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Abstract: Software-defined networking (SDN) is an innovative network architecture that splits the
control and management planes from the data plane. It helps in simplifying network manageability
and programmability, along with several other benefits. Due to the programmability features,
SDN is gaining popularity in both academia and industry. However, this emerging paradigm
has been facing diverse kinds of challenges during the SDN implementation process and with
respect to adoption of existing technologies. This paper evaluates several existing approaches
in SDN and compares and analyzes the findings. The paper is organized into seven categories,
namely network testing and verification, flow rule installation mechanisms, network security and
management issues related to SDN implementation, memory management studies, SDN simulators
and emulators, SDN programming languages, and SDN controller platforms. Each category has
significance in the implementation of SDN networks. During the implementation process, network
testing and verification is very important to avoid packet violations and network inefficiencies.
Similarly, consistent flow rule installation, especially in the case of policy change at the controller,
needs to be carefully implemented. Effective network security and memory management, at both
the network control and data planes, play a vital role in SDN. Furthermore, SDN simulation tools,
controller platforms, and programming languages help academia and industry to implement and
test their developed network applications. We also compare the existing SDN studies in detail in
terms of classification and discuss their benefits and limitations. Finally, future research guidelines
are provided, and the paper is concluded.

Keywords: SDN; network testing and verification; flow rule installation mechanisms; network
security and management; memory management; SDN emulators and simulators; SDN programming
languages; SDN controller platforms

1. Introduction

Traditional networks are complex and hard to manage because all the functionalities of
the data, control, and management planes are vertically and tightly coupled in forwarding
devices [1]. In traditional networks, the control plane, with the help of routing protocols,
forwards data packets as per network policies. Due to this vertical integration and the
tightly coupled nature of forwarding devices, network management becomes difficult, and
performance tuning becomes challenging. Moreover, the network applications and services
of the current information age have become more complex and demanding, so it is necessary
that the Internet be able to evolve to address these new challenges. To resolve such issues,
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the idea of “programmable networks” has been proposed to facilitate network evolution.
In this regard, two concepts, active networking [2] and programmable networks [3], were
explored. Active networking refers to network intelligence (as opposed to typical packet
processing), where network nodes have the capability of performing customized operations
on packets. Programmable networks permit the controlling of network nodes’ behavior
and flow control through software. Later, the 4D project [4–6] proposed a clean slate
design that is based on four planes: decision, dissemination, discovery, and data. It
emphasizes the separation of routing decision logic and protocols governing the interaction
between forwarding devices. The decision plane has a network-wide view of the network
topology and installs configuration commands at the data plane for communication. The
dissemination and discovery planes provides efficient communication between the decision
and data planes. Ethane [7] proposed a new network architecture for enterprises that allows
network managers to configure and control the whole network by using a centralized
controller. These research works proposed a clear foundation for separation between the
data and control planes, which resulted in the introduction of software-defined networking
(SDN). SDN provides a real-world implementation of a suite of networking software
that allows a network to be centrally controlled. It is not the first and only solution that
accepts separation and programmability. However, it has wide acceptance in both academia
and industry due to the rapid innovation in both the control and data planes. A group
of network operators, service providers, and vendors have created the Open Network
Foundation (ONF) [8], which is an industrial-driven organization to promote SDN and
standardize the OpenFlow Protocol (OFP) [9]. On the academia side, the OpenFlow
Network Research Center [10] has been created, with a focus on SDN research.

SDN [11–15] is an emerging form of network that resolves these limitations by sep-
arating network control and management from the data plane to reduce complexity and
increase network management. This separation of the control and data planes leaves
network switches as simple forwarding devices. However, the network control is shifted
to the centralized logical entity called the controller, which acts as the network’s brain
and maintains a global view of the network and programming abstractions. It offers a
programmatic control of the entire network and provides real-time control of underlying
devices to network operators. The management plane specifies network applications, such
as network policies, network monitoring, load balancing, and so on, which are imple-
mented by the network administrator based on the application environment and the user’s
requirements. In this way, network management turns out to be simple, which reduces
network rigidness. All three of the SDN planes interact with each other by using application
programming interfaces.

1.1. Application Programming Interfaces

Application programming interfaces (APIs) [16] are very important in SDN; they pro-
vide communication between the data, control and management planes. The well-known
APIs are southbound APIs (SBI), northbound APIs (NBI), and in the case of distributed
controllers, east/westbound APIs. These APIs are architectural components of SDN, and
they are used to configure forwarding devices or network applications. The SDN layered
architecture, including APIs, is shown in Figure 1.

1. Southbound API: This is an SDN enabler that provides a communication protocol
between the control plane and data plane. It is used to push configuration informa-
tion and install flow rules at the data plane. It also provides an abstraction of the
network device’s functionality to the control plane. Moreover, it allows the discovery
of network topology, defines network flows, and implements requests sent by the
management plane. SBI is critical with respect to its availability as well as secure
communication. In absence of any one of these parameters, it may result in the
malfunctioning of forwarding devices. It faces challenges of heterogeneity, vendor-
specific forwarding devices, and programming languages. OFP is commonly used as
an SBI that provides secure channel between the control and data plane to install flow
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rules. SBI proposals are categorized based on whether they are OpenFlow-dependent,
OpenFlow-independent, or emerging technology, all of which are shown in Figure 2.

Figure 1. SDN system architecture.

Figure 2. Southbound API proposals.
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• OpenFlow-Dependent SBI Proposals: These include OpenFlow-based SBI pro-
posals with the addition of new features or in its newer versions. DevoFlow [17]
modifies the OpenFlow model to permit network operators to focus on flow
rules, which are essential for network management, by breaking the coupling
between network control and global visibility. It helps to reduce internal commu-
nication between the control and data planes. The Revised OpenFlow Library
(ROFL) [18] provides an API that offers much better usability by hiding details of
OFP versions to make application development easier. It utilizes the extensible
datapath daemon (xDPd) framework, which facilitates creating SDN data path
elements. The hardware abstraction layer (HAL) [19] separates hardware-specific
control and management functionalities from the forwarding devices in order to
make legacy network nodes such as OpenFlow compliant. It results in decreasing
the complexity of network devices, and the problem of vendor-specific features
is resolved. OpenState [20] states that a central controller should not be provided
with full control. It also proposes that the programmers can implement states
in the forwarding devices instead of the central controller. Protocol-oblivious
forwarding (POF) [21] offers a reactive mechanism that requires forwarding
devices to extract keys and process packets by using packet headers, which
leads to overhead. The programming abstraction datapath (PAD) [22] reveals the
programmability of switch capabilities and offers SBI for optical switches. The
open virtual switch database (OvSDB) [23] and OpenFlow configuration protocol
(OF-Config) [24] build an association between the control and data planes and
facilitate configurations in OpenFlow.

