
 Proceedings of the 2002 IEEE 
 Workshop on Information Assurance 
 United States Military Academy, West Point, NY  June 2002 
 

ISBN 555555555/$10.00    2002 IEEE 

 
 
Abstract—We introduce the notion of an intelligent software 
decoy, and provide both an architecture and event-based lan-
guage for automatic implementation of them.  Our decoys 
detect and respond to patterns of suspicious behavior, and 
maintain a repository of rules for behavior patterns and de-
coying actions.  As an example, we construct a model of system 
behavior from an initial list of event types and their attributes 
in the interaction between computer worms an operating sys-
tem.  The model represents patterns of suspicious or malicious 
events that the software decoy should detect, and specific ac-
tions to be taken in response.  Our approach explicitly treats 
both standard and nonstandard invocations of components, 
with the latter representing an attempt to circumvent the public 
interface of the component.a 
 
Index terms—Behavior modeling, computer security, 
computer worm, event trace, software decoy, intrusion 
detection, intrusion tolerance 

I. INTRODUCTION 

Software components with poorly designed interfaces are 
susceptible to misuse or modification by rogue programs.  
Consider, for example, the result of unleashing the Morris 
Internet worm (vid. Spafford [1]):  Some integral compo-
nents of the UNIX operating system permitted the worm 
to propagate itself over the Internet. What were some of 
shortcomings of some versions of Unix in 1988?  One 
was that some components permitted incorrect argument 
types to be executed, such as the sendmail program ac-
cepting commands instead of user addresses.  Another 
weakness was that some components allowed for errone-
ous argument values to be passed to functions, such as a 
string of 536 bytes passed to the input buffer of the 
fingerd program:  That string exceeds the size of the 
buffer, but fingerd and the functions it calls in the C lan-
guage I/O library do not check, resulting in a buffer 
overflow. 

                                                           
a  Manuscript submitted December 28, 2001. 
   J. B. Michael, N. C. Rowe, and R. D. Riehle are with the 
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   M. Auguston is with the Department of Computer Science, 
New Mexico State University, Las Cruces, N.M. 88003-0001 (e-
mail: mikau@cs.nmsu.edu). 

Software patches were made to sendmail and fingerd in 
response to the Morris worm.  The patches consisted of 
exception-handling routines for catching errors in input 
arguments to these programs.  The effectiveness of the 
patches was low at first because of delays between the 
release and installation. 
 
History continues to repeat itself.  Distributed systems are 
plagued by worms descended from the Morris worm, such 
as the well-publicized “Code Red” worm [2] that exploits 
weaknesses in the public interfaces of components of the 
Microsoft Windows NT operating system that manipulate 
the registry.1  The “patch-and-pray” approach to dealing 
with such weaknesses in interfaces has not been effective.  
Shortly after the introduction of the original, a variant of 
the Code Red worm appeared which took advantage of 
other weaknesses in the interfaces of those same compo-
nents of the operating system [3]. 
 
In this paper we explore a new way of thinking about the 
challenges associated with protecting components within 
distributed systems from the effects of attacks.  In par-
ticular, we develop the mechanisms needed to realize a 
modified version of what Michael and Riehle call an in-
telligent software decoy [4].  Intelligent software decoys 
adapt in order to tolerate both intrusions into systems by 
unauthorized users and misuse of components, rather than 
either indicating to the intruder or offending process that a 
violation of security policy has been detected or termi-
nating the interaction with the process.  Each software 
component has a contract consisting of a class invariant 
and one or more preconditions and postconditions; com-
munication with a component is only permitted via its 
contract interface.  Class invariants govern the nature and 
extent of any change to objects within a component by a 
nonstandard invocation (i.e., circumvention) of the com-
ponent’s public interface. 
 
When a calling process passes arguments, via remote pro-
cedure call or remote method invocation, that violate the 
contract of a component, the component transitions from 
its nominal operating mode to a deception mode, in which 
it attempts to both deceive the calling process into con-

                                                           
1 The registry is the repository of the local security policy used 
by the security reference manager and monitor to control access 
by threads to objects. 
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cluding that its violation of the contract has been success-
ful and assess the nature of the violation.  For example, 
suppose a precondition in a contract asserts that input 
strings shall not exceed 512 bytes.  If the component re-
ceives a string that violates this condition, then the 
component tries to continue to engage the calling process 
that such strings are acceptable while both protecting the 
component from the effects of the invocations and as-
sessing the nature of the violation. 
 
