
Research Article

Software Defect Prediction via Attention-Based Recurrent
Neural Network

Guisheng Fan ,1,2 Xuyang Diao ,1 Huiqun Yu ,1 Kang Yang ,1 and Liqiong Chen 3

1Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China
2Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 201112, China
3Department of Computer Science and Information Engineering, Shanghai Institute of Technology,
Shanghai 201418, China

Correspondence should be addressed to Guisheng Fan; gsfan@ecust.edu.cn; Xuyang Diao; y30170698@mail.ecust.edu.cn; and
Huiqun Yu; yhq@ecust.edu.cn

Received 14 January 2019; Revised 15 March 2019; Accepted 2 April 2019; Published 15 April 2019

Academic Editor: Autilia Vitiello

Copyright © 2019 Guisheng Fan et al.2is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to improve software reliability, software defect prediction is applied to the process of software maintenance to identify
potential bugs. Traditional methods of software defect prediction mainly focus on designing static code metrics, which are input
into machine learning classifiers to predict defect probabilities of the code. However, the characteristics of these artificial metrics
do not contain the syntactic structures and semantic information of programs. Such information is more significant than manual
metrics and can provide a more accurate predictive model. In this paper, we propose a framework called defect prediction via
attention-based recurrent neural network (DP-ARNN). More specifically, DP-ARNN first parses abstract syntax trees (ASTs) of
programs and extracts them as vectors.2en it encodes vectors which are used as inputs of DP-ARNN by dictionary mapping and
word embedding. After that, it can automatically learn syntactic and semantic features. Furthermore, it employs the attention
mechanism to further generate significant features for accurate defect prediction. To validate our method, we choose seven open-
source Java projects in Apache, using F1-measure and area under the curve (AUC) as evaluation criteria. 2e experimental results
show that, in average, DP-ARNN improves the F1-measure by 14% and AUC by 7% compared with the state-of-the-art
methods, respectively.

1. Introduction

With the continuous expansion of modern software,
software reliability has become a key concern. 2e
complex source code of software tends to cause software
defects which may lead to software failure. In order to help
developers and testers locate software defects in time,
software defect prediction has become one of the research
directions in the field of data mining of software engi-
neering [1].

Software defect prediction [2, 3] is a process of con-
structing machine learning classifiers to predict defective
code snippets, using historical information in software re-
positories such as code complexity and change records to
design software defect metrics [4]. 2e predicted results can
assist developers to locate and fix potential defects, thereby

improving software stability and reliability. According to
whether source data and target data are homogeneous or
heterogeneous, software defect prediction can be divided
into within-project software defect prediction [5] and cross-
project software defect prediction [6]. In this paper, we focus
on within-project software defect prediction. 2e program
granularity can be file level, change level, or function level,
and we choose the file-level granularity as the representation
of programs in this paper.

Traditional defect prediction methods mainly consist of
two stages: extracting software metrics from historical re-
positories and constructing a machine learning model for
classification. Previous research focuses on designing dis-
criminative artificial metrics to achieve higher model ac-
curacy. 2ese manual metrics are mainly divided into
Halstead features [7] based on the number of operators and

Hindawi
Scientific Programming
Volume 2019, Article ID 6230953, 14 pages
https://doi.org/10.1155/2019/6230953

mailto:gsfan@ecust.edu.cn
mailto:y30170698@mail.ecust.edu.cn
mailto:yhq@ecust.edu.cn
http://orcid.org/0000-0002-2702-0242
http://orcid.org/0000-0002-8377-3484
http://orcid.org/0000-0002-1899-1135
http://orcid.org/0000-0002-5863-1003
http://orcid.org/0000-0003-1927-2148
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6230953

operands, dependency-based McCabe features [8], and CK
features [9] based on object-oriented programs.

However, sometimes static code attributes cannot dis-
tinguish whether the code has defects because a clean code
snippet and a buggy one may have the same values of static
code attributes, which makes classifiers hard to differentiate.
Since the syntactic and semantic information between them is
different, features which contain such structural and semantic
information should improve the performance of defect
prediction. Programs have their own particular syntactic
structures and rich semantic information hidden in ASTs
[10], which help analyzing and locating defects more accu-
rately. AST is the representation of source code. It uses a tree
structure to describe the relationship of code context, which
contains syntactic structures and semantic information of the
program module. Leveraging deep learning methods to mine
hidden features of ASTs can generate significant features that
better reflect the code context information, leading to more
accurate software defect prediction.

To take full advantage of intrinsic syntaxes and semantics
of programs, this paper proposes a framework called soft-
ware defect prediction via attention-based recurrent neural
network (DP-ARNN), which can capture syntactic and
semantic features of programs and use them to improve
defect prediction. Specifically, we build recurrent neural
network (RNN) [11] to automatically learn features with
syntaxes and semantics from encoded token vectors
extracted from programs’ ASTs and then use the attention
mechanism to generate key features for training a more
precise defect prediction model. We select seven open-
source projects in Apache as datasets, using F1-measure
[12] and AUC [13] as evaluation criteria. 2e experimental
results show that, compared with the state-of-the-art
methods, the DP-ARNN proposed in this paper has an
average increase of 14% on F1-measure and 7% on AUC.
2is paper makes the following contributions:

(i) We propose an RNN-based defect prediction
framework to learn valuable features which contain
syntactic and semantic information of the source
code. 2e empirical studies show that, in average,
these deep learning-based features outperform
traditional features by 14% on F1-measure and 10%
on AUC.

(ii) We apply dictionary mapping and word embedding
to convert programs’ ASTs into high-dimensional
digital vectors as the inputs of RNN to learn code
context information.

(iii) We leverage attention mechanism to further gen-
erate significant features from the outputs of RNN,
leading to better performance of defect prediction.
2e experimental results show that, compared with
RNN, attention-based RNN has an average increase
of 3% on F1-measure and 1% on AUC.

2e rest of this paper is organized as follows. Section 2
introduces the related work about traditional software defect
prediction and deep learning-based defect prediction. Sec-
tion 3 elaborates our proposed DP-ARNN in detail. Section

4 shows the experimental setup and analyzes the results.
Finally, Section 5 concludes our work.

2. Related Work

2.1. Traditional Software Defect Prediction. Software defect
prediction is a significant research field in software engi-
neering [1]. Most of references focus on designing new
discriminative features, filtering defect data, and building an
efficient classifier. Nagappan and Ball [14] proposed churn
metrics and combined it with software dependencies for
defect prediction. Moser et al. [15] made a comprehensive
analysis of the efficiency of change metrics and static code
attributes for defect prediction. Besides, Arar and Ayan [16]
selected appropriate features by applying the Naive Bayesian
method to filter redundant ones. Mousavi et al. [17] used the
idea of ensemble learning to solve the class-imbalance
problem in software defect prediction. Moreover, Jing
et al. [18] proposed a dictionary learning method based on
calculating misclassification cost for the prediction of
software defects.

