
Software Defect Association Mining
and Defect Correction Effort Prediction

Qinbao Song, Martin Shepperd, Michelle Cartwright, and Carolyn Mair

Abstract—Much current software defect prediction work focuses on the number of defects remaining in a software system. In this

paper, we present association rule mining based methods to predict defect associations and defect correction effort. This is to help

developers detect software defects and assist project managers in allocating testing resources more effectively. We applied the

proposed methods to the SEL defect data consisting of more than 200 projects over more than 15 years. The results show that, for

defect association prediction, the accuracy is very high and the false-negative rate is very low. Likewise, for the defect correction effort

prediction, the accuracy for both defect isolation effort prediction and defect correction effort prediction are also high. We compared the

defect correction effort prediction method with other types of methods—PART, C4.5, and Naı̈ve Bayes—and show that accuracy has

been improved by at least 23 percent. We also evaluated the impact of support and confidence levels on prediction accuracy, false-

negative rate, false-positive rate, and the number of rules. We found that higher support and confidence levels may not result in higher

prediction accuracy, and a sufficient number of rules is a precondition for high prediction accuracy.

Index Terms—Software defect prediction, defect association, defect isolation effort, defect correction effort.

�

1 INTRODUCTION

THE success of a software system depends not only on
cost and schedule, but also on quality. Among many

software quality characteristics, residual defects has become
the de facto industry standard [12]. Therefore, the prediction
of software defects, i.e., deviations from specifications or
expectations which might lead to failures in operation [11],
has been an important research topic in the field of software
engineering for more than 30 years. Clearly, they are a
proxy for reliability, but, unfortunately, reliability is
extremely difficult to assess prior to full deployment.

Current defect prediction work focuses on estimating the
number of defects remaining in software systems with code
metrics, inspection data, and process-quality data by
statistical approaches [7], [18], [9], capture-recapture (CR)
models [27], [21], [6], [10], and detection profile methods
(DPM) [28].

The prediction result, which is the number of defects
remaining in a software system, can be used as an
important measure for the software developer [16], and
can be used to control the software process (i.e., decide
whether to schedule further inspections or pass the soft-
ware artifacts to the next development step [19]) and gauge
the likely delivered quality of a software system [11]. In
contrast, Bhandari et al. [4], [5] propose that the defects
found during production are a manifestation of process

deficiencies, so they present a case study of the use of a

defect based method for software in-process improvement.

In particular, they use an attribute-focusing (AF) method [3]

to discover associations among defect attributes such as

defect type, source, phase introduced, phase found,

component, impact, etc. By finding out the event that could

have led to the associations, they identify a process problem

and implement a corrective action. This can lead a project

team to improve its process during development. We

restrict our work to the predictions of defect (type)

associations and corresponding defect correction effort.

This is to help answer the following questions:

1. For the given defect(s), what other defect(s) may co-
occur?

2. In order to correct the defect(s), how much effort will
be consumed?

We use defect type data to predict software defect

associations that are the relations among different defect

types such as: If defects a and b occur, then defect c also will

occur. This is formally written as a ^ b) c. The defect

associations can be used for three purposes:
First, find as many related defects as possible to the

detected defect(s) and, consequently, make more-effective

corrections to the software. For example, consider the

situation where we have classes of defect a, b, and c and

suppose the rule a ^ b) c has been obtained from a

historical data set, and the defects of class a and b have

been detected occurring together, but no defect of class c

has yet been discovered. The rule indicates that a defect of

class c is likely to have occurred as well and indicates that

we should check the corresponding software artifact to see

whether or not such a defect really exists. If the result is

positive, the search can be continued so, if rule a ^ b ^ c) d

holds as well, we can do the same thing for defect d. We

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 2, FEBRUARY 2006 69

. Q. Song is with the Department of Computer Science and Technology,
Xi’an Jiaotong University, 28 Xian-Ning West Rd., Xi’an, Shaanxi,
710049 China. E-mail: qbsong@mail.xjtu.edu.cn.

. M. Shepperd, M. Cartwright, and C. Mair are with the School of
Information Science, Computing, and Mathematics, Brunel University,
Uxbridge, UB8 3PH UK.
E-mail: {martin.shepperd, michelle.cartwright, carolyn.mair}@brunel.ac.uk.

Manuscript received 9 Dec. 2004, revised 10 Oct. 2005; accepted 2 Dec. 2005;
published online 15 Feb. 2006.
Recommended for acceptance by R. Lutz.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0276-1204.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

believe this may be useful as it permits more-directed
testing and more-effective use of limited testing resources.

Second, help evaluate reviewers’ results during an
inspection. For example, if rule a ^ b) c holds but a
reviewer has only found defects a and b, it is possible that
(s)he missed defect c. Thus, a recommendation might be
that his/her work should be reinspected for completeness.

Third, to assist managers in improving the software
process through analysis of the reasons some defects
frequently occur together. If the analysis leads to the
identification of a process problem, managers have to come
up with a corrective action.

At the same time, for each of the associated defects, we
also predict the likely effort required to isolate and correct
it. This can be used to help project managers improve
control of project schedules.

Both of our defect association prediction and defect
correction effort prediction methods are based on the
association rule mining method which was first explored
by Agrawal et al. [1]. Association rule mining aims to
discover the patterns of co-occurrences of the attributes in a
database. However, it must be stressed that associations do
not imply causality. An association rule is an expression
A) C, where A (Antecedent) and C (Consequent) are sets
of items. The meaning of such rules is quite intuitive: Given
a database D of transactions, where each transaction T 2 D
is a set of items, A) C expresses that whenever a
transaction T contains A, then T also contains C with a
specified confidence. The rule confidence is defined as the
percentage of transactions containing C in addition to A
with regard to the overall number of transactions
containing A.

The idea of mining association rules originates from the
analysis of market-basket data where rules like “customers
who buy products p1 and p2 will also buy product p3 with
probability c percent” are extracted. Their direct applic-
ability to business problems together with their inherent
understandability make association rule mining a popular
data mining method. However, it is clear that association
rule mining is not restricted to dependency analysis in the
context of retail applications, but can successfully be
applied to a wide range of business and science problems.