• OpenFlow-Independent SBI Proposals: P4 runtime SBI [25] helps to solve the
problem of OFP. It is an open, extensible, customizable platform that offers a
new way for the control plane to control forwarding devices and solves the
limitations of OFP. Forwarding and control element separation (ForCES) [26]
aimed to replace OpenFlow. It enables the separation of control and forwarding
elements that are in the same physical device without modifying the traditional
networking architecture and without involvement of an external controller using
a logical function block. OpFlex [27] supports communication between the con-
troller and data plane; however, its provision of service is different in comparison
with OpenFlow. It resolves the scalability problem by distributing load to the
forwarding devices. NetConf [28] uses a remote procedure call paradigm to
manage and configure network devices remotely. It was already present before
the emergence of SDN and offers a very simple API to send and receive full or
partial configuration datasets.

• OpenFlow-Based SBIs Emerging Technology: Sensor OpenFlow (SOF) [29] is up-
graded as per the specifications of low-capacity sensor nodes. It is based on
OpenFlow and aimed to address the challenges of flow and congestion control. It
offers the ability to redefine flow tables as per the specific addressing schemes of
wireless sensor networks (WSN) to install flow rules on sensor network devices.
Software-defined wireless networks (SDWN) [30] aimed to decrease energy con-
sumption in WSNs with the help of duty cycles and in-network data aggregation.
Duty energy minimizes consumption by turning radio off in case of idle periods,
and in-network data aggregation is also helpful in this regard. Its protocol ar-
chitecture utilizes both generic and sink nodes. In addition, it supports elastic
flow rules due to its nature, unlike traditional OpenFlow. SDN for wireless
sensors (SDN WISE) [31], implemented in OMNet++, aimed at reducing sensor
nodes’ communication with the controller, in addition to making sensor nodes
programmable. SOF and SDWN utilize a central controller to provide theoretical
details; however, SDN-WISE is based on a distributed controller paradigm, using
an ONOS controller [32] to provide services based on practical implementations.
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2. Northbound API: Control and management planes use NBI to provide programmabil-
ity to application developers. NBI is very important with respect to the ability of SDN
adoption to support variety of SDN applications. A wide range of NBIs are offered by
current controllers and programming languages due to the lack of standardization. In
addition, some programmers and many controller platforms use the REST API as NBI.
One of the initiatives of ONF is the Northbound Interface Work Group (NBIWG) [33],
which was formed with the intention of standardizing NBI.

3. East/Westbound API: Inter-controller communication of SDN domains is established
using eastbound API. Westbound API is responsible for communication from the
legacy domain to SDN domain. Central network control is the key feature of SDN;
however, the single controller can handle only a limited number of forwarding de-
vices. To accommodate the exponential increase in forwarding devices and for large-
scale networks, distributed controllers have become a requirement. Eastbound APIs
are used to import/export information among distributed controllers [34–36], and
westbound APIs enable communication between legacy network devices and the
controllers [37–39].

1.2. Network Configuration and Flow Rules Installation

Computer networks are mainly configured based on access control list (ACL) policies
and routing protocols. The ACL policies are the set of rules that instruct network devices
to function as per the requirements of users, applications, and/or organizations. The
routing protocols help to find best path between source and destination. In SDN, the
ACL policies are configured at the network control plane, and based on those policies,
flow rules are generated and installed at forwarding devices. These policies often change
in computer networks as per the demands of hosts or changes in network topology to
allow or deny specific communication [40]. The SDN programming languages (for example,
Pyretic [41], Frenetic [42], and Maple [43]) help to specify ACL policies as per the application
environment via parallel and sequential composition operators for efficient implementation
of policies. Whenever a host initiates a communication process, the forwarding device
(switch) checks flow rules for that communication in its flow table. If a flow rule does
not exist, then it sends a digest packet to the controller. The controller calculates the best
path between the source and destination host according to the network topology and ACL
policy. The flow rules are installed along the computed best path, and based on these flow
rules, communication takes place. The switch stores these flow rules in its flow table until
the timeout value expires due to inactivity. There are two types of timeout values. The first
type is soft timeout, which states that the flow rule is deleted from the switch flow table if it
is not used for a defined number of seconds. The second type is hard timeout value, which
states that the flow rule is deleted a after certain number of seconds [44]. These timeout
values depend on the application environment and controller platform [45].

The flow rules are installed based on reactive, proactive, and hybrid mechanisms [46].
In a reactive mechanism, when a packet is received at the switch, it looks up its flow table
to initiate the forwarding process. In the case of flow rule matching, the respective packet
is forwarded as per flow entry. However, in the case of non-matching, it sends a digest
packet to the controller, which reacts by consulting the network topology, routing protocols,
and ACL policies. It computes and installs the flow rule along the path between the source
and destination via packet-out messages. All subsequent packets follow the same path
without intervention from the controller. In this approach, only required flow rules are
installed as per the request from communication hosts, so it helps to reduce the load in the
flow tables of the data plane. This, in turn, efficiently utilizes ternary content-addressable
memory (TCAM) resources. In a proactive approach, the flow rules are pre-populated,
that is, populated before the first packet of a flow arrives at a switch based on network
policies, routing protocols, and network topology [32]. This approach reduces the flow
rules setup delay as well as the number of signaling messages due to the predefined actions
and their flow rules installation before the arrival of packets. Therefore, the packets are
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forwarded just by matching flow rules, which saves a large amount of time. However, the
TCAM resources of switches are not efficiently utilized due to the installation of flow rules
for which communication is not desired. The hybrid approach is combination of reactive
and proactive and is flexible in the sense that it includes the best characteristics of both
proactive and reactive approaches. It offers flexibility and robustness and helps to reduce
communication delays.

1.3. SDN Advantages

SDN has many advantages over traditional networks owing to the lower mainte-
nance, ease of management, and implementation of ACL policies [47,48]. It simplifies
network management and control by managing the whole network from the centralized
controller. Moreover, forwarding devices (switches) become simplified as network intelli-
gence is shifted to the controller; thus, these devices are left with very basic functionalities
as they only need to act according to the instructions from the controller and do not re-
quire understanding and processing heterogeneous algorithms and protocols. In addition,
the forwarding devices also help the controller for route computations and link/node
monitoring, along with other tasks such as network management and diagnostics [49].
SDN has numerous advantages compared to traditional networking. Some of them are
defined below:

• SDN Centralized Management and Control: SDN’s centralized management and con-
trol of networking devices helps to reduce complexity.

