficMonitor).

Fig. 3(a) shows how verification time increases as we
add more elements to the IP-router pipelines: Dataplane-
specific verification completes in less than 20 minutes.
Most of this time is spent on IP options, because this el-
ement has significantly more branching points than the
rest. Generic verification of the edge router exceeds 12
hours (at which point we abort it) the moment we allow
packets to carry 2 IP options (so we do not show any
data point for it beyond “+IPoption2”). Generic verifi-
cation of the core router exceeds 12 hours the moment
we add the IP lookup element to the pipeline (so we do
not show any data point for it beyond “+IPlookup”). The
difference between the two tools comes from our special
treatment of loops and large data structures.

Fig. 3(b) shows the same information for the network-
gateway pipeline: Dataplane-specific verification com-
pletes in less than 6 minutes, whereas generic verification
exceeds 12 hours the moment we add either the Traffic-
Monitor or the NAT element. The difference comes from
the fact that we abstract away data-structure implemen-
tations.

Compositionality Microbenchmarks.

We consider two synthetic pipelines to illustrate the
benefit of pipeline and loop decomposition. The first one
consists of a sequence of simple filtering elements, each
of which reads a different part of the input packet’s IP
header to make a filtering decision. The second pipeline
implements a simplified version of the IP options pro-
cessing loop, i.e., in each iteration, it reads some portion
of the IP header, updates it, and advances a next variable
that indicates where the next read should start.

Fig. 3(c) shows how verification time increases as
we add more filtering elements to the first pipeline:
generic verification time increases significantly faster
than dataplane-specific verification time. This is because
the former executes all feasible segments of each ele-
ment in isolation, whereas the latter executes all feasible
paths of the pipeline. In this scenario, generic verifica-
tion does complete in useful time, because this pipeline
involves few elements, without loops, that access mini-
mal state. Still, it takes an order of magnitude more time
than dataplane-specific verification because of the expo-
nential increase in the number of paths. To make this
clear, we note, on top of each bar, the number of verifi-
cation states that each tool generates and processes.

Fig. 3(d) shows how verification time increases as we
add more iterations to the loop of the second pipeline:
dataplane-specific verification time remains constant,
whereas generic verification time increases exponen-
tially. This is because the former executes all feasible

segments of one loop iteration, whereas the latter exe-
cutes all feasible paths of the entire loop. Dataplane-
specific verification is slower than generic verification
only in the special case where we have a loop with a
single iteration. That is because it symbolically executes
one loop iteration, assuming that iteration may start read-
ing from anywhere in the IP header; this pays off as soon
as we add a second loop iteration, but it is unnecessary
in the special case of a loop with a single iteration.

5.3 Usefulness

We said that our tool can help developers debug their
code, and network operators better understand the per-
formance and behavior of their dataplanes; we now look
at a few specific examples.

Bugs in Click Elements.

We found the following while trying to prove
crash-freedom and bounded-execution for various Click
pipelines:

Bug #1: Any pipeline that includes the Click IP frag-
menter element will enter an infinite loop, if it tries to
fragment a packet with IP options. This is because the for

loop that processes IP options in the fragmenter does not
have an increment (the programmer forgot to add one).2

Bug #2: Any pipeline that does not include an IP op-
tions element but includes the Click IP fragmenter ele-
ment will enter an infinite loop, if it tries to fragment
a packet that carries a zero-length IP option. This is
because the current option length determines where the
next iteration of the loop will start reading, so, a zero-
length option causes the loop to get stuck.3 The Click IP
options element discards any packet with a zero-length
option, so including it in the pipeline prevents the bug
from being exercised.

Bug #3: Any pipeline that includes the Click NAT el-
ement4 will hit a failed assertion5, if it receives a packet
with source IP address/port tuple Ts = T and destination
tuple Td = T , where T is the public IP address/port of
the NAT box.

All three bugs constitute security vulnerabilities: they
enable any end-host to disable the pipeline by sending a
specially crafted packet.