To solve the problem of lack of information in the
historical repositories of the same project, more and more
papers have studied cross-project software defect prediction.
In this field, because of the different domains of training
samples and test samples, we need to apply transfer learning
techniques. By using the transfer component analysis
(TCA+) [19], we can build an available target prediction
model. However, large irrelevant cross-project data usually
lead to low performance. To overcome this challenge, many
researchers focus on filtering instances or features of the
source project that are irrelevant to the target project.
Turhan et al. [20] applied the neighbour filter method to
remove those instances of the source project, whose features
are not close enough to the ones of the target project. Be-
sides, Yu et al. [21] employed correlation-based feature
selection to select features that have strong correlation with
the target project. Ma et al. [22] proposed a method called
transfer Naive Bayes, using a data gravitation approach [23]
to adjust the weights of training instances and build a naive
Bayes classifier on them. Recently, some studies have
demonstrated that, if we can make full use of the small
portion of labelled data in the target project, it may result in
higher prediction performance. Chen et al. [24] first ini-
tialized the weights of source project data by the data
gravitation method and adjusted them with a limited
amount of labelled data in the target project by building a
prediction model named TrAdaboost [25]. Qiu et al. [26]
constructed a novel multiple-components weights learning
model with the kernel mean matching (KMM) algorithm. It
divides the source project data into several components, and
KMM is applied to adjust the source-instance weights in
each component. 2en, it builds prediction models with
both the source instances with weights in each component
and a fraction of labelled data in the target project. Finally, it
initializes and optimizes the source component weights to
construct a more precise ensemble classifier.

Our proposed DP-ARNN differs from the aforemen-
tioned traditional defect prediction methods. Instead of

2 Scientific Programming

using the static code attributes, we leverage the deep learning
technique (i.e., RNN) to automatically generate features
from the source code, which can capture syntactic and se-
mantic information of programs, and implement the at-
tention mechanism to generate significant features which
can improve the performance of defect prediction.

2.2. Deep Learning in Software Defect Prediction. Datasets of
traditional defect prediction are extracted from artificially
designed metrics which may be redundant or not be highly
correlated with class labels.2ese all can affect the prediction
performance of the model. Besides, manual metrics cannot
make full use of code context information to mine the
syntactic structure and semantic information of programs.

2e syntactic and semantic information of programs can
be represented in two ways. One is ASTs and the other is
control flow graphs (CFGs) [27]. AST is the abstract tree
representation of the source code, which describes the hi-
erarchical relationship among various components in pro-
gram modules. Wang et al. [28] employed DBN to generate
hidden features, which contains syntaxes and semantics of
programs and fed them into classifiers to predict the buggy
code. Lin et al. [29] employed long short-term memory
(LSTM) network [30] to learn the cross-project transfer
representation of programs’ ASTs for vulnerable function
discovery. Dam et al. [31] built a deep tree-based model
based on ASTs for software defect prediction. In addition, Li
et al. [32] combined artificial metrics with deep learning-
based features learned by convolutional neural network
(CNN) [33] to build a hybrid model. CFG is the repre-
sentation of the program control flow graphs, which show all
the paths that can be traversed during the program exe-
cution. Phan et al. [34] extracted CFGs from the assembly
code of projects and designed a graph convolutional network
to learn semantic features of programs.

2e aforementioned deep learning-based methods
consider all the hidden features to be equally significant, and
they cannot identify discriminative features that contain key
syntaxes and semantics. 2is may lead to inaccurate defect
prediction. Hence, in our proposed method, we employ the
attention mechanism to capture these key features and give
them higher weights. Besides, we choose ASTs of programs
as the representation of programs rather than CFGs, because
ASTs can better depict the structure of the source code and
reserve more information of source code.

3. Component Design

In this section, we elaborate our proposed DP-ARNN, a
framework which automatically learns syntactic and se-
mantic features from the source code and generates key
features from them for precise software defect prediction.
Figure 1 illustrates the overall framework of DP-ARNN.

As is shown in Figure 1, we first parse the source code of
the training set and test set into ASTs. 2en we select
representative nodes and apply depth-first traversal (DFT)
to get ASTs’ sequence vectors. A file corresponds to a se-
quence vector extracted from ASTs. In order to train these

token vectors, we not only create a mapping between tokens
and integers but also employ word embedding to encode
them into multidimensional vectors which are used as the
inputs of the network. After that, we build an RNN to
automatically learn syntactic and semantic features of the
source code. Furthermore, we put them into an attention
layer with the attention mechanism to further generate
significant features. Finally, these crucial features are fed into
fully connected layers, and a logistic regression classifier is
built for prediction. After the whole framework is well-
trained by the training set, we can get a defect probability
for each file in the test set, indicating whether it is buggy or
clean.

3.1. Parsing Source Code. In order to represent the source
code in each file as a vector, we first need to find the ap-
propriate granularity as the vector representation of the
source code. We can extract characters, words, or ASTs from
the source code as tokens. According to the former research
[35], AST is the suitable representation which can reflect the
structural and semantic information of programs.

In our experiments, we apply an open-source Python
package named javalang which is available at https://github.
com/c2nes/javalang to parse our Java source code into ASTs.
It provides a lexical analyzer and parser based on the Java
language specification, which can construct ASTs of the Java
source code. Following the relevant method [36], we only
select three types of ASTs’ nodes as tokens: (1) nodes of
method invocations, (2) nodes of declarations, including
method declarations, constructor declarations, and class
declarations, and (3) control flow nodes (i.e., branches,
loops, exception throws, and captures). For method in-
vocations, we record them as their plain text in the source
code. For all the nodes of declarations, we extract their node
names as tokens. Control flow nodes are simply recorded as
their node types. Besides, nodes of AssertStatement and
TryResource are recorded as their values. All the selected
nodes in the experiments are shown in Figure 2. Finally, we
employ the DFTmethod to turn ASTs of each program into a
vector. Algorithm 1 describes the procedure of the parsing
source code.

3.2. Encoding ASTs and Handling Imbalance

3.2.1. Encoding ASTs. ASTs can effectively store structural
and semantic information of the program module. For
example, code A in Figure 3(a) has a strong resemblance of
code B in Figure 3(b), which means manual features can be
totally the same, while the code A’s AST in Figure 4(a) has
two more nodes (i.e., StatementExpression and Member-
Reference) than code B’s AST in Figure 4(b). Since the vector
is a combination of string tokens, we cannot directly use it as
an input to DP-ARNN. Hence, we build a mapping dic-
tionary between tokens and integers. Assuming that the
number of tokens is m and each token corresponds to a
unique integer, then the mapping range is from 1 to m.
Firstly, we count the frequency of each token and then sort
them based on the token frequency. After that, we establish

Scientific Programming 3

https://github.com/c2nes/javalang
https://github.com/c2nes/javalang

an index dictionary of the ordered tokens, in which tokens
with higher frequency are in front. After the mapping step,
we make these digital vectors the same fixed length. In order
to avoid vectors being too sparse, the appropriate vector
length should be selected. For a vector whose length is less
than the specified length, it is filled with 0 because 0 does not
have anymeaning since wemap tokens starting from 1. For a

vector whose length is longer than the specified length, the
extra part is truncated. Since the token with higher fre-
quency is mapped into smaller integer, the token with the
lowest frequency is mapped into the maximum integer.
Hence, we locate the index of the maximum integer in the
vector and delete it each time until the vector length becomes
the same as the fixed length. �e pseudocode of encoding
ASTs’ vectors is shown in Algorithm 2. Finally, we also
employ word embedding which is embedded into the net-
work as a trainable word dictionary to represent each token
as a high-dimensional vector.

3.2.2. Handling Imbalance. Software defect prediction data
are usually class imbalanced. Defective instances usually ac-
count for a small part of all the instances. If you put them
directly into the model for training, the prediction results will
be biased towards the majority class (i.e., clean instances).
According to the research [37], there are two popular ap-
proaches to solve the class imbalance problem, oversampling,
and undersampling. �e former replicates instances in the
minority class, and the latter deletes instances in the majority
class. �e undersampling technique may lose part of the data
information in the training set, resulting in underfitting. In
order to ensure the integrity of the data information, we apply
the oversampling method, duplicating training samples from
the minority class (i.e., defective instances), to generate a
class-balanced training set.

3.3. Bi-LSTM with Attention Mechanism. In order to learn
the context information of the source code and generate the
key features, we construct a Bi-LSTM network, a variant of
standard RNN, with attention mechanism [38], as illustrated
in Figure 5. �e network architecture mainly consists of five
parts: an embedding layer, a Bi-LSTM layer, an attention
layer, two fully connected layers, and an output layer.

3.3.1. Embedding Layer. Simple digital integers cannot re-
flect the content information carried by an AST node.
�erefore, we adopt word embedding technique to map each
positive integer vector into a high-dimensional real vector
with fixed size, which can be defined as follows:

MethodInvocation

SuperMethodInvocation

PackageDeclaration

InterfaceDeclaration

ClassDeclaration

MethodDeclaration

ConstructorDeclaration

VariableDeclarator

FormalParameter

BasicType

CatchClauseParameter

MemberReference

SuperMemberReference

ReferenceType

IfStatement

WhileStatement

DoStatement

ForStatement

AssertStatement

BreakStatement

ContinueStatement

ReturnStatement

�rowStatement

SynchronizedStatement

TryStatement

SwitchStatement

BlockStatement

StatementExpression

TryResource

CatchClause

CatchClauseParameter

SwitchStatementCase

ForControl

EnhancedForControl

Figure 2: �e selected nodes of ASTs.

Source files

AST

Invocation nodes

(a)

Declaration nodes

…

Mapping
dictionary

while statement 1

if statement 3

2hello()

… …

while, hello(), if, …

(b)

1, 2, 3, …

(c) (d)

Logistic
classifier

Prediction
(defective or clean)

……

f1, f2, …, fn ?

f1, f2, …, fn X

f1, f2, …, fn X

f1, f2, …, fn √

f1, f2, …, fn √

f1, f2, …, fn X

New instance

Training instances

Figure 1: �e overall framework of our proposed DP-ARNN. (a) Parsing source code. (b) Mapping string vectors into integer vectors.
(c) Generating features via RNN with attention mechanism. (d) Performing defect prediction.

Input: source files F � f1, f2, . . . , fn{ },
Representative nodes S � s1, s2, . . . , sn{ };

Output: ASTs’ vectors V � v1, v2, . . . , vn{ };
(1) for i � 1⟶ n do
(2) ASTi � constructing AST from fi;
(3) Traversing node in ASTi by DFT;
(4) If node in S then
(5) Adding node into vi;
(6) end
(7) Adding vi into V;
(8) end
(9) return V;

ALGORITHM 1: Parsing source files into ASTs’ vectors.

4 Scientific Programming

F :M⟶ Rn, (1)

where M represents a dictionary formed by AST nodes
and Rn is an n-dimensional real vector space. F is a pa-
rameterized function that maps each token in M into

an n-dimensional vector. �e word embedding dictionary is
randomly initialized, and it can be updated during the
training of the network. Token vectors encoded by word
embedding can be fed into the Bi-LSTM network to further
explore syntaxes and semantics of programs.

CompilationUnit

Package
Declaration

ClassDeclaration

Method
Declaration

Formal
Parameter

Reference
Type

LocalVariable
Declaration

Basic
Type

Variable
Declarator

Literal

While
Statement

Binary
Operation

Member
Reference

Literal

BlockStatement

Statement
Expression

Member
Reference

Statement
Expression

Method
Invocation

Member
Reference

(a)

CompilationUnit

Package
Declaration

ClassDeclaration

Method
Declaration

Formal
Parameter

Reference
Type

LocalVariable
Declaration

Basic
Type

Variable
Declarator

Literal

While
Statement

Binary
Operation

Member
Reference

Literal

BlockStatement

Statement
Expression

Method
Invocation

Member
Reference

(b)

Figure 4: ASTs of two example files. (a) �e clean code A. (b) �e defective code B.

package com;

public class A{

public static void main(String[]args){

int i=0;

while(i<10){

i++;

}

System.out.println(i);

}
}

1

2

3

4

5

6

7

8

9
10

(a)

package com;

public class B{

public static void main(String[]args){

int i=0;

while(i<10){

}

System.out.println(i);

}
}

1

2

3

4

5

6

7

8

9
10

(b)

Figure 3: Source code of two example files. (a) �e clean code A. (b) �e defective code B.

Scientific Programming 5

3.3.2. Bi-LSTM. Standard RNN splits sequence data into
vectors with fixed length. Each element in a vector denotes a
certain moment. For a certain moment t, the output o(t) is
not only influenced by the current input x(t) but also de-
pends on the accumulated information transmitted from the
moment t− 1 (i.e., h(t−1)), which can be formulated as the
following equations:

h(t) � f U∗x(t) +W∗ h(t−1) + b(),

o(t) � g V∗ h(t) + c(),
(2)

where U,W,V, b, and c denote the weights and bias of the
network and f and g are the activation functions. 2e
standard RNN can only memorize short-term sequence
information and cannot transmit long-term sequence in-
formation. 2erefore, we select LSTM [30] as the basic unit
of RNN. An LSTM unit is mainly composed of an input gate,
a forgotten gate, and an output gate. To prevent the gradient
of the network from disappearing, information passing from
the past is filtered by the forgotten gate, and then LSTM
feeds it and information from the input gate into the output
gate to generate the current information. Furthermore, to
obtain the long dependencies of the surrounding moments

close to moment t, the bidirectional LSTM (Bi-LSTM) is
built to achieve this purpose.

Contextual information of the source code is significant
to detect potential bugs. Each program has its own syntaxes
and semantics which are context sensitive. 2erefore, the
occurrence of a defective code segment is usually relevant to
either previous or subsequent code, or even to both of them.
In most cases, because of the complexity of the source code,
it is hard to exactly locate which line of code actually results
in the vulnerability. Hence, in order to efficiently capture the
defective programming patterns, we implement Bi-LSTM to
make full use of both forward and backward information.

3.3.3. Attention Mechanism. From the output of the Bi-
LSTM network, we can get the hidden features of all time
nodes in a sequence. Contributions of these nodes to the
representation of the sequence meaning are not the same. In
order to enhance the effect of critical nodes, we embed an
attention layer after the Bi-LSTM Layer. By applying the
attention mechanism, critical nodes which are significant to
the meaning of the sequence are aggregated together to form
a sequence vector. Figure 6 illustrates the entire process of it,
and we can describe it as follows:

Input: ASTs’ string vectors S � s1, s2, . . . , sn{ }, the fixed length of each vector m;
Output: integer vectors V � v1, v2, . . . , vn{ };

(1) Initialize a list V, a dict tokFreq and a dict toktoInt;
(2) for i � 1⟶ n do

(3) for j � 1⟶ len(si) do
(4) if sij not in tokFreq.keys then
(5) tokFreq[sij] � 0;
(6) end

(7) tokFreq[sij]+ � 1;
(8) end

(9) end
(10) Creating a list sortokFreq sorted in descending order of token frequency which contains tuples of each token and its

corresponding frequency;
(11) for i � 1⟶ len(sortokFreq) do
(12) token � sortokFreq[i][0];
(13) toktoInt[token] � i; // establishing a dict of the ordered tokens to map them into integers
(14) end
(15) for i � 1⟶ n do

(16) for j � 1⟶ len(sj) do
(17) vij � toktoInt[sij];
(18) end
(19) if len(vi)<m then

(20) Adding m− len(vi) 0s into vi;
(21) end

(22) else if len(vi)>m then
(23) for k � 1⟶ len(vi)−m do

(24) z � vi.index(max(vi)); // finding the index of the lowest token frequency del viz; // deleting the token
(25) end

(26) end
(27) Adding vi into V;
(28) end
(29) return V;

ALGORITHM 2: Encoding ASTs’ string vectors.

6 Scientific Programming

uit � tanh Wnhit + bn(),

αit �
exp u⊤itun()
∑t exp u⊤itun()

,

si �∑
t

αithit.

(3)

�at is, we first input the node annotation hit into a
one-layer multilayer perceptron (MLP) to generate uit as a
hidden representation of the node, and then we set up a
node-level context vector un, which can be considered as a
high-level representation of a query to search critical
nodes in the sequence. After that, we measure the im-
portance of the node as the dot product similarity of uit

with un and obtain a normalized importance weight αit
through a softmax function. Finally, we calculate the
sequence vector si as a weighted sum of all the nodes with
relevant weights. �e node level context vector un is
randomly initialized and can be updated during the
training process.

3.3.4. Training Phase. In the training phase, we construct
two fully connected layers and an output layer. �e first fully
connected layer normalizes sequence features through a
tanh function, and the second fully connected layer with a
linear function further extracts features. At last, in the output
layer, we put them through a sigmoid function as a logistic
regression classifier to compute the defect probability of the
program module.

4. Experiments and Analysis

In this section, we design experiments to verify the effec-
tiveness of DP-ARNN. Four research questions (RQs) are
need to be answered as follows:

(i) RQ1: do the deep learning methods improve the
performance of defect prediction compared to
traditional methods based on static code metrics?

(ii) RQ2: compared with features generated by the
classical unsupervised learningmethods, do features
learned by the deep learning methods better rep-
resent syntaxes and semantics of programs?

(iii) RQ3: does DP-ARNN outperform the basic deep
learning methods, including CNN and RNN?

(iv) RQ4: how is the prediction performance of DP-
ARNN under different parameter settings?

In our experiments, we choose Keras (2.2.4) and
Tensorflow (1.11.0) to build attention-based Bi-LSTM
network. �e implementation of other benchmark
methods is mainly based on scikit-learn (0.19.2) and Py-
thon 3.6. �e experimental operating environment is a
server running Ubuntu 16.04 with a 3.60 GHz Intel i7 CPU
and RAM of 8 GB.

4.1. Experimental Datasets. We collect seven open-source
Java projects in Apache, each of which contains two versions
(i.e., preversion and postversion). Datasets that contain
static code metrics and defect annotations of source files in
each project are from metrics repository, which is a public
available repository specializing in software defect pre-
diction research datasets. Specifically, each source file has 20
traditional artificial features, which are carefully extracted by
Jureczko and Madeyski, the contributors of CK features for
object-oriented programs [39]. We list the detailed de-
scription about them in Table 1. �ese static metrics, in-
cluding lines of code (LOC), average method complexity
(AMC), and number of children (NOC), have been widely
used in the previous studies [18, 40, 41]. Table 2 shows the
specific information of these projects, including project

28 16 30 6 7 19 21 33 … 11 15 35 40 22

0.1, 0.2, 0.3, 0.6, …

0.5, 0.5, 0.4, 0.7, …

0.1, 0.2, 0.3, 0.7, …

Embedding layer

LSTM

LSTM LSTM

LSTM LSTM

LSTM

Bi-LSTM layer

Attention layer

0.5, 0.6, 0.4, 0.2, …

0.3, 0.1, 0.2, 0.5, …

0.4, 0.3, 0.7, 0.9, …

(1) Word embedding

(2) Generating features

(3) Extracting crucial
features

…
…

…

(4) Fully connection
and prediction

Tanh

Linear

Sigmoid

Output
probabilities

Figure 5: �e network architecture of DP-ARNN.

Scientific Programming 7

name, project version, average code file number, and average
defect rate.We use the predecessor version as the training set
and the postversion as the test set.

4.2. EvaluationMetrics. We evaluate the performance of our
model as F1-measure and AUC. F1-measure is used to
measure the stability of DP-ARNN, and AUC is used to
assess the discrimination ability of it.

F1-measure is the harmonicmean of the precision and the
recall. We define equations (4)–(6) to describe Precision (P),
Recall (R), and F1-measure (F) in software defect prediction:

P �
Nd⟶d

Nd⟶d +Nc⟶d

, (4)

R �
Nd⟶d

Nd⟶d +Nd⟶c

, (5)

1 t n… …

1 t n…… Dot product
similarity

Sequence
vector i

Hidden vector i

Node-level context
vector

So�max function

1 t n… … Sequence weight
vector

Weighted sum of all nodes

One-layer MLP

Crucial sequence
features

Figure 6: �e process of attention mechanism.

Table 1: Description of the 20 static code metrics.

Metric Name Symbol Description

Weighted methods per class WMC �e number of methods in the class
Depth of inheritance tree DIT �e position of the class in the inheritance tree
Number of children NOC �e number of immediate descendants of the class
Coupling between object classes CBO �e value increases when the methods of one class access services of another
Response for a class RFC Number of methods invoked in response to a message to the object
Lack of cohesion in methods LCOM Number of pairs of methods that cannot share a reference to an instance variable
Lack of cohesion in methods,
different from LCOM

LCOM3
If m and a are the number of methods and attributes in a class number and μ(a) is the
number of methods accessing an attribute, then lcom3 � (((1/a)∑ajμ(a))−m)/(1−m)

Number of public methods NPM �e number of all the methods in a class that are declared as public
Data access metric DAM Ratio of the number of private (protected) attributes to the total number of attributes
Measure of aggregation MOA �e number of data declarations (class fields) whose types are user-defined classes

Measure of function abstraction MFA
Number of methods inherited by a class plus number of methods accessible by member

methods of the class

Cohesion among methods of class CAM
Summation of the number of different types of method parameters in every method
divided by the multiplication of the number of different method parameter types in

whole class and number of methods
Inheritance coupling IC �e number of parent classes to which a given class is coupled
Coupling between methods CBM Total number of new/redefinedmethods to which all the inherited methods are coupled
Average method complexity AMC �e number of JAVA byte codes
Afferent couplings Ca How many other classes use the specific class
Efferent couplings Ce How many other classes are used by the specific class
Maximum McCabe Max (CC) Maximum McCabe’s cyclomatic complexity values of methods in the same class
Average McCabe Avg (CC) Average McCabe’s cyclomatic complexity values of methods in the same class
Lines of code LOC Measures the volume of the code

8 Scientific Programming

F �
2∗P∗R
P + R

. (6)

where specifically, symbol c (clean) means files without
defects, while symbol d (defective) means files with de-
fects. 2ree cases are defined as follows: (i) predicting
defective files as defective (d⟶ d), (ii) predicting de-
fective files as clean (d⟶ c), and (iii) predicting clean
files as defective (c⟶ d). Besides, N denotes the number
of each case.

Normally, Precision and Recall cannot be optimal at the
same time. For example, if we predict all the program files to
be defective, Recall will reach 100%, but Precision will be
very low. 2erefore, we make a trade-off between Precision
and Recall as F1-measure (i.e., the harmonic mean of the two
metrics). 2e range of it is [0, 1], and the higher value means
the better stability of the model.

AUC (i.e., area under ROC curve) is based on the area
under the ROC (i.e., receiver operating characteristic) curve
to evaluate the distinguishing ability of the predictionmodel.
When evaluating the model classifier, the ROC curve first
sets different thresholds for classification. 2e abscissa of the
ROC curve is the value of false positive rate (fpr) and the
ordinate is the value of true positive rate (tpr). Each clas-
sification threshold generates a coordinate (fpr, tpr), and
ROC is the curve formed by these coordinate points. AUC is
the area under ROC curve.2e value of it ranges from 0 to 1,
the higher the better. In addition, AUC is appropriate for
evaluating class-imbalanced datasets.

Besides, we employ the Friedman test [42–44] as the test
of significance of methods. Suppose there are kmethods.2e
Friedman test obeys the chi-square distribution with a k− 1
degree of freedom, and its original hypothesis is that there is
no significant difference in evaluation metrics among the k
methods. If the p value of the test result is small enough
(i.e., less than 0.05), we can come to the conclusion that the
original hypothesis is not established. In other words, there
is a significant difference among methods. Moreover, we
apply Nemenyi’s posthoc test [43] to compare the differences
between our proposed DP-ARNN and other baseline
methods.

4.3. Baseline Methods. We select the following five baseline
methods to compare with our proposed DP-ARNN.

(i) RF: random forest (RF) [45] method based on 20
static code metrics

(ii) RBM+RF: random forest method with hidden
features learned by restricted Boltzmann machine
(RBM) [46]

(iii) DBN+RF: random forest method with hidden
features generated by deep belief network (DBN)
[47]

(iv) CNN: a deep learning method based on text se-
quence convolution, which feeds hidden features
learned by CNN to the final classifier.

(v) RNN: a bidirectional recurrent neural network
based on LSTM units to generate syntactic and
semantic features for defect prediction

We take the same method to generate the inputs of CNN
and RNN, which we have mentioned in Section 3.2. When
building the network architecture of CNN, we use the same
parameter settings as in [32] (i.e., 10 filters each of whose
length is 5 and a fully connected layer including 100 hidden
nodes). In terms of RNN, its parameter settings are the same
as DP-ARNN. As for the inputs of RBM and DBN, we divide
each element in each vector by the fixed length (i.e., 2000) for
normalization. In addition, RBM’s hidden layer has 100
nodes and DBN has 5 hidden layers each of which contains
100 nodes.

2e Friedman test is performed on F1-measure among
all the methods, whose result is shown in Table 3.2e degree
of freedom k is 5 since we have 6 methods.2e p value of F1-
measure among all the 6 methods is 6.37 × 10−5, which is
much less than the baseline 0.05. 2erefore, we verify the
significant differences among all the methods. Furthermore,
Table 4 lists Nemenyi’s test result of p values between DP-
ARNN and other baseline methods, which indicates that the
significant difference between our proposed DP-ARNN and
baseline methods is mainly on RBM+RF and DBN+RF.
Tables 5 and 6 list F1-measure and AUC comparison of
different models. For each project, the result of the best
method is shown in bold. 2e next-to-last row displays the
win/tie/loss (W/T/L) statistics between our proposed DP-
ARNN and other baseline methods. 2e last row is the
average of the results of the seven projects for each method,
and the best is also shown in bold.

4.4. Performance Comparison between Deep Learning
Methods and Traditional Methods (RQ1). We first compare
three deep learning methods (i.e., CNN, RNN, and DP-
ARNN) with two traditional machine learning methods
(i.e., RF and RBM+RF). RF is a traditional features-based
method with static code metrics, and RBM+RF is a method
which first builds a shallow network including two layers
(i.e., a visible layer and a hidden layer) to generate hidden
features and then feeds them into RF for classification. 2is
comparison is to verify the superiority of deep learning
methods in the field of software defect prediction. We
conduct the experiments on these projects listed in Table 2.
Each project has two versions, each of which the older
version is used for model training, and the newer version is
used for model evaluation.

Table 2: Java project dataset information.

Project Versions (pre, post) Avg files Avg defect rate (%)

Camel 1.4, 1.6 918 18.1
Lucene 2.0, 2.2 221 53.7
Poi 2.5, 3.0 413 64.0
Xerces 1.2, 1.3 447 15.7
Jedit 4.0, 4.1 309 25.0
Xalan 2.5, 2.6 844 47.3
Synapse 1.1, 1.2 239 30.3

Scientific Programming 9

Table 5 lists the F1-measure values on each project by
implementing our proposed DP-ARNN method and other
baseline methods. We take project camel as an example. 2e
F1-measure values of DP-ARNN, CNN, and RNN are 0.515,
0.473, and 0.506, respectively, while RF and RBM+RF only
have 0.396 and 0.310. Obviously, DP-ARNN, CNN, and
RNN outperform traditional methods. We can see from the
last row of Table 5 that, in average, the deep learning
methods achieve higher F1-measure than traditional
methods. Especially, DP-ARNN achieves the highest value,
indicating the advantage of our proposed DP-ARNN
method. 2ese results validate the stability of deep
learning-based defect prediction model.

Table 6 lists the AUC values on each project. In most
cases, deep learning-based methods including DP-ARNN,
CNN, and RNN have higher AUC values than traditional
methods. In terms of the average value of the seven projects,
DP-ARNN has the best performance and other deep
learning-based methods also have an advantage over

traditional methods. All these results demonstrate that
compared with traditional methods, deep learning methods
enhance the discrimination ability between clean code and
buggy code.

Based on the analysis above, we come to a conclusion
that deep learning methods are superior to traditional
machine learning methods for software defect prediction.

4.5. Feature Comparison betweenDeep LearningMethods and
Unsupervised Methods (RQ2). To further demonstrate that
features generated by deep learning methods are generally
better than typical unsupervised feature extraction methods,
we construct an RBM model and a DBN model to extract
features from ASTs of programs and feed them into RF for
classification. 2e difference between RBM and DBN is that
the former is a two-layer shallow neural network, and the
latter is a network that consists of multiple RBMs.

By comprehensively comparing the average F1-measure
of RBM+RF and DBN+RF on the seven projects, we can
see that the average F1-measure of DBN+RF is higher than
the values of RBM+RF, indicating that the information of
ASTs of programs can be deeper mined. From the per-
spective of W/T/L, compared with DBN+RF, DP-ARNN
and CNN win 7 times on F1-measure, and RNN also wins 6
times, validating the stability of models based on deep
learning methods. As for AUC, the average values of DP-
ARNN, CNN, and RNN are all higher than the value of
DBN+RF, which means the comprehensive discrimination
ability based on deep learning methods outperforms un-
supervised learning methods. 2ese results validate the
superiority of features extracted from deep learning
methods, especially our proposed DP-ARNN method.

4.6. Performance Comparison between DP-ARNN and Other
Deep Learning Methods (RQ3). In this section, we compare
the performance of our proposed DP-ARNN method with
other deep learning methods, including CNN and RNN. We
construct a convolutional neural network and a recurrent
neural network as our deep learning baseline methods. We
implement one-dimensional convolution on elements in
each encoded vector in CNN. For RNN, we adopt LSTM as
the basic unit and then construct a Bi-LSTM network
without attention mechanism.

From the perspective of W/T/L, compared with CNN
and RNN, our proposed DP-ARNN wins 6 times and 5
times, respectively, on F1-measure. 2is indicates that, in
terms of the stability of software defect prediction, DP-
ARNN has better performance than CNN and RNN. As
for AUC, Figure 7 shows the ROC curves of different deep
learning methods on the seven projects. DP-ARNN im-
proves CNN an average of 0.03, and RNN an average of 0.01
on AUC. 2is demonstrates that DP-ARNN improves the
distinguishing ability of software defect prediction. In terms
of the average F1-measure and AUC of seven projects in
Tables 5 and 6, our proposed DP-ARNN improves CNN by
3% on F1-measure and 4% on AUC. In particular, DP-
ARNN improves RNN by 3% on F1-measure and 1% on
AUC, which indicates that the attention mechanism has a

Table 3: Friedman test among all the 6 methods.

k p value

Baseline 5 0.05
Test result 5 6.37 × 10−5

Table 4: P values of Nemenyi’s posthoc test between DP-ARNN
and baseline methods.

RF RBM+RF DBN+RF CNN RNN

DP-ARNN 0.104 0.001 0.008 0.900 0.766

Table 5: F1-measure comparison of different models.

Project
DP-

ARNN
RF RBM+RF DBN+RF CNN RNN

Camel 0.515 0.396 0.310 0.330 0.473 0.506
Lucene 0.721 0.604 0.600 0.623 0.711 0.672
Poi 0.764 0.669 0.639 0.652 0.734 0.722
Xerces 0.270 0.185 0.128 0.167 0.243 0.262
Jedit 0.560 0.550 0.468 0.500 0.596 0.595
Xalan 0.644 0.638 0.628 0.623 0.639 0.606
Synapse 0.477 0.414 0.303 0.360 0.424 0.487

W/T/L 7/0/0 7/0/0 7/0/0 6/0/1 5/0/2
Average 0.564 0.494 0.439 0.465 0.546 0.550

Table 6: AUC comparison of different models.

Project
DP-

ARNN
RF RBM+RF DBM+RF CNN RNN

Camel 0.790 0.677 0.674 0.654 0.732 0.766
Lucene 0.680 0.641 0.679 0.682 0.688 0.693
Poi 0.796 0.636 0.657 0.668 0.745 0.764
Xerces 0.761 0.576 0.579 0.560 0.671 0.730
Jedit 0.820 0.797 0.797 0.794 0.841 0.842

Xalan 0.674 0.674 0.676 0.676 0.674 0.654
Synapse 0.645 0.682 0.646 0.657 0.632 0.648
W/T/L 5/1/1 5/0/2 4/0/3 4/1/2 4/0/3
Average 0.738 0.669 0.673 0.670 0.712 0.728

10 Scientific Programming

positive effect on further generating crucial features which
lead to better defect prediction performance.

�ese results exactly answer our RQ3 that, compared
with the typical convolutional neural network and recurrent
neural network, our proposed DP-ARNNmethod can better
learn the key syntactic and semantic features of programs
with the help of attention mechanism and perform the best.

4.7. Performance under Different Parameter Settings (RQ4).
In this section, we discuss how we tune the key parameters in
DP-ARNN to achieve the best performance of software defect
prediction. We only select part of projects to tune the pa-
rameters, considering the cost of training time. We first
choose the 90th percentile of ASTvector length in the projects

as the length of each AST vector. �en we select suitable
dimensionality of embedding vectors, and we need to make a
trade-off between model precision and training cost. Em-
pirically, the range of it is from 20 to 150. After that, we set the
batch size as 32 heuristically and the appropriate epoch is
determined by the method of early stopping. �at is, the
training is stopped when the error of the current model on
validation set is worse than the previous one, and we use the
parameters in the previous result as the final parameters of the
model. More importantly, there are three crucial parameters
in our proposed DP-ARNN, including the number of the Bi-
LSTM units per layer, the number of the 1st hidden layer
nodes, and the number of the 2nd hidden layer nodes.We use
F1-measure as the evaluation index. Finally, we calculate the
average F1-measure of the projects under different parameter

ROC camel (area = 0.73)

ROC jedit (area = 0.84)

ROC lucene (area = 0.69)

ROC poi (area = 0.74)

ROC synapse (area = 0.63)

ROC xalan (area = 0.67)

ROC xerces (area = 0.67)

Mean ROC (area = 0.71)

0.2 0.4 0.6 0.8 1.00.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p

o
si

ti
ve

 r
at

e

(a)

ROC camel (area = 0.77)

ROC jedit (area = 0.84)

ROC lucene (area = 0.69)

ROC poi (area = 0.76)

ROC synapse (area = 0.65)

ROC xalan (area = 0.65)

ROC xerces (area = 0.73)

Mean ROC (area = 0.73)

0.2 0.4 0.6 0.8 1.00.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p

o
si

ti
ve

 r
at

e
(b)

ROC camel (area = 0.79)

ROC jedit (area = 0.82)

ROC lucene (area = 0.68)

ROC poi (area = 0.80)

ROC synapse (area = 0.64)

ROC xalan (area = 0.67)

ROC xerces (area = 0.76)

Mean ROC (area = 0.74)

0.2 0.4 0.6 0.8 1.00.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p

o
si

ti
ve

 r
at

e

(c)

Figure 7: �e ROC curves of (a) CNN, (b) RNN, and (c) DP-ARNN, respectively.

Scientific Programming 11

values, choosing the values that the average curve under
different parameters reaches the peak.

In our experiments, we select camel, jedit, and lucene for
parameter tuning. Figure 8 illustrates the F1-measure of DP-
ARNN under different numbers of LSTM units, different
numbers of 1st hidden layer nodes and different numbers of
2nd hidden layer nodes. �e peak points of F1-measure in
average under these three parameters are 40, 16, and 24,
respectively. Hence, we use them as the values of the three
parameters. Other parameters can also be gained via pa-
rameter adjustment, and Table 7 shows all the parameters we
have tuned for DP-ARNN with training datasets.

5. Conclusion

As the scale and complexity of modern software continue to
increase, software reliability has become an important in-
dicator of software quality. To enhance software reliability,
in this paper, we propose a deep learning-based method
called DP-ARNN (defect prediction via attention-based
recurrent neural network), as an aid to software testing
and code review, to predict potential code defects in soft-
ware. Specifically, DP-ARNN leverages RNN to automati-
cally generate syntactic and semantic features from source
code. Furthermore, we employ the attention mechanism to
capture crucial features, which can further improve our
defect prediction performance. Our experiments on seven
open-source projects indicate that, in average, DP-ARNN

improves the state-of-the-art baseline methods by 14% on
F1-measure and 7% on AUC in software defect prediction.

To further evaluate the generality of DP-ARNN in the
fields of defect prediction, in the future, we will conduct
experiments on more projects, including personal projects

Table 7: Tuned parameters for DP-ARNN.

Parameter Description (value)

Embedding_dim
�e dimensionality of embedding

vectors (30)
Vector_length �e length of each AST vector (2000)

Bi-LSTM units
�e number of the Bi-LSTM units

per layer (40)
1st hidden layer
nodes

�e number of 1st hidden layer nodes (16)

2nd hidden layer
nodes

�e number of 2nd hidden layer nodes (24)

Batch_size
�e number of training samples that

propagated through DP-ARNN
at a time (32)

Epoch
One forward/backward pass of all the

training samples (20)

Monitor
�e evaluation criteria on the

validation set (val_acc)

Loss function
�e loss function to minimize

(binary_crossentropy)
Optimizer �e loss function solver (RMSprop)

Activation
Types of activation used in fully connected

layers (tanh, linear, and sigmoid)

Camel

Jedit

Lucene

Average

0.50

0.55

0.60

0.65

0.70

0.75
F

1-
m

ea
su

re

16 24 32 40 48 56 648

Number of LSTM units

(a)

Camel

Jedit

Lucene

Average

0.50

0.55

0.60

0.65

0.70

0.75

F
1-

m
ea

su
re

16 24 32 40 48 56 648

Number of 1st hidden layer nodes

(b)

Camel

Jedit

Lucene

Average

0.50

0.55

0.60

0.65

0.70

F
1-

m
ea

su
re

16 24 32 40 48 56 648

Number of 2nd hidden layer nodes

(c)

Figure 8: F1-measure of DP-ARNN under different parameter settings. Different numbers of (a) LSTM units, (b) 1st hidden layer nodes,
and (c) 2nd hidden layer nodes.

12 Scientific Programming

and company projects. Meanwhile, we will implement our
method to other programming languages such as Python,
Javascript, and C++ to verify the effectiveness of it. More-
over, we will try to embed static code attributes into DP-
ARNN, and then test whether the performance of defect
prediction can be improved.

Data Availability

2ere are two different datasets including source code and
static code metrics of the seven open-sourced Java projects.
2e source code of these projects from Apache is available at
https://github.com/apache. Datasets which contain static
code metrics of theses projects are derived from http://snow.
iiar.pwr.wroc.pl:8080/MetricsRepo/.

Conflicts of Interest

2ere are no conflicts of interest regarding the publication of
this paper.

Acknowledgments

2is work was partially supported by the NSF of China
under Grant nos. 61772200 and 61702334, Shanghai Pujiang
Talent Program under grants no. 17PJ1401900, Shanghai
Municipal Natural Science Foundation under Grant nos.
17ZR1406900 and 17ZR1429700, Educational Research
Fund of ECUST under Grant no. ZH1726108, and the
Collaborative Innovation Foundation of Shanghai Institute
of Technology under Grant no. XTCX2016-20.

References

[1] L. L. Minku, E. Mendes, and B. Turhan, “Data mining for
software engineering and humans in the loop,” Progress in
Artificial Intelligence, vol. 5, no. 4, pp. 307–314, 2016.

[2] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to
software defect prediction,” IET Software, vol. 12, no. 3,
pp. 161–175, 2018.

[3] R. Özakıncı and A. Tarhan, “Early software defect prediction:
a systematic map and review,” Journal of Systems and Soft-
ware, vol. 144, pp. 216–239, 2018.

[4] C. Catal and B. Diri, “A systematic review of software fault
prediction studies,” Expert Systems with Applications, vol. 36,
no. 4, pp. 7346–7354, 2009.

[5] F. Wu, X.-Y. Jing, Y. Sun et al., “Cross-project and within-
project semisupervised software defect prediction: a unified
approach,” IEEE Transactions on Reliability, vol. 67, no. 2,
pp. 581–597, 2018.

[6] Y. Zhou, Y. Yang, H. Lu et al., “How far we have progressed in
the journey? an examination of cross-project defect pre-
diction,” ACM Transactions on Software Engineering and
Methodology, vol. 27, no. 1, pp. 1–51, 2018.

[7] M. H. Halstead, “Elements of software science,” in Operating
and Programming Systems Series, Vol. 2, Elsevier, Amsterdam,
Netherlands, 1977.

[8] T. J. McCabe, “A complexity measure,” IEEE Transactions on
software Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[9] M. Jureczko and D. Spinellis, “Using object-oriented design
metrics to predict software defects,” inModels and Methods of

System Dependability, Oficyna Wydawnicza Politechniki
Wrocławskiej, Wrocław, Poland, 2010.

[10] F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized
vulnerability extrapolation using abstract syntax trees,” in
Proceedings of the 28th Annual Computer Security Applica-
tions Conference, pp. 359–368, ACM, Orlando, FL, USA,
December 2012.

[11] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and
S. Khudanpur, “Recurrent neural network based language
model,” in Proceedings of the Eleventh Annual Conference of
the International Speech Communication Association,
Makuhari, Japan, September 2010.

[12] D. M. Powers, “Evaluation: from precision, recall and
F-measure to ROC, informedness, markedness and correla-
tion,” Journal of Machine Learning Technologies, vol. 2, no. 1,
pp. 37–63, 2011.

[13] J. M. Lobo, A. Jiménez-Valverde, and R. Real, “AUC: a
misleading measure of the performance of predictive distri-
bution models,” Global Ecology and Biogeography, vol. 17,
no. 2, pp. 145–151, 2008.

[14] N. Nagappan and T. Ball, “Using software dependencies and
churn metrics to predict field failures: an empirical case
study,” in Proceedings of the First International Symposium on
Empirical Software Engineering and Measurement (ESEM
2007), pp. 364–373, IEEE, Madrid, Spain, September 2007.

[15] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction,” in Proceedings of the 30th International
Conference on Software Engineering, pp. 181–190, ACM,
Leipzig, Germany, May 2008.

[16] Ö. F. Arar and K. Ayan, “A feature dependent naive Bayes
approach and its application to the software defect prediction
problem,” Applied Soft Computing, vol. 59, pp. 197–209, 2017.

[17] R. Mousavi, M. Eftekhari, and F. Rahdari, “Omni-ensemble
learning (OEL): utilizing over-bagging, static and dynamic
ensemble selection approaches for software defect pre-
diction,” International Journal on Artificial Intelligence Tools,
vol. 27, no. 6, article 1850024, 2018.

[18] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu,
“Dictionary learning based software defect prediction,” in
Proceedings of the 36th International Conference on Software
Engineering, pp. 414–423, ACM, Hyderabad, India, June 2014.

[19] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in
Proceedings of the 35th International Conference on Software
Engineering (ICSE), pp. 382–391, IEEE, San Francisco, CA,
USA, May 2013.

[20] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the
relative value of cross-company and within-company data for
defect prediction,” Empirical Software Engineering, vol. 14,
no. 5, pp. 540–578, 2009.

[21] Q. Yu, S. Jiang, and J. Qian, “Which is more important for
cross-project defect prediction: instance or feature?,” in
Proceedings of the International Conference on Software
Analysis, Testing and Evolution (SATE), pp. 90–95, IEEE,
Kunming, China, November 2016.

[22] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for
cross-company software defect prediction,” Information and
Software Technology, vol. 54, no. 3, pp. 248–256, 2012.

[23] L. Peng, B. Yang, Y. Chen, and A. Abraham, “Data gravitation
based classification,” Information Sciences, vol. 179, no. 6,
pp. 809–819, 2009.

[24] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples
reduction in cross-company software defects prediction,”
Information and Software Technology, vol. 62, pp. 67–77, 2015.

Scientific Programming 13

https://github.com/apache
http://snow.iiar.pwr.wroc.pl:8080/MetricsRepo/
http://snow.iiar.pwr.wroc.pl:8080/MetricsRepo/

[25] Y. Yao and G. Doretto, “Boosting for transfer learning with
multiple sources,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
pp. 1855–1862, IEEE, San Francisco, CA, USA, June 2010.

[26] S. Qiu, L. Lu, and S. Jiang, “Multiple-components weights
model for cross-project software defect prediction,” IET
Software, vol. 12, no. 4, pp. 345–355, 2018.

[27] K. D. Cooper, T. J. Harvey, and T. Waterman, “Building a
control-flow graph from scheduled assembly code,” Technical
Report TR02-399, Rice University, Houston, TX, USA, 2002.

[28] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the 38th
International Conference on Software Engineering (ICSE ’16),
pp. 297–308, IEEE, Austin, TX, USA, May 2016.

[29] G. Lin, J. Zhang, W. Luo et al., “Cross-project transfer rep-
resentation learning for vulnerable function discovery,” IEEE
Transactions on Industrial Informatics, vol. 4, no. 7,
pp. 3289–3297, 2018.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[31] H. K. Dam, T. Pham, S.W. Ng et al., “A deep tree-basedmodel
for software defect prediction,” 2018, https://arxiv.org/abs/
1802.00921.

[32] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction
via convolutional neural network,” in Proceedings of the IEEE
International Conference on Software Quality, Reliability and
Security (QRS), pp. 318–328, IEEE, Prague, Czech Republic,
July 2017.

[33] Y. Kim, “Convolutional neural networks for sentence clas-
sification,” 2014, https://arxiv.org/abs/1408.5882.

[34] A. V. Phan, M. Le Nguyen, and L. T. Bui, “Convolutional
neural networks over control flow graphs for software defect
prediction,” in Proceedings of the IEEE 29th International
Conference on Tools with Artificial Intelligence (ICTAI),
pp. 45–52, IEEE, Boston, MA, USA, November 2017.

[35] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On
the naturalness of software,” in Proceedings of the 34th In-
ternational Conference on Software Engineering (ICSE),
pp. 837–847, IEEE, Zurich, Switzerland, June 2012.

[36] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin, “Building
program vector representations for deep learning,” in Pro-
ceedings of the International Conference on Knowledge Science,
Engineering and Management, pp. 547–553, Springer,
Changchun, China, August 2015.

[37] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect
prediction for imbalanced data,” in Proceedings of the IEEE/
ACM 37th IEEE International Conference on Software Engi-
neering, pp. 99–108, IEEE, Florence, Italy, May 2015.

[38] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy,
“Hierarchical attention networks for document classifica-
tion,” in Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 1480–1489,
San Diego, CA, USA, June 2016.

[39] M. Jureczko and L. Madeyski, “Towards identifying software
project clusters with regard to defect prediction,” in Pro-
ceedings of the 6th International Conference on Predictive
Models in Software Engineering (PROMISE ’10), p. 9, ACM,
Timisoara, Romania, September 2010.

[40] T. Menzies, J. Greenwald, and A. Frank, “Data mining static
code attributes to learn defect predictors,” IEEE Transactions
on Software Engineering, vol. 33, no. 1, pp. 2–13, 2007.

[41] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and
A. Bener, “Defect prediction from static code features: current

results, limitations, new approaches,” Automated Software
Engineering, vol. 17, no. 4, pp. 375–407, 2010.

[42] M. Friedman, “A comparison of alternative tests of signifi-
cance for the problem ofm rankings,”Annals of Mathematical
Statistics, vol. 11, no. 1, pp. 86–92, 1940.

[43] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7,
pp. 1–30, 2006.

[44] O. Reyes, A. H. Altalhi, and S. Ventura, “Statistical com-
parisons of active learning strategies over multiple datasets,”
Knowledge-Based Systems, vol. 145, pp. 274–288, 2018.

[45] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan,
and B. P. Feuston, “Random forest: a classification and re-
gression tool for compound classification and qsar modeling,”
Journal of Chemical Information and Computer Sciences,
vol. 43, no. 6, pp. 1947–1958, 2003.

[46] I. Sutskever, G. E. Hinton, and G. W. Taylor, “2e recurrent
temporal restricted Boltzmannmachine,” in Proceedings of the
Advances in Neural Information Processing Systems,
pp. 1601–1608, Vancouver, Canada, December 2009.

[47] G. Hinton, “Deep belief networks,” Scholarpedia, vol. 4, no. 5,
p. 5947, 2009.

14 Scientific Programming

https://arxiv.org/abs/1802.00921
https://arxiv.org/abs/1802.00921
https://arxiv.org/abs/1408.5882

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable

Computing

Hindawi

www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi

www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scientific
Programming

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