• Directly Programmable: The network control plane can be directly programmable as
it is separated from the data and management planes.

• Easier Network Management and Automation: It offers easier network management
and automation via common APIs to program the applications due to the provision of
abstractions by the controller platform.

• Rapid Innovation: It allows rapid innovation, as there is no need to configure each
device and no need to wait for new releases from vendors.

• Programmability: The network is programmable with the help of network applications
that are installed at the control plane to offer vendor independence.

• Flexibility: It provides a flexible network architecture that protects existing invest-
ments while future-proofing the network.

• Flow-Rules-Based Forwarding: Forwarding decisions are based on flow rules (instead
of destination-based addresses), which broadly implement flow rule matching and
action criteria.

• ACL Policy Implementation: It allows network administrators to apply ACL policies
at a more granular level in a highly abstracted automated fashion.

• Usability: It provides better user experience by centralizing network control and
making state information available to higher-level applications as it can adopt dynamic
user needs easily [50–53].

• Security: It provides centralized security control, which improves network visibility
through security management. In addition, it offers robust control over network
infrastructure to develop efficient and effective security mechanisms [54,55] to detect
and prevent security attacks [56,57].

• On-Demand Quality of Service: It utilizes the SDN central control intelligence for the
aggregation of services from long-term evaluation (LTE) and the wide area network
(WAN) to tackle the increasing computational demands of mobile users [58].

• Traffic and Resource Categorization in Edge Network: The collaboration of network
function virtualization (NFV) and SDN in virtualized network infrastructures (mul-
tiple NFV, virtual network function (VNF), service function chaining) provides a
customized QoS for residential network requests via differentiated treatment of each
clustered and tagged piece of traffic in the edge network. Traffic encompasses audio
and video streaming. SDN assists in the realization of differentiated behavior of
underlying hardware network resources [59].
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• Mobility Support for Internet of Vehicles (IOV): SDN enables intelligent remote clouds
for the computation of tasks offloaded by speedy vehicle to the roadside unit (RSU).
The controller supports the RSU for implementing the communication path between
the RSU and fog node with adequate resources in a predictive fashion. Consequently,
the fog node capabilities log at the controller tends to the optimal computation of IOV
jobs by fog nodes [60].

• Topology Discovery: SDN has centralized services for event-based topology discovery.
Tree exploration discovery protocol (TEDP) outperforms the OpenFlow protocol and
standard link layer discovery protocol (LLDP) in terms of the reduction of extra packets
for topology discovery. The tree exploration discovery protocol (TEDP) leverages the
topology graph mapping by using the probe packets that are responsible for signaling
the SDN controller to a single forwarding device. As a result, the discovery mechanism
is optimized in SDN compared to LLDP, which introduced load in IP networks [61].

• Load Balancing Support in Future Networking: Research work comprises enabling
the SDN infrastructure among the multiple NFV nodes and service function chaining
aiming to reduce the delay of state migration of VNF. Concretely, the objectives are
to cope with the limited resource capabilities of NFV nodes, meeting the desired
QoS by infrastructure, and ensuring the least end-to-end delay for computational
states migration by confining the OpenFlow-enabled devices’ capabilities in 5G core
networks [62].

• Fault Localization: In SDN, centralized management is used for localizing the failure
and reconfiguration help to localize faults. It handles failures in a proactive fashion
based on the prediction of service unavailability [63].

• Programmable Reachability Optimization: SDN handles firewall problems in term of
conflicting rules automatically. Similar research works offer improvements with the
least computational overhead in reachability optimization and conflict debugging
problems [64].

• Support for Cellular 6G Network: Future networks such as 6G require SDN-enabled
softwarization and management for remote and machine learning application decision-
aware re-configurations in network resources [65–67].

• Security-Aware Communication in Future Autonomous Networks: Softwarized pol-
icy implementation architecture can enhance the security among autonomous systems
that have the least human interactions, and consequently, it can mitigate the security
risk of inter-domain communication [68,69].

1.4. Organization

The rest of paper is organized as follows. Section 2 compares network testing and
verification studies, which look at mechanisms for testing and debugging techniques.
Section 3 includes flow rule installation mechanisms that comprise reactive, proactive, and
hybrid flow rule installation mechanisms. In Section 4, network security and management
issues related to SDN implementation in different scenarios are discussed, along with
solutions to the problems. Section 5 comprises memory management studies, which help
to utilize precious TCAM resources in an efficient way. Section 6 includes emulators and
simulators for SDN that help to implement, test, and simulate research problems. Section 7
comprises SDN programming languages, which facilitate programmers to develop network
applications for effective communication. Section 8 consists of SDN controllers that provide
a platform to control the data plane by installing flow rules via southbound APIs and
network applications via northbound APIs. The categorization hierarchy is shown in
Figure 3. Section 9 discusses existing SDN studies. Finally, Section 10 includes the future
research guidelines, and Section 11 concludes this paper.
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Figure 3. SDN studies categorization hierarchy comprised of seven sections (Sections 2–8).

2. Network Testing and Verification

NDB [70] is a network debugging tool to debug SDN via breakpoints, watches, and
packet backtraces. It works like GNU debugger (GDB) [71], which pauses execution at
a breakpoint and shows the sequence of events that led to that breakpoint. Proxy and
collector are its two major components. The proxy creates a postcard message received
from the data plane and sends it to the control plane. On receiving this message, the
collector saves postcards and produces backtrace for the listed data packets. Finally, by
using the hash table data structure, the collector keeps the postcards from where these can
be recovered effectively.

Veriflow [72] detects network-wide invariants in real time and generates alerts or
blocks the occurrence of events. On generation of flow rules from the controller, these
flow rules are sent to VeriFlow for checking the network-wide invariants. It generates a
notification on detection of network-wide invariants for the network admin or the flow
rules are blocked. Otherwise, the flow rules are sent to the data plane. It verifies the
flow rules for network-wide invariants in the following three steps. First, the network is
segmented in a collection of equivalence classes (ECs) by using network routing policies.
Secondly, VeriFlow creates individual graphs for the specific equivalence class that denotes
the respective network behavior. Thirdly, with the help of these graphs, the status of the
network invariant is identified. It stores network information, for example, ACL policies, in
trie data structures [73] and computes ECs in a systematic way. In addition, other research
works [74–76] have also resolved issues of debugging and testing in traditional as well as
SDN networks. These can detect network anomalies, ensure data plane consistency [77,78],
and remove conflicts of different network applications to execute in a parallel manner [79].