How hard would it be to find these bugs manually?
The first one is probably not that hard: a loop missing its
increment stands out visually, plus any serious testing of
the fragmenter element would involve a packet with IP
options. The other two bugs, however, manifest in sce-
narios that a developer is unlikely to test, but an attacker
can easily exploit: fragmentation of an illegal packet

2elements/ip/ipfragmenter.cc, line 64
3elements/ip/ipfragmenter.cc, line 69
4elements/tcpudp/iprewriter.cc
5include/click/heap.hh, line 149

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 111

Bug Pipeline Time # Paths

#1
Edge router with 1 IP option

3 min 432
+ Click IP fragmenter

#2
Edge router with 1 IP option

47 min 8423
+ Click IP fragmenter

#2
Edge router without options

5 sec 26
+ Click IP fragmenter

#3
Network gateway

5 sec 10
with Click NAT

Table 3: Time spent and number of paths composed in verifi-
cation step 2, when the pipeline contains buggy elements.

while processing of IP options is turned off (which does
happen, in practice, for performance or security reasons);
and processing of an IP header that would be meaning-
less in a legitimate packet.

In §2.2, we said that we expected verification step 2
to compose the constraints only for a small fraction of
the pipeline paths. Table 3 reports, for a given bug and
pipeline, the amount of time spent and the number of
paths composed in this step. Consider bug #2: When
verifying a pipeline that includes the Click IP fragmenter
element, step 1 determines that this element has a sus-
pect segment. If the pipeline does not support IP op-
tions, step 2 determines that the suspect segment is fea-
sible in this pipeline (hence the pipeline does not sat-
isfy bounded-execution); this requires finding one feasi-
ble path that contains the suspect segment, and we suc-
ceed after composing the constraints for 26 paths, which
takes 5 seconds. If the pipeline supports one IP option,
step 2 determines that the suspect element is not feasible
in this pipeline; this requires showing that all the paths
that contain the suspect segment are not feasible, and we
succeed after composing the constraints for 8423 paths,
which takes 47 minutes. These numbers are consistent
with our expectation that, in practice, verification step 2
completes in useful time.

Longest paths in IP router.

We used our tool to construct adversarial—from a
performance point of view—workloads for a pipeline
implementing a standard IP router. Recent research
showed that such a router is capable of multi-Gbps lines
rates [17], but this result was obtained using work-
loads of well-formed packets, not meant to exercise the
pipeline’s exception paths. Instead, we obtained the
pipeline’s 10 (it could have been any number) longest
paths, as well as the packets that cause them to be exe-
cuted.

It is not surprising that the longest paths are executed
in response to problematic packets that trigger further
packet examination and logging; what may be surpris-
ing is that these paths execute 2.5 times as many instruc-
tions than the most common path. Moreover, these extra
instructions are CPU-heavy, i.e., they include memory

accesses and system calls for logging; an attacker may
cause significant performance degradation by sending a
sequence of packets that are specially crafted to exercise
these particular paths. This is useful information to a de-
veloper, because it reveals to him paths that may require
his attention. It is also useful to a network operator, be-
cause it reveals to her the performance limits of a pipeline
and the workloads that trigger them—allowing her to de-
cide whether it is suitable for her network.

Unintended behavior.

Certain implementations of the Loose Source Record
Route (LSRR) IP option may enable illegal traffic to by-
pass a firewall [23]: An IP router that supports the LSRR
option may replace the source IP address of an incom-
ing packet with its own IP address. In this case, any fil-
tering based on the source IP address of the packet that
happens after the processing of IP options is ineffective.
This has been exploited to bypass firewalls, eventually
causing network operators to disable LSRR and router
manufacturers to change their LSRR implementations.

Our tool would have uncovered this vulnerability. To
verify that, we created a pipeline that includes an IP
options element followed by a firewall, and we tried to
prove that it satisfies the following property: “any packet
whose source IP address is blacklisted by the firewall will
be dropped.” The tool responded that the property is not
satisfied, and it provided an example packet that causes
it to be violated: a packet with a blacklisted source IP
address that carries the LSRR option.