Here we describe an architecture and event-based lan-
guage for automatic implementation of software decoys. 

II. APPROACH 

We start with the introduction of a precise behavior model 
for the system under consideration. This model is speci-
fied in terms of events and two binary relations over those 
events:  precedence and inclusion. 
 
We provide a formalism to specify rules for runtime in-
trusion detection and corresponding countermeasures 
based on behavior patterns over event traces and a catalog 
of decoy actions, such as blocking or substituting certain 
system commands.  This implies an implementation based 
on automatic instrumentation for event detection derived 
from the behavior model. Intrusion detection rules are 
textually separated from the source code of the system, 
which allows for accumulating and formalizing knowl-
edge of typical intrusion patterns and decoy strategies. 

A. Event Traces 

An event is an abstraction of any detectable action 
performed at runtime. An event has a beginning, end, du-
ration, and some other attributes, such as program states 
at the beginning and end of the event, source code associ-
ated with the event, and so on.  Two binary relations are 
defined for events.  One event may precede another event.  
For example, one statement execution may precede an-
other.  In addition, one event may be included in another.  
For instance, a statement-execution event may appear in-
side a procedure-call or method-invocation event.  Each 
of these binary relations defines a partial ordering of 
events. System execution may be represented as a set of 
events with the two basic relations between them—an 
event trace.  An event grammar [5] is a set of axioms that 
determines possible configurations of events of different 
types within the event trace.  We use the notion of com-
putations over event traces to specify behavior patterns 
and decoy actions.  This mechanism is a basis for auto-
matic instrumentation of the source code. 

B. Specification of Events 

The behavioral model consists of the definition of event 
types and the attributes of the events.  Our event grammar 
is used to describe the structure of events.  The behavioral 
model consists of two parts: (i) a specification of axioms 
that define constraints on the behavior of components; 
this specification is given in terms of inclusion and prece-
dence relations, and (ii) a description of patterns of be-
havior expressed in terms of event patterns. 
 
The event grammar is not intended for actual parsing of 
an event trace. Each event defined in the behavior model 
should be detectable by some independent means, for ex-
ample, by proper instrumentation of the source code. 
There always is a main event execute-program, 
which encompasses all other events. Event type and event 
attribute declarations, and event grammar rules (i.e., axi-
oms) constitute the behavior model, or “lightweight” se-
mantics specification for the system under consideration.  
The following is an example of an event-grammar rule 
that specifies that an event of type execute-
assignment always contain (i.e., the inclusion relation) 
two ordered events: evaluate-right-hand-part 
and perform-destination. 
 

execute-assignment::
(evaluate-right-hand-part
perform-destination)

 
Intrusion detection and other monitoring activities are 
defined in terms of this behavior model.  This model 
opens the way for automatic source program instrumenta-
tion, and provides formalism for describing different 
kinds of behavior patterns, for example, typical intrusion 
patterns. 

C. Computations over Event Traces 

Event pattern A matches successfully any event of the 
type A. The event pattern can contain additional context 
conditions, which typically involve event attributes, for 
instance, X: perform-destination & source-
code(X) = 'V'. This event pattern matches an event 
of type perform-destination, such that source-code attrib-
ute of this event is 'V'.  Notice the use of auxiliary vari-
able X to denote the event under consideration. 

 
Event patterns are used in aggregate operations to select 
sequences of events from other event sets. For example,
[X:utility-call & name(X) = 'sendmail'
FROM execute-program] yields a sequence of 
events matching the pattern X: utility-call &
name(X) = 'sendmail' selected from the whole 
event trace. An aggregate operation may produce a result 
different from just a sequence of events.  For instance, 
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SUM/[X:utility-call & name(X) =
'sendmail' FROM execute-program APPLY
duration(X)] yields a total duration of events se-
lected. 
 