In [80], the problem of flow rule installation from controller to switches is addressed.
Due to this problem, the packets may deviate from their intended paths, which results
in access control violations. The rule enforcement verification (REV) mechanism enables
the controller to ensure the correct installation of flow rules along the correct path at the
switches. It proposes a compressive message authentication code (MAC) to compress
switch-to-controller communication traffic, which reduces a significant amount of band-
width cost. Finally, it presents a heuristic flow selection algorithm, which allows the
controller to verify many fewer flows for rule coverage. This results in avoiding adversity
to the temper flow rule installation, thereby ensuring proper implementation of access
control. NICE [81] detects network-wide invariants via model checking and symbolic
execution. To detect network-wide invariants, NICE generates a stream of packets under
various conditions to test SDN. In SDN, the details of topology, including switches and
hosts, are available at the controller. After that, the space of possible system behavior and
network-invariant conditions are tested. The required search strategy can also be config-
ured by the programmer. NICE provides an output of instances of network invariants.
Additionally, it provides traces of the inevitable consequence of property violations to
reproduce them.

FPB [82] offers an efficient buffer management scheme at the data plane to avoid
packet disorder and minimize the packet drop ratio by forwarding only the first packet of
a flow to the controller while subsequent packets are buffered. HSA [83] is beneficial for
system admins, as they can statistically examine their networks for invariants, for instance,
network violations, black holes, loops, traffic isolations, and so on. HSA has the ability
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to check various hosts, network traffic, and the isolation of users. For example, it can
provide details regarding questions such as “Can host A be prevented from talking to host
B?” and so on. In this tool, a geometric approach is opted for as generalization for packet
classification. PyResonance [84] utilizes the Pyretic language to implement state-based
network policies. It uses Pyretic composition operators to express these policies and to
compose multiple tasks by determining the state of their forwarding behavior with the
help of a finite state machine. In this way, multiple independent states can be defined along
with their forwarding behavior to handle the state change of multiple events.

PGA [85] provides automatic and conflict-free policies, for example, network policies,
load balancing [86], and so on. It examines various network policies that are individually
stated for any conflict. In different situations, network policies conflict with each other
due to various perspectives. The graph composition is very helpful to express conflict-free
network policies. As a next step, these policies are forwarded to a graph composer through
a PGA user interface (UI). It resolves conflicts or gives some possible suggestions to the
network admin in this regard. Finally, it generates error-free/conflict-free graphs. A service
function chain-based approach to specify and verify ACL policies is presented in [87] to
detect anomalies in ACL policies prior to deployment. In order to achieve the desired goal,
the forwarding policies are formally represented, and a set of anomalies are detected against
the set of flow rules for the respective policies. In addition, it also provides a provision for
network administrators to specify their own anomalies. The results state that the proposed
approach can verify anomalies of a reasonably sized network in milliseconds. Moreover,
the research works in [75,76] are useful to troubleshoot, debug, and detect anomalies in
communication networks.

Summary and Lessons Learned

The summary of network testing and verification studies are presented in Table 1, and
the following conclusions are drawn based on these studies. NDB [70] helps to debug SDN
networks via breakpoints and packet backtraces. These primitives help in locating the order
of events that led to error conditions. Though NDB can identify error conditions, it does not
fix the error conditions. VeriFlow [72] checks network invariants in real time and generates
an alarm or blocks these events from occurring. It checks network invariants in real time.
However, it does not work in multi-controller architecture, and its verification process does
not support delay-sensitive applications in which flow rule installation is continuously
in flux, which is most likely desired for the least delay in forwarding devices. NICE [81]
uses model checking and symbolic execution to detect bugs and invariant conditions in
SDN applications. However, it is unable to test a controller implemented in the same
language. FPB [82] provides an efficient buffer management mechanism at the switch level
to avoid per-flow packet disorder, which helps to minimize the packet drop ratio. HSA [83]
facilitates network administrators to statistically analyze their networks for network-wide
invariants. However, it only works for static networks and lacks the ability to detect
network policy change with dynamic change in ACL policies.

PyResonance [84] utilizes the composition operator of the Pyretic language to imple-
ment state-based network policies to predict a possible network’s forwarding behaviour.
PGA [85] provides automatic and conflict-free policies by examining various network poli-
cies that are individually stated for any conflict. In PGA, the focus is on implementation of
various policies in such a way that conflict does not occur. The research works [75,76] debug
traditional as well as SDN environments to detect network anomalies, ensure consistency
of the data forwarding plane [77,78], and allow several applications to run in parallel in a
non-conflicting way [79]. However, all these mechanisms lack the ability to detect network
policy change and delete conflicting flow rules along with installation of new flow rules
as per new network policies to avoid packet violations. There is still a need to develop
tools that can detect bugs in real time, along with the mechanisms to correct those bugs.
This will help to avoid network inconsistencies, which will result in increasing network
efficiency and QoS.
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Table 1. Summary of network testing and verification studies.

Studies Techniques Description Strengths Weaknesses

NDB [70] Mininet Tracks down root causes
of bugs

Breakpoints and packet
backtracking Debugging time overhead

VeriFlow [72] NOX, Mininet
Checks network invariants
in real time and prevents
faulty rules

Flow rule debugging for
reachability analysis

Not suitable for
delay-sensitive and
QoS-constrained
applications

Flow Checker [75] OpenFlow switch,
flow table

Verifies flow tables based
on behaviors of flow rules

Inconsistencies
localization in device
flow tables

Can only be used in small
network

Anteater [76] Linux, C++, Ruby
Examines the state of data
plane and verifies network
invariants

Control plane
configuration analysis

Inconsistent data plane
map generation for
dynamically changing
FIBs

NICE [81] Mininet, OpenFlow
switch, Network X

Utilizes model checking
and symbolic execution for
bug investigation

Simplification of switch
modeling and event
testing

Unable to test a controller
implemented in the same
language

FPB [82] Python, OpenFlow,
NOX

Provides a formal model
for consistent policy
update

Least controller
intervention

Buffering ability in case of
switch to controller link
failure is not discussed

HSA [83]
Ubuntu, flow-based
management
language, Prolog

Protocol-independent
static network-invariant
investigations

No need to modify the
protocol for
implementation of HSA

Static space analysis
mechanism

Py-Resonance [84] Pyretic, Python
Utilizes state-based
policies to predict
network’s behaviour