6 Limitations

The key enabler and at the same time limitation of our
work is that we focus on software dataplanes that fol-
low a pipeline structure and also satisfy three other con-
ditions (§3). The pipeline structure is a natural fit for
dataplanes; most research prototypes are already written
this way, and we know of at least one industry proto-
type as well. Favoring an already popular programming
model is, in our opinion, a modest price to pay for verifi-
ability. The other three conditions introduce overheads:
existing code may need to be changed to satisfy them
(but the resulting code is, in our opinion, easier to read
and maintain); compared to their more dynamic coun-
terparts, data structures that satisfy Conditions 2 and 3
typically require more memory (but trading off memory
for verifiability is, in our opinion, worth considering).

We currently handle only two specific, simple forms of
mutable private state. As stated earlier, we do not expect
to be able to completely remove this limitation, but we do
expect to expand the range of state-manipulation patterns
that we can formally reason about.

112 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Our approach is applicable to packet-processing plat-
forms where each packet is handled by a single pro-
cessing core and different cores never need to synchro-
nize. We focused on such platforms, because there
is compelling evidence that they lead to better perfor-
mance (by minimizing the number of compulsory cache
misses) [17]. We would need new results in order to ver-
ify platforms where different cores contend for access to
the same data structures.

7 Related Work

Our work is feasible because of advances in program
analysis tools for C/C++ code, from Verisoft [19] to
modern model checkers [34,40] and tools based on sym-
bolic execution [10,11,13,21]. These tools target general
code, so they cannot typically construct complete and
sound proofs (which is what we want). Instead, they try
to increase line coverage or identify buggy paths without

having to reason about all the paths of the analyzed pro-
gram (whereas we want to reason about all feasible paths
of the analyzed pipeline). There exist tools that prove
properties of real programs, but, to the best of our knowl-
edge, they are tailored to specific domains other than dat-
aplanes; notable examples are Astrée [8], SLAM [5, 6],
and Terminator [14].

Compositionality has been leveraged before to address
path explosion, in compositional dynamic test genera-
tion [20] and follow-on work [4,22]. The particular tools
evaluated in these proposals use “top-down” composi-
tion: when symbolically executing a program, encoun-
tering a function triggers the construction of a summary
(logical representation) of that function in the context of
its caller. This makes sense, because—to the best of our
understanding—the goal of this line of work is to max-
imize line coverage with as little work as possible (ide-
ally, hit each program statement exactly once). We use
“bottom-up” composition: we first compute context-free
summaries of all elements, then we compose them as
necessary to reason about the entire pipeline.

Verification techniques have been used before to de-
bug or verify networked systems (but not dataplanes):
Musuvathi and Engler adapted the CMC model checker
to test the Linux TCP implementation for interoperabil-
ity with the TCP specification [39]. Bishop et al. con-
tributed a formal specification of TCP/IP and the sockets
API, and they tested existing implementations for confor-
mance to their specification [7]. Killian et al. contributed
new algorithms for finding liveness bugs in systems like
Pastry and Chord [31]. NICE finds bugs in OpenFlow ap-
plications [12]. SOFT tests OpenFlow switches for inter-
operability with reference implementations [36]. Guha et
al. contributed “the first machine-verified [Software De-
fined Networking] controller” [24].

Ennals et al. contributed a new language for packet-
processing applications [18]. The goal of that language
was to simplify the “compilation of high-level programs
to the distributed memory architectures of modern Net-
work Processors.” The proposed language ensured that
no two threads referenced the same packet, which is akin
to our requirement that no two pipeline elements have
access to the same packet.

Finally, an earlier version of this work was presented
in a workshop paper [15]. That paper reported the feasi-
bility of proving crash-freedom and bounded-execution
only for stateless pipelines; it did not include a scala-
bility analysis (§5.2) or report on bugs found using our
approach (§5.3).

8 Conclusions

We presented a verification tool that takes as input a soft-
ware dataplane and proves that it does (or does not) sat-
isfy properties like crash-freedom, bounded-execution,
and filtering. Proving such properties for general soft-
ware faces fundamental challenges, unsolvable with ex-
isting tools; we sidestepped them by applying exist-
ing ideas (symbolic execution and compositionality),
and combining them with domain specifics of packet-
processing code (most importantly, that it is structured
as a pipeline of elements that do not exchange mutable
state outside the packet itself and its metadata). We eval-
uated our tool on stateless and two simple stateful Click
dataplanes; we were able to perform complete and sound
verification of these pipelines within tens of minutes,
whereas a state-of-the-art general-purpose tool failed to
complete the same task within several hours.