Although association rule mining aims to discover the
co-occurring patterns of the attributes in databases, it has
been shown that association rule mining based classifica-
tion—associative classification—frequently has higher clas-
sification accuracy than other classification methods. The
underlying reason is that these methods use heuristic/
greedy search techniques to build classifiers; they induce a
representative subset of rules. However, as association rule
mining explores high-confidence associations among multi-
ple variables, it may overcome some constraints introduced
by other techniques, e.g., decision-tree induction methods
that examine one variable at a time. Thus, associative
classification takes the most effective rule(s) from among all
the rules mined for classification.

Extensive performance studies have also shown that
associative classification frequently generates better accu-
racy than state-of-the-art classification methods. Ali et al.
[2] use association rule mining to do a partial

classification in the context of very large numbers of
class attributes, when most attribute values are missing,
or the class distribution is highly skewed and the user is
interested in understanding the low-frequency classes. Liu
et al. [17] and Yin and Han [30] integrate classification
and association rule mining to build a classifier; the
former method prunes rules using both minimum
support and pessimistic estimation. Wang et al. [26]
proposed a general method for turning an arbitrary set of
association rules into a classifier. Dong et al. [8] combined
several association rules to classify a new case, which
partially addressed the low support of classification rules
because a combined rule has a lower support. Wang et al.
[25] used multilevel association rules to build hierarchical
classifiers where both the class space and the feature
space are organized into a taxonomy. Association rule
mining based methods have also been used in the
prediction of WWW caching and prefetching [29], outer
membrane proteins [23], and software source-code
changes [31], [32]. The successful use of association rule
mining in various fields motivates us to apply it to the
software defect data set.

The rest of the paper is organized as follows: In Section 2,
we describe the approach used by the study. In Section 3,
we present the specific defect association and defect-
correction effort prediction methods. In Section 4, we
present our experimental results. Finally, in Section 5, we
summarize our work and findings.

2 RESEARCH METHOD

2.1 General Method

The objective of the study is to discover software defect
associations from historical software engineering data sets,
and help determine whether or not a defect(s) is accom-
panied by other defect(s). If so, we attempt to determine
what these defects are and how much effort might be
expected to be used when we correct them. Finally, we aim
to help detect software defects and effectively improve
software control.

For this purpose, first, we preprocessed the NASA SEL
data set (see the following section for details), and obtained
three data sets: the defect data set, the defect isolation effort
data set, and the defect correction effort data set. Then, for
each of these data sets, we randomly extracted five pairs of
training and test data sets as the basis of the research. After
that, we used association rule mining based methods to
discover defect associations and the patterns between a
defect and the corresponding defect isolation/correction
effort. Finally, we predicted the defect(s) attached to the
given defect(s) and the effort used to correct each of these
defects. We also compared the results with alternative
methods where applicable.

2.2 Data Source and Data Extraction

The data we used is SEL Data [22] which is a subset of the
online database created by the NASA/GSFC Software
Engineering Laboratory (SEL) for storage and retrieval of
software engineering data for NASA Goddard Space Flight
Center. The subset includes defect data of more than
200 projects completed over more than 15 years.

70 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 2, FEBRUARY 2006

The SEL Data is a database consisting of 15 tables that
provide data on the projects’ software characteristics (over-
all and at a component level), changes and errors during all
phases of development, and effort and computer resources
used. In the SEL Data, the defects are divided into six types,
Table 1 contains the details. See [15] for further information.

In addition, the effort used to correct defects falls into
four categories: One Hour or Less, One Hour to One Day,
One Day to Three Days, and More Than Three Days.

For the purpose of defect association prediction, we used
SQL to extract defect data from different tables of the SEL
data and obtained the basic defect data set. The defect data
is very simple, and consists of defect types and the
corresponding dates on which the need for change was
determined. Then, we followed the sliding window

approach, that is, two subsequent defects a and b are part

of one transaction if they are at most one day apart and

belong to the same project, to infer the transactions needed

for the association rule mining. Fig. 11 contains summary

information. We would like to clarify that while we set the

size of the sliding window to one day in this analysis, it

does not imply that we are limited to this value and it could

be set to any other time interval thought appropriate.

Moreover, placing defects into one transaction according to

the selected sliding window just means they co-occur

during the given time window, it does not imply they

SONG ET AL.: SOFTWARE DEFECT ASSOCIATION MINING AND DEFECT CORRECTION EFFORT PREDICTION 71

1. The notation k-defect means that k defects occurred together in a
transaction.

TABLE 1
Defect Type Description

Fig. 1. Distribution of cases by defect type and k-defect for the defect data set.

must be dependent. However, if the placement of defects is

coincidental they tend not to form association rules.
For the purpose of defect correction effort prediction, we

also used SQL to extract defect data and the corresponding

isolation and correction effort data from SEL data and

obtained two further data sets: the defect isolation effort

data set and the defect correction effort data set. Both

consist of five attributes (see Table 2 for details). Fig. 2 and

Fig. 3 provide the corresponding summary information.
For both the defect association and defect correction

effort predictions, the data set D is randomly split into five

mutually exclusive subsets D1, D2, . . . , and D5 of equal size,

and [5
i¼1Di ¼ D. We used D�Dt

2 ðt ¼ f1; 2; . . . ; 5gÞ, and Dt

as training sets and test sets, respectively.

2.3 Analysis Approach

We use the five-fold cross-validation method as the overall

analysis approach. That is, for each D of the defect data set,

the defect isolation effort data set, and the defect correction

effort data set, the inducer is trained and tested a total of

five times. Each time t 2 f1; 2; . . . ; 5g, it is trained on D�Dt

and tested on Dt.
We use the association rule mining method to learn rules

from the training data sets. For defect association predic-

tion, the rule learning is straightforward, while for defect

correction effort prediction, it is more complicated because

the consequent of a rule has to be defect correction effort.

Considering the target of association rule mining is not

predetermined and classification rule mining has only one

predetermined target, the class, we integrate these two

techniques to learn defect correction effort prediction rules

by focusing on a special subset of association rules whose

consequents are restricted to the special attribute, the effort.
Once we obtain the rules, we rank them, and use them to

predict the defect associations and defect correction effort

with the corresponding test data sets. The predictions of

defect associations and defect correction effort are both

72 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 2, FEBRUARY 2006

2. The notation D�Dt means set D minus set Dt.

TABLE 2
Defect Effort Data Description

Fig. 2. Distribution of cases by defect type and effort for the isolation effort data set.

Fig. 3. Distribution of cases by defect type and effort for the correction effort data set.

based on the length-first (in terms of the number of items in
a rule) strategy (see Section 3.2 for details).

To our knowledge, there is no work on software defect
association prediction and there is no other method that can
be used for this purpose. Therefore, we are unable to
directly compare our defect association prediction method
with other studies. As the defect correction effort is
represented in the form of categorical values and there are
some attributes to characterize it, it can be viewed as a
classification problem. This allows us to compare our defect
correction prediction method with three different types of
methods. These methods are the Bayesian rule of condi-
tional probability-based method, Naı̈ve Bayes [13], the well-
known trees-based method, C4.5 [20], and the simple and
effective rules-based method, PART [14].

3 RULE DISCOVERY AND DEFECT/EFFORT

PREDICTION

In this section, we first introduce the basic concepts of
association rule mining. Then, we present the rule-ranking
strategy used for the purpose of defect association and
defect correction effort predictions. After that, we respec-
tively give the methods of defect association prediction and
defect correction effort prediction based on the association
rule mining method.

3.1 Association Rule Discovery

Association rule mining searches for interesting relation-
ships, e.g., frequent patterns, associations, correlations, or
potential causal structures, among sets of objects in
databases or other information repositories. The approach
is data rather than hypothesis driven. The interestingness of
an association rule is measured by both support and
confidence, which respectively reflect the usefulness and
certainty of the rule. It must be stressed that even rules that
discover with high levels of support (or relevance) and high
confidence do not necessarily imply causality. However,
such rules would obviously stimulate further research
through the postulation of models that can be empirically
evaluated.

Let I ¼ fI1; I 2; . . . ; Img be a set of attribute values, called
items. A setA � I is called an item set. Let a databaseD be a
multiset of I . Each T 2 D is called a transaction. An
association rule is an expression A) C, where A � I ,
C � I , and A

T
C ¼ �. We refer to A as the antecedent of

the rule, and C as the consequent of the rule. The rule A) C
has support SuppðA) CÞ in D, where the support is defined
as SuppðA) CÞ ¼ SuppðA

S
CÞ. That means SuppðA) CÞ

percent of the transactions in D contain A
S
C, and

SuppðAÞ ¼ jfT 2 DjA � T gj=jDj is the support of A that is
the fraction of transactions T supporting an item set A with
respect to database D. The number of transactions required
for an item set to satisfy minimum support is referred to as
the minimum support count. A transaction T 2 D supports an
item set A � I if A � T holds. The rule A) C holds in D
with confidence ConfðA) CÞ, where the confidence is
defined as ConfðA) CÞ ¼ SuppðA

S
CÞ=SuppðAÞ. That

means ConfðA) CÞ percent of the transactions in D that
contain A also contain C. The confidence is a measure of the

rule’s strength or certainty while the support corresponds to
statistical significance or usefulness.

Association rule mining generates all association rules
that have a support greater than minimum support
min:SuppðA) CÞ, in the database, i.e., the rules are
frequent. The rules must also have confidence greater than
minimum confidence min:ConfðA) CÞ, i.e., the rules are
strong. The process of association rule mining consists of
these two steps: 1) Find all frequent item sets, where each
A
S
C of these item sets must be at least as frequently

supported as the minimum support count. 2) Generate
strong rules from the discovered frequent item sets, where
each A) C of these rules must satisfy min:SuppðA) CÞ
and min:ConfðA) CÞ.

3.2 Rule-Ranking Strategy

Before prediction, we rank the discovered rules according
to the length-first strategy. The length-first strategy was
used for two reasons. First, for the defect association
prediction, the length-first strategy enables us to find out
as many defects as possible that coincide with known
defect(s), thus preventing errors due to incomplete dis-
covery of defect associations. Second, for the defect
correction effort prediction, the length-first strategy enables
us to obtain more-accurate rules, thus improving the effort-
prediction accuracy.

Specifically, the length-first rule-ranking strategy is as
follows:

1. Rank rules according to their length. The longer the
rules, the higher the priority.

2. If two rules have the same length, rank them
according to their confidence values. The greater
the confidence values, the higher the priority. The
more-confident rules have more predictive power in
terms of accuracy; thus, they should have higher
priority.

3. If two rules have the same confidence values, rank
them according to their support values. The higher
the support values, the higher the priority. The rules
with higher support value are more statistically
significant, so they should have higher priority.

4. If two rules have the same support value, rank them
in alphabetical order.

The algorithmic description of the strategy is shown in
Fig. 4.

3.3 Defect Association Prediction

As the first step of defect association prediction, we used
the association rule mining method to find defect
association rules from the defect data set. Although the
discovery of defect association rules is straightforward,
the implementation requires certain modifications to the
data set. As Fig. 1 shows, 37.36 percent of cases in the
defect data set contain only one defect. This means at
least 37.36 percent of cases will not be correctly
predicted. The reason is that the association rule mining
method can only discover the rules with two or more
defects. In order to predict the defects that occurred
independently, we added a NULL to the transactions
with only one defect. With this modification, the

SONG ET AL.: SOFTWARE DEFECT ASSOCIATION MINING AND DEFECT CORRECTION EFFORT PREDICTION 73

association rule mining method is able to find rules like

Defectfag) DefectfNULLg, which means defect a

occurred independently.
The next step is to predict whether or not a k-defect will

occur with others. The prediction begins by ranking the

discovered rules according to the strategy presented in

Section 3.2. Then, for the k-defect, we scan the rules one by

one and identify the rule whose antecedent contains the

k-defect. After that, we merge the consequent of the

corresponding rule with the k-defect and generate a

ðkþ 1Þ-defect. For the ðkþ 1Þ-defect, we repeat the process

until there are no rules available, the fðkþ nÞ-defectg �

fk-defectg is the defect(s) which occurred with the k-defect.

Fig. 5 contains an algorithmic description of the procedure.
The measures used to evaluate the defect association

prediction method are prediction accuracy, false-negative

rate, and false-positive rate, which are defined as follows:

Let G be a given original defect set, R be the real defect set,

and P be the predicted defect set. The prediction accuracy of

P is defined as:

AccuracyðPÞ ¼
jðR � GÞ \ ðP � GÞj

jR � Gj
; ð1Þ

where, if G � R � P or R � P, AccuracyðPÞ ¼ 1.

We use the false-negative rate and false-positive rate
to present the prediction error of defect associations. The
false-negative rate FN denotes how many defects that are
not predicted to occur along with the given set G but
actually do, and is defined as follows:

FNðPÞ ¼
jR �R \ Pj

jR � Gj
; ð2Þ

where, if G � R � P or R � P, FNðPÞ ¼ 0.
The false-positive rate FP denotes how many defects are

predicted to occur along with the given set G but actually do
not. It is defined as follows:

FPðPÞ ¼
jP �R \ Pj

jR � Gj
; ð3Þ

where, if G � R � P or R � P, FPðPÞ ¼ 0.

3.4 Defect Correction Effort Prediction

Because the intent of defect correction effort3 prediction is
predetermined and the association rulemining has no special
goal, the association rule mining based discovery of defect
correction effort prediction rules is not straightforward. For

74 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 2, FEBRUARY 2006

Fig. 4. Rule-ranking (RR) strategy.

3. Here, the defect correction effort includes both defect isolation effort
and defect correction effort.

the purpose of defect correction effort prediction, we used
the constraint-based association rule mining method [24].
Specifically, the procedure of association rule mining was
adapted as follows:

1. Compute the frequent item sets that occur together
in the training data set at least as frequently as a
predetermined min:Supp. The item sets mined must
also contain the effort labels.

2. Generate association rules from the frequent item
sets, where the consequent of the rules is the effort.
In addition to the min:Supp threshold, these rules
must also satisfy a minimum confidence min:Conf .

For the algorithmic description of the constraint-based
association rule mining procedure, we refer readers to [24].

Once the rules are obtained, we rank them according to
the approach presented in Section 3.2. Then, for each
element of the given defect and its attributes, we scan the
rules one by one and identify the rule whose antecedent
contains the element. After that, we merge the antecedent of
the corresponding rule with the element, generate an
element set, and obtain the corresponding effort. For the
element set, we continue the scan until no more rules fit. At

this point, we have obtained the most likely candidate effort
and the corresponding similarity for the element. We repeat
the process until all the elements of the given defect and its
attributes have been checked. Finally, we compare the
similarities of all the candidates; the most similar
candidate’s effort is the defect correction effort for the
given defect and its attributes. Fig. 6 is the algorithmic
description which contains the details of the procedure.

As the defect correction effort is represented in catego-
rical values and there are some attributes characterizing it,
it can be viewed as a classification problem. Hence, we use
the normal classification accuracy measure to evaluate the
defect correction effort prediction method and the other
three methods.

4 EXPERIMENTAL RESULTS

In this section, we present the experimental results for the
defect data set, the defect isolation effort data set, and the
defect correction effort data set with different minimum-
support thresholds and different minimum-confidence
thresholds for association rule mining based defect associa-
tion and defect correction effort predictions. We also

SONG ET AL.: SOFTWARE DEFECT ASSOCIATION MINING AND DEFECT CORRECTION EFFORT PREDICTION 75

Fig. 5. Defect association prediction procedure.

Fig. 6. Effort prediction procedure.

compared the proposed methods with the other three
methods if applicable. As five training and test sets were
used, for each of the defect data set, the defect isolation
effort data set, and the defect correction effort data set, we
let the average accuracy of the corresponding five test sets
be the final result.

4.1 Defect Association Prediction

4.1.1 Defect Association Rules

When mining defect association rules, we applied three
values for minimum support (10, 20, and 30 percent) and
four minimum confidence values (30, 40, 50, and 60 percent).
This means a total of 12 cases were considered. At the same
time, these 12 cases were applied to the five training data
sets, which were derived from the defect data set by using
the method presented in Section 2.2. This resulted in a total
of 60 sets of rules, which consist of more than 1,000 rules.
For this reason, we do not list them all (!), but instead
present their typical forms and the statistical analysis of the
results.

The typical forms of the defect association rules are listed
below:

. DefectfDataV alueg
) DefectfNullg@ð32:5%; 79:9%Þ.

. DefectfEx:Interfaceg
) DefectfComput:g@ð39:0%; 69:5%Þ.

. DefectfComput:g ^DefectfIni:g
) DefectfEx:Interfaceg@ð34:3%; 75:1%Þ.

. DefectfIn:Interfaceg ^DefectfIni:g
^ DefectfDataV alueg
) DefectfLogi:Strucg@ð35:4%; 94:8%Þ.

. DefectfComput:g ^DefectfIni:g
^ DefectfLogi:Strucg
^ DefectfDataV alueg
) DefectfIn:Interfaceg@ð31:4%; 88:1%Þ.

The first is a one-defect rule, which means that defect
DataV alue occurred independently in 32.5 percent of cases
in the defect data set and, when occurring, it is independent
with a probability of 79.9 percent. The second is a two-
defect rule, which means these two defects can co-occur.
This rule shows that 39 percent of the cases in the defect
data set contain both defects Ex:Interface and Comput:,

and 69.5 percent of the cases in the defect data set that
contain defects Ex:Interface also contain defect Comput: It
reveals that defect Comput: can co-occur with defect
Ex:Interface with a significance of 39 percent and a
certainty of 69.5 percent. The third is a three-defect rule,
which means these three defects can co-occur. This rule
shows that 34.3 percent of the cases in the defect data set
contain defects Comput:, Ini:, and Ex:Interface, and
75.1 percent of the cases in the defect data set that contain
defects Comput: and Ini: also contain defect Ex:Interface.
It reveals that defect Ex:Interface can co-occur with defects
Comput: and Ini: with a significance of 34.3 percent and
a certainty of 75.1 percent. The fourth is a four-defect
rule, which reveals that defect Logi:Struc can co-occur
with defects In:Interface, Ini:, and DataV alue with a
significance of 35.4 percent and a certainty of 94.8
percent. The fifth is a five-defect rule, which reveals that
defect In:Interfacec can co-occur with defects Comput:,
Ini:, Logi:Struc, and DataV alue with a significance of
31.4 percent and a certainty of 88.1 percent.

Fig. 7 is the distribution of defect association rules by
minimum support (min:Supp) for all five training data sets.
We observe that the overall behaviors of the training data
sets are very similar except for the data set D1. Specifically,
for each data set, the average number of rules decreases as
the min:Supp increases from 10 percent through 20 to
30 percent, and the decrease is very sharp when min:Supp
exceeds 20 percent.

Fig. 8 is the distribution of defect association rules by
minimum confidence (min:Conf) again for all five training
data sets. We observe that for each data set, the average
number of rules decreases as min:Conf increases from 30
percent through 40 percent and 50 to 60 percent, but the
average number of rules for data setD1 is greater than other
data sets at each confidence point.

Fig. 9 is the distribution of defect association rules by
rule length. Comparing it with Fig. 1, we observe that these
two distributions are dissimilar, especially for one-defect
and two-defect. This is because there are only six types of
defects. Thus, for one-defect, six rules can cover all cases
and, for two-defect, the combinations of any two of six
defects are also relative smaller, moreover, some defects
may never occur together.

76 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 2, FEBRUARY 2006

Fig. 7. Distribution of defect association rules by Min:Supp for the five

defect data sets.

Fig. 8. Distribution of defect association rules by Min:Conf for the five

defect data sets.

4.1.2 Defect Association Prediction Results

Table 3 contains the defect association prediction results

with min:Supp ¼ 20% and min:Conf ¼ 30%. We observe

that the defect association prediction accuracy is very high

and the false negative rate FN is very low. These are both

desirable. The smaller the false negative rate FN , the

smaller the possibility that the defect associations are not

identified. On the other hand, the false positive rate FP is

rather high, but this guarantees that we can find more

defects. However, the cost is increased testing effort.
Table 4 and Table 5 show the results of the impact of

min:Supp and min:Conf on the defect association predic-

tion accuracy, respectively. Table 4 shows that both the

defect association prediction accuracy and the false-positive

rate FP decrease, but the false-negative rate FN increases

as min:Supp increases from 10 to 30 percent. The defect

association prediction accuracy with min:Supp ¼ 10% is the

same as min:Supp ¼ 20% except the FP of the former is

greater than the latter. This means decreasing min:Supp has

no further impact upon the prediction accuracy. In contrast,

it will increase the FP, which is something we wish to

avoid.
Table 5 reveals that the defect association prediction

accuracy decreases, but both FP and FN increase as

min:Conf increases from 30 to 60 percent. This means that

increasing min:Conf cannot improve the prediction accu-

racy further. In contrast, it will increase both FP and FP.
The quality of defect association prediction depends on

the rules, thus we also explored the impact of min:Supp and

min:Conf on the number of rules and further on the

prediction accuracy. Table 6 and Table 7 show the results.

We observe that the total number of rules with different

length decreases as min:Supp increases from 10 to 30 per-

cent. It seems that min:Supp affects long rules more than

short ones but min:Conf affects short rules more than long

rules, although the total number of rules with different

length decreases as min:Conf increases from 30 to

60 percent. In comparison with Table 3, we find that in

order to obtain high prediction accuracy, a sufficient

number of rules is a precondition.

4.2 Defect Isolation Effort Prediction

4.2.1 Defect Isolation Effort Prediction Rules

Again, we have 12 cases to consider (minimum support

values of 10, 20, and 30 percent combined with minimum

confidence values of 10, 20, 30, and 40 percent). These

12 cases are applied to the five training data sets, which

were derived from the defect isolation data set by using the

method presented in Section 2.2. Again, this yields a total of

60 sets of rules, which total more than 1,000 rules.
The typical forms of the defect isolation effort prediction

rules are listed as follows:

SONG ET AL.: SOFTWARE DEFECT ASSOCIATION MINING AND DEFECT CORRECTION EFFORT PREDICTION 77

Fig. 9. Distribution of defect association rules by rule length for the

defect data set.

TABLE 3
Defect Association Prediction Accuracy

TABLE 4
Defect Association Prediction Accuracy

with Different Minimum Supports

TABLE 5
Defect Association Prediction Accuracy
with Different Minimum Confidences

TABLE 6
Number of Defect Association Prediction Rules by Rule Length

with Different Minimum Supports

TABLE 7
Number of Defect Association Prediction Rules by Rule Length

with Different Minimum Confidences

. DefectfIni:g) EffortfOne Hour or Lessg
@ð15:3%; 64:1%Þ

. DefectfComput:g ^AttrifTypoErr ¼ Ng
) EffortfOne Day to Three Daysg
@ð10:2%; 10:5%Þ.

. DefectfLogic:Strug ^AttrifTypoErr ¼ Ng
^ AttrifOmisErr ¼ Y g
) EffortfOne Hour to One Dayg
@ð15:4%; 40:1%Þ.

. DefectfDataV alueg ^AttrifTypoErr ¼ Ng
^ AttrifOmisErr ¼ Ng ^ AttrifComisErr ¼ Y g
) EffortfOne Hour or Lessg@ð10:6%; 64:5%Þ.

The first rule contains only one antecedent. It shows that for

an initialization defect, no matter what attributes are

attached, the effort used to isolate it is One Hour or Less

with a significance of 15.3 percent and a certainty of

64.1 percent. The second rule shows that 10.2 percent of the

cases in the defect isolation effort data set contain defect

Comput:, defect attribute TypoErr ¼ N , and defect isolation

effort One Day to Three Days, and 10.5 percent of the cases

in the defect isolation effort data set that contain defects

Comput: and TypoErr ¼ N also contain defect isolation

effort One Day to Three Days. This means that if a

computational defect was not caused by a typographical

error, we can say the effort used to isolate it is One Day to

Three Days with a significance of 10.2 percent and a
certainty of 10.5 percent. The third rule reveals that if a
logical-structure defect was caused not by a typographical
error but by an omission error, we can say the effort used to
isolate it is One Hour to One Day with a significance of 15.4
percent and a certainty of 40.1 percent. The fourth rule
reveals that if a data-value defect was caused neither by a
typographical error nor by an omission error but by a
commission error, we can say the effort used to isolate it is
One Hour or Less with a significance of 10.6 percent and a
certainty of 64.5 percent.

Fig. 10 is the distribution of defect isolation effort
prediction rules by minimum support min:Supp for all five
training data sets. We observe that, for each data set, the
average number of rules decreases as the minimum support
min:Supp increases from 10 percent through 20 to
30 percent, and the decrease is very sharp when min:Supp

exceeds 10 percent but is less than 20 percent.
Fig. 11 is the distribution of defect isolation effort

prediction rules by minimum confidence min:Conf for all
the five training data sets. We observe that, for each data
set, the average number of rules decreases as the minimum
confidence min:Conf increases from 10 percent through 20
and 30 percent to 40 percent, and the decrease is sharp
when min:Conf exceeds 30 percent.

Fig. 12 is the distribution of defect isolation effort
prediction rules by rule length. We observe that nearly half
of the rules have two antecedents and more than 30 percent
of rules have one antecedent. Thus, these rules constitute
the main part of the rule set.

4.2.2 Defect Isolation Effort Prediction Results

Table 8 contains the defect isolation effort prediction results
of four methods: association rule mining based method

78 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 2, FEBRUARY 2006

Fig. 10. Distribution of defect isolation effort prediction rules by

Min:Supp for the five defect isolation effort data sets.

Fig. 11. Distribution of defect isolation effort prediction rules by

Min:Conf for the five defect isolation effort data sets.

Fig. 12. Distribution of defect isolation effort prediction rules by rule

length for the defect isolation effort data set.

TABLE 8
Defect Isolation Effort Prediction Accuracy

(with min:Supp ¼ 10% and min:Conf ¼ 10%), PART, C4.5,

and Naı̈ve Bayes. We observe that the accuracy of the

association rule mining based method is higher than the

other three methods by at least 25 percent. This means for

the purpose of predicting defect isolation effort, association

rule mining substantially outperforms the Bayesian prob-

ability, tree, and rule-based methods. The reason associa-

tion rule mining based prediction performs so much better

than other methods is that it explores high confidence

associations among multiple variables and discovers inter-

esting rules, i.e., rules that are useful, strong, and

significant. By contrast, the other methods use domain

independent biases and heuristics to generate a small set of

rules, which results in many interesting and useful rules

remaining undiscovered.
Table 9 and Table 10 are the results of the impact of

min:Supp and min:Conf on the defect isolation effort

prediction accuracy, respectively. Table 9 shows that the

defect isolation effort prediction accuracy decreases as

min:Supp increases from 10 to 30 percent, and the accuracy

with min:Supp ¼ 10% is just a little better than

min:Supp ¼ 20%. This means decreasing min:Supp cannot

greatly improve the prediction accuracy.
Table 10 shows that the defect isolation effort prediction

accuracy decreases as min:Conf increases from 9 to

40 percent, and the accuracy with min:Conf ¼ 10% slightly

higher than min:Conf ¼ 20%. This means decreasing

min:Conf doesn’t greatly improve prediction accuracy.
Table 11 and Table 12 are the results of the impact of

min:Supp and min:Conf on the number of defect isolation

effort prediction rules, respectively. We observe that the

total number of rules with different length decreases as both

min:Supp and min:Conf increase. It seems that the

conclusion that a sufficient number of rules is a precondi-

tion for high prediction accuracy also works in the context

of defect isolation effort prediction.

4.3 Defect Correction Effort Prediction

4.3.1 Defect Correction Effort Prediction Rules

When mining defect correction effort prediction rules, we

used the same configuration as mining defect isolation

effort prediction rules. At the same time, the forms of defect

correction effort prediction rules are also the same as those

of the defect isolation effort prediction rules. Thus, we just

present the statistical analysis results of the rules.
Fig. 13 is the distribution of defect correction effort

prediction rules by minimum support min:Supp for all the

five training data sets. We observe that, for each data set,

the average number of rules decreases as the minimum

support min:Supp increases from 10 percent through 20 to

30 percent, and the decrease between 10 and 20 percent of

min:Supp is very sharp.
Fig. 14 is the distribution of defect correction effort

prediction rules by minimum confidence min:Conf for all

the five training data sets. We observe that, for each data

set, the average number of rules decreases as the minimum

confidence min:Conf increases from 10 percent through

20 percent and 30 to 40 percent, and the decrease is quite

sharp when min:Conf exceeds 20 percent.

SONG ET AL.: SOFTWARE DEFECT ASSOCIATION MINING AND DEFECT CORRECTION EFFORT PREDICTION 79

TABLE 9
Defect Isolation Effort Prediction Accuracy

with Different Supports

TABLE 10
Defect Isolation Effort Prediction Accuracy

with Different Confidences

TABLE 11
Number of Defect Isolation Effort Prediction Rules by

Rule Length with Different Minimum Supports

TABLE 12
Number of Defect Isolation Effort Prediction Rules by
Rule Length with Different Minimum Confidences

Fig. 13. Distribution of defect correction effort prediction rules by

Min:Supp for the five defect correction effort data sets.

Fig. 15 is the distribution of defect correction effort

prediction rules by rule length. We observe that for defect

isolation effort prediction, nearly half of the rules have

two antecedents and more than 30 percent of rules have

one antecedent. These rules constitute the main part of

the rule set.

4.3.2 Defect Correction Effort Prediction Results

Table 13 contains the prediction results of four

methods: association rule mining based method (with

min:Supp ¼ 10% and min:Conf ¼ 10%), PART, C4.5, and

Naı̈ve Bayes. We observe that the accuracy of the

association rule mining based method is higher than the

other three methods by at least 23 percent. This

confirms the findings we obtained from defect isolation

effort prediction.
We also have explored the impact of min:Supp and

min:Conf on the prediction accuracy, Table 14 and Table 15,

respectively, are the results. Table 14 shows that the
prediction accuracy decreases as min:Supp increases from
10 to 30 percent, and the accuracy with min:Supp ¼ 10%

is a little higher than with min:Supp ¼ 20%. This means
decreasing min:Supp does not greatly improve the
prediction accuracy.

Table 15 shows that the defect correction effort predic-
tion accuracy decreases as min:Conf increases from 10 to
40 percent, and the accuracy with min:Conf ¼ 10% is
marginally higher than with min:Conf ¼ 20%. This means
deceasing min:Conf does not greatly improve the predic-
tion accuracy.

Table 16 and Table 17, respectively, are the results of
the impact of min:Supp and min:Conf on the number of
defect correction effort prediction rules. We observe that
the total number of rules with different length decreases
as both min:Supp and min:Conf increase. It further
supports the conclusion that a sufficient number of rules
is a precondition for the high prediction accuracy we
obtained in the context of defect isolation effort prediction.

80 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 2, FEBRUARY 2006

Fig. 14. Distribution of defect correction effort prediction rules by

Min:Conf for the five defect correction effort data sets.

Fig. 15. Distribution of defect correction effort prediction rules by rule

length for the defect correction effort data set.

TABLE 13
Defect Correction Effort Prediction Accuracy

TABLE 14
Defect Correction Effort Prediction Accuracy

with Different Supports

TABLE 15
Defect Correction Effort Prediction Accuracy

with Different Confidences

TABLE 16
Number of Defect Correction Prediction Rules by
Rule Length with Different Minimum Supports

TABLE 17
Number of Defect Correction Prediction Rules by
Rule Length with Different Minimum Confidences

5 CONCLUSIONS

In this paper, we have presented an application of
association rule mining to predict software defect associa-
tions and defect correction effort with SEL defect data. This
is important in order to help developers detect software
defects and project managers improve software control and
allocate their testing resources effectively. The ideas have
been tested using the NASA SEL defect data set. From this,
we extracted defect data and the corresponding defect
isolation and correction effort data.

For each of the three data sets, we randomly generated
five training data sets and a corresponding five test data
sets. After that, we applied the association rule mining
method. The results show that for the defect association
prediction, the minimum accuracy is 95.38 percent, and the
false negative rate is just 2.84 percent; and for the defect
correction effort prediction, the accuracy is 93.80 percent for
defect isolation effort prediction and 94.69 percent for defect
correction effort prediction.

We have also compared the defect correction effort
prediction method with three other types of machine
learning methods, namely, PART, C4.5, and Naı̈ve Bayes.
The results show that for defect isolation effort, our
accuracy is higher than for the other three methods by at
least 25 percent. Likewise, for defect correction effort
prediction, the accuracy is higher than the other three
methods by at least 23 percent.

We also have explored the impact of support and
confidence levels on prediction accuracy, false negative
rate, false positive rate, and the number of rules as well. We
found that higher support and confidence levels may not
result in higher prediction accuracy, and a sufficient
number of rules is a precondition for high prediction
accuracy.

While we do not wish to draw strong conclusions from a
single data set study, we believe that our results suggest
that association rule mining may be an attractive technique
to the software engineering community due to its relative
simplicity, transparency, and seeming effectiveness in
constructing prediction systems.

ACKNOWLEDGMENTS

The authors would like to thank the NASA/GSFC Software
Engineering Laboratory (SEL) for providing the defect data
for this analysis. The authors specially thank the four
anonymous reviewers for their insightful and helpful
comments, which resulted in substantial improvements to
this work. The authors also thank Rahul Premraj for his
comments.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association
Rules between Sets of Items in Large Databases,” Proc. ACM
SIGMOD Conf. Management of Data, May 1993.

[2] K. Ali, S. Manganaris, and R. Srikant, “Partial Classification Using
Association Rules,” Proc. Third Int’l Conf. Knowledge Discovery and
Data Mining, pp. 115-118, 1997.

[3] I.S. Bhandari, “Attribute Focusing: Machine-Assisted Knowledge
Discovery Applied to Software Production Process Control,” Proc.
Workshop Knowledge Discovery in Databases, July 1993.

[4] I.S. Bhandari, M. Halliday, E. Tarver, D. Brown, J. Chaar, and R.
Chillarege, “A Case Study of Software Process Improvement
During Development,” IEEE Trans. Software Eng., vol. 19, no. 12,
pp. 1157-1170, 1993.

[5] I.S. Bhandari, M.J. Halliday, J. Chaar, R. Chillarenge, K. Jones, J.S.
Atkinson, C. Lepori-Costello, P.Y. Jasper, E.D. Tarver, C.C. Lewis,
and M. Yonezawa, “In Process Improvement through Defect Data
Interpretation,” IBM System J., vol. 33, no. 1, pp. 182-214, 1994.

[6] L.C. Briand, K. El-Emam, B.G. Freimut, and O. Laitenberger, “A
Comprehensive Evaluation of Capture-Recapture Models for
Estimating Software Defect Content,” IEEE Trans. Software Eng.,
vol. 26, no. 6, pp. 518-540, June 2000.

[7] T. Compton and C. Withrow, “Prediction and Control of Ada
Software Defects,” J. Systems and Software, vol. 12, pp. 199-207,
1990.

[8] G. Dong, X. Zhang, L. Wong, and J. Li, “CAEP: Classification by
Aggregating Emerging Patterns,” Proc. Second Int’l Conf. Discovery
Science, pp. 30-42, 1999.

[9] N.B. Ebrahimi, “On the Statistical Analysis of the Number of
Errors Remaining in a Software Design Document after Inspec-
tion,” IEEE Trans. Software Eng., vol. 23, no. 8, pp. 529-532, 1997.

[10] K. El-Emam and O. Laitenberger, “Evaluating Capture-Recapture
Models with Two Inspectors,” IEEE Trans. Software Eng., vol. 27,
no. 9, pp. 851-864, 2001.

[11] N.E. Fenton and M. Neil, “A Critique of Software Defect
Prediction Models,” IEEE Trans. Software Eng., vol. 25, no. 5,
pp. 676-689, 1999.

[12] N.E. Fenton and S.L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, second ed. Int’l Thomson Computer Press,
1996.

[13] E. Frank, L. Trigg, G. Holmes, and I.H. Witten, “Naı̈ve Bayes for
Regression,” Machine Learning, vol. 41, no. 1, pp. 5-25, 2000.

[14] E. Frank and I.H. Witten, “Generating Accurate Rule Sets without
Global Optimization,” Proc. 15th Int’l Conf. Machine Learning,
pp. 144-151, 1998.

[15] G. Heller, J. Valett, and M. Wild, “Data Collection Procedure for
the Software Engineering Laboratory (SEL) Database,” Technical
Report SEL-92-002, Software Eng. Laboratory, 1992.

[16] G.Q. Kenney, “Estimating Defects in Commercial Software During
Operational Use,” IEEE Trans. Reliability, vol. 42, no. 1, pp. 107-
115, 1993.

[17] B. Liu, W. Hsu, and Y. Ma, “Integrating Classification and
Association Rule Mining,” Proc. Fourth Int’l Conf. Knowledge
Discovery and Data Mining, pp. 80-86, 1998.

[18] J.C. Munson and T.M. Khoshgoftaar, “Regression Modelling of
Software Quality: An Empirical Investigation,” Information and
Software Technology, vol. 32, no. 2, pp. 106-114, 1990.

[19] F. Padberg, T. Ragg, and R. Schoknecht, “Using Machine Learning
for Estimating the Defect Content after an Inspection,” IEEE Trans.
Software Eng., vol. 30, no. 1, pp. 17-28, 2004.

[20] J.R. Quinlan, C4.5 Programs for Machine Learning. San Mateo, Calif.:
Morgan Kaufmann, 1993.

[21] P. Runeson and C. Wohlin, “An Experimental Evaluation of an
Experience-Based Capture-Recapture Method in Software Code
Inspections,” Empirical Software Eng., vol. 3, no. 3, pp. 381-406,
1998.

[22] SEL Database, http://www.cebase.org/www/frames.html?/
www/Resources/SEL/, 2005.

[23] R. She, F. Chen, K. Wang, M. Ester, J.L. Gardy, and F.L. Brinkman,
“Frequent-Subsequence-Based Prediction of Outer Membrane
Proteins,” Proc. Ninth ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, 2003.

[24] R. Srikant, Q. Vu, and R. Agrawal, “Mining Association Rules
with Item Constraints,” Proc. Third Int’l Conf. Knowledge Discovery
and Data Mining (KDD ’97), pp. 67-73, Aug. 1997.

[25] K. Wang, S.Q. Zhou, and S.C. Liew, “Building Hierarchical
Classifiers Using Class Proximity,” Proc. 25th Int’l Conf. Very Large
Data Bases, pp. 363-374. 1999.

[26] K. Wang, S. Zhou, and Y. He, “Growing Decision Tree on
Support-Less Association Rules,” Proc. Sixth Int’l Conf. Knowledge
Discovery and Data Mining, 2000.

[27] S.V. Wiel and L. Votta, “Assessing Software Designs Using
Capture-Recapture Methods,” IEEE Trans. Software Eng. , vol. 19,
no. 11, pp. 1045-1054 1993

[28] C. Wohlin and P. Runeson, “Defect Content Estimations from
Review Data,” Proc. 20th Int’l Conf. Software Eng., pp. 400-409,
1998.

SONG ET AL.: SOFTWARE DEFECT ASSOCIATION MINING AND DEFECT CORRECTION EFFORT PREDICTION 81

[29] Q. Yang, H.H. Zhang, and T. Li, “Mining Web Logs for Prediction
Models in WWW Caching and Prefetching,” Proc. Seventh ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, Aug.
2001.

[30] X. Yin and J. Han, “CPAR: Classification Based on Predictive
Association Rules,” Proc. 2003 SIAM Int’l Conf. Data Mining, May
2003.

[31] A.T.T. Ying, C.G. Murphy, R. Ng, and M.C. Chu-Carroll,
“Predicting Source Code Changes by Mining Revision History,”
Proc. First Int’l Workshop Mining Software Repositories, 2004.

[32] T. Zimmermann, P. Weigerber, S. Diehl, and A. Zeller, “Mining
Version Histories to Guide Software Changes,” Proc. 26th Int’l
Conf. Software Eng., 2004.

Qinbao Song received the PhD degree in
computer science from Xi’an Jiaotong Univer-
sity, China, in 2001. He is an associate professor
of software technology at Xi’an Jiaotong Uni-
versity, China. He has published more than
50 referred papers in the areas of data mining,
machine learning, and software engineering. His
research interests include intelligent computing,
machine learning for software engineering, and
trustworthy software.

Martin Shepperd received the PhD degree in
computer science from the Open University in
1991 for his work in measurement theory and its
application to software engineering. He is
professor of software technology at Brunel
University, London, and director of the Brunel
Software Engineering Research Centre (B-
SERC). He has published more than 90 refereed
papers and three books in the areas of empirical
software engineering, machine learning and

statistics. He is editor-in-chief of the journal Information and Software
Technology and was associate editor of IEEE Transactions on Software
Engineering (2000-2004). He has also worked for a number of years as
a software developer for a major bank.

Michelle Cartwright was awarded a first-class
honors degree in computer science from the
University of Wolverhampton in 1992 and a
doctorate in computer science from Bourne-
mouth University in 1998. She has published a
number of papers in the areas of empirical
software engineering, case-based reasoning,
and estimation for software projects. She is
presently a lecturer in the School of Information
Systems, Computing, and Mathematics at

Brunel University, London, and a member of the Brunel Software
Engineering Research Centre (B-SERC).

Carolyn Mair is completing her PhD in cognitive
neuroscience. She is a research assistant in the
Brunel Software Engineering Research Centre
(B-SERC) at Brunel University. Her current
interests are software engineering metrics and
software project prediction.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

82 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 2, FEBRUARY 2006