Modular network
function control

TCAM under- utilization
by least significant policy
states in FSM model

PGA [85]
Mininet, Pyretic
compiler, POX
controller

Composition of ACL
policies that inspects
multiple policies

Conflict-free forwarding
rule translation

Scalability issues and
support of HW/VM
middleboxes

SFC [87]
Java-based
prototype,
OpenFlow switch

Identifies the anomalies in
ACL policies before
deployment

Proactive anomalies
detection independent of
programming language

Overhead for generating
flow rules at data plane

3. Flow Rule Installation Mechanisms

ORPP [88,89] provides two flow rule placement frameworks: OFFICER and aOFFICER.
It helps to define and install flow rules at the data plane by following all technical and
non-technical requirements. The first framework, called OFFICER, helps to define and
install flow rules for the set of known requirements at a specific time internal. The second
framework, aOFFICER, helps to compute and install flow rules for unknown sets of
requirements, which vary over a specific time interval. Both these frameworks are quite
useful and effective to place flow rules at the data plane. vCRIB [90] provides a mechanism
that proposes an abstraction for specifying and managing flow rules for network operators
at data center networks. In addition, in order to achieve better performance and resolve
scalability issues, it helps to partition and install flow rules at hypervisors and switches.
DevoFlow [17] presents a model to modify the OpenFlow model that permits network
operators to focus on flow rules, which are essential for network management, by breaking
the coupling between network control and global visibility. This mechanism helps to reduce
internal communication between the control and data planes. Firstly, it minimizes the need
to transfer statistics for tedious flows. Secondly, it minimizes the need to invoke the control
plane for most flow setups. This helps to maintain a certain level of visibility by minimizing
communication overhead between the control and data planes. However, the prototype is
not simulated on actual packets.
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Infinite CacheFlow [91] proposes a hybrid switch design that depends on flow rule
caching to increase the flow rule tables space of switches at quite a low cost. However,
it may result in more packet violations for flow rules that are stored at the data plane
if corresponding ACL policies change at the controller. SwitchReduce [92] proposes a
technique with the assumption that the number of flow match rules at any switch should
not exceed the set of unique processing actions to decrease the switch state and controller
involvement in SDN. The proposed approach can reduce flow entries up to 49% on first
hop switches, and up to 99.9% on interior switches. In addition to that, flow counters are
also reduced by 75% on average. It shows some failures due to topology changes. However,
analysis of packet violations in case of change in policy is not performed on larger data
centers. In [93], a cache algorithm strategy to store flow rules at switches called “least
recently used" (LRU) is proposed, which reduces communication overhead between the
control and data planes. This technique helps to avoid the cache-miss problem by keeping
recently used flow entries in the switch flow table, which increases the flow entry matching
ratio. This approach also ignores the case when network flow rules change for the flow
entries present at the data plane.

In [94], a flow rule multiplexing approach is proposed that optimizes both the flow rule
allocation as well as the traffic engineering. It works by installing identical set of flow rules
at different calculated paths for a whole session instead of installing at each switch. It is
tested via the ITALYNET network topology, and results reveal that the proposed mechanism
saves TCAM resources and guarantees high QoS satisfaction. DomainFlow [95] presents
a flow level control and granularity-based mechanism in ethernet switches by using the
OpenFlow protocol. This research utilizes exact matching and network slicing to enable
practical flow management. It only supports a limited number of flows with commodity
switches and cannot be implemented with a large number of flows. SourceFlow [96]
presents a mechanism that can handle many flows without affecting flow granularity, in
addition to minimizing the problem of costly and power-consuming search engine devices
from the core nodes. Moreover, it facilitates growing networks without compromising
scalability. In [97], an SDN-based proactive flow rules installation mechanism is proposed
for efficient communication in the Internet of things (IoT). It resolves the problem of flow
installation delay as well as congestion due to packet-in messages, which save energy and
other potential resources of network nodes.

In SDN, flow rules are installed at the data plane based on exact matching [98] or
wildcard-based matching [99]. The wildcard-based matching improves the reusability
of flow rules and reduces packet-in messages. It improves scalability at both the data
and control planes. However, in the case of exact matching, almost every flow passing
the switch will generate a packet-in message to the controller, which exhausts precious
resources. To resolve this problem, some researchers suggest using a load-balancing
mechanism by installing proactive flow rules on multiple switches [100] or reactive caching
flow rules in each switch. In [101], an SDN-based wildcard rule caching mechanism, namely
caching in buckets (CAB), is proposed by partitioning the field space into buckets and
caching those buckets along with respective flow rules for efficient flow rules placement.
This mechanism resolves the flow rule dependency problem with much less overhead,
along with reducing flow setup time and saving network bandwidth and flow setup
requests. In SDN, most of the operations are performed at the central controller, such as
network topology management, flow rules installation, load balancing, and so on. These
tasks sometimes overburden the controller, which becomes unavailable for some required
operations. DIFANE [102] is a solution to this problem in which most of the functionality
is placed on the network switches. For this purpose, the controller delegates the flow
rules to some of the network switches that are called authority switches. These switches
give the flow rules to the other switches for a specific path. In this way, entire-network
communication becomes possible.

Mobi-Flow [103] presents a system architecture for the movement of mobile nodes
in SDN by using two components: path estimator and flow manager. The path estimator
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helps to find the possible positions of end users in the network based on the location history
of the node. For this purpose, we keep track of the previous positions of the nodes in the
network in the database. By using the order-k Markov prediction method, the next possible
position of end users is predicted. If we have possible location information of the end user,
then the flow manager determines the set of access points in the path for communication
between source to destination. In [104], a novel technique is proposed to install flow rules
at the SDN data plane before reaching packets at network devices. In SDN, it sometimes
happens that subsequent data packets arrive at the switches where flow rules are not found,
causing the discarding of packets. To solve this issue, a new technique is proposed that
computes packet arrival delay and flow rule installation time. After this computation,
if there is a delay between flow rule installation and packet arrival, then some delay is
introduced to the packet at the predecessor switch.

In the current research work, in order to improve the flexibility and scalability of the
entire network, a novel mechanism is proposed in which network policies are deployed on
the network devices in a wildcard format. Only the most important policies are cached in
the flow table, while unnecessary policies are removed as soon as possible. By using this
mechanism, the risk of flow table overflow is reduced, and it also simplifies the network
policy enforcement. The wildcard used in this technique requires a standard way of being
adopted in the entire network. To cope with this problem, a network-wide wildcard rule
engine is introduced for SDN that is known as BigMac [105]. BigMac works by advertising
a layered model to publish the higher-level network policies. The policy model consists of
a big switch abstraction and a logical network plane that specifies the different forwarding
and management policies. When a new flow needs to be installed, the policy caching and
mapping engine of BigMac is accessed to install flow rules on the entire path. Similarly,
when scheduled traffic needs to be forwarded, BigMac deploys the requested flow rules
on the entire path. The research works in [106,107] proposed mechanisms to effectively
install flow rules at the data plane in case of policy change without packet violations
due to old installed flow rules as per old policies. To implement these mechanisms, the
generated flow rules as per policies are cached at the controller. In case of policy change,
the proposed mechanisms detect this change and compute the shortest path to install the
computed flow rules, in addition to deleting the old flow rules. ROCA [108] proposes a
novel mechanism to detect and resolve network conflicts along with policy overlapping for
effective communication in SDN. The proposed approaches help to resolve network policy
conflicts and efficiently install flow rules at the data plane.