Acknowledgments. We are grateful for the help
offered by Stefan Bucur, George Candea, Vitaly Chi-
pounov, Johannes Kinder, Vova Kuznetsov, Christian
Maciocco, Dimitris Melissovas, David Ott, Iris Safaka,
Simon Schubert, and Cristian Zamfir, as well as our shep-
herd, Brighten Godfrey, and the anonymous reviewers.
This work is supported by an Intel grant and a Swiss Na-
tional Science Foundation grant.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 113

References

[1] Meraki. http://meraki.cisco.com.

[2] Vyatta Hardware Appliances. http://www.vyatta.
com/solutions/physical/appliances.

[3] Intel RFP Announcement: SDN Extensions for Pro-
grammable Data Services, 2012.

[4] S. Anand, P. Godefroid, and N. Tillmann. Demand-
Driven Compositional Symbolic Execution. In Proc. of

the International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS), 2008.

[5] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Us-
tuner. Thorough Static Analysis of Device Drivers. In
Proc. of the ACM EuroSys Conference, 2006.

[6] T. Ball and S. K. Rajamani. SLAM: Debugging System
Software via Static Analysis. In Proc. of the ACM Sym-

posium on the Princinples of Programming Languages

(POPL), 2002.

[7] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith,
and K. Wansbrough. Rigorous Specification and Confor-
mance Testing Techniques for Network Protocols, as ap-
plied to TCP, UDP, and Sockets. In Proc. of the ACM

SIGCOMM Conference, 2005.

[8] B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. MinÃl’, D. Monniaux, and X. Rival.
A Static Analyzer for Large Safety-Critical Software. In
Proc. of the ACM Conference on Programming Language

Design and Implementation (PLDI), 2003.

[9] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset: At-
tacking Path Explosion in Constraint-Based Test Gener-
ation. In Proc. of the International Conference on Tools

and Algorithms for the Construction and Analysis of Sys-

tems (TACAS), 2008.

[10] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs. In Proc. of the USENIX

Symposium on Operating Systems Design and Implemen-

tation (OSDI), 2008.

[11] C. Cadar and D. R. Engler. EXE: Automatically Gener-
ating Inputs of Death. In ACM Conference on Computer

Communication Security (CCS), 2006.

[12] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rex-
ford. A NICE Way to Test OpenFlow Applications. In
Proc. of the USENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2012.

[13] V. Chipounov, V. Kuznetsov, and G. Candea. The S2E
Platform: Design, Implementation, and Applications.
ACM Transactions on Computer Systems, 30(1), 2012.

[14] B. Cook, A. Podelski, and A. Rybalchenko. Termination
Proofs for Systems Code. In Proc. of the ACM Conference

on Programming Language Design and Implementation

(PLDI), 2006.

[15] M. Dobrescu and K. Argyraki. Toward Verifiable Soft-
ware Dataplanes. In Proc. of the ACM Workshop on Hot

Topics in Networks (HotNets), 2013.

[16] M. Dobrescu and K. Argyraki. Software Dataplane Verifi-
cation. Technical Report EPFL-REPORT-197121, EPFL,
Switzerland, 2014.

[17] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software
Routers. In Proc. of the ACM Symposium on Operating

Systems Principles (SOSP), 2009.

[18] R. Ennals, R. Sharp, and A. Mycroft. Linear Types for
Packet Processing. In European Symposium on Program-

ming, 2004.

[19] P. Godefroid. Model Checking for Programming Lan-
guages Using Verisoft. In Proc. of the ACM Symposium

on the Princinples of Programming Languages (POPL),
1997.

[20] P. Godefroid. Compositional Dynamic Test Generation.
In Proc. of the ACM Symposium on the Princinples of

Programming Languages (POPL), 2007.

[21] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In Proc. of the ACM Confer-

ence on Programming Language Design and Implemen-

tation (PLDI), 2005.

[22] P. Godefroid, A. Nori, S. Rajamani, and S. D. Tetali.
Compositional May-Must Program Analysis: Unleashing
The Power of Alternation. In Proc. of the ACM Sym-

posium on the Princinples of Programming Languages

(POPL), 2010.

[23] F. Gont, R. Atkinson, and C. Pignataro. Recom-
mendations on Filtering of IPv4 packets Containing
IPv4 Options. http://tools.ietf.org/html/

draft-ietf-opsec-ip-options-filtering-05#

section-4.3.

[24] A. Guha, M. Reitblatt, and N. Foster. Machine-Verified
Network Controllers. In Proc. of the ACM Conference

on Programming Language Design and Implementation

(PLDI), 2013.

[25] P. Gupta, S. Lin, and N. McKeown. Routing Lookups
in Hardware at Memory Access Speeds. In Proc. of the

IEEE INFOCOM Conference, 1998.

[26] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A
GPU-accelerated Software Router. In Proc. of the ACM

SIGCOMM Conference, 2010.

[27] K. Jang, S. Han, S. Han, S. Moon, and K. Park.
SSLShader: Cheap SSL Acceleration with Commod-
ity Processors. In Proc. of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI),
2011.

[28] P. Kazemian, M. Chang, H. Zeng, S. Whyte, G. Varghese,
and N. McKeown. Real Time Network Policy Checking
using Header Space Analysis. In Proc. of the USENIX

Symposium on Networked Systems Design and Implemen-

tation (NSDI), 2013.

114 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[29] P. Kazemian, G. Varghese, and N. McKeown. Header
Space Analysis: Static Checking for Networks. In Proc.

of the USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2012.

[30] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. God-
frey. VeriFlow: Verifying Network-Wide Invariants in
Real Time. In Proc. of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI),
2013.

[31] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life,
Death, and the Critical Transition: Finding Liveness Bugs
in Systems Code. In Proc. of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI),
2007.

[32] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, M. Nor-
rish, R. Kolanski, T. Sewell, H. Tuch, and S. Winwood.
seL4: Formal Verification of an OS Kernel. In Proc.

of the ACM Symposium on Operating Systems Principles

(SOSP), 2009.

[33] E. Kohler, R. Morris, B. Chen, J. Jannoti, and M. F.
Kaashoek. The Click Modular Router. ACM Transactions

on Computer Systems (TOCS), 18(3):263–297, 2000.

[34] D. Kroening, E. Clarke, and K. Yorav. Behavioral Consis-
tency of C and Verilog Programs Using Bounded Model
Checking. In Proc. of the Design Automation Conference

(DAC), 2003.

[35] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Effi-
cient State Merging in Symbolic Execution. In Proc. of

the ACM Conference on Programming Language Design

and Implementation (PLDI), 2012.

[36] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and
D. Kostic. A SOFT Way for OpenFlow Switch Inter-
operability Testing. In Proc. of the ACM Conference

on emerging Networking EXperiments and Technologies

(CoNEXT), 2012.

[37] Y. Ma, S. Banerjee, S. Lu, and C. Estan. Leveraging Par-
allelism for Multi-dimensional Packet Classification on
Software Routers. In Proc. of the ACM SIGMETRICS

Conference, 2010.

[38] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. God-
frey, and S. T. King. Debugging the Data Plane with
Anteater. In Proc. of the ACM SIGCOMM Conference,
2011.

[39] M. Musuvathi and D. R. Engler. Model Checking Large
Network Protocol Implementations. In Proc. of the

USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2004.

[40] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L.
Dill. CMC: A Pragmatic Approach to Model Checking.
In Proc. of the USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 2002.

[41] B. Raghavan, T. Koponen, A. Ghodsi, M. Casado, S. Rat-
nasamy, and S. Shenker. Software Defined Internet Ar-
chitecture. In Proc. of the ACM Workshop on Hot Topics

in Networks (HotNets), 2012.

[42] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi.
Design and Implementation of a Consolidated Middle-
box Architecture. In Proc. of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI),
2012.

[43] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg,
G. Hjalmtysson, and J. Rexford. On Static reachability
Analysis of IP Networks. In Proc. of the IEEE INFOCOM

Conference, 2005.