Event patterns can be combined in order to specify path 
expressions:  patterns of event sequences. For instance, 
the following path expression specifies a sequence of 
events starting with event of type A followed by zero or 
more events of types B or C:  A (B | C)* 
 
A probe is a Boolean expression involving event attrib-
utes and standard arithmetic and logic operations. It might 
also contain calls of subroutines written in some general 
programming language. Probes may be included in path 
expressions interlaced with event patterns. A probe is 
evaluated immediately after the preceding event pattern 
has been matched successfully. A probe is successful if it 
evaluates to the value True. For example, the following 
path expression specifies a utility call that does not 
change the value of variable V. 
 

X: utility-call
Probe

(value(V at begin X) =
value (V at end X))

 
These operations provide a basis for computational tasks 
such as filtering events to create views of the event trace 
subspace, evaluating the truth of assertions, and comput-
ing specific values (e.g., counting the number of events in 
a sequence or the maximum elapsed time for an event 
pattern).  An important feature of this formalism is that 
computations over event traces are separated from the 
source code itself, and the instrumentation of the source 
code can be automated, based on the behavior model (i.e., 
event grammar) and the text of the trace computation. 

D. Code Instrumentation 

Code instrumentation is needed to recognize patterns of 
events and to perform computations over the event trace. 
Our approach is to selectively specify and automatically 
instrument, on a component-by-component basis, only 
those event types and event attributes that are of interest.  
For example, one would likely specify events corre-
sponding to popping (i.e., deleting an item from) the 
stack, reading, writing, or handling threads (e.g., create, 
reschedule, delete) as events of interest in the context of 
the behavior of components comprising an operating sys-
tem; only the source code corresponding to these and 
other events of interest would be instrumented.  For other 
components within the operating system, there may not be 
any events of interest and therefore the source code of 
those components would not be instrumented. 

An automated tool for generating the instrumentation 
would accept as input the program’s source code and the 
text of trace computation.  We define the event pattern 
language and aggregate operations in such a way that 
event detection, event pattern matching, and other com-
putations over event traces can be performed at runtime. 
As reported by Sekar and Uppuluri [6], similar instrumen-
tation may result in approximately four percent runtime 
overhead.  This effect of event-trace computations is im-
portant for high-performance systems, especially for 
components that are called frequently, such as those com-
prising either the scheduler or memory manager of an 
operating system.   
 
As an example of how instrumentation would be selec-
tively applied, consider a component that implements the 
Transmission Control Protocol (TCP); TCP is a fre-
quently called component and known to be susceptible to 
certain types of attacks, such as that of the “Cheese” 
worm [7] that attempts to execute commands on a specific 
TCP port of a system and then masquerade as the httpd 
program on that system.  The change to the httpd program 
via a Trojan horse is an example of an attack for which a 
class invariant could be used to guard against unauthor-
ized changes to the behavior of this component.  One of 
the events of interest would be the invocation of shell 
commands on a TCP port.  Due to the fact that there is a 
sequence of calls resulting from the shell commands, the 
events at other components may need to be instrumented; 
this is the case for the Cheese worm.  Some of the events 
of interest would be changing process names, overwriting 
system files (e.g., /etc/inetd.conf), and repeated attempts 
to restart a system command (e.g., inetd).  The compiler 
used for generating instrumentation would only do so for 
these types of events.  Specific examples of how to spec-
ify events, their attributes, and actions (i.e., responses to 
events) are given in the remainder of the paper for the 
Morris worm. 

III. DOMAIN MODELS OF SYSTEM BEHAVIOR 

Domain models of system behavior serve as the founda-
tion from which to specify both patterns of suspicious 
behavior (i.e., slices of event histories) and the corre-
sponding responses (i.e., actions) of software decoys. A 
domain model consists of a list of generic event types, 
along with their attributes, both of which are associated 
with a particular class of behavior and detectable.  In this 
section, we report our work to date to develop a domain 
model of detectable events that can be triggered within an 
operating system by computer worms:  that is, rogue pro-
grams that propagate themselves across computer 
networks.  In other words, we treat the interaction be-
tween a worm and a particular type of software 
component as a unique domain for modeling purposes.  
Our motivation here is to both describe an event-trace 
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language for implementing software decoys and give spe-
cific examples of how one would instrument code for 
runtime checking.  Our examples are based on the be-
haviors of components of the Unix operating system with 
the Morris Internet worm.  More recent worms, such as 
“Code Red” and “Cheese,” are variants of the Morris 
worm in at least two ways:  (i) they are composed from 
the same set of generic event types, or “building blocks,” 
and (ii) share the same basic structure, in some cases ini-
tiating similar patterns of events.  