Summary and Lessons Learned

The summary of flow installation mechanisms is presented in Table 2, and we draw
the following conclusions based on these studies. ORPP [88,89] resolves the problem of the
placement of flow rules by using two frameworks: OFFICER and aOFFICER. Both frame-
works provide efficient mechanisms to install flow rules. vCRIB [90] provides abstraction
to define and manage flow rules for data center operators by portioning and placing flow
rules on switches and hypervisors. DevoFlow [17] helps to amend the OpenFlow protocol
by allowing network operators to focus on only selected flows for network management
to reduce overhead between the control and data planes. Infinite CacheFlow [91] solves
the issue of the limitation of flow rules at switches due to the limited TCAM resources by
proposing a hybrid switch design (hardware and software). SwitchReduce [92] minimizes
the switch state and controller involvement in SDN. The mechanism in [93] reduces the
communication overhead between controller and switches by storing flow rules at the
data plane. In [94], a flow-rule-based multiplexing approach is proposed, which optimizes
both the flow rule allocation as well as the traffic engineering. DomainFlow [66] presents
a flow-level control- and granularity-based mechanism in ethernet switches by using the
OpenFlow protocol. SourceFlow [96] presents a mechanism that can handle many flows
without affecting the flow granularity, in addition to minimizing the problem of costly and
power-consuming search engine devices from the core nodes.
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Table 2. Summary of flow rules installation mechanisms.

Studies Techniques Description Strengths Weaknesses

ORPP [88,89] Mininet, OpenFlow

Resolves the offline and
online ORPP problem for
the known set of flows,
which varies over time

Flow rule prioritization
and optimal placement

Does not consider the
forthcoming load in low
priority path/flow rules

vCRIB [90] VM, Open vSwitch,
TCAM

Provision of an abstraction
for specifying and
managing flow rules by
automatic partitioning

Considers cost-effective
resource utilization and
machine performance
constraints

Low scalability for
dynamic flow demands

DevoFlow [17] NOX, TCAM,
OpenFlow

Modifies OpenFlow model
by breaking the coupling
between network control
and global visibility
without imposing
unnecessary costs

Provision of fine-grained
flow management and
simplification of
OpenFlow switches

Does not reveal how to
deploy the default path

Infinite
CacheFlow [91]

Ryu Controller,
OpenFlow 1.0,
Open vSwitch

Proposes a
hardware/software hybrid
switch design that relies
on rule caching to provide
large rule tables at low
cost

Flow rule dependencies
mapped to a graph, flow
rule segregation, preserves
the network rule semantics

Reactive flow placement
Overhead and inconsistent
dependencies of flow rules

Switch Reduce [92] NOX Controller,
OpenFlow

Number of rules at any
switch should not exceed
the set of unique
processing actions to
decrease switch state

Controller intervention
minimization by stateful
data plane

Efficient memory
utilization and deletion
mechanism for useless
entries is lacking

Flow Entry MGT
Scheme [93]

Mininet, Open
vSwitch

Resolves the
cache-missing problem
and keeps recently used
flow entries, which
increases flow entry
matching ratio

Enhances the flow rule
matching in flow tables of
OpenFlow-enabled
switches

Less efficient in networks
where the behaviour and
demand are not specified

Traffic
Engineering [94]

TCAM, OpenFlow,
ITALYNET

Proposes a flow rule
multiplexing approach
that optimizes flow rule
allocation and traffic
engineering

Enhances QoS
Considers only identical
flow rules that may not be
semantically streamlined

DomainFlow [95]
Virtual extensible
LAN, TCAM,
VMware vCloud

Presents a flow-level
control- and
granularity-based
mechanism in ethernet
switches by using
OpenFlow protocol

Exact match rule
mechanism supports
granular security
processing

Only supports limited
flow rules and fixed
number of switches

Source Flow [96] TCAM, OpenFlow,
Open vSwitch

Handles many flows
without affecting flow
granularity

Offers a comprehensive
mechanism for scalability Synchronization problem

DIFANE [102] NOX, OpenFlow
Switch, TCAM

Load balances the
functionalities between
network switches and
controller

Enhances the SDN
scalability and decreases
the controller load

Increases load at switches
and under-utilizes the
controller

Efficient flow rule
installation
[106,107,109]

Network
performance, QoS
and security
increases

Detects the network
reachability change and
computes reconfiguration

Supports resiliency

Introduces end-to-end
delay due to policy
composition and version
comparison
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In [97], a proactive flow rules installation approach is proposed for efficient commu-
nication in the Internet of things (IoT), which resolves the problem of flow installation
delay and congestion due to packet-in messages. DIFANE [102] proposes a mechanism
of relaxing the control plane by sharing control plane tasks with network switches. For
this purpose, the controller delegates the flow rules to some of the network switches that
are called authority switches. These switches give the flow rules to the other switches for
a specific path. In this way, entire-network communication becomes possible. All these
mechanisms help in installing efficient flow rules at the data plane, better utilizing precious
TCAM resources, reducing communication overhead between control and management
planes, and minimizing the communication load on the controller. These approaches help
to install and manage flow rules at the data plane, reducing the load on the controller and
effectively utilizing TCAM resources in SDN. There is still a need to investigate flow rule
installations by utilizing proactive, reactive, and hybrid mechanisms in the case of ACL
policy change to avoid maximum packet violations.

4. Network Security and Management

In this section, we discuss network security and management strategies in SDN.
In [110], a token-based authentication mechanism is proposed that guarantees exclusive ac-
cess of network resources to a certain flow for which the user/app has made the reservation.
The proposed SDN-based system automatically reserves the resources of the users/apps
for certain flows and creates a strong binding between them. Moreover, it resolves the
reservation problem of dedicated access to specific resources in distributed environments
and high-speed networks. In [111], the problem of network verification of middleboxes
(for example, caches and firewalls) is proposed by checking all possibilities to verify the
network reachability properties as per ACL policies. It works by slicing complex networks
into small networks according to the correctness properties of network-wide verifications.
In [112], a troubleshooting workflow is presented that is comprised of two phases. In
the first phase, a binary search through the control stack is conducted to check for the
occurrence of mistranslation. In the second phase, the scope of those elements that are
responsible for the invariant violation is reduced. In this way, it makes it easy to identify
the root causes of bugs, which helps network admins to troubleshoot their networks in an
effective manner.

In [113], a priority-based flow rules security problem is highlighted, and a solution to
the identified problem is presented. The problem is that the low-priority malicious flow
rules can manipulate the whole OpenFlow network by making the high-priority flow rules
fail. This, in turn, affects the whole data communication process. To solve the identified
problem, the authors proposed a solution that is called switch-based rules verification
(SRV). It works by leveraging the SDN controller to obtain the overall network view of the
whole topology and detect the malicious flow rules. On detection of a malicious flow rule,
the SRV module forwards warning messages and refuses the identified flow rule instantly.
This solution helps to detect a large number of flow rules in an efficient way. In [114], a
framework comprised of actor-based modeling is presented for network verification in
SDN. In this framework, the network behaviors are predicted on the basis of the network
application’s behaviors and existing model’s correctness properties. The actors in this
model are the basic unit of computation, which contain their own memory and have a
communication mechanism using asynchronous messages.

In [115], a formal-model-based reverse update mechanism is presented that ensures
the maintenance of flow rules characteristics during the transition time in such a way that
in-transit packets are processed at the next hops by the same or the latest ACL policy. In
addition, it provides a per-packet consistency relaxation concept in the data plane and
offers a consistent and efficient policy update technique. This model is compared with
two phase update schemes [78], and the results suggest that the proposed model provides
much better performance by minimizing overheads while maintaining consistency in flow
tables and reducing complexity with the help of wildcard for the composition of flow
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rules. In communication networks, attackers often attack networks via bandwidth and
system/application resource utilization, which leads to the popular denial of service (DoS)
attack. How to detect such kinds of attacks is a very interesting research topic in networking.
In SDN, deep learning algorithms are implemented according to the information received
from the controller to model the attack behaviors. In [116], a distributed DOS (DDOS) attack
model is created in Mininet Emulator and Floodlight SDN controller by combining the
support vector machine (SVM) classification algorithms. This model detects DDOS attacks
with an accuracy rate of 95.24% on a limited number of flow rules. In [117], a network
management approach called “Smart-Net System” is proposed in which each data plane
device keeps a flow rule in its flow table. If a packet reaches the data plane for the flow rule
that exists in the flow table, then it is forwarded to the controller. The controller verifies the
behavior of that packet and takes preventive measures to avoid attacks. In [118], a software-
defined security (SDS) architecture is presented that is open and universal. It offers an open
interface for security services, devices, and management, which is quite helpful for network
security vendors to implement network security products and solutions. In this research
work, various attack types to which networks can be vulnerable are analyzed, which is
helpful for disabling such attacks by modifying the security configuration mechanism at
the server.

The trend of increasingly massive IoTs and continuous streaming traffic is driving the
demand for increasing computations. Cloud–fog hybrid systems support delay-intensive
applications in a distributed computing manner. On the other hand, SDN supports vari-
ous network infrastructures and inter-controller communication models (flat, horizontal,
vertical, hybrid, or T-model) for distributed network management [119]. In addition,
the vulnerability and consistency challenge in distributed architecture is more likely to
be seen, in contrast to central control. Currently, to support the applications in 5G net-
works and beyond, the SDN distributed frameworks need to be more sophisticated [120].
Rahman et al. [121] proposed SmartBlock-SDN for efficient resource management and se-
curity assurance in blockchain-enabled IoT networks. The proposed framework addresses
the challenge of distributed control security and energy-efficient cluster head selection in
controllers. SmartBlock-SDN is mapped for a layered approach (IoT, edge, cloud), and
cloud-enabled blockchain is considered to cope with the various common network vulnera-
bilities. Distributed homogeneous controllers and enforced network policies are recorded
using immutable blockchains. This stored policy configuration can be accessed using the
REST API for various operations in line with network security and resource management.
To address flooding attacks, BSDNFilter and blockchain-enabled SDN is proposed in [122].
This work reduces the data packet violations in the SDN network. By employing trust-
based filtration, the proposed works outperform a realistic industrial network against
network security attacks. In [123], a BMC-SDN architecture is proposed to confine the
SDN and blockchain in a network, where control is distributed for failure tolerance and
redundant control resources. The proposed work employed blockchain for redundant
controllers in various segregated domains. East/west (inter-controller) communication and
network operations are recorded using blockchains.

The resource management shortcoming of distributed computational resources (such
as NFV, data centers, fog nodes at edges in fog computing) is that energy, storage, and
computational resources are limited. With the increase of massive IoT, the 5G and beyond
networks will employ more constraints in their resources. 5G mainly has three service use
cases: ultra-reliable and low-latency (URLLC), massive machine type computing (mMTC),
and enhanced mobile broadband (eMMB). In addition, 6G is a revolutionary initiative in
the history of the wireless network, which promises to support a wide geographical region
with ultra-high data rates, massive enabled IoTs, connected drones, virtual reality, and
network autonomy (by leveraging the machine learning components in the pipeline) [124].
SDN softwarization, southbound interface, east/west interface and on-the-fly management
aspects can support the 5G and 6G networks to support a wide area of applications and
massive IoTs across the globe. The aspect of resource-limited nodes of edge networks
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requires efficient resource provisioning in the network for QoS. Phan et al. [125] proposed
a dynamic job-offloading mechanism among resource constraints for fog nodes. To enable
intelligent offloading for appropriate fog nodes, the SDN controller is utilized, which can
support the offloaded task at a minimum cost. The controller can dynamically investigate
the resource capabilities, link congestion, and network statistical log files. Using compu-
tational offloading among fog nodes decreases the end-to-end latency, traffic detouring
to oblivious links, and fog computational resources. In [126], a software-defined network
function virtualization (SDNFV) network is presented, in which stateful firewall services
are deployed as VNFs to increase network performance, security, and scalability. It uti-
lizes machine learning algorithms to identify potentially malicious linkages and probable
attack targets.

To handle a TCP SYN attack, FUPE is proposed in [127], which handles DDOS attacks
in a distributed environment. It integrates SDN into its architecture for security objec-
tives. FUPE implements the security-aware task scheduling at the fog gateway. FUPE
amalgamates the multi-objective particle swarm optimization algorithm and fuzzy logic
for security enhancement. An SDN central resource management unit helps the FUPE
with instantaneous decisions in IoT–fog networks. To maintain the security status, FUPE
assigns a trusted user’s application tasks to a trustworthy fog computational device in its
scheduler architecture. The authors in [128] exploited the SDN and blockchain’s efficiency
for network security. Blockchain helps to identify informational alteration at any stage
when completed transactions or information are preserved in the form of linked blocks.
This study proposes a modified blockchain leveraged with the SDN controller. The SDN
controller helps to register the devices in each domain, and the registration information
cannot be changed. The SDN controller maintains the public blocks for the registration of
devices, while the architecture maintains a private blockchain mechanism at the device
level of communication. Each controller is assisted with a blockchain and storage to keep a
record of distributed ledgers. Therefore, public and private key-based domain identification
of devices supports inter-domain mobility, security, and energy-consumption-aware com-
munication in cyber-physical systems (CPS). The architecture proposed in [129] represents
a similar architecture for blockchain-enabled security and energy consumption reduction.

A comprehensive study of SDN-enabled security is conducted in [130]. According
to this research, it is hard to tackle cyber-attacks using traditional security mechanisms.
The traditional network equipment and network functions cannot support an efficient
defense against the attacks because of the network function’s rigidity. The SDN controller
supports programmable cyber defense applications in various centralized and decentralized
networks. SDN employs detection, localization, proactive, and reactive mitigation against
cyber-attacks. SDN controllers can gauge the congestion, port, flow rule entry, and attached
end-user device behavior. To ensure security, softwarized control functions of different
domains can collaborate and defend against cyber-attacks. DHCPguard [131] exploits
DHCP attacks in networks and provides a mechanism to defend against such attacks. It
handles the attacks by utilizing the SDN controller—specifically, a security module on top
of the POX controller, which is designed for mitigation of DHCP starvation attacks. It also
facilitates IP pool recovery, DHCP server availability, snooping, and rate-limiting. The
traditional DHCP mechanism lacks a security mechanism (i.e., discovery flooding message
of the DHCP client program). Compared to the traditional network forwarding devices,
SDN architecture can decide the DHCP client application messages at the central controller
and block the suspected or malicious nodes at forwarding devices.

In [132], security assurance is guaranteed through protocol dialects extension. The
protocol dialect carries the objectives to provide robustness against downgrade attacks
and specializes the network protocol in the context of network security. The OpenFlow
protocol dialects have derivatives of MAC-based authentication and complete production
packet security without message modifications. In [133], the optimal packet forwarding
decisions in fog computing or the optical network need to be reconsidered periodically for
efficient network management. Trust and security parameters in fog computing need to be
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reconsidered in future networks. A malicious fog node can have forged links with other
fog nodes and suspicious activities in production packets. It is possible that this sort of
node can lock the resources of connected services or alter the topology view at the central
SDN controller. Therefore, the resultant computation and energy consumption ratio of fog
computing infrastructure also increases. Similarly, in [134], the authors revealed that the
current SDN standardization, especially in the form of OpenFlow, needs to be upgraded for
flawless integration in fog resources. Fog computing represents a geographical distribution
of resources and host applications, which makes the network more vulnerable. To tackle
this vulnerability of the fog paradigm, the distributed architecture of the SDN needs to be
more defensive.

In [135], vehicular ad hoc networks’ (VANETs) integration with SDN is analyzed. This
integration supports efficient resource management for the computational offloading of
moving vehicles. Likewise, this is an edge for the various network security issues. VANETs
must confront such attacks, such as man-in-the-middle, DDOS, and jamming. If the SDN
layer is vulnerable, then the SDN-enabled VANETs are more complex and have poorer
defense mechanisms. Moving vehicle applications always trust the nearest roadside unit for
computational offloading. In the case of information fabrication or privacy leaks, end-user
trust declines for the infrastructure. If the central single control functions are under various
attack conditions, then the SDN forwarding devices in VANETs cannot defend and classify
the malicious activities or malicious hosts [136]. In IoT-enabled healthcare infrastructures,
device authentication is important. The traditional network devices are deficient for
authenticating or bootstrapping the fresh connected end devices securely. In [137], the
objectives of SDN-supported authentication, routing from the end device to edge server,
and inter-edge servers’ communication (routing for the load balance) is analyzed. The
proposed framework has an IoT device authentication method that is supported by the
probabilistic k-nearest neighbor. The framework uses the probabilistic k-nearest neighbor
to evaluate the validity of end IoT devices residing in the healthcare systems. Using p-KNN,
an edge server investigates the legitimacy of healthcare IoT devices, and SDN performs
efficient collaboration among the edge servers that are close to the computation resources.

To localize the DDOS, a convolution neural network (CNN) is used in [138]. The
study claims that the CNN can perform better for DDOS detection compared to logistic
regression, multi-layered perceptron, and dense multi-layered perceptron. Furthermore,
this work uses game theory to drop malicious activities. As a result, it saves the central
SDN controller deployed in any ISP from the IoT devices that are intended for DDOS. If the
IoT devices are impairing the central controller, then it increases the vulnerability degree
of the SDN-managed ISP. This proposed approach in [139] deals with the SDN security
issues to overcome DDOS in a controller and communication switch. It integrates the
online learning method to limit the packet-in rate, while tending to the controller queue
and switch space capacity. Traditionally, there are straight forwarding approaches to limit
the packets rate, but these cannot be trustworthy for bandwidth-sensitive applications in a
real network. The proposed parallel online deep learning (PODL) algorithm envisions the
two important aspects and adjusts the weight for queuing the controller packets (packet-in)
and flow rule installation capacity in a forwarding device.

In [140], SDN-based load-balanced opportunistic routing is proposed for duty-cycled
WSNs. In this study, the controller computes and controls the candidates. It prioritizes the
candidates by considering the average of three distributions, that is, transmission distance,
expected number of hops, and residual energy. It helps to guide the network in such a way
that more traffic can flow through the nodes with higher priority. The results show that
the proposed approach improves network lifetime, routing efficiency, energy consumption,
sender waiting time, and duplicate packets compared with existing approaches. The study
in [141] explores the prospects of offloading the 3GPP radio access network (RAN) traffic
through WiFi access networks with the help of wireless mesh networks (WMNs). This
study reveals an IP wireless mesh network using an SDN-based NFV controller to control
and manage the network from the central controller, which results in configuring network
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devices and services deployment in a fast and effective manner. The study in [142] offers
an edge-cloud framework for electric vehicles (EVs). It presents an intelligent network
for collaboration between cloud and edge devices to make intelligent decisions regarding
charging and discharