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Abstract— This paper provides an overview of
Software-Defined “Hardware” Infrastructures (SDHI).
SDHI builds upon the concept of hardware (HW) resource
disaggregation. HW resource disaggregation breaks today’s
physical server-oriented model where the use of a physical
resource (e.g., processor or memory) is constrained to a physical
server’s chassis. SDHI extends the definition of Software-Defined
Infrastructures (SDI) and brings greater modularity, flexibility,
and extensibility to cloud infrastructures, thus allowing cloud
operators to employ resources more efficiently and allowing
applications not to be bounded by the physical infrastructure’s
layout. This paper aims to be an initial introduction to SDHI
and its associated technological advancements. The paper starts
with an overview of the cloud domain and puts into perspective
some of the most prominent efforts in the area. Then, it presents
a set of differentiating use-cases that SDHI enables. Next, we
state the fundamentals behind SDI and SDHI, and elaborate
why SDHI is of great interest today. Moreover, it provides
an overview of the functional architecture of a cloud built on
SDHI, exploring how the impact of this transformation goes far
beyond the cloud infrastructure level in its impact on platforms,
execution environments, and applications. Finally, an in-depth
assessment is made of the technologies behind SDHI, the impact
of these technologies, and the associated challenges and potential
future directions of SDHI.

Index Terms—CR-Software-Defined Infrastructure, Resource
Disaggregation, Cloud Infrastructure, Rack-scale, Hyperscale
Computing, Disaggregated DC

I. INTRODUCTION

Cloud computing continues to be an emerging field that

accelerates digital transformation and innovations in many

other technology fields, such as mobile communication [1–

7], robotics [8], and Internet of Things (IoT) [9]. Over the

years, the information technology (IT) industry has been

continuously searching for ways to improve the efficiency

of cloud infrastructures (specifically data centers (DCs)),

regardless of their size). By improved efficiency we mean,

among other aspects, reducing resource wastage and faster

infrastructure adaptation. Examples of such improvements

are the introduction of server virtualization technologies,

such as hypervisor & container technologies [10] and the

move towards Software-Defined Infrastructures (SDI). With

SDI the entire DC’s infrastructure is abstracted, becoming

software-defined and dynamically programmable [11].

The abstraction introduced by SDI enabled workloads to be

transparently moved within and across cloud infrastructures.

For example, this allows applications to quickly scale up/down

when they could not do so in the particular infrastructure

node where they were initially running. Additionally, these

technologies allow infrastructure operators to optimize the

infrastructure’s efficiency (e.g., reducing resource wastage

and energy consumption) and facilitating maintenance (e.g.,

replacement of servers) by moving workloads around.

In the effort to continue increasing application and

infrastructure efficiency, additional approaches, such as

microservices [12] and serverless computing [13] have

been introduced. Microservices increase modularity by

decomposing today’s traditional applications into smaller

service units, allowing more fine-grained control. In serverless

computing, server management and capacity planning aspects

are abstracted away and completely hidden from the developer

or DC operator. The function-as-a-Service concept [14] is one

way to achieve a serverless architecture, while bringing an

increased level of granularity and providing more fine-grained

control. All of these technologies are primarily based on

software mechanisms deployed and running on top of the

cloud infrastructure in order to hide and deal with the

limitations of this infrastructure.

Current cloud infrastructure architectures build upon a

server-oriented model, hence they are constrained by server

boundaries and the servers’ physical hardware configuration.

While SDI and other software approaches continue to

improve the efficiency of such infrastructures, industry has

realized that to achieve further improvements in efficiency

requires changes in some of the today’s primary infrastructure

principles. This has led to the concept of hardware (HW)

resource disaggregation and Software-Defined "Hardware"

Infrastructures (SDHI). Here the term "hardware" is used to

emphasize the fact that the concept is not simply applying

traditional virtualization or other types of software approaches

on top of legacy infrastructures.

SDHI requires the cloud infrastructure to be re-architected

in fundamental ways. SDHI changes this model by introducing

resource disaggregation into the infrastructure. Resource

disaggregation breaks the current physical server boundaries

and considers physical resources as individual and modular

components. These resources are then controlled through

software, allowing the composition of a logical server

that replaces a motherboard. The resulting logical server

interconnects a set of different resources over which an

operating system (OS) runs on an interconnected set of

resources allocated from pools of resources.

This is the authors' version. For the final published version of the work, please visit
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This new approach extends the definition of SDI and brings

greater modularity, agility, flexibility, and extensibility of the

cloud infrastructure. In SDHI a unified software layer controls

the (logical) interconnection between different resources that

realize logical server systems. While some of the technologies

required for SDHI are already in place today [15], there is still

a journey ahead to realize the full potential of SDHI.

The contributions of this paper are numerous. One of the

key contributions of this survey is to present a consolidated

in-depth study of the enabling technologies and ongoing

efforts regarding SDHI. Several ad hoc technological

advancements in SDHI have already been made, while

others are still ongoing. However, there is no introduction

to these in the literature. However, there are technology

surveys available that look, individually, into technologies

that relate to SDHI, such as virtualization technologies [16]

or SDN [17]. This paper aims to be the first introduction to

SDHI related technology advancements and existing surveys.

Moreover, the paper examines how a shift in hardware and

the concept of HW resource disaggregation impacts SDI and

the entire cloud architecture, from the HW level up to the

application level. Furthermore, the paper discusses previously

identified challenges, surveys existing works, and identifies

some unforeseen challenges and open research directions.

Finally, it provides a set of use-cases that SDHI will unlock.

We believe our approach makes this paper a valuable resource

for both the research community and practitioners seeking to

understand the complexities of SDHI and to help them focus

on the key challenges of this concept.

The remainder of this paper is organized as follows.

Section II briefly describes traditional cloud infrastructure

architectures and elaborates the principle of SDI and its

current level of maturity. Moreover, it elaborates the SDHI

terminology and discusses the drivers that motivated the

realization of SDHI. Section III discusses the market

demand for SDHI and describes some of the technical

use-case opportunities it will unlock. Section IV examines

the key architectural and functional components of a cloud

infrastructure ecosystem concerning SDHI. Next, Section

V gives a technology overview and describes a range of

ongoing efforts toward realizing SDHI. Additionally, it

identifies technical challenges and open research directions

regarding SDHI technology. Section VI briefly discusses

related research initiatives, and refers to a set of tools that

can be used to further explore the area of SDHI. Finally,

Section VII presents a summary of lessons learned and a set

of concluding remarks.

II. SOFTWARE DEFINED INFRASTRUCTURE BACKGROUND

Today cloud providers are utilizing virtualized and SDI

environments to achieve a higher degree of cost reduction,

agility, optimization, programmability of the infrastructure,

and automation. Despite all these measures, SDI is limited and

tightly coupled to the traditional server architecture. Servers

in today’s cloud infrastructures are pre-defined at the factory

where hardware resources are assembled within a chassis and

cannot be used directly beyond that chassis. HW resource

disaggregation expands the boundary of SDI by breaking

this tight coupling and allowing resources to be handled as

independent resources regardless of the physical chassis they

are placed in.

A. Server-based SDI

SDI was a response to the demand for greater flexibility,

agility, and optimization. As shown in Fig. 1, several other

terms with a tight connection and similarity with SDI

terminology have also been used in the literature, such as:

Software-Defined Environment (SDE), Software-Defined

DC (SDDC), and Software-Defined Cloud (SDCloud) (see

Table I). By SDI we mean the entire DC’s infrastructure

is software-defined and dynamically programmable. SDI

can be realized by different building blocks including

Software-Defined Computing (SDC) and virtualization,

Software-Defined Networking (SDN) and virtual network

function (VNF), and Software-Defined Storage (SDS) (see

Table II).

SDE

SDI

SDS

SDC

SDN

SDcloud

NFV

SDDC

Fig. 1. Taxonomy of software defined environments.

The current cloud infrastructure architecture and SDI

are based upon a physical server-oriented model, where

the infrastructure (i.e., a DC) is composed of pools of

servers. These servers typically consist of a physical

circuit board predefined and populated at the factory with

specific resources, such as central processing units (CPUs),

co-processors, memory, and networking subsystems. As

shown in Fig. 2, these resources are interconnected using

specialized communication channels, such as Peripheral

Component Interconnect Express (PCIe), Double Data

Platform	

Controller	Hub

CPU

Storage

DDR

QPI

DDR

NIC

PCIe

DMI,	PCIe DMI,	PCIe

Physical	Server	/Host

Fig. 2. Simplified physical server component architecture.
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Rate (DDR), SerialAT Attachment (SATA), Quick Path

Interconnect (QPI), and Direct Media Interface (DMI).

Communication between server components is limited to the

server’s chassis and has strict requirements on latency and

bandwidth to enable the system to work as an integrated

system. Table III summarizes these requirements. Servers are

interconnected via their network interface (generally referred

to as a NIC) via a DC-wide network, as shown in the left

side of Fig. 3.

TABLE I
TERMINOLOGIES SIMILAR TO SDI TERMINOLOGY.

Terminology Description

SDE [11] All the components in an environment (e.g. IT
infrastructure, power systems, and cooling systems)
are software-defined and dynamically programmable.

SDI [11] The entire DC IT infrastructure is software defined
and dynamically programmable.

SDCloud
[18, 19]

The process of cloud configuration automated
by extending virtualization to all of the Cloud
infrastructure’s physical resources in a DC.

SDDC [20] The software-defined concepts is integrated into all
DC’s main blocks, such as network, storage, compute
and security.

TABLE II
TERMINOLOGIES INVOLVED IN SDI.

Terminology Description

SDN [17] Separates the network control planes from data
planes and physical network entities to improve
programmability, efficiency, and extensibility of
network.

SDS [21] Separates the control planes from the data plane of
a storage system enabling heterogeneous storage to
respond dynamically to changing workload demands.

SDC [11] Originated from the computing environment in which
the computing functions are virtualized and managed
as virtual machines through a central interface as one
element.

Virtualization
[16, 17]

A software abstraction layer (i.e., hypervisor)
emulates the behavior of physical entities in
software. This term has been used in two different
contexts in the literature, i.e., network virtualization
and server virtualization. See Section V-D2.

VNF
[22, 23]

Relocates network functions from dedicated network
appliance to commodity servers.

TABLE III
APPROXIMATE COMMUNICATION REQUIREMENTS BETWEEN DIFFERENT

RESOURCES WITHIN A SERVER. THESE VALUE DIFFER FOR DIFFERENT

HARDWARE [24, 25].

Communication type Delay (ns) Bandwidth(Gbps)

CPU - CPU ≈ 10 500

Memory - CPU ≈ 20 500

CPU - 10G NIC > 10
3

10

CPU - SSD disk > 10
4

5

CPU - HDD disk > 10
6

1

Until recently, networking technologies were unable

to overcome the need to place the different components

very close in terms of physical proximity. This resulted in

fixed server configurations, making adaptation to workloads

extremely difficult. Furthermore, infrastructure lifecycle

management is tightly bound to the lifecycle of a server

chassis. This causes problems for providers who wish to

upgrade part of their infrastructure, especially since the

resources that compose a server have different lifecycles.

For example, if an infrastructure provider wants to upgrade

or increase its compute capacity by adding new memory or

processor technology, in most cases this means replacing the

entire server.

Another key challenge in today’s infrastructures is

low resource utilization [26, 27], when the resources the

infrastructure operator has paid for are not utilized to their

full capacity. One reason for this is resource stranding [28],

because of resources left from fragmentation due to the

mismatch between application requirements and the fixed

configuration of each server. For example, a CPU-intensive

application can exhaust a server’s computational resources

while stranding other resources, such as memory and

storage. To cover peak demands infrastructure providers must

over-provision. This leads to large aggregated amounts of

stranded resources and hence low utilization.

In order to improve resource utilization, infrastructure

providers employ advanced resource scheduling techniques,

in an attempt to solve what it is in most cases an NP-hard

optimization problem. Moreover, they rely upon virtualization

technologies, such as containers [29, 30] and hypervisors [31]

Host(s) Host(s)

DC	wide	network	connectivity

NIC

NIC
NIC

Host 

OS
Hypervisor Hypervisor

App App

…

AppApp

CPU Pool(s) Memory Pool(s) Storage Pool(s)

DC	fast	interconnect

Logical server(s)/Host(s) Logical server(s)/Host(s)

DC	wide	network	connectivity

NIC
NIC

NIC

NIC Pool(s)

NIC

NIC

NIC

NIC

NIC

NIC

SDI	based	upon	a	disaggregated	architectureServer	oriented	SDI

Fig. 3. Server-oriented SDI vs. SDI based upon resource disaggregation
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(such as Xen [32], VMware [33], and KVM [34]), to

implement server consolidation, multi-tenancy, and resource

sharing. These techniques allow infrastructure providers to

reduce their costs while providing dynamic scaling to

their customers. In general, hypervisor virtualization can be

classified into two types: the hypervisor runs directly on

the hardware or the hypervisor runs on a host’s OS - see

the left sides of Fig. 3. However, hypervisor virtualization

comes at the cost of extra overhead, as it interleaves execution

of the applications and the execution of the hypervisor/host

OS. Virtualization adds different amounts of overhead based

on the type of virtualization and other competing workloads

running on the same physical server [35–37]. In contrast,

container-based virtualization has some benefits compared to

hypervisor virtualization, especially in terms of performance.

However, it is still subject to overheads and is highly

dependent on the server’s OS.

Despite all these measures, infrastructures still operate at

low utilization [27] as today’s approaches cannot overcome

the physical boundaries of a server’s chassis.

B. Software-Defined “Hardware” Infrastructure (SDHI)

SDHI brings a novel approach to cloud infrastructures by

introducing resource disaggregation based on software-defined

principles wherein all resources are pooled and managed

by software. Resource disaggregation breaks the traditional

physical server architecture boundaries and considers hardware

resources as individual and modular components. An ultimate

disaggregation scenario has each of the different resources

organized in independent pools of computing units, memory

units, storage units, network interfaces, and other resources

(e.g., accelerators, such as Graphics Processing Unit (GPU)).

SDHI breaks the one-to-one mapping between a physical

server’s chassis and a host by decoupling the software and

management components from the underlying hardware. This

makes the infrastructure more programmable. When an SDHI

is initially deployed, there is no notion of host/server systems,

only knowledge of the different hardware components yet to be

assigned and programmed. The cloud infrastructure operator

then utilizes an application programing interface (API) to

create specific host/server systems, i.e., logical servers or

logical hosts.

These principles bring a high level of fluidity, modularity,

and flexibility to the cloud infrastructure. In this way, it is

possible to dynamically establish and adapt the configuration

of logical servers to precisely match the needs of particular

workloads by on-demand selection and configuration of

(physical) resources from different resource pools. This

requires the necessary physical resources to be interconnected

via high-speed very low latency communication to handle the

physical separation between the different physical resources.

The interconnection fabric plays a pivotal role within a

SDHI architecture, being both an enabler and blocking

factor. Networking can be realized by two separate

networks with different requirements: a fast interconnect

fabric between individual hardware components and a

DC-wide interconnection via NICs. The fast interconnect

fabric interconnects a set of hardware resources from which

logical hosts can be realized as an integrated system. As

a result, the fast interconnect fabric deals with the traffic

within logical hosts. In contrast, in server-based SDI model,

this interconnection traffic was restricted to a physical

server’s motherboard. This fast interconnect fabric should

support strict latency and bandwidth requirements [24], while

providing substantial resiliency, low cost, and low power

consumption. The DC-wide interconnection enables logical

hosts to communicate with the external environment (e.g., the

Internet or other logical hosts) via the logical host’s NICs.

This traffic corresponds to the network traffic that exists in

today’s DC. The right side of Fig. 3 illustrates SDHI realized

as a set of resource pools.

Ultimately, with SDHI, each hardware resource can serve

multiple hosts, and a single host can consume resources

from multiple hardware resources, thus allowing operators to

optimize their resources.

Researchers describe somewhat different levels and types

of resource disaggregation [38]. In the majority of cases,

disaggregation is restricted to a rack (i.e., logical hosts

can only be composed within a rack, therefore the term

“rack-scale”). This restriction is mostly due to network

limitations. However, we believe these limitations will

be overcome in the long run. Moreover, in some cases,

these systems are composed of microservers (each with

a heterogeneous set of resources) interconnected through

high-bandwidth low-latency networks. In other cases, they

consist of different pools of resources (i.e., each pool having

one kind of resource).

The concept of SDHI captured the interest of both industry

and research community. One tangible realization is Intel’s

Rack Scale Design (RSD) [39, 40]. RSD is one of the

pillars of the Open Compute Project (OCP) [41], an open

source initiative that aims to scale computing infrastructures

in the most efficient and economical way. Moreover, RSD is

part of the foundation of Ericsson’s Hyperscale Data System

(HDS) 8000 [15]. Other industrial efforts in the area include

Memory-Driven Computing [42], Rack-Scale Computing [43],

and others [44–46]. Moreover, research initiatives trying to

advance the state-of-the-art are also taking place [47–52]. We

further elaborate on these in the following sections.

At this point, it is important to highlight that currently there

is not (yet) a fully SDHI environment. Most of the systems

only support partial disaggregation (e.g., storage [15, 41]) and

are limited to the rack level. Base solutions for the overall

system management entities are available (e.g., Intel RSD

[39]). However, technology is evolving, and with time further

disaggregation will occur (i.e., memory, network interfaces,

and others), putting increased and more complex requirements

on the management systems.

III. NEW OPPORTUNITIES AND APPLICATIONS

This section discusses why the market is demanding SDHI,

and then elaborate on some of the technical use-case and

workload deployment opportunities that are made possible by

SDHI. These use cases illustrate the possibility of innovations

in the way we run application and workloads in DCs.
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A. Why Now? Market Demand

The rapid digitalization of industries, combined with the

concept of IoT [53] and the ongoing transformation of

companies through the use of cloud solutions, are just a few

of the factors that have driven the increase in IT capacity [54].

In consequence, global spending on DC systems is growing

[55] and there have been efforts to move toward SDI driven by

economic and pricing theories for cloud resource provisioning,

cloud management, and cloud networking [56, 57] in order

to achieve sustainable profit, cost reduction, and flexibility.

However, because the current ratio between IT capacity and

its related cost is still high, it is not easy to deliver the

desired capacity by using current SDI technologies simply

with increased investment. In addition to financial barriers,

the increasing complexity of new services, such as their

high dynamicity, brings new challenges for future cloud

deployments. These facts have led the IT community to search

for ways to scale data center (DC) infrastructures beyond the

cost and capacity limitations of today’s DC architecture [58].

The first step is to rethink the DC architecture and make

it more modular, flexible, and smart. The SDHI concept is

driving this architecture change.

SDHI promises to bring new functional and business

opportunities by extending the boundary of current SDI.

It promises to be a step towards reduced Total Cost of

Ownership (TCO) [59, 60]. For example, hardware utilization

in current DCs is under 50 percent [61]. Until recently

this was acceptable, but that is no longer the case. The

market is too aggressive to ignore such wastage of resources.

Hence, everything that can significantly affect the operational

performance of the cloud infrastructure matters. Consequently,

economic efficiency is vital for cloud owners of all sizes.

The cost benefits of SDHI can be divided into business

opportunities and TCO reduction [62] (as described below).

Business opportunities: Combining resource

disaggregation and software-defined capabilities makes

it less expensive and faster to expand the infrastructure to

follow the exponential growth in both data and demand

for IT services. Moreover, it offers the possibility to

right-size the infrastructure based on the actual market [63]

and customer demand, while avoiding over-dimensioning or

losing customers due to insufficient capacity. New capacity

can be added by either upgrading current components with

more powerful ones (e.g., upgrading CPUs to ones with higher

clock frequencies or larger core counts) or simply adding new

chassis of the specific components which are the bottlenecks

(e.g., if there is an increase in the amount of data, expanding

the storage tier and memory tier, without needing to purchase

new and costly CPUs). Moreover, the inherent flexibility

and dynamicity of this type of infrastructure facilitates

the adaptation of resources to fit any type of workload or

application, further reducing the risk of investments in the

infrastructure. Improved efficiency and finer granularity in

creating logical servers bring new revenue streams for the

cloud infrastructure operator. This makes it possible for these

operators to act as a service provider by using these extra

resources to offer new services to their customers at low prices.

TCO reduction: Low resource utilization is one of the

primary reasons for the high cost of computing units [64]. It

is widely recognized that cloud infrastructures run at very low

levels of resource utilization due to their physical silos, hence

resources are being wasted. Resource disaggregation provides

a greater degree of sharing, thus enabling higher utilization.

Higher utilization means that the same workload can be served

with less hardware [65], hence reducing capital expenditures

(CAPEX). However, cost savings go beyond CAPEX and can

impact operational expenditures (OPEX).

SDHI’s TCO related aspects have been thoroughly explored

in [60] via a framework to assess the cloud infrastructure’s

economic efficiency. This work presents a thorough cost

comparison of deploying an SDHI architecture versus

deploying a server-based SDI architecture in DCs. The study

considers all the major cost categories incurred during the

DC’s lifetime with regard to CAPEX and OPEX (i.e., from

the deployment phase, when a huge upfront investment is

required, to all costs related to each operational process).

Results show that in the presence of heterogeneous workloads,

having a DC based on SDHI brings high savings (of more

than 40% depending on the applications) compared to

server-based SDI. Moreover, lifecycle management cost was

one of the main differentiators between SDHI and SDI.

Electricity is one of the limiting factors for deploying

DCs. One of the direct consequences of increased resource

utilization which comes from SDHI is reduction in the DC’s

power consumption. As fewer resources have to be turned on

for the same workload, the power consumption per unit of

workload is lower. Using more energy efficient algorithms

for workload placement, which is managed by SDHI, can

further reduce energy consumption, leading to a greener

DC. Reduction in power consumption, leads to less heat

dissipation, hence less cooling power, which contributes to

increased power savings compared to DCs operated with

server-based SDI [66]. Also, the architecture of the SDHI DCs,

including the way cooling system is designed, can have a large

impact on the energy consumption of a DC. For example,

[67] proposes a novel energy-efficient architecture for

software-defined DC infrastructures, were the total power

consumption is reduced by 27% in comparison to a DC with

a conventional architecture. Moreover, the capabilities of

Smart Grids technologies [68–70] should be exploited within

DCs based on SDHI to further save energy.

B. Technical Applications

1) Adaptive Server Realization: Ideally, there should be a

perfect match between the workload being executed and the

logical server’s resources in an SDHI to eliminate resource

stranding, thus gaining the most from this new paradigm.

With SDHI, the logical server and the platforms and

applications it hosts (the service domain) can interact with

the different operational layers (see Section IV) by sending

requests and receiving hints and feedback. Tight interaction

between the service and operation domains presents an
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opportunity for dynamic configuration and fine-grain resource

(re)scheduling that can increase resource utilization and

system efficiency. Fig. 4 illustrates some scenarios where a

logical server could benefit from dynamic adaptation.

Fig. 4(a) illustrates a scenario where the execution

environment scheduler decides which job (i.e., part of a

given workload) will be executed by which CPU, hence

this scheduler can provide feedback to the management

stack (step 1). This feedback can be used to optimize the

configuration of the logical server. For example, the network

can be reconfigured such that the part of the known workload

will be executed in a particular logical server’s CPU and

hence will be allocated memory close to this CPU (step 2).

Later the operations domain can be notified of either: (1)

the logical server requiring more resources - Fig. 4 (b) -

step 1 or (2) a set of resources may be released - Fig. 4(c)

- step 1. In these cases, the operations domain dynamically

re-configures the different resources and DC interconnection

fabric to adapt the logical server to its new configuration

(Fig. 4 (b) and (c) - step 2). Minimizing the time required

for realizing these dynamic adaptations is a major factor in

achieving high performance and efficiency.

Consistent monitoring of the application and using feedback

from the execution layer enables the operations domain to

identify deviations in the behavior of a given workload

from the predicted behavior. A key question is to identify

how frequently reconfiguration and rescheduling should take

place in order to increase the efficiency of logical servers

while considering the time required for re-configuring and

re-scheduling the workload, the network conditions, and the

availability of the necessary physical resources.

2) The Big Modular Machine: Today application designers

have to deal with the resource limitations of a single server.

This is particularly true for those applications that store and

handle a large volume of data, thus requiring a large amount

of memory. SDHI can solve this problem by forming “very”

big machines that are composed by interconnecting a large

number of CPUs, memory, and storage.

Applications (such as in-memory databases) that today

rely on being distributed over a set of servers to achieve

scale can potentially be deployed on a single big machine

provisioned through SDHI. This will reduce the complexity

of the application by eliminating the synchronization

overheads, load balancing, and failure handling that arise

due to scaling by distribution. This approach can also help

improve the performance of the application by removing the

communication overhead between the servers, as all the data

and processing are resident within the single big machine.

High-performance Computing (HPC) type of applications,

real-time analytics, and in-memory software such as

SAP-HANA (which today can be configured to operate on

8 cores and 6 TB of RAM) can potentially be scaled up to

operate on a much larger number of CPUs and much larger

amounts of memory. This scaling up is needed to cater for

large-scale data handling in the future. Legacy applications

(such as operations support systems and business support

systems (OSS & BSS) were not designed to scale out but need

to handle the demands of the future. However, these would

benefit from being deployed on logically large machines, thus

eliminating the need for scaling up individual processors.

3) Highly Available Server: High Availability (HA) is

an important concept in building a robust service. Today

ensuring HA of hardware components running a service

requires full redundancy of the service on another server(s).

In other words, the granularity is that of a server. This is not a

cost-effective solution and the recovery time is large.

Moreover, the application needs to be aware of the HA setup.

SDHI introduces new failure points, as the boundary of

server extends beyond a single physical blade. Thus there

are scopes for research in HA and fault resiliency models

at HW and software levels. Nevertheless, in SDHI, HA can

be provided on a component level rather than a server level.

Logical servers composed using SDHI can include redundant

components that can quickly take over from components that

fail. This means that the failure of a single component in an

SDHI composed logical server need not result in the failure of

the entire logical server, hence the logical server can continue

to function due to the redundant components. Component
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Fig. 4. Adaptive and dynamic logical server realization: (a) shows the configuration optimization based on application feedback, (b) shows what happens
when a logical server requires more resources, and (c) shows what happens later when the logical server requires fewer resources.
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level granularity combined with component health monitoring

enables the addition of redundant components only of the type

that are failing instead of allocating multiples of an entire

redundant server as is done today. An SDHI based logical

server can be made robust against failure of CPU, memory,

disk, or NICs without incurring a long downtime, resulting

in the HA mechanism being transparent to the applications,

hence reducing their complexity.

4) In-memory communication and data sharing: A lot

of network traffic that traverses network elements (such as

switches in a DC) is between applications running on different

servers. Today, in order to achieve scale, applications are

composed of different components that can be run in a

distributed fashion on different servers, but this may lead to

an exchange of a large volume of data between the servers

within a DC (or even between different DCs).

In an SDHI, logical servers can potentially share a portion

of memory and use that memory as a communication channel.

This mode of communicating via shared memory can reduce

cost by reducing the number or capacity of NICs and

switches in the DC (at the cost of using the interconnection

fabric). Moreover, it can reduce latency for the communication

between applications.

Today big data frameworks (such as Hadoop) need to keep

data in a distributed fashion spanning a large number of servers

[71]. A single large file can be decomposed into smaller

blocks and stored on different servers. Accessing a part of

the file from a server might require network communication

to fetch the block of that file from a different server, which

increases latency and hence negatively impacts performance.

The flexibility of SDHI in assigning the resources to logical

servers facilitates attaching a block of storage containing the

required section of a file to a logical server which wants to

operate on the data thus avoiding transfer of the data over the

network. Another advantage is the possibility to dynamically

compose a logical server for processing data around the

storage component which holds the data. In a Map-Reduce use

case, logical servers can be composed of storage components

which hold the data required for the map operation. Once

the map operation is completed and the intermediate data is

written to the storage, new logical servers can be composed

of those storage components holding the intermediate results

for the reduce operation thus reducing the need to shuttle data

between servers as it is traditionally done.

IV. DC ARCHITECTURE BASED ON SDHI

HW disaggregation and the associated concept of SDHI are

rather disruptive technologies whose effects are far reaching

— from HW design and manufacturing to how applications are

developed for disaggregated HW systems. To understand the

impact of HW disaggregation on the architecture of DCs, we

start with common cloud service models and their associated

stakeholders. Fig. 5 shows these stakeholders (in bold) in a

generic DC deployment that provides all of the traditional

“X” as a Service (XaaS) services. In this deployment, end

users consume applications from software providers (i.e.,

Software as a Service (SaaS)). Application providers develop

End User 

Application Providers 

Platform Providers 

Infrastructure Providers 

Hardware Providers 

Fig. 5. Key stakeholders in a deployment of a cloud-type DC.

(or obtain developed) applications for a software platform

that is operated and maintained by platform providers (i.e.,

Platform as a Service (PaaS)). Platform providers deploy their

platform software on the (virtualized) infrastructure provided

as a service by infrastructure providers (i.e., Infrastructure as

a Service (IaaS)). Infrastructure providers, in turn, consume

the services of HW providers (e.g., HW purchasing/leasing,

colocation, and other utilities & facilities) to provision the

HW infrastructure on which they provide their service.

A functional architecture of a DC system built on

disaggregated HW resources can be defined with the above

stakeholders in mind. Fig. 6 shows one such architecture that

has a management layer that corresponds to each stakeholder.

In addition to these layers, the functional blocks of the

architecture are organized as service-domain functions (on the

left) and operations-domain functions (on the right). Service

domain functions relate to the “payload” (from the viewpoint

of the DC), including the applications that are used by the

end users of the cloud, the platform-level software (i.e., OS

and supporting services needed to run the application), and

HW resources used to execute the software. The operations

domain functions, on the other hand, relate to the management

functions that make the DC work, starting from those at the

hardware level that allow resources to be split and composed

into an SDHI, to those at the application level that manage

the orchestration and deployment of application components.

Management functions implemented by several existing cloud

management systems, such as OpenStack [72], Ubuntu Metal

as a Service (MaaS) [73], and Kubernetes [74] are examples

of operations domain functions at the various layers of the

architecture. However, beyond these traditional functions there

are new server functions, such as those described in Section

Application
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Platforms

Management
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Infrastructures
SDI Management

Resource Pools
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Fig. 6. High-level architecture for a DC built from disaggregated HW
resources.
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IV-A that are specifically needed to realize SDHI systems.

A. Hardware Layer

This layer includes the physical resources and their

associated interconnects/fabrics from which the SDHI

can be realized (in the service domain), as well as the

HW-near functions that enable disaggregated HW to be

pooled, aggregated, and composed into a software-defined

logical infrastructure (in the operations domain). In the service

domain, this architecture does not make specific assumptions

with regard to the level of HW disaggregation or the specific

functionalities available at the HW-level. However, it does

assume that the available HW is composable in the sense that

it is possible to dynamically compose and recompose logical

infrastructures from the HW resources and HW resources are

organized into interconnected resource pools.

The operations domain functions at this layer include

traditional server management functions that are implemented

in microcontrollers, such as IPMI [75], HP’s ILO [76],

and Dell’s iDRAC [77]. However, there are a new set of

management functions (such as the composability service

in Redfish [78] - see section V-C1) which may present

an important management overhead when compared to the

management of traditional server-based systems.

In the service domain, performance implications need to

be taken into account, namely due to additional networking

latency between different components within SDHI. These

performance implications need to be measured against

those present in a non-SDHI system, such as virtualization

technologies (e.g., hypervisors or containers), to understand

if the benefits of a specific SDHI solution overcome those of

a non-SDHI solution.

B. SDHI Layer

This layer provides the equivalent functionality of a

pure SDI and IaaS in today’s cloud. It consists of logical

infrastructures that are composed of the assigned HW

resources. The operations domain for this layer receives

requests for logical infrastructures and composes them by

making appropriate calls to the HW-layer functions. This

layer has a global view of the underlying HW pools and

the composed entities, i.e., it has complete knowledge of all

HW resources, how they are connected via the interconnects,

how the various resources can be sliced and composed with

each other to form logical infrastructures, the logical structures

that have already been created out of these resources, and

so on. However, unlike a traditional IaaS, this layer does

not have any view of the software running on top of the

composed HW (unlike OpenStack [72] or Amazon EC2 [79]

where the Virtual Machine (VM) provisioning process also

includes preparation of a virtual disk from whence the VM

starts up). Instead, this layer exposes mechanisms, such as

network booting and/or disk authoring, that allow the logical

infrastructure to boot into a usable state. Furthermore, this

layer exposes smart HW functions (e.g., highly available

HW, state synchronization, and live state migration) to the

software running on the composed infrastructure, whenever

these functions are available in the underlying HW.

C. Platform Layer

This layer handles the software that runs on the composed

logical infrastructure to run the application. Examples of open

source software platforms include OpenStack, Cloud Foundry

[80], Kubernates [74], or a bare Linux OS. In addition to these,

there are proprietary platforms, such as [81, 82]. Depending

on the platform software, the application may be provided

in the form of source code, an executable binary, or even

a VM image. A key requirement of this layer is the ability

to run multiple platforms at the same time on the same HW

infrastructure. This platform layer can be recursive to multiple

levels. For example, it should be possible to first deploy an

Apache Mesos [83] platform onto a logical infrastructure and

then to deploy Apache Yarn [84] and Kubernates on this

Mesos platform. This, for example, would allow a MapReduce

and containerized applications to execute side by side on the

same logical infrastructure. Platform-specific functions, such

as auto-scaling of the platform itself, or software libraries that

enable the full exploitation of the underlying (disaggregated)

HW, are implemented at this level.

D. Application Layer

The application layer handles the specific applications that

provide service to the end-user of the cloud. An application

can be a VNF [22, 23] that runs in an OpenStack VM or a

4Quant [85] image analysis tool running on Apache Spark. For

each deployed platform we assume an application management

interface (e.g., Nova-API in OpenStack or Spark driver in

Apache Spark) allows deployment and control of applications

for that specific platform. These applications and their

management functions come from existing software platforms;

therefore, it should be possible to run them unmodified on the

logical infrastructure. However, extending these platforms with

functionalities stemming from HW disaggregation (see section

III ) may be beneficial.

V. TECHNOLOGIES, CHALLENGES AND FUTURE

DIRECTIONS IN SDHI

The direct technological impact of SDHI is confined to the

HW and its operation. However, this impact ripples through

all the other layers of the architecture. Standardization efforts

in the DC technology space expanded with the creation of

the open source initiative Open Compute Project (OCP) [41]

in 2011. OCP is supported by several industry leaders (IT

vendors, network operators, and service providers) and its

purpose is to share designs of efficient DC products. Within

this initiative, industries have been carrying out extensive

collaborative efforts to create new open and flexible standard

solutions for future DCs. Among the members of OCP is

Intel, who announced in 2013 its hardware disaggregation

vision called Rack Scale Architecture (RSA), now called Rack

Scale Design (RSD) [40]. RSD is a reference specification

for hardware disaggregation and a key component of OCP.

RSD’s core management and control components (Pooled

System Management Engine (PSME), Pod Manager (PODM),

and Rack Management Module (RMM)) have been released

as open-source software [86]. In early 2016, the Telecom
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Infra Project (TIP)) [87] was announced. TIP can be seen

as a complement to OCP but is narrowly focused on the

development of new telecommunications networking HW.

This initiative aims to leverage several OCP efforts, among

which are HW disaggregation and composability concepts.

In this section, we present a technology overview and

a range of ongoing efforts toward realizing SDHI. These

are organized in relation to the different architecture layers

presented in section IV. Table IV provides an overview

of some of the most relevant efforts. Furthermore, in each

section, we present more in-depth efforts and discuss foreseen

challenges and future research directions.

A. HW Layer: resource disaggregation and shift in hardware

HW resource disaggregation is in its early stages. Although

storage has been disaggregated [15, 41], challenges remain

in how to decouple the remaining server components, such

as memory, processors, and NICs. This subsection focuses

on the inherent challenges, focusing on three main areas:

HW component disaggregation (processor, memory, storage,

and NIC), resource control (i.e., slicing, aggregation, and

sharing), and the infrastructure interconnection fabric.

1) Processor Aggregation and Slicing: The core of SDHI is

independent resource pools that can be dynamically composed

into logical infrastructures. Whether it is possible to construct

logical servers with an arbitrary number of CPUs without

suffering the overheads of hypervisor-based solutions is one

of the key questions [151? ].

Aggregating CPUs requires a lot of low latency bandwidth

for the inter-CPU traffic. Multiprocessor systems based on

Intel Xeon processors use QPI [117] for communication

between processors. QPI consists of two unidirectional links

with a bandwidth of 8-12.8GB/sec and latency of 100-300ns.

The upcoming version QPI, called Ultra Path Interconnect

(UPI) is designed to run at higher speeds. The big difference

of UPI from QPI is that there can be 2-3 UPI per CPU

[159]. However, it is hard to realize this bandwidth with

low latency over long distances. The common use-case for

aggregating CPUs is to build high-capacity servers that are

suitable for scale-up scenarios (see Section III-B). However,

as current cloud applications are designed to follow the

scale-out paradigm, there seems to be little research in this

area.

The inverse of aggregating CPUs is slicing a CPU into

multiple resources. When the configuration of a server

hardware platform is fixed, there is little benefit in slicing the

CPU to run different OSs without a hypervisor, as contention

exists when accessing hardware resources. However, with

resource pooling opportunities exist to exploit CPU slices.

Some aspects of this are covered in Section V-D2.

While CPUs are certainly a fundamental element, these

are not the only type of processors that are relevant for

disaggregation. Acceleration devices, such as GPU and Field

Programmable Gate Array (FPGA), are also at the forefront

of this technology shift. However, most of the explored

approaches purely rely on software and are implemented at

the OS level [147–150]. Moreover, Amazon has a commercial

offering for remote acceleration by using OpenGL over

Elastic Network Interface (ENI).

2) Memory Disaggregation and Pooling: The demand for

server memory capacity has been increasing along with the

increase in the number of cores per socket, the number

of VMs running on a server, and the increased memory

footprint per VM [88]. The need for increased memory

capacities has been further fuelled by the growing number

of in-memory applications. These demands are likely to be

further exacerbated by the need for in-memory processing and

real-time analytics required by the 20-100 billion [160, 161]

connected devices. However, a set of studies (e.g., [162, 163])

reveal that the average memory capacity utilization is 50%

and the peak memory usage continues to increase. This

combination suggests that every large aggregate amounts of

memory will be under utilized.

Moreover, Dynamic Random-Access Memory (DRAM)

process scaling is becoming costly, imposing limits on how

much DRAM can be placed on a server blade. With pin

count on processor sockets not increasing dramatically and

the number of Dual Inline Memory Modules (DIMMs) per

channel decreasing due to increased channel speeds, the

growth in the total addressable memory is constrained.

One method that was used earlier to increase memory

capacity was Fully Buffered DIMM (FB-DIMM) [89].

FB-DIMM utilizes the high-speed serial interface between

the memory controller and an Ambient Memory Buffer

(AMB) residing on the DIMMs and uses the store&forward

methodology to increase memory capacity. However,

increasing the number of DIMMs results in increased latency.

Additionally, extending the serial links beyond a single

board requires additional store&forward mechanisms which

further increases latency. Furthermore, DRAM placed in

a compute blade consumes power whether or not it is

used, and the FB-DIMM store&forward electronics further

increases heat generation. An extension to FB-DIMM has

been proposed by the research community, called Optically

Connected DIMM (OCDIMM) [90]. OCDIMM uses optical

channels to communicate between the AMB and memory

controller to increase memory capacity and reduce latency

[90]. Simulation results show that OCDIMM can provide

higher bandwidth and capacity. However, OCDIMM requires

optical connectivity from the CPU, which is not supported in

commercially available CPUs.

At the same time, there is a variety of storage class

memories (SCM) [164, 165] that are being researched. These

aim to provide diverse capabilities which promise to be

beneficial for different workloads. For example, Non-Volatile

Memory (NVM) technologies (e.g., [91, 166, 167]) provide

increased memory density at a latency higher than DRAM

(see Fig. 7).

However, these different memories are only accessible by

a single CPU blade, thus complicating the orchestration of

workloads and increasing the potential for underutilization of

these memories.

Memory disaggregation could help solve these problems



10

TABLE IV
TECHNOLOGY OVERVIEW OF SDHI.

Type Area References Origin Scope

Hardware
Compute

Memory

[88] Research Showing performance benefits of memory disaggregation
in memory constrained environments.

[89, 90] Research Increase memory capacity and reduce latency in memory
blade servers.

[91] Industry NVM (e.g., 3D XPoint) technologies to increase memory
density with a latency higher than DRAM.

[25, 88, 92–94] Research Feasibility of entirely disaggregated memory.

[95] Research Fast in-memory Key-value store.

[96] Research Cost of memory disaggregation.

Storage

[97–100] Industry SAS, NAS, and SAN.

[101] Research Rack-scale storage fabric.

[102] Research Flash Storage disaggregation.

[103] Research Resiliency aspects of using NVM.

NIC

[104, 105] Industry Ethernet multi-host technology for rackscale networking.

[106] Research Software architecture for low latency DC communication.

[107] Industry Integrated NIC Architecture.

[108] Industry SR-IOV network virtualization.

Networking

Fabric
Interconnection

[109] Industry/Research Roadmap on silicon photonics.

[110] Research Manycore processor-to-DRAM.

[111] Research Switching optically-connected memories.

[112] Research Optical interconnects for disaggregated resources.

[113, 114] Industry/Research Microsoft rack-scale networking.

[115] Research A reconfigurable Rack Network based on SoC switch.

[116] Research Slim Fly a low diameter network topology.

Protocols
Interconnection

[117] Industry QPI.

[118] Industry Gen-Z.

[119] Industry OpenCAPI.

[120] Industry CCIX.

Management
Network [121–129] Industry/Research SDN.

[130] Industry/Research SDON.

[131, 132] Research Control Plane OS.

Management
Infrastructure

& Control
Discovery [75] Industry IPMI.

[78, 133] Industry Redfish.
Scheduling [134–136] Research Scheduling aspects.

Platform

Cloud
Management

[137, 138] Industry OpenStack Valence and Ironic/Redfish.

Virtualization
Network

[17] Research Survey on network virtualization hypervisors for SDN.

[139] Industry Cost of network virtualization.

Virtualization
Server

[16] Research Survey on server virtualization.

[140] Industry QEMU.

[141] Research KSM (Kernel Same page Merge).

[142] Research Minimal hypervisor by efficient OS implementation.

System
Operating

[143] Research Hotplug of CPU.

[144] Research Hotplug of Memory.

[145] Research The operating system is the control plane.

[146] Industry NVMe interface to provide access to a storage
namespace.

[147–150] Research/Industry Virtualization and Remote Accelerators (DS-CUDA,
gVirtuS, GViM, and rCUDA).

[151, 152] Industry ScaleMP and TidalScale.

Tools
Research

System
Simulator

[153] Industry Simics.

Hardware
Simulator

[154] Industry CoFluent.

Data Center
Simulator

[155] Research Diablo.

Data Center
Simulator

[156] Research Firesim.

Network
Emulator

[113] Industry/Research Maze.

Projects Cross-Area

[41] Industry OCP

[87] Industry TIP.

[40, 86] Industry RSD.

[156, 157] Research Firebox and dRedBox.

[158] Research M2DC.
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Fig. 7. Memory and storage access latency and cost spectrum.

while increasing the memory capacity available for

applications, increasing the average utilization of the

infrastructure, and reducing total energy consumption (e.g.,

[168, 169]). However, memory in current commodity

architectures has been very tightly coupled to the CPU due

to the very high bandwidth and low latency requirements of

the CPU-memory bus (see Table III) and the restrictions on

the memory types supported by a given CPU. Moreover, the

current memory bus cannot be extended to longer distances

due to signal integrity issues. Alternatively, converting the

parallel-electrical-bus of the memory devices into a serial-

optical-bus becomes a very expensive proposition in terms of

both cost and energy.

There is little research that considers completely removing

memory from the compute sled. Rather, current research

approaches attempt to realize partial memory disaggregation

by using local DRAM as a cache for remote memory and

swapping pages from/to remote memory as required. In these

cases, the interface between CPU and memory is usually based

on cache line fetches. Moreover, much of the literature focuses

on using page sized memory requests similar to disk-based

swapping. This is done to exploit data locality and amortize

the latency incurred due to delays over the interconnect. Two

methods are widely used in the literature: (1) including a

PCIe extension to bridge multiple memory domains or (2) use

of Remote Direct Memory Access (RDMA) (e.g., Infiniband

[170] or Omnipath [171]) or other low latency methods. These

approaches have been shown to work well for applications

with good data locality [92]. Quite a few papers have evaluated

these approaches, some of these evaluations are described

in the following paragraphs. Table V summarizes the efforts

toward memory disaggregation.

K. Lim, et al. [88] designed a new general-purpose

architectural building block - a memory blade - that allows

memory to be disaggregated across a system ensemble. This

solution can be used for memory capacity expansion to

improve performance and for sharing memory across servers.

They claim their solution can potentially reduce the cost of

provisioning and reduce power consumption. They proposed

two new system architecture solutions: (1) a page-swapped

remote memory at the virtualization layer and (2) a cache

level-access remote memory with support for transparent

memory expansion and sharing for commodity-based systems.

Moreover, they explored the implications of these solutions by

developing a software-based emulation platform using the Xen

hypervisor [93] and compared their results with a disk-based

swap mechanism.

Silicon photonics [109] is an evolving technology in which

data is transferred optically. This technology is proposed

as an interconnect choice for rack-scale systems. Several

papers (e.g., [110, 111]) suggest using silicon photonics for

CPU-memory interconnects. However, commercial 100 Gbps

silicon photonics are insufficient for CPU-memory interfaces,

as 1 Tbps connections may be required to fully disaggregate

memory. Assuming four memory controllers per CPU (i.e.,

the norm in X64 Xeon CPUs deployed in clouds), one would

need at least 250 Gbps photonic interconnects to meet current

requirements. However, this level of performance is expected

to be commercially available in a few years when these

interfaces are directly integrated into CPUs. However, yet

more time will be required for these solutions to be cost

effective for broad adoption across the entire infrastructure.

P. X. Gao, et al. [25] demonstrated that current networks

are sufficient to do memory disaggregation for a variety

of applications. They claim that silicon optics and other

future-looking technologies are not required and that current

technologies are sufficient to realize memory pooling. One

of the main assumptions is that NICs will be embedded

into CPUs to reduce latency in a disaggregated memory

environment. Their simulation study assumes the use of

40-100Gbps Ethernet connections. Moreover, they ignore

software overhead associated with page operations despite the

fact that this overhead could be non-negligible if a running

process has to do a context switch while waiting for the page

swap operation to complete.

Marlin [94] is a PCIe based system where all the memory

from multiple blades is aggregated into a global memory. Each

machine in the rack is connected to a port of the PCIe switch

through a PCIe expansion card and a PCIe cable. On each

Non-Transparent Bridged (NTB) port of the Marlin switch

is a DMA engine capable of initiating DMA transactions

across different physical address ranges. Marlin refers to

this Hardware based RDMA (HRDMA) as providing a

cross-machine memory copy operation. HRDMA allows data

to be copied from one application process address space

(running on one machine) to the address space of another
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TABLE V
SUMMARY OF INDIVIDUAL PAPERS ADDRESSING MEMORY DISAGGREGATION.

Ref Objective of work Evaluation
method

Result Summary Interconnection Comment

[88] Evaluate feasibility of memory
disaggregation.

Simulations
& Prototype

Memory disaggregation is feasible and can
provide substantial performance benefits
(on average 10X) in memory constrained
environments.

PCIe OS &
hypervisor
transparent
but requires
custom chip.

[25] Evaluate the feasibility of memory
disaggregation with existing system designs
and commodity networking technology.

Simulation &
Emulation

Current network technologies are sufficient
to do memory disaggregation for a variety
of applications but with some performance
degradation.

RDMA -

[94] Present the design, implementation, and
evaluation of a PCIe-based rack area network
system for memory disaggregation.

Prototype Based on their design, one-way kernel-to-
kernel latency is 8.5 µsec, and the end-
to-end sustainable TCP throughput is 19.6
Gbps.

PCIe
&
HRDMA

-

[93] Explore software and systems implications
of disaggregated memory.

Prototype &
Emulation

They develop a software-based prototype by
extending the Xen hypervisor to emulate
a disaggregated memory design wherein
remote pages are swapped into local
memory on-demand.

NA -

[92] Feasibility of fully disaggregated memory. Prototype Memory disaggregation is possible under
Spark SQL workload with already available
commercial network technology.

PCIe A case study
on Spark
SQL.

[110] Present a new monolithic silicon photonics
technology and its application for manycore
processor-to-DRAM networks.

Simulation &
Prototype

The focus was on network aspect for
communication between CPU and memory
based on photonics.

NA -

[111] Assess feasibility of transferring data
across processors by using the optical
interconnection fabric.

Simulation The performance data demonstrates the
effectiveness of switching memory in
transparent data sharing and communication
within a rack.

NA -

[172] Design and implementation of a new
memory distributed computing platform.

Prototype The platform performs well and shows order
of magnitude better throughput and latency
than main memory systems that use TCP/IP
on the same physical network.

RDMA
over
RoCE

-

[173] Memory architecture for clusters to enable
a distributed non-coherent shared-memory
view of the memory resources present in the
cluster.

Platform The database that is running in this
prototype beats commercial solutions in
terms of latency and throughput.

HyperTransport
[174]

FPGA based
solution

[175] Design a system using commodity products
that connect multiple nodes and enable
resource sharing among these nodes.

Prototype The evaluation results indicate that
resources can be efficiently shared in many
cases.

PCIe SR-IOV Software
stack
extension.

[176] Design and implementation of a remote
memory paging system for an RDMA
network.

Prototype. Demonstrate the overall memory utilization
increases in a cluster of nodes.

RDMA -

[177] Assess how can Symmetric Multi-Processing
high memory demands take advantage of
remote memory.

Prototype The proposed solution significantly improve
the performance of memory intensive
workloads

RDMA -

application process that is running on another machine in the

same rack without any software intervention.

There are software solutions that aggregate memory across

multiple physical servers and provide access to an aggregated

memory, such as [152] and [151]. These solutions target big

data applications. However, performance penalties are high

when cross-server communication occurs. Moreover, these

solutions require adding server boards containing both CPU

and memory to increase either of these resources (as the

software has to have a CPU to run on to access the physically

local memory to make it available remotely).

The design of a memory blade has inherent challenges. As

applications become more resource demanding and require

larger working sets, several memory pools will be needed on

one memory blade to address the increase in required memory

bandwidth and to reduce noisy neighbor problems. The rate at

which applications need memory, the speed of interconnects,

the memory node characteristics, and the performance of

memory controllers are some of the factors determining

memory pool capacities and the number of required memory

controllers. The location of a memory controller itself presents

interesting choices. A memory controller placed close to the

memory blade can perform memory bank refreshes locally,

thus optimizing the power utilization and logic on the CPU

socket. Conversely, the absence of a memory controller on the

CPU could present other challenges due to the absence of an

on-chip memory arbitration mechanism. A future design could

potentially split the roles of the memory controller and realize

different roles at different locations.

With memory disaggregation and pooling, different compute

nodes and devices can access and share memory blades,

thus memory access control mechanisms will be required

to prevent unauthorized bare metal servers or devices from

accessing memory to which they should not have access. If
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a hypervisor exists on the compute nodes, it could provide

the needed protection. However, in bare metal environments,

such access control is required either at the hardware level

of the compute node or at the memory blade. Moreover,

as multiple applications could attach to the same memory

pool, quality of service considerations are required at various

points. Additionally, protocols between the compute blade and

memory blade need to be agnostic to current memory protocols

(e.g., DDR3 and DDR4) to allow the use of different types of

memory in the memory blade.

Disaggregation brings the advantages of modularity,

independent component replacement, and right scaling, to the

memory system. Additionally, it can enable: (1) redundant

memory copies based on application requirements rather than

being limited to what is supported by a particular CPU; (2)

reduction in the number of refresh requests issued by the

memory controller that is part of the CPU to a memory

controller placed on the memory blade, thus potentially

increasing the scalability and energy efficiency as memory

capacities increase; (3) runtime change of memory banks on

a memory sled to provide better performance or to reduce

energy consumption; (4) merging of similar pages across

different compute sled boundaries; and (5) shared memory

architectures for intra-server communications. For example,

this disaggregation could enable efficient VM migration (e.g.,

[178]) within the same rack or sharing of system state across

several logical services running within the rack without

employing load balancers.

Lastly, there are a few other important aspects to keep

in mind. The compute nodes and the memory sleds have to

be placed reasonably closely since each meter of separation

between two resources adds at least 4-5 ns of latency, thus

the separation between memory and CPU may not exceed

a few meters for full memory disaggregation. Moreover,

memory disaggregation places new requirements on OSs

and applications as to what memory disaggregation means

when compared to a traditional Non-uniform memory access

(NUMA) system (see Section V-D1). For example, application

orchestration in an SDHI needs to pick components such

that resources are localized at an optimal distance from

other resources (e.g., CPU, memory, NICs, and GPUs).

Furthermore, the OS/application software needs to be

informed and be able to understand the various latencies

to achieve optimal performance. In a VM environment, the

guest kernel might need to know about the existence of local

and remote memories so that the appropriate memories can

be assigned (e.g., a kernel driver might need local memory).

This will have implications on the huge translation lookaside

buffer (TLB) [179] setups used by big data applications

to improve performance, as they need consecutive pages

to be loaded (or possibly flushed) at the same time. While

some disaggregated memory access schemes allow cache line

access, the application could incur higher latencies. In these

approaches, the CPU needs to do polling for I/O operations

to fetch remote memory because I/O completion times are

expected to be few microseconds (i.e., typically less than the

time slice that processes are assigned). Having to perform a

CPU context switch rather than being able to poll could have

an adverse performance impact. In turn, this could affect

the use of hardware provided hyperthreads which are very

helpful in increasing the effective throughput of the CPU

while hiding the latencies of transfers between data memory

and cache.

3) Storage Disaggregation and Pooling: Direct-attached

Storage (DAS) gives the best performance in most cases due

to the absence of any network protocols and the need for

reliably communicated acknowledgments from the remote end

point. However, DAS has several problems, e.g., each directly

attached storage device needs its backup, spares, and time from

management personnel or automated management. Another

disadvantage is that access to the stored data depends upon the

availability of the compute node that it is attached to, hence,

if the attached compute node is unavailable for any reason the

data will be inaccessible. For these reasons, the storage system

was disaggregated early [97] to avoid fate sharing of data

with computing, and there are ongoing efforts to improve the

performance and scalability of Storage Area Networks (SANs)

and Network Attached Storage (NAS) [98–100] (see Fig. 8).

Initially, storage disaggregation was implemented using the

network; for example, via Fiber Channel (FC) SANs. FC used

a system of negotiated end-to-end credits and data was assured

safe passage through the network. With the wider adoption of

DC technologies, running two parallel networks, one using FC

and another using Ethernet, has become a problem. Different

protocol extension have been proposed to overcome this

issue. For example, both FC and the Small Computer System

Interface (SCSI) protocol have been extended to run on top of

Internet Protocol (IP), leading to Fiber Channel over IP and

Internet SCSI (iSCSI) so one network can be used for both

storage and other DC traffic. Additionally, extensions have

been proposed to Ethernet to introduce DC Bridging (DCB)

to provide guarantees similar to FC. The Storage Networking

Industry Association [180] is working to expand the adoption

of these technologies.

Commercial solutions were developed for hyper-converged

enterprise clouds that packaged compute and storage resources

together to gain the benefit of direct attached storage. However,

these solutions suffer from the problem of matching just

the right amount of computing and storage. As data is

added, storage typically runs out, and then when new nodes

combining computing and storage are added this leads to an

imbalance between the compute and storage resources with

respect to the actual requirements.

While hard drives have a latency of few milliseconds,

newer solid-state drives (SSDs) have a latency of a few

microseconds. The current generation of PCIe SSDs offer

higher performance and lower latency. When SSDs are

accessed across the network, their high performance is

reduced due to latencies of the network and protocol stack.

PCIe or Serial Attached SCSI can be extended over an optical

bus to make it appear to be direct-attached storage with

native performance. In this manner, the amount of computing

and storage can be changed over time to create better

hyper-converged solutions. In current object storage solutions,

the storage client and storage server talk over the network
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Fig. 8. DAS, SAN, and NAS architectures.

while the disk can be either direct-attached or connected over

the network. Disaggregated systems potentially allow for all

of these elements to be connected without a network stack

adding to the latencies. D. Ruiquan et al. [101] show a

rack-scale storage fabric displaying the benefits of

disaggregation along with the ability to create the required

compute and storage ratios with performance equivalent to

DAS, but without its problems. Flash Storage Disaggregation

[102] disaggregates flash storage over an Ethernet network

and shows that disaggregation allows CPU and flash storage

resources to scale independently in a cost-effective manner.

A. Klimovic, et al. attribute a 20% drop in application

performance due to disaggregation [102]. They attribute this

to application software overheads and to the throughput and

latency of the iSCSI protocol.

As mentioned previously, new SCM memories that can

provide DRAM-like latencies and persistent storage with

much higher storage density are expected to be available

soon. When available, they will provide cache line access

to data as opposed to block-level data access that traditional

storage devices offer. However, their effectiveness will be

reduced if they are accessed via the network. At the same

time their utilization is likely to suffer if they are placed on a

compute blade, while rack scale disaggregation could provide

better utilization. Another issue relates to the fact that most

DCs would like to keep a copy of the data outside of the rack

for resiliency purposes, but this can add significant overhead

and remains a subject of research [103].

4) NIC disaggregation: In earlier DCs, Infiniband was a

common choice for SAN, while Ethernet was the choice for

communication networks. Over time Ethernet has evolved

to support higher transmission rates - first with 1Gbps,

subsequently 10Gbps, 40Gbps, and today there are efforts

to achieve 100Gbps. While Infiniband is still widely used in

specialized environments such as HPC, Ethernet’s evolution

makes this technology a compelling alternative to Infiniband

and suitable for both DC wide network and SAN [181].

NICs play a significant role in server disaggregation as the

physical limitations of other interconnects (e.g., the number of

PCIe lanes and the distance they can reach) impose limits on

which resources are directly connected and which resources

can be accessed via the network. New NICs support various

protocols and operations, for example, crypto offloading,

RDMA, OpenFlow [182], and P4 [183], thus reducing the

load on the CPU. Infiniband [170] is a technology of choice

for environments that require RDMA and sharing a memory

from remote hardware components without the intervention of

the local CPU. On the other hand, RDMA over Converged

Ethernet (RoCE) and internet Wide Area RDMA Protocol

(iWARP) are two RDMA protocols supported by vendors on

top of Ethernet. Although Infiniband still has better latency

numbers, DCs are reluctant to run two separate network

technologies, thus predominantly deploying Ethernet-based

RDMA. However, there could be a case to utilize Infiniband as

an infrastructure component inside a rack to facilitate transfers

with accelerators and remote memory without applications

being aware of it. This reduces the DC administrator’s pain

to deploy two different network technologies while intra-rack

communication can benefit from Infiniband.

NIC disaggregation can be useful in composing servers

with the requisite amount of network bandwidth. NIC

disaggregation makes it easy to exploit other benefits of

disaggregation, such as independent lifecycle management,

accelerating specific applications, and reducing the inventory

of specialized cards. Currently available disaggregated

NICs, commercially called multi-host NICs [104, 105],

simultaneously support multiple physical servers [184] and

allocate variable amounts of bandwidth to the different hosts.

These multi-host NICs also reduced the number of ports

needed on the Top of Rack (ToR) switches. Moreover, with

OpenFlow support, intra-VM traffic between different hosts

attached to the same multi-host NIC can bypass the ToR

switches.

The above considerations may necessitate the use of

integrated NICs for latency critical traffic together with

disaggregated NICs for non-latency critical traffic to/from the

same server.
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B. HW Layer: Networking

Networking plays a pivotal role for a resource disaggregated

DC and is seen as an enabler as well as an inhibiting factor.

The network of a resource disaggregated DC has to support,

in addition to all of the network traffic corresponding to

today’s DC, the low latency and high bandwidth requirements

for communication among components of logical servers. Two

distinct communication paradigms with different requirements

exist in a disaggregated architecture: (i) communication

external to the logical host (i.e., via a DC-wide network)

and (ii) communication internal to the logical host (i.e., via

an interconnection fabric). The challenges of networking

in a resource disaggregated DC can be divided into five

parts: challenges for DC-wide networking, challenges for

the interconnection fabric, challenges of using the DC-wide

network as an interconnection fabric, challenges due to the

gap between end host networking, computing, and data access

time, and finally challenges due to hardware interconnection

protocols. Table VI summarizes some of the most relevant

works related to SDHI’s networking.

1) DC-wide Networking: Similar to today’s DCs,

inter-logical host communication uses the logical host’s

NIC(s) and the DC-wide network (with its physical or virtual

switches, routers, and other chains of network functions [123])

and utilizes standard networking protocols (e.g., TCP/IP)

for communication. Although this communication benefits

from dynamic network resource provisioning capability, the

dynamicity of this communication is limited by capabilities

of network control approaches (e.g., SDN [17]) with respect

to how rapidly it can reconfigure the network. This aspect of

DC networking and how to improve the SDN has been well

studied [121–128].

2) Interconnection fabric: As described earlier,

intra-logical host communication uses the DC’s

interconnection fabric so that each resource (or pool of

resources) can communicate with other resources through

shared buses. Thus the communication that was previously

restricted to a physical server’s motherboard is carried across

this fabric. Therefore, more bandwidth is needed on shared

buses (such as PCIe). The interconnection fabric must ensure

sufficient performance that the (logical) server performs at

the desired performance level. As the DC’s interconnection

fabric must provide connectivity between various types of

resources, the burden of enabling disaggregation falls on it.

The appropriate interconnection fabric for a resource

disaggregated DC should provide low latency, high bandwidth,

high resiliency, low cost, and low power consumption. These

requirements suggest an optical network is a promising means

to overcome the practical limitations of copper board traces

and the very strict demands upon latency and bandwidth

when interconnecting the various components (as described

in Table III). This requires cost-effective and efficient optical

network equipment to ensure efficiency in DC based on SDHI.

Furthermore, when an optical network is used to interconnect

different resources (e.g., CPUs and memory), the capability of

these resources to natively work with optical communications

is beneficial as it eliminates the cost of optical-to-electrical

conversions and the corresponding energy inefficiencies. These

resources also expected to originate wide range of wavelengths

to support more point to point interconnections (without doing

costly intermediate switching and routing)

In addition to the low-latency and high bandwidth

requirements provided by the optical overlay, such an

interconnection network needs to be highly dynamic and

flexible. This means that such an optical overlay requires an

efficient network management mechanism that can establish

and reroute optical paths quickly. Consequently, separation

of control and data plane for a DC’s interconnection

fabric could be highly beneficial, thus SDN-based optical

networking is a potential solution for managing such a

network fabric. Combining optical overlay and SDN results

in a software-defined optical network (SDON). SDON

leverages the flexibility of SDN control to support network

applications via an underlying optical network infrastructure.

A thorough survey regarding existing SDON architectures

and technologies is presented in [130].

In contrast to inter-logical host communication, the

intra-logical host communication does not require frequent

changes, as the configuration of a logical host remains

relatively constant (except when optimizing and re-scheduling

a logical host’s resources). A resource disaggregated DC’s

fabric is expected to utilize a variety of interconnect

technologies and protocols (i.e., QPI, SATA, PCIe, and

Ethernet). However, with regards to fiber-optic interconnects

between different resources in a resource disaggregated

DC, much tighter integration of optics with the resources

is required (e.g., optical PCIe and other optical data links

and networks) [112]. It should be noted that achieving the

appropriate trade-off between reconfigurability & dynamicity

of the fabric’s topology and the cost, power, and number

of required ports of the switching fabric is an important

consideration when designing a new architecture, especially

for intra-rack connectivity. Moreover, the solution is expected

to vary depending on the number of endpoints to be connected.

Thus challenges will arise when the number of connection

endpoints scales (e.g., to several hundred or thousand).

Some fundamental questions relevant to the interconnection

fabric are: “How to meet the requirements for I/O-CPU,

CPU-CPU, and CPU-memory communication?”; “What is

an appropriate network and system architecture (including

physical network layout e.g., two-tier heterogeneous or flat

network architecture) for a resource disaggregated DC with

suitable abstraction (i.e., packet-switching or circuit-switching,

best-effort or reliable communication)?”; “Is there a need

to modify/enhance the interconnect protocols to optimize

communication?”; and “How to share the interconnection

fabric resources between different traffic types requesting

communication among various resources within logical servers

(e.g., CPU-to-CPU, CPU-to-RAM)?”.

It is possible that the interconnection latency requirement

cannot be met even with the low-latency and high bandwidth

optical network (e.g., 10 m network distance can add 40 ns

of latency). Hence, software optimizations that intelligently
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TABLE VI
SUMMARY OF INDIVIDUAL PAPERS ADDRESSING NETWORKING FOR RESOURCE DISAGGREGATION.

Ref Objective of work Evaluation
method

Summary of Result Comment

[112] Discuss latency in optical data links for optically
attached memory, optical PCIe and other optical
data links and networks.

NA The discussion shows that optics-induced
latency will contribute only marginally to the
overall latency in communication.

-

[114] Rack network design and network stack for rack-
scale computers (routing and rate control).

Simulation They proposed a rack architectures. The result is
showing how the characteristics of the proposed
rack architectures allow for new approaches that
are attuned to the underlying hardware.

Same network
fabric for both
IP and non-IP
traffic.

[113] Proposing a network stack for rack-scale
computers that provides flexible and efficient
routing and congestion control.

Prototype &
Emulation &
Simulation

The result shows the proposed solution achieves
very low queuing and high throughput for
diverse and bursty workloads while routing
flexibility can provide significant throughput
gains.

Follow up from
[114]

[115] Design a rack-scale network that reconfigures
the topology and uplink placement using a
circuit-switched physical layer.

Simulations &
Prototype on
ASIC switch

The proposed solution optimizes the network’s
physical topology and significantly outperforms
static topologies and has a performance similar
to fully reconfigurable fabrics.

No ToR Switch.

[111] Assess the feasibility of transferring data across
processors by using the optical interconnection
fabric - without physically moving the data
across electrical switches.

Simulation They proposed memory switching protocol that
allows large-scale data communication across
processors through the transfer of a few tiny
blocks of meta-data.

Rack-scale.

[94] Present a PCIe-based rack area network solution
to support the communications and resource
sharing needs of disaggregated racks.

Prototype The proposed solution includes a hybrid
ToR switch that consists of PCIe ports
and Ethernet port. The solution supports
HRDMA as communications primitive between
servers within a rack and supports socket-
based communications for legacy network
applications.

-

[25] Evaluate the network requirements
for resource disaggregation concerning
application bandwidth and latency demands,
and requirements imposed by resource
disaggregation.

Simulation &
Emulation &
Prototype

Results showed that resource disaggregation is
feasible even with existing network hardware
and that the application’s memory bandwidth
demands determine the scale of disaggregation.

Rack-scale
&
DC-scale

use caches to hide these latencies can be useful. Research in

OS or middleware to place and adjust data in the appropriate

hierarchy (e.g., based on access patterns) without application

involvement would be needed (see Section V-D1).

3) A DC-wide network as an interconnection fabric:

An alternative way to realize a resource disaggregated

DC’s network is to utilize the DC-wide network as an

interconnection fabric (rather than having two separate

networks). To operate such a DC-wide network requires a

suitable network controller. This controller could be based on

distributed control software, a logically centralized controller

as network OS (i.e., in-line with SDN philosophy [125]), or

a combination of both approaches (e.g., see [126]). Moreover,

to get the most out of the entire environment, we foresee that

networking resources should be handled tightly together with

the other types of resources when composing logical instances.

As a result, we expect that networking constraints play a

fundamental role as part of a DC’s resource scheduling (see

Section V-C2).

Apart from the interconnection fabric’s challenges, some

other questions need to be answered, such as: “How to perform

routing and congestion control between different entities in

different resource pools or even within one pool?” and “How

to share network resources between inter-logical servers and

intra-logical server traffics?”.

Some work has already been carried out on rack-scale

networking that targets in-rack consolidation, where the

objective is to increase the density of servers inside a rack

[113–115]. These works claim that with a dense deployment

of microservers in a rack, it is unlikely that you can have

a ToR switch or multi-tiered topology (due to the required

high number of ports and bandwidth). This leads to the

elimination of the ToR switch and direct connection of the

microservers in the form of System on Chips (SoCs). Along

with this line, P. Costa et al. [113, 114] assumed a single

network for both IP and non-IP traffic based on a distributed

switch where the microservers are interconnected through their

NICs with a multi-hop direct connect topology (as opposed to

tree-like topologies of today’s DC). In this case, each node

functions as a switch forwarding packets. This work mainly

addressed two challenges in intra-rack communication: routing

and network sharing. They proposed R2C2, a network stack

that provides routing and congestion control for very densely

connected servers within a rack. Simulating the proposed

network stack across a rack, they showed that R2C2 provides

low queuing delay, high throughput, and flexible routing

among the microservers. However, it is unclear whether this

approach is applicable to resource disaggregation where each

microserver can access the resources of other microservers.

S. Legtchenko et al. [115] assumed microservers (or

SoCs) would be connected through an embedded switch

in the System on Chip (SoC) (assuming that the SoC has

an embed NIC/packet switch). To eliminate the problem

of multi-hop routing in such a topology, they proposed
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a partially reconfigurable in-rack network, called X-fabric.

X-fabric uses a combination of layer two packet switching

(via the embedded packet switching in the SoC) and layer one

circuit switching (their home-made switch fabric was based on

electrical signal forwarding without any queuing or additional

packet inspection). This solution supports the interconnection

of approximately 350 microservers within a rack. Packet loss

may occur in the system at reconfiguration time (roughly 30

ns, equivalent to losing one packet while reconfiguring), and

they rely on transport layer protocols (such as Transmission

Control Protocol (TCP)) to address this packet loss. They

proposed an algorithm for reconfiguring the circuit switching

topology based on a rough estimate of the demand matrix

of the microservers. M. Besta and T. Hoefler [116] introduce

Slim Fly, a general approach that can produce a new class of

topologies that rely upon high-radix routers and cost-effective

fiber optics. This solution formulates the topology requirement

as a mathematical graph optimization problem and defines

how different endpoints within the DC should be connected

with the minimum diameter to achieve a low-latency, low-

cost, and high-bandwidth network topology. This approach

seems to address the challenges of resource disaggregated DC

networking.

P. X. Gao, et al. [25] extend the work by S. Han

et al. [24] and focus on the network requirements for

resource disaggregation. They investigated the feasibility of

disaggregation based on application bandwidth and latency

demands, together with requirements imposed by resource

disaggregation. Their investigation was based on partial

CPU-memory disaggregation where each CPU has some local

memory that acts as an additional layer of cache, while

the disaggregated memory acts as an expanded memory in

the memory hierarchy. Further, they assumed each CPU’s

cache coherence domain is limited to a single compute

node, hence there is no direct CPU-to-CPU traffic cross the

resource disaggregated DC network. They also assumed VMs

as a host abstraction where each resource of this host is

disaggregated. They experimented by executing different types

of applications (e.g., memory, I/O, and compute intensive)

over an emulated resource disaggregated DC with a flat

network architecture and commodity HW. Their results

showed that resource disaggregation is feasible even with

existing network hardware and that the application’s memory

bandwidth demands determine the scale of disaggregation (i.e.,

rack-scale or DC-scale). Moreover, their results showed that

meeting the latency requirement in a DC’s network based on

SDHI is more challenging than providing bandwidth and that

the central latency bottleneck is the networking software rather

than hardware.

The level of disaggregation in future DCs will, to a great

extent, be determined by the maturity of the networking

technology. Assuming the speed of light is the only

limiting factor in the communication latency, the latency

requirements (within a single logical host) of CPU-to-CPU and

CPU-to-memory communication (see Table III) imply that

the maximum distance between two CPUs cannot exceed

6 meters, while the distance between CPU and memory

can not exceed 12 meters. This ignores other sources of

latency, such as switching, serialization, and optical-electrical

encoding/decoding. Although the delay and bandwidth

depend directly upon the network, one should not neglect the

important role played by individual components such as the

end host’s networking stack and memory access time.

4) Gap between end host networking, computing, and data

access time: In the communication between a CPU and a

particular memory (whether it be a volatile or non-volatile

memory), there is high latency to access the first byte of

non-local data, which results in a considerable number of

CPU instruction cycles being wasted. Fig. 9 shows those

components that contribute to the latency to fetch the data

from remote resources.

Application

OS

NIC

Remote	

Resource

OS

NIC

Transmission,	Propagation,	and	Switching

Data	CopyingData	Copying

Network

Fig. 9. Key components that contribute to the latency to fetch the data from
remote resources.

One alternative is to move part of the processing to the data,

rather than moving the data to the processor. For example,

data can be pre-processed with simple processors co-located

with the memory pools. Additionally, performing a topological

sort and pre-fetching the data in a manner that takes into

account the memory hierarchy (i.e., by utilizing access

pattern prediction intelligence), enables the relevant data to be

closer to the CPU (e.g., in Random-Access Memory (RAM)

co-located with a CPU or in the CPU’s cache), which in turn

can eliminate the initial access delay and improve the CPU’s

data locality, hence reducing the CPU’s access time to data

(see [185]).

As discussed earlier, networking software and end

host’s network stack will be another source of latency for

communication between entities. One can address this at

the HW layer by enhancing the current NUMA architecture

(e.g., see [49]), or propose a new computer architecture

(e.g., see [186]). Alternatively, the problem can be addressed

at the software layer. In current OS design, the kernel

mediates access to I/O devices, hence it is in the critical data

path between the application and hardware, but this adds

a bottleneck and increases the end-to-end DC networking

latency. To eliminate this bottleneck, one can take advantage

of Single-Root I/O Virtualization (SR-IOV) [108] or remove

the kernel from the data path by placing some kernel
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functionality in the application and some functionality

in the I/O devices (see [131, 132]). Current I/O devices

are powerful enough to perform some actions to reduce

end-to-end latency. For example, many NICs can perform

pre-processing of packets (e.g., packet filters, rate-limiting,

and routing the packet to a dedicated CPU), which when

exploited reduces end-to-end latency in a DC-wide network

(e.g., see [95, 187, 188]).

5) Hardware Interconnection Protocols: With the

decoupling of HW components at the very core of this

disruptive evolution, it is essential for the hardware

interconnection protocols to enable this disaggregated

architecture. In this sense, initiatives such as Gen-Z [118],

Open Coherent Accelerator Processor Interface (OpenCAPI)

[119], and Cache Coherent Interconnect for Accelerators

(CCIX) [120] have been created. These initiatives promise

to ease the transition to more flexible, scalable, and high

performance DC infrastructures.

Today, the communication between devices in a server

system is done through specialized/dedicated buses, for

example, a processor or SoC has embedded media controllers

that use specialized media buses to communicate with the

respective media. Gen-Z is a new and open data access

technology being proposed by an industry-led consortium.

It is a semantic memory fabric that can be used to

communicate with every device in a server system. With

Gen-Z, media-specific functions are decoupled from external

devices and placed along with the associated media devices.

Fig. 10 shows in the case of SoC and memory with

the memory controller is placed next to the memory

devices. This simplifies device communication by making it

media agnostic, thus allowing devices to become effectively

decoupled/disaggregated. Ultimately, all devices can become

peers to one another and speak the same language - see Fig.

11. Moreover, Gen-Z claims to offer both low latency and

high bandwidth thus allowing computing systems to match

the growing capabilities of low latency devices, such as SCM

[164, 165].

As applications continue to demand better performance

when moving data across various HW components,

acceleration engines have started to play an increasingly

important role, because of both their performance benefits

and positive impact on reducing DC power cost and space.

In this sense, OpenCAPI and CCIX are working to improve

performance and simplify the communication between HW

devices. OpenCAPI is an open interface that is agnostic to

processor architecture, hence it allows any microprocessor to

attach to coherent user-level accelerators, I/O devices, and

advanced memories accessible via read/write or user-level

Direct Memory Access (DMA) semantics. Similarly, CCIX

allows multiple processor architectures and accelerators to

seamlessly share data, allowing two or more devices to

share data in a cache coherent manner. The standard allows

processors based on different instruction set architectures to

extend their cache coherency to accelerators, interconnects,

and I/O.

The three consortiums (Gen-Z, OpenCAPI, CCIX) share

common goals and aim to increase the interconnect bandwidth

Fig. 10. Existing SoC with DRAM and an SoC with a Gen-Z “logic” Media
Controller. Figure adapted from [189].

Fig. 11. Gen-Z architecture illustrating a diversity of media devices. Figure
adapted from [189].

between HW devices while reducing latency and enabling data

coherency between devices. While Gen-Z primarily focuses

on a routable interconnect that could be applied at the rack

or DC level, OpenCAPI and CCIX have a more confined and

overlapping space of interest. It is, therefore, reasonable to
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expect that over time some convergence will occur, mainly

between OpenCAPI and CCIX.

C. SDHI Layer

The basic principle of SDI, where an infrastructure is

defined by software, is not entirely new per se. This concept

has been applied and explored in different ways. Virtualization

technologies besides SDN and SDS have been a way to

realize SDI (see Section II), not in its pure sense (i.e., at

the HW level) but at a software level that allows emulation,

to a certain extent, of SDI. Only now, with the concept

of HW disaggregation, SDI is explored in a purer sense

as SDHI, as we refer to it in this article. In the case

of a resource disaggregated DC, SDHI aims to enable

dynamically define and re-defining of logical server systems.

This subsection elaborates on the vision of SDHI in general

and its corresponding challenges.

1) Infrastructure Discovery and Control: Among the most

fundamental requirements in a disaggregated environment

is that the SDHI management layer must be able to

dynamically discover, monitor, and control the infrastructure.

Within the current SDI environment, traditional servers are

limited to thos e resources integrated on their physical

motherboard (or directly connected to this motherboard).

Physical motherboards aggregate and expose capabilities and

monitoring information about the HW associated with a server.

Additionally, they also expose an extremely limited set of

control features (e.g., turn on/off system and reboot system).

Today these operations are typically available via the widely

adopted Intelligent Platform Management Interface (IPMI)

[75].

Management complexity increases in an SDHI as resources

are distributed and logically associated to form logical servers.

The type of information discovered, exposed, and monitored

by the SDHI layer needs to include (but is not limited

to): hardware characteristics, capabilities and monitoring

information; connectivity map of the hardware resources;

information to (directly or indirectly) derive compatibility

between different hardware resources when composing logical

infrastructures out of the available resources (e.g., to know

that processor 1 in blade A can interact with the memory

block 1 in blade B, but not with memory block 2 in blade C);

existing composed logical infrastructures and their associated

monitoring information; and HW resources available for

composition into existing or new logical infrastructures. This

means that new types of information needs to be collected

and much more information needs to be exposed and handled.

Moreover, these control features must include physical

hardware component (e.g., processor, memory, networking)

partitioning/slicing and interconnection of physical hardware

component partitions (including configuration of the DC’s

interconnection fabric).

At a local hardware level, these functions are very simple,

allowing them to be implemented in microcontrollers, e.g.,

Board Management Controllers. This local control implements

only the essential functions, relegating more sophisticated

features (including those that require non-local knowledge)

to higher level SDHI management entities (e.g., a rack or

cross-rack management entity). Overall, these cross-level

functions must be extremely scalable, allowing them to

efficiently handle large-scale systems. This means that no

single entity has a complete real-time detailed view of the

entire infrastructure.

To a certain extent, some of the challenges relate to

the work being carried out by the Distributed Management

Task Force (DMTF) Scalable Platforms Management Forum

(SPMF) Working Group [133]. DMTF is working on the

specification of Redfish [78], an open industry standard

specification and schema that aims to enable simple, modern,

and secure management of a scalable HW platform. Redfish

is seen as the long-term direction for node and sub-node level

management, replacing today′s widely used IPMI. The latest

release of their specification introduced initial support for fully

disaggregated environments by exposing individual resources

(e.g., processor, memory, etc.) & resource pools, rather than

only traditional servers; and a composition service that allows

composition of logical servers by explicitly stating which

physical resources are to be used. However, there remain a

set of unsolved issues.

Some of these issues are: "How to autonomously determine

compatibility between different hardware devices?" As this

has not been considered in Redfish, because Redfish assumes

there is an external process through which HW compatibility

is explicitly provided to the system and then simply exposed

by Redfish. We expect that from a composability perspective,

Redfish will evolve to support logical server composition

without the need to explicitly state the exact physical hardware

components to be used, as is currently required. This will allow

the SDHI layer to optimize device allocation transparently to

the higher layers.

Another important aspect is DC networking and fabric

device exposure/control. Current work within Redfish on this

aspect is at an early stage, but indicates that control of network

devices will be done by mapping YANG models to Redfish

models [190]. The intention is that network devices will be

managed via the Redfish RESTful interface, regardless of the

YANG model they support.

While Redfish promises to be a strong foundation for future

infrastructure discovery and control mechanisms by providing

a set of standard interfaces that can be applied at different

levels of the infrastructure (e.g., resource level, chassis level,

rack level, and DC level), it is important to keep in mind the

open question: How to use and best propagate the information

throughout the system?.

2) Scheduling and Placement: Scheduling of workloads in

a DC has received some attention in the literature in recent

years, with surveys looking at energy aspects [134], load

balancing techniques [135], and VM allocation in the DC

[136]. Two levels of scheduling can be identified in an SDHI

architecture: scheduling resources within a DC based on HW

resource disaggregation to realize logical servers (covered in

this section) and scheduling within a logical server to execute

the workload (addressed later in this paper).

Resource scheduling within a DC based on SDHI involves

selecting resources based on their properties and physical &
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topological information. A scheduling mechanism must take

into account information about each individual resource along

with DC-wide network & interconnection fabric information,

such as latency and available bandwidth between resources.

Properties of the interconnect fabric (specifically latency and

available bandwidth) between the resources play a crucial

role in scheduling a logical server. Workloads have varying

requirements on the performance of the logical server, hence

while scheduling resources for a logical server the profile

of the workload (see Section V-D3) needs to be taken into

consideration to ensure that the requirements of the workload

that run inside the logical servers are fulfilled. Scheduling

mechanisms can be complex when the mechanism sees and

selects every individual component or simpler when the

mechanism only sees and selects the pool from which a certain

resource should be allocated. In the latter case, each pool

would be responsible for its internal scheduling, allowing

individual optimization mechanisms per pool, thus reducing

the complexity of the core scheduling mechanism. Moreover,

scheduling operations should not be static, hence optimization

should be possible after allocations have been made. Some

of the aspects that the scheduling mechanisms should take

into account are power consumption, resource defragmentation

(i.e., avoiding composing logical systems of resources that

are too scattered), performance, and optimized utilization

(considering aspects such a component’s lifetime to allow, for

example, overclocking and overprovisioning in a smarter way).

While the benefits of SDHI and disaggregated environments

have been extensively advocated, one needs to understand how

to “carefully” foster them. When setting up a DC environment,

dimensioning and distribution of resources come hand in

hand. In a highly flexible environment with physical resource

distribution, finding the optimal physical distribution/location

of resources is even more important. For example, distributed

resources bring an associated networking cost, making it

necessary to find a balance between benefit and cost. For

example, separation of memory and CPU by long distances

might be possible, but an expensive interconnect technology

would eat into the potential benefits of deploying such

technology. B. Abali et al. [96] have done some assessment

of the cost of memory disaggregation.

Another challenge is to understand and minimize the risk of

distribution of single failures when placing CPU and memory

pools in separate chassis. For example, if a chassis hosting

a CPU pool where several (logical) hosts are running has a

power failure, then all of these hosts will fail. As a result, HA

requirements could be a constraint on the resource composition

mechanism. Thus there are opportunities to realize different

HA methods for an SDHI other than those used in current

SDI.

Finally, it is important to highlight that the initial resource

distribution is performed based on workload forecasting.

However, it is extremely likely that workload patterns

change over time, hence performing physical re-distribution

of resources will be beneficial (e.g., moving a certain memory

pool from one logical server to another). Having suitable

mechanisms in place to optimize these re-distributions is

therefore required.

3) Monitoring and Analytics: In a SDHI that aims to

be as automated as possible, monitoring, fault prediction,

and anomaly detection play a fundamental role. These

mechanisms have the potential to take the resiliency and

robustness of the infrastructure to a level unseen in current

SDI architectures. Unlike today’s infrastructures, these

mechanisms should address both physical resources and

logically composed resources. Therefore, the ability to

retrieve near real-time information from the infrastructure is

crucial. While retrieving physical information might be seen

as a relatively straightforward task, retrieving information

from logical components and relating this information to the

information from physical components is not. For example,

if multiple hosts share a certain block of physical memory

or part of a CPU, this raises the question of how the system

can collect monitoring information not only regarding the

physical component, but also information from the portions

of each component associated with each logical host.

Moreover, predictive models need to be developed so that

the infrastructure can act proactively. For example, if one

detects that a certain component is behaving abnormally (e.g.,

at a high temperature, which can indicate that a failure is

likely), then one could trigger the migration of the associated

logical servers to another component. However, not everything

can be predicted; therefore, fault detection mechanisms will

still be needed.

4) Hardware Re-planning and Setup: Given the complexity

and dynamics of cloud solutions (especially in a disaggregated

architecture), J. M. Soares says that cloud providers should

adopt a modern and structured way to operate [191].

According to T. Thanakornworakij et al. success lies in

careful planning [63] and continuous execution of optimization

processes. This suggests that a new degree of agility, speed,

and flexibility is needed to realize the best operational

practices and to offer the most competitive pricing. Using

a disaggregated architecture gives cloud operators a new

dimension to exploit, thus making it possible to optimize their

operations by reshuffling resources of various types as needed

to increase resource utilization. Such an approach can help

ensure that the infrastructure and its operation remain suitable

for those workloads running on top of them.

This approach allows proactive DC hardware planning

using run-time performance parameters extracted via

analytics. By integrating a cost engine, operators can more

agilely micro-plan their operational phases, thus supporting

continuous replanning/re-shuffling of infrastructure resources

and automatic cost reduction during the DC’s lifetime. This

approach can help reduce the TCO by enhancing resource

utilization by using application-optimized hardware, thereby

introducing greater transparency into the costs in the DC

(e.g., see [60]).

Such a system might work as shown in Fig. 12. The DC

automation platform continuously monitors the performance

of the services and collects performance metrics, such as

power consumption, network congestion, CPU utilization,

communication delays, and response time. This monitoring

data is analyzed by an analytics engine, based on pre-defined

rules and thresholds. If the analysis detects the need for
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changes in the system, such as the need for new hardware

to support a consistently increasing workload, one or more

events/alarms are generated and sent to the cost engine with

the associated information. TCO will be calculated for various

options and then the engine decides if immediate action is

required or if the alarm should be ignored at this stage (this

decision is based upon a consideration of the expenses of the

system, service level agreements, or other policies). If there is

a decision to act that involves purchasing new hardware, then

the recommendations will be sent to a hardware dimensioning

engine to calculate volume and type of the components to be

purchased.

Fig. 12. Schematic overview of a DC automation platform’s monitoring and
planning modules.

The concept of a DC automation platform can be clarified

using the following example use case. Assume that a DC

is operating and the monitoring system detects a noticeable

increase in the power consumption of some CPUs. This

increased power consumption can be due to aging of the

servers. Assuming two years of the server’s lifetime, the CPU’s

efficiency has decreased [192], so more power is expended for

the same workload. In this case, the analytics engine sends a

notification to the TCO engine. The TCO engine calculates

the cost of replacing the old servers (or possibly only old

CPUs) with new ones versus the cost of energy that will

be wasted without such a change. The TCO engine might

take into consideration that hardware refreshment is already

planned in two months time (assuming that the computing

resources are replaced on some schedule, such as every 3 to

5 years). If so, the TCO engine might conclude that changing

the hardware two months earlier than planned would decrease

the TCO by saving sufficient energy to justify the cost. In

this case, the TCO engine sends its recommendation to the

hardware dimensioning engine to calculate the volume and

type of new hardware to be purchased based on the current

hardware’s performance and the expected workload. It should

be noted that the hardware dimensioning and selection in this

step is more intelligent than the initial planning since for the

DC the performance parameters related to the operating DC

are available, hence this additional information will be used by

the TCO engine when defining its proposal. Finally, the results

will be presented to the user to make the final decision.

D. Platform Layer

Efficient use of SDHI requires the interplay of all the layers

of the architecture (shown in Fig. 6). In this section, we look at

some key challenges faced by the platform layer (specifically

those regarding the OS and supporting services needed to run

the application) in order to achieve the goals of SDHI and HW

resource disaggregation.

1) Operating System: Resource disaggregation is a

relatively a new concept and its impact on OS and application

design and functionality will be of great importance with

advancements in SHDI technology. From an OS and

execution environment perspective, the first impact of

a new HW architecture is felt at the OS level. In this

case, the OS needs to understand how to cope with the

impact of disaggregation (e.g. regarding CPU scheduling,

memory/storage usage, and potential scalability issues). Few

efforts have been made in this area, except for some initiatives

(e.g., [193]). Thus we present some of the challenges that the

OS will have to cope with to run over disaggregated HW.

From an OS perspective, the three most important design

aspects to consider while managing a logical server composed

of disaggregated resources are:

1. SDHI Interface: Unlike in the traditional situation where

the OS is aware of types and quantities of the resources,

in a disaggregated HW scenario an OS needs to (directly

or indirectly) interface with the SDHI to allocate, free, and

manage resources. The response time of this interface will

have an impact on the application performance. For example,

smooth resource scaling and/or migration should be possible,

but would be difficult to implement without support from OSs

(or a hypervisor, as described in section V-D2).

2. Hot (un)Plug of resources: It is critically important that

the OS supports and manages smooth and non-disruptive Hot

plug and unplug of resources, thus enabling the logical server

to scale up and down based on the demand of the workload.

CPU hot-plug is implemented in the Linux Kernel and allows

one to add/remove CPUs on demand [143]. Removing a CPU

starts by switching it to offline, causing all the tasks, interrupts,

and timers to be migrated to another CPU. The case of memory

hot-plug can be divided into two phases: (1) physical memory

hot-plug phase (for physically adding/removing DIMMs) and

(2) logical memory hot-plug phase (for changing the amount

of allocated memory). Kernel memory offloading is supported

starting with Linux kernel 3.8 with the limitation that the node

must always have sufficient kernel memory [144]. Challenges

also arise regarding memory removal while scaling down, such

as how to select and free a logical host’s memory slot with

minimal impact on the OS and running applications. Today,

the information required for smooth resource scaling can only

be collected from within the OS, and therefore requires the

participation of the OS in scaling down memory.
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3. Abstraction: The OS needs to abstract away the fact that

it is managing disaggregated resources from the application

running on top of it. This will be crucial for many current

state of the art applications. The OS will hide the complexity

of managing disaggregated resources from the application.

4. Scheduling: As noted earlier, scheduling in a resource

disaggregated DC is done at two levels: (1) by the SDHI

manager when composing a logical host from slices of

resources and (2) by the OS when executing a workload

within these logical hosts. Given a one-to-one mapping

between the workload and a logical host, the execution

environment scheduler takes most of the responsibility for

workload scheduling, including distribution of the workload’s

tasks and execution of each task’s jobs. As a result the

OS and its corresponding execution environment can be

modified to support scheduling that is aware of resource

disaggregation and the notion of remote vs. local memory

or even different memory types. For example, the OS

needs to be aware of the inter-connectivity characteristics

(latency and bandwidth) of the composed logical server

to make smart scheduling decisions. The OS needs to

monitor (or be supplied with) the current state of various

inter-connectivity characteristics in (near) real-time to make

meaningful scheduling decisions. Smart scheduling in a

resource disaggregated DC creates opportunities to increase

system performance through increased spatial and temporal

coherency. A high degree of spatial and temporal coherence

results in greater data locality, hence processors will have the

correct data at the correct time, reducing the gap between CPU

processing speed and memory access latency.

While the OS can provide the abstraction of the

disaggregated resources to the application, exposing the

SDHI interface to the application can provide certain

advantages that an application can leverage. By exposing the

SDHI interface to applications, they can scale up and down

their resource needs in a finer granularity given accurate

and rapid mechanisms, hence facilitating efficient use of

resources in the DC. It is essential that the SDHI can enforce

application-level access control so that applications cannot

demand or allocate resources that they are not authorized to

use. The application can also use the SDHI interface to realize

better resource sharing with other applications; one such

use case (noted earlier) is the possibility of sharing RAM

between applications to exchange data between applications

thus eliminating the need for interprocess communication. But

this exposure comes at the cost of increases in the complexity

of the application, while legacy applications cannot adapt

to using the SDHI interface (making the abstraction layer

provided by the OS essential) (see Section V-D5).

2) Resource sharing and Hypervisor: Virtualization

introduces a software abstraction layer (i.e., hypervisor) that

emulates the abstract behavior of physical entities’ attributes

with software. The term virtualization has been used in two

different contexts in the literature: network virtualization

[17, 139] and server virtualization [16] (see Fig. 13).

Virtualization was first proposed for computer systems and

servers with the primary objective of providing an abstraction

that enables resource consolidation, resource slicing, and
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Fig. 13. Server virtualization versus Network virtualization.

multi-tenancy. In a server virtualization, the hypervisor layer

emulates the attributes of the physical server, to realize

a virtual machine (VM) with arbitrary sets of resources.

Typically a new VM can be realized within a matter of

seconds.

The success of server virtualization lead to speculation

about network virtualization. In network virtualization, a

network hypervisor realizes a physical network based upon a

pool of transport capacity. As a result, the physical network’s

capacity can be sliced (on-demand) into different virtual

network layouts (i.e., including networking entities performing

switching, routing, and load balancing) in such a way that each

virtual network can be treated separately from the underlying

physical network hardware.

To realize resource sharing across different logical systems,

the ability to both slice and aggregate resources is essential.

In today’s server-based architecture, resource sharing is

frequently accomplished with the help of server virtualization

and hypervisor software. However, in a software-defined

resource disaggregated DC one should not be limited to the

usage of legacy hypervisor-based technologies; but rather,

one should exploit resource sharing in a far different

manner. Potentially, DC providers could improve resource

utilization through resource sharing (by avoiding resource

stranding and fragmentation), while at the same time, avoiding

the performance overhead introduced by software-based

virtualization.

Fig. 14 shows four different examples of how resource

slicing, sharing, and aggregation could be realized in an SDHI.

In the case of A, a dedicated physical unit is provided for a

host, hence no slicing or sharing occurs. Case B shows an

example in which resource units can be sliced, with each slice

assigned to different hosts as dedicated logical units. Case

C shows the case of overprovisioning where, in addition to

slicing, resource sharing is occurring. Finally, case D shows

an example where multiple resource units are aggregated and

provided to the host as a single logical resource. Beyond these

cases, it should be noted that other approaches that are hybrids

of these are possible. Moreover, virtualization technologies

based on hypervisors could be applied at the logical host level.

Realizing resource slicing and sharing at the HW level

(see Section V-A) could bring typical hypervisor functions

to the HW, thus eliminating or reducing the overhead of

current hypervisors. However, the question remains whether
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Fig. 14. Resource slicing and sharing (adapted from [58])

hypervisors will still be required. To address this issue, we

need to consider the dependency on hypervisors and the

essential functions that hypervisors provide, such as HW

abstraction. Therefore, it is important to understand what

role hypervisors will play and how they should evolve in

conjunction with this new architecture.

Within an SDHI (i.e., based on resource disaggregation),

when an entire CPU is not assigned to a logical server, a

minimal hypervisor abstraction is still required to set up,

partition the HW devices, and start and stop a given logical

host. Monitoring of logical hosts is another function that could

easily be done by a hypervisor, although such monitoring can

be implemented in other ways (e.g., [194]) (see Section V-C3).

Arrakis [145] describes the advantages of removing the

Linux kernel from the data path of IO and using the kernel

only for the control path. Earlier work by Massalin [142],

synthesized kernel code using just in time techniques to

optimize kernel processing but still required going through

the kernel. This concept can be extended to hypervisors at a

higher granularity, by removing some aspects of the hypervisor

from the data path. An application running under a minimal

hypervisor greatly benefits from a reduction in expensive

hypervisor calls. When it comes to processor resources, after a

hypervisor has allocated specific CPU cores to the logical host,

it does not need to participate in the subsequent scheduling of

processes on these cores. Disaggregation has the potential to

remove page fault handling functionality from the hypervisor

and move it to the application, hence removing the hypervisor

from the data path. Regarding networking, SR-IOV and

Multi-Root I/O Virtualization (MR-IOV) can be used to

directly talk to NICs using single/multiple queues after the

HW has been initialized by the hypervisor. Similarly, storage

devices supporting an NVM Express (NVMe) [146] interface

can provide access to a storage namespace which can be given

to a logical host, therefore bypassing the kernel (although this

requires some security enhancements to prevent other logical

machines from reading/writing from/to the same namespace).

Furthermore, logical hosts using SDS or controller-based

storage can work without any hypervisor support in the control

path.

Removing some of the functions from the hypervisor may

come at some cost. For example, assigning dedicated memory

to a logical host using disaggregated memory could end up

using more memory, as some features, such as kernel same

page merge (KSM) [141], cannot be easily deployed. While

it might still be possible to realize KSM functionality at a

memory blade level, that may add more complexity to the

memory blade hardware. Sharing memory (see section V-D2)

between logical hosts could also become complicated in the

absence of a hypervisor. Furthermore, with the removal of

hypervisors, the ability to oversubscribe and to control devices

that do not support resource slicing and sharing may be lost.

In the absence of a hypervisor, logical hosts need a variety of

hardware drivers to support the underlying hardware, and this

could be challenging in a cloud environment with a diverse

set of devices.

When it comes CPU slicing, while controls exist in

today’s processors to support cache partitioning and memory
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bandwidth partitioning, methods to control partitioning of

the bandwidth of interconnects (e.g., PCIe and SATA) are

lacking. It might be easier to control the bandwidth from

device to CPU if a single device is attached to the bus,

but in the absence of a hypervisor this might require more

complex queue management logic on the CPU. Functions

crucial for the efficient use of CPU resources, such as on-

demand allocation/removal of CPU slices (e.g., adding an extra

core or giving up one), will also become more complicated

without a hypervisor, hence requiring new interfaces or explicit

logic in the applications, OS, or perhaps in the HW.

3) Sharing Resources Across Platforms: One of the

key factors that underlies the resource efficiency of the

disaggregated hardware architecture is that hardware

resources can be dynamically shared among multiple logical

servers, both in time (i.e., a hardware resource that was part

of a logical server at one time can be moved to another

logical server) and space (i.e., sharing of a hardware device

across two logical servers at the same time, often by using

hardware-implemented resource slicing functions). The

challenges associated with these are discussed in Section

V-D2. However, this ability on its own is insufficient to

achieve resource efficiency; rather we need to fully exploit

the software stack that runs on the logical servers to realize

this goal. The following are some of the challenges faced by

the software stack to fully exploit resource sharing to achieve

a high level of resource utilization.

Demand Prediction/ Application Profiling: A high level

of resource utilization can only be achieved when the

correct amount of each type of resource is allocated to each

application. However, knowing the exact amount of each

resource needed by an application at any given time is not

an easy task. First, it requires developing a model that can

predict the demands/requests that are going to be made to the

application itself (i.e., demand prediction). Then, given a level

of demand (requests to the application), a model is needed

that can predict the amount, type, and configuration of the

logical host(s) needed to efficiently support this application’s

execution to meet these demands (i.e., application profiling).

Although there exists considerable work on demand prediction

[195–197], it unclear which approach is suitable for a resource

disaggregated DC environment. While application profiling

for server-based SDI has been extensively investigated,

work on dynamically constructed logical servers (built from

disaggregated hardware resources) is still in its infancy.

Cross-Platform Resource Sharing The traditional way to

deploy software platforms is in so-called silos where each

platform is allocated its own set of hardware resources which it

utilizes, independently of the other platforms that are deployed

in parallel. This limits the potential resource utilization since

resources unused in one platform remain unused. Apache

Mesos [83] is a cluster resource manager that introduced a

new approach that enables resource sharing across multiple

platforms, thereby increasing resource efficiency of those

resources it manages. However, Mesos’s approach assumes

traditional server architectures and that platforms are adapted

to run on a Mesos-managed cluster of resources. To achieve

the high resource utilization promised by SDHI, a Mesos-like

resource management system for disaggregated resources is

essential.

4) Software Platforms for Disaggregated HW: A

disaggregated HW architecture brings with it opportunities

that allow existing software platforms to change how

they do things to improve their efficiency, performance,

and scalability. The following discuss just a few of these

possibilities.

IaaS-Platforms Traditional IaaS platforms such as OpenStack

use hypervisor-based virtualization technologies to slice up

server resources and present them as VMs. However, given

that resource disaggregation and SDHI can compose a logical

server, its performance and efficiency can be improved by

eliminating the hypervisor and running what would have

been the ’VM’ directly on the logically composed server. The

RedFish driver for OpenStack’s Ironic project [138] is the

first step in this direction. Moreover, the OpenStack’s Valence

project [137] aims to provide a complete integration with an

SDHI by being the integration point between OpenStack and

SDHI management layer. More concretely, Valence considers

Redfish (and Intel RSD specifications) as the appropriate

integration point.

BigData Platforms Faster access to data in big data

applications is the key to improving their performance.

For example, Apache Spark achieves orders of magnitude

improvement of application execution times compared to

MapReduce because Spark uses Resilient Distributed Datasets

(RDD) that reside in memory and hence can be accessed

with low delay. Similar performance improvements can be

expected by making use of shared memory in disaggregated

hardware systems. Specifically, one can imagine a setting

where the producers and consumers of an intermediate

computation (e.g., mappers and reducers in MapReduce)

share a memory area such that the producers write the

result of their computation into the shared memory, while the

consumers read and process the data from this shared memory.

One may also consider directly sharing disks on which data

is stored among workers of a big data platform, eliminating

the need to duplicate the data at several places and saving on

storage resources. In both cases, there is a trade-off between

faster access and a more complex interaction between the

various entities.

5) Application development: With SDHI, associated HW

capabilities and features, and new classes of HW devices that

continue to be added to new DCs (e.g., NVM and FPGA),

it is important to understand how these capabilities affect

applications, and how applications can take full advantage of

this HW. There are two approaches. The first approach is to

hide these details in a layer below the application, e.g., in

the OS or even SDHI, thus applications will continue to be

developed as they are today, while the HW or OS deal with

the effects of disaggregation and new classes of HW devices.

This approach is particularly interesting when running legacy
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applications. The second approach is to make applications

aware of disaggregation. This would enable applications to

distinguish and use different types of resources (such as

remote vs. local memory and RAM vs. NVM) while adapting

their behavior to the HW. This would likely result in the

best application performance, but comes at the cost of extra

complexity in the application development process.

VI. RESEARCH INITIATIVES AND TOOLS

This section provides an overview of some of the most

prominent research initiatives in the field of SDHI. Moreover,

it also refers to a set of tools that can be used to further explore

the area of HW disaggregation and SDHI.

A. Research projects

The SDHI concept has captured the interest of both industry

and the research community. Examples of the technology push

driven by collaborative research projects between industry

and academia include dRedBox [157], M2DC (Modular

Microserver Data Centre) [158], and FireBox [156].

Of these, dRedBox aims to specify, design, and prototype a

DC system based on a software-defined and HW disaggregated

architecture where SoC based microservers, memory modules,

and accelerators are placed in separate chassis/server

trays and interconnected via a high-speed, low-latency

opto-electronic fabric. Additionally, the project aims to

provide management software to configure the infrastructure,

focusing on resource/power management aspects.

Similar to the dRedBox project, FireBox aims to develop a

new system architecture for DCs based on HW disaggregation.

It mainly seeks to produce: custom data center SoCs,

distributed simulation tools for large-scale machines, and

system software for FireBox-like disaggregated environments.

Moreover, special effort is made to integrate NVM into the

architecture via a low-latency high-bandwidth optical switch.

The M2DC project also pursues the vision of a

software-defined DC environment. However, its focus is

on creating a high-density and software-definable server

architecture based on microserver modules. Without aiming

for a fully disaggregated environment, M2DC intends to

allow a seamless combination of heterogeneous microservers

within one enclosure. In addition to direct communication

between microservers through a dedicated high-bandwidth

and low latency communication network, the system also

supports connections to storage or I/O extensions, allowing

easy integration of PCIe-based extension cards such as

general-purpose computing on graphics processing units

(GPGPUs) or storage subsystems. Similar to dRedBox,

M2DC also aims to provide middleware software to allow

the infrastructure to run as efficiently as possible.

B. Emulation and simulation of resource disaggregation

SDHI and HW resource disaggregation is still in its

infancy and hardware is not readily available for research.

A resource disaggregated system would include a wide

variety of computing, storage, memory, GPUs, FPGAs,

interconnects, and peripherals as well as systems to control

them. Unfortunately, it is not easy to emulate the complete

system. However, a piecemeal approach is possible. FPGAs,

hardware simulators, and QEMU are some of the tools used

by various communities to develop SDHI systems. Table VII

summarizes these tools and the following paragraphs describe

some of these tools.

Datacenter-In-A-Box at Low Cost (DIABLO) [47, 156] is

a DC simulator often described as a wind tunnel for DCs. It

utilizes FPGAs and is capable of simulating on the order of

10,000 servers and 1000 switches. In this simulator, parameters

such as link speed, latency, and CPU clock speed can be

configured. DIABLO is built using 65 nm Xilinx Virtex

FPGAs, supports SPARC v8 instructions, and is capable of

running a Linux OS. DIABLO2 [155] is the second generation

of DIABLO and plans to use 14nm FPGAs and 100 Gbps

interconnects. The goal for this environment is to facilitate

research on rack level optimizations.

Firesim [156] is another simulator being developed by the

University of California at Berkeley’s Architecture Research

Lab. The project aims to enable cycle-accurate prototyping and

benchmarking of new datacenter designs using public-cloud

infrastructure. Firesim promises to allow users to evaluate the

trade-offs between simulation accuracy and performance at a

component granularity. Currently, Firesim can be realized on

Amazon Web Services [200].

QEMU [140] provides an excellent environment for

emulating various hardware resources, system behaviors,

modeling new instructions, and inserting delays. The

software is widely used and it is easy to get support from the

community. QEMU can be used for emulating a single system

or several systems. However, it is difficult to realistically

emulate low latency or high throughput traffic. This emulator

can be useful in understanding changes in an application’s

behavior in conjunction with hardware changes.

Maze [113] is a network emulation platform used by

Microsoft in various research activities regarding rack

scale systems. The focus of Maze is a rack-scale network

fabric. Maze runs on a cluster of servers connected by a

high-bandwidth switched network based on RDMA. The

network fabric of the rack is emulated as a virtual network

on top of a switched network. RDMA is capable of

achieving 38Gbps over a 40 Gbps link. Maze can be used

to implement/emulate new routing/transport protocols in user

space. The emulated transport copies packets using RDMA

from the sender to the receiver. Although Microsoft promised

to open source Maze, currently no information about this is

publicly available.

COTson [199] is a full functional simulator developed

with the aim of providing fast and accurate evaluation of

current and future computing systems with full software stack

and hardware models for cluster-level systems. In COTSon

fast functional emulators and timing models cooperate to

improve simulation accuracy and speed in order to be able

to simulate the full software stack. It incorporates a statistical

sampling approach trading accuracy for speed where needed.

By incorporating a robust interface between functional and

timing domains, it is able to leverage existing simulators.
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TABLE VII
TOOLS USED BY VARIOUS COMMUNITIES TO SIMULATE/EMULATE SDHI SYSTEMS AND HW RESOURCE DISAGGREGATION.

Ref Name Use Availability Comments

[140] QEMU A software platform for emulating
various hardware resources.

Open Source Difficult to realize nanosecond delays and high throughput.
Many works in disaggregation use this approach, such as [24,
25, 198].

[113] Maze Platform for emulating rack scale
network fabric used in several
Microsoft studies.

Unavailable It was previously announced on its webpage that it would be
open sourced. Currently it is unavailable. Some design details
can be gleaned from various papers.

[47,
156]

Diablo FPGA accelerated simulators for
enabling high scale cycle accurate
simulations from UC Berkeley
labs.

Unknown Diablo2 [155] is a planned extension of this platform. Firesim
is another simulator which allows rack scale designs to
simulated. Firesim can be cost-effectively realized on AWS.
A good deal of information about the simulator is available,
although full details are not published.

[199] COTson Full System Simulator for Cluster-
level Systems

Open Source Provides a robust interface between functional and timing
models to be able to leverage existing simulators. It is able
to provide accuracy in the simulation where needed.

[198] DiME Disaggreaged Memory Simulator
for evaluating application
performance

Open Source Using modifications to Linux kernel, the emulator is able
to assess the impact of application performance while
accessing remote memory. The user can evaluate application
performance at various delays.

[154] CoFluent Co-simulation platform using a
SysML based description with
existing hardware.

Commercial A commercial platform that can be used predict an
application’s performance for the given cluster configuration
and to investigate "what if" scenarios.

[153] Simics A Full system simulator of targeted
hardware.

Commercial A commercial platform that can be useful in developing
software when building new hardware.

The ability to adjust accuracy and speed, enables COTson to

be used to evaluate all the way from microarchitecture level

changes to evaluating customer requirements for clusters with

performance/power and cost.

DiME [198] is a emulator for assessing the performance of

applications in a disaggregated memory system. The emulator

assumes a certain amount of memory is available locally.

When remote memory pages are referenced they are swapped

into the local memory. This allows the user to configure

memory access latencies and inject these latencies. In its

current implementation, DiME does not account for any

queuing delays of interconnects or other system aspects, such

as DRAM bandwidth.

CoFluent [154] is a commercial simulation platform that

allows for co-simulation of a UML-based system description

and the hardware used to implement the CPU, network, and

memory resources. CoFluent predicts behavior by executing

SysML (Systems Modeling Language) specifications and

determines the performance of time constraints, bus

transactions, memory accesses, power consumption, memory

footprint, and cost. An application is used along with a

functional model that together provide a refined virtual

system model. A mapping is made between the functional

model and the hardware resource model by allocating

functions to processing units, data to storage units, and

routing inter-processor data to physical links. CoFluent can

predict an application’s performance for a given cluster

configuration and can be used to investigate “what if”

scenarios or to test various design choices.

Simics [153, 201] is a commercial full system simulator

in which the target hardware can be simulated. Simics can

simulate systems ranging from a single component to multiple

interconnected boards. Simics allows code compiled for the

target hardware to be run on this virtual platform, hence it

can be used when investigating system level issues.

As part of OpenStack Valance [137], a project to integrate

rack scale architectures in OpenStack, a simulation capability

is available for simulating rack scale node addition and

removal. The exact capabilities of the Valance are currently

unknown.

VII. CONCLUDING REMARKS

The IT industry has realized that to achieve increased cloud

efficiency, some of the today’s basic cloud infrastructure and

SDI principles need to change. At the forefront of these

(already ongoing) changes is the concept of SDHI, a concept

that requires the cloud infrastructure to be re-architected in

fundamental ways.

The journey towards SDHI is ongoing but its impact

is already noticeable. The technological impact may seem

to be confined to the HW and its management; however,

the actual impact goes far beyond this ranging from the

execution layer to the application layer. Although storage

has already been disaggregated, challenges remain in how

to realize decoupling of the remaining server components,

such as memory, processors, and NICs. Further progress to a

great extent, depends on HW vendors to support and add the

required functionality into their HW components. We believe

that over time increasing degrees of disaggregation will be

supported by HW vendors. The effects of these changes will

be ever more visible to the higher layers in the DC architecture.

The article shows that memory disaggregation has received the

greatest attention compared to other components and layers in

SDHI. Despite this, memory disaggregation is still not mature.

As a result, many questions remain to be answered, many

independent efforts should be integrated, and additional efforts

are required to realize a fully operational SDHI. After some

of these problem have been addressed and technology has

become more mature the impact of SDHI will be increasingly

visible to the application developer and end users.
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This paper provides the first consolidated survey of

SDHI (and HW disaggregation), by presenting the SDHI

concept, its business and technical opportunities, along with

enabling technologies, architectures and protocols. Moreover,

it continuously points out the challenges and issues that still

remain to be addressed in order to realize the full potential of

SDHI. This work provide a good foundation for researchers

and practitioners who are interested in gaining insight into

the SDHI concept and associated technologies and who want

to understand the overall impact of SDHI and HW resource

disaggregation on the entire cloud ecosystem.
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APPENDIX

LIST OF ACRONYMS

AMB Ambient Memory Buffer

API application programing interface

BSS Business Support Systems

CAPEX capital expenditures

CCIX Cache Coherent Interconnect for Accelerators

CPU Central Processing Unit

DAS Direct-attached Storage

DC data center

DCB DC Bridging

DCs data centers

DDR Double Data Rate

DIABLO Datacenter-In-A-Box at Low Cost

DIMM Dual Inline Memory Module

DMA Direct Memory Access

DMI Direct Media Interface

DMTF Distributed Management Task Force

DRAM Dynamic Random-Access Memory

ENI Elastic Network Interface

FB-DIMM Fully Buffered DIMM

FC Fiber Channel

FPGA Field Programmable Gate Array

GPGPU General-purpose GPU

GPU Graphics Processing Unit

HA High Availability

HDI Hardware-Defined Infrastructures

HDS Hyperscale Data System

HPC high-performance computing

HRDMA Hardware based RDMA

HW hardware

IaaS Infrastructure as a Service

IoT Internet of Things

IP Internet Protocol

IPMI Intelligent Platform Management Interface

iSCSI Internet SCSI

IT information technology

iWARP internet Wide Area RDMA Protocol

KSM kernel same page merge

MaaS Metal as a Service

MR-IOV Multi-Root I/O Virtualization

NAS Network Attached Storage

NIC Network Interface Card

NTB Non-Transparent Bridged

NUMA Non-uniform memory access

NVM Non-Volatile Memory

NVMe NVM Express

OCDIMM Optically Connected DIMM

OCP Open Compute Project

OpenCAPI Open Coherent Accelerator Processor Interface

OPEX operational expenditures

OS operating system

OSS Operations Support Systems

PaaS Platform as a Service

PCIe Peripheral Component Interconnect Express

PODM Pod Manager

PSME Pooled System Management Engine

QPI Quick Path Interconnect

RAM Random-Access Memory

RDD Resilient Distributed Datasets

RDMA Remote Direct Memory Access

RMM Rack Management Module

RoCE RDMA over Converged Ethernet

RSA Rack Scale Architecture

RSD Rack Scale Design

SaaS Software as a Service

SAN Storage Area Network

SATA SerialAT Attachment

SCM storage class memories

SCSI Small Computer System Interface

SDCloud Software-Defined Cloud

SDC Software-Defined Computing

SDDC Software-Defined DC

SDE Software-Defined Environment

SDHI Software-Defined "Hardware" Infrastructures

SDI Software-Defined Infrastructures

SDN Software-Defined Networking

SDON software-defined optical network

SDS Software-Defined Storage

SoC System on Chip

SPMF Scalable Platforms Management Forum

SR-IOV Single-Root I/O Virtualization

SSD Solid-State Drive

TCO Total Cost of Ownership

TCP Transmission Control Protocol

TIP Telecom Infra Project

TLB translation lookaside buffer

ToR Top of Rack

UPI Ultra Path Interconnect

VM Virtual Machine

VNF virtual network function

XaaS “X” as a Service