A. Interaction between the Worm and Operating 
System 

Although it is still debated as to whether the intent of the 
author of the worm was to just experiment out of aca-
demic interest and the worm “got loose” due to an egre-
gious use of contracts at the interfaces of the components 
it called, the interaction of the worm with software com-
ponents resulted in a temporary denial of service across 
much of the Internet. 
 
The Morris worm interacts with the components of the 
operating system by repeatedly accessing a data structure 
(e.g., the system password and network configuration 
files), calling a program to obtain state information (e.g., 
netstat), or repeatedly invoking a program and permuting 
the arguments before each invocation (e.g., rsh).  The 
worm also invokes sequences of functions and proce-
dures, such as issuing the DEBUG command to the send-
mail program followed by a sequence of commands (i.e., 
the vector portion of the worm program) to be acted on by 
procedures available in that operating mode. 

In addition to accessing components, the Morris worm 
attempts to write to files (e.g., set a flag) and execute 
copies of itself in the form of Trojan horses.  It also at-
tempts to propagate itself while simultaneously eluding 
detection or spoofing by forking itself after a pre-speci-
fied number of tries at infecting other computers or elapse 
of time, and then deleting both the parent process and all 
of the temporary files created by the parent process. 

B. Formal Description of the Domain Model 

Here we provide a first approximation of the description 
of the model.  We begin by specifying five event types 
and their attributes: 

 
fingerd_call
 Attributes: caller_id 
   begin_time
param_pass
 Attributes: length 
read
utility_call

 Attributes: begin_time
caller_id
caller_process_type 

sendmail_call
 Attributes: in_debug_mode 
 
Next we introduce an axiom that specifies the event 
fingerd_call contains another event, param_pass: 

 
Axiom:  fingerd_call:: ( param_pass) 

 
Based on the foregoing specification of events and axi-
oms, we can start to build a behavioral specification for 
the Morris worm as follows: 

 
fingerd_call:: ( x: param_pass )

& length(x) > max_buffer_size
read +
probe( buffer_overflow)

 
This behavior pattern, described in terms of a violation of 
the contract for fingerd calls, states that first an event of 
the type fingerd_call is detected, such that the value 
of attribute length of the included event param_pass 
exceeds a given constant max_buffer_size; in this 
case, x is a tentative name associated with the event 
param_pass.  Next, one or more events of the type 
read should appear, and finally a probe (i.e., an evalua-
tion of a Boolean expression) specifying buffer overflow 
should evaluate to the value True.  Successful detection of 
those events and conditions in the specified order indi-
cates that the system might be under attack by the Morris 
worm or some other worm.  Now let us specify yet an-
other behavior pattern: 

 
x: sendmail_call::

( [ utility_call + ]
&& CONST(caller_id)
&& CONST(caller_process_type)
&& FREQUENCY(time_interval)
)
& in_debug_mode(x) = True 

 
Here sendmail_call is specified with the attribute 
in_debug_mode equal to the value True.  This event 
contains a sequence of utility_call events with the 
same caller_id and caller_process_type at-
tribute values, such that the time between those 
utility_call events does not exceed 
time_interval. 

C. Summary 

In summary, our event-trace language integrates the lan-
guage constructs that are necessary for specifying event 
patterns, probes, and actions.  An event pattern is a par-
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ticular interval-based signature constructed from a struc-
tural model of events of interest (e.g., system calls to 
write to a file).  The probe is a Boolean expression; for 
instance, a probe can be used to compare the values of 
two attributes over the same interval of time, or the value 
of the same attribute at different points in time.  An action 
is a message that is generated based on the recognition 
that a particular pattern of behavior has been observed:  
The pattern of behavior can be composed from one or 
more slices of the same or different event traces.  The 
messages are used to trigger rules that embody the target 
component’s decoy-mode response to its interaction with 
the calling process whose interaction with the component 
may be malicious or benign.). 

IV. DECOY STRATEGY 

Decoy methods can show a wide spectrum of complexity.  
A key dimension is information in the mathematical sense 
they provide to the attacker [8]. A decoy that provides the 
same canned response to a user command in all circum-
stances transmits zero bits of information.  A decoy that 
simulates an arbitrary protected file by generating a fake 
file with random choices transmits information equal to 
the logarithm of the number of possible fake files it can 
create for a given request.  A decoy that simulates a de-
nial-of-service attack, providing additional operating-
system delays monotonically increasing with the number 
of requests in a recent time interval, transmits information 
equal to the logarithm of the number of distinguishable 
time intervals it can provide.  A decoy that simulates at-
tempts to change a module of the operating system trans-
mits information equal to the logarithm of the size of that 
module (or perhaps the part of it relevant to a particular 
attacker activity). It might seem that the ultimate decoy 
would simulate all aspects of a computer and its software 
as proposed by Thimbley et al. [9], requiring information 
equal to the logarithm of the size of the complete descrip-
tion of the computer and programming environment, and 
thus be equivalent to a universal Turing machine.  How-
ever, we claim a truly ultimate decoy would be 
“intelligent” and need to do more:  It would need to ana-
lyze properties of arbitrary code of viruses and Trojan 
horses to predict their conceptual consequences.  But such 
ultimate decoying appears impossible in light of the unde-
cidability of nontrivial properties of recursive functions 
(vid. Rice’s Theorem [10]). 
 
Applying these ideas to the Morris worm, the propagation 
of the worm could be decoyed by having the operating 
system count the number of recent buffer-overflowing 
fingerd calls (requiring a single integer of memory) and 
provide additional process-suspension time in all operat-
ing-system activities; this could most easily be done by 
just inserting delays into a frequently used utility like file 
reading, delays that would only occur for the process 

threads created by the perceived attacker and would be 
monotonic with the number of ongoing threads they have 
created. The sendmail trapdoor could be decoyed by per-
mitting normal debugging behavior except for commands 
writing or executing parts of memory, which would ap-
pear to execute but would be prevented from changing 
memory. 
 
Consider some examples of decoy strategies for the 
Morris worm.  The propagation of the worm could be de-
coyed by providing additional process-suspension time 
for all utility calls within the same process, creating an 
illusion to the intruder that a delay has been introduced 
(assuming that the intruder monitors response times) 
while the other non-offending processes will continue to 
execute unhindered. 
 

detect [ x: fingerd_call::
( y: param_pass )
& length(y) > max_buffer_size
read + ] && CONST(process_id)
probe (buffer_overflow) 

from execute-program  
do enable delay (t) to z: utility_call  

& process_id(x) = process_id(z)
 
The sendmail trapdoor could be decoyed by directing its 
invoker to a decoy function protected_read() that 
simulates the behavior with correct read commands and 
by deactivating write commands via the decoy function 
dummy()to substituting write operations: 

detect x: sendmail_call::
( [ utility_call + ]
&& CONST(caller_id)
&& CONST(caller_process_type)
&& FREQUENCY(time_interval)
) & in_debug_mode(x) = True 

from execute-program 
do substitute z: write  

& process_id(x) = process_id(z)  
by dummy()
substitue w: read
& process_id(x) = process_id(w)  
by protected_read() 

Finally, the fingerd buffer-overflow to change the oper-
ating-system stack could be simulated via the 
instrumentation of the pop operations on the stack to 
simulate a jump to the new designated area of memory 
and execution of its commands with the current execution 
environment, requiring a full simulation of what happens 
there but on a copy of the operating system designated 
only for the offending process.  Decoy methods like these 
can be generalized for broader applicability (by inserting 
code to call a general decoy monitor into many executa-
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bles and parts of the operating system) or specialized for 
efficiency (by compiling separate decoy-enabled versions 
of executables that can be called when suspicious activi-
ties occur) depending on design priorities. 

A software decoy should try to fool an intruder into 
thinking it is real.  A necessary condition is that it returns 
most of the bits of information that would be returned by 
the real component corresponding to the simulated com-
ponent.  (This is not a sufficient condition because the 
type of information returned may be important even for 
the same number of bits.)  A necessary information-theo-
retic condition for this is that the size of the decoy in bits 
must be most of the size of the amount of information it 
must transmit—and in the case of complex decoys that 
are too hard to summarize in an input-response table, per-
haps larger still to model the decoying behavior in an 
easy-to-debug and easy-to-update way.  However, in 
many practical situations it is sufficient that the decoy 
provide only a sample of all possible behaviors in re-
sponse to only a sample of possible attacker inputs.  For 
instance, a software decoy need only provide convincing 
fakes for the protected files that an attacker asks to see.  
For such situations, a good measure of decoy quality is 
the difference between the number of bits expected by the 
attacker and the number of bits transmitted.  So if the 
same response is given to each of three actions, the num-
ber of bits transmitted remains the same as if one response 
is give to one action, but the number of bits expected is 
tripled. 

V. SOFTWARE DECOY ARCHITECTURE 

We turn now to the implementation of the event-trace 
language to support software decoys.  The structural (i.e., 
domain behavior) model will consist of event types, event 
attributes, and axioms.  Event types and attributes should 
be detectable independently. 
 
A specialized compiler will selectively instrument soft-
ware components for the purpose of detection of events 
and event attributes.  It might be necessary from a per-
formance perspective to optimize the instrumentation.  In 
addition, the compiler may need to be constructed with an 
option that permits the user to store event traces; for in-
stance, the user may want to use these traces for 
debugging purposes. 
 
The runtime architecture will include mechanisms for 
monitoring behavior-pattern implementation, via the use 
of state transition diagrams and buffers to maintain event-
attribute values. 

Fig. 1 represents one possible architectural solution for 
implementing intelligent software decoys, in particular, 
for software components within an operating system.  The 

separation of the repository of rules and behavior patterns 
from the supervisor supports the maintenance of the re-
pository without changing the implementation (i.e., com-
ponent wrappers and supervisor); the repository and 
behavior model are confidential within the system under 
protection. 

Execution of system commands contributes the main part 
of the event types in our behavior model. Each system 
command participating in the model is enclosed in a 
wrapper, which is responsible for sending to the supervi-
sor messages about event beginning and end and event 
attributes. The wrapper also contains a lightweight 
framework for implementing decoy actions, e.g. substi-
tuting the execution of the command by another subrou-
tine execution, delay implementation, etc.  Behavior 
pattern detection is based on state transition diagrams 
maintained in the supervisor. Interpreter within the 
monitoring kernel is responsible for rule interpretation 
and triggering decoying actions. 
 
 
 

Wrapper

System 
component 

Wrapper 

Intrusion 

Supervisor 

Interpreter 

Rules for behavior 
patterns and decoy actions 

Operating System 

System 
component

 
Fig. 1.  Software decoy architecture. 

VI. RELATED WORK 

The notions of event, path expression, and assertion lan-
guage are well known in testing and debugging 
automation research.  An event-based debugger for the C 
programming language called Dalek [11] provides user 
defined events that typically are points within a program 
execution trace. A target program has to be instrumented 
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manually in order to collect values of event attributes.  
The path expression technique was introduced for speci-
fying parallel programs in [12]. This technique has been 
used in several projects on high-level debugging tools, 
(e.g. in [13]), where path rules are suggested as a kind of 
debugger command. Assertions (or annotations) currently 
in use are mostly based on Boolean expressions attached 
to selected points of the target program (e.g., the assert 
macro in C).  The ANNA [14] annotation language for 
Ada supports assertions on variable and type declarations.  
In the TSL [15] annotation language for Ada, the notion 
of event is introduced to describe the behavior of tasks. 
The RAPIDE project [16] provides a rich event-based 
assertion language for software architecture description. 
In [17], a practical approach to assertions for the C lan-
guage is advocated.  Our language for computations over 
traces provides a flexible means for writing both local and 
global assertions, including those about temporal relations 
between events.  It supports all kinds of assertions used in 
the systems above in a uniform framework.  
 
Sekar and Uppuluri [6] describe a high-level formalism 
for specifying intended program behaviors using patterns 
over sequences of system calls.  The patterns also capture 
conditions on the values of system-call arguments.  Their 
intrusion prevention and detection system is based on 
intercepting system calls, comparing them against the 
specifications, and disallowing calls that deviate from the 
specifications of valid behaviors.  In their approach, it is 
possible to modify a system call before it is delivered to 
the operating system’s kernel, permitting the system to 
react before the execution by a process of any damage-
causing system call. The paper also presents a low-
overhead algorithm for matching runtime behaviors 
against specifications. Based on a series of experiments, 
Sekar and Uppuluri report that the overhead for imple-
menting their monitoring algorithm on average is 
approximately four percent of the runtime. 
 
We suggest a more powerful and expressive pattern speci-
fication language based on precise behavior models 
(event grammars) that will be able to capture a broader 
class of behaviors than those described by Sekar and 
Uppuluri.   We also expect that our implementation strat-
egy will be close to the guidelines presented by Sekar and 
Uppuluri, thus keeping the runtime overhead at or below 
four percent. 

Neumann and Porras describe the architecture for 
EMERALD—an environment for anomaly and misuse 
detection—and subsequent analysis of the behavior of the 
systems and networks [18].  The architecture of 
EMERALD is based on component principles and can be 
adjusted to various platforms and configurations. A pro-
duction-based expert system is used to analyze behavior 
patterns and signatures. 

The use of event traces for reasoning about the behavior 
of information systems is not new.  Event traces have 
been used to reason about the correctness of the execution 
of hardware-level instructions.  For instance, Bressoud 
and Schneider [19] present an approach to fault tolerance 
based on the use of hypervisors that emulate the target 
hardware architecture:  Each hypervisor serves as a virtual 
machine.  The hypervisor is then instrumented to watch 
for sequences of instructions, within an epoch (i.e., inter-
val of time), that are critical to the correct operation of 
replicated hardware within a system. 
 
Working at a higher level of abstraction, Erlingsson and 
Schneider [20] introduce an approach known as Security 
Automata SFI Implementation (SASI).  In this approach, 
the object code is instrumented so that as sequences of 
events occur, the trusted computing base, which in this 
case includes the software that performs object code 
analysis and object code modification, can use the event 
traces to reason about whether the traces are conformant 
to security policy (e.g., memory-protection policy). 
 
Bressoud and Schneider [19] discuss some of the difficul-
ties in instrumentation of virtual machines and reasoning 
over sequences of hardware instructions.  Likewise, 
Erlingsson and Schneider admit that it is difficult to rec-
ognize patterns of interest from specifications of object 
and security policy represented in their security automa-
ton language (SAL), and that the development of such 
specifications is an “awkward and error-prone” process.  
Their new approach is to rely on the use of “annotations 
of the object code that are easily checked and that expose 
application-level abstractions,” rather than checking every 
machine-level instruction.  Our formalism of decoys relies 
on specifying events for which the source code of compo-
nents can be instrumented.  
 
Sekar and Uppuluri [6] attempt to defend against buffer-
overflow attacks by injecting code and addresses into 
memory, and transferring control flow to the injected 
code.  They manually instrument system calls and their 
arguments for each component to be protected against 
buffer-overflow attacks.  A run-time monitor then com-
pares these patterns of nominal and anomalous behavior 
with that of the runtime behavior of the protected compo-
nent.  Our approach differs from that of Sekar and 
Uppuluri, especially in terms of the method of instru-
mentation:  that is, in our approach, the software 
components are automatically instrumented. 
 
Liu and Jajodia [21] introduce specialized decoying meth-
ods and strategies for transaction-level intrusion tolerance 
and damage confinement in database management sys-
tems (DBMS).  The approach is bound to transaction 
events within the DBMS and relies on the use of filtering 
strategies.  In contrast, our approach can be specialized to 
different types of events and countermeasures. 
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VII. CONCLUSION 

Our approach explicitly treats the two types of invoca-
tions of components:  standard and nonstandard, with the 
latter representing an attempt by a process to circumvent 
the public interface of the component.  For standard types 
of invocations or components of legacy systems for which 
the source code is not available, then certain types of 
events of interest will not be detectable. 

The behavior model based on event grammars provides a 
uniform framework for behavior-pattern recognition and 
decoying actions.  In our opinion, this is a practical road 
to formalizing knowledge about typical intrusion patterns 
and constructing a flexible system of countermeasures. 
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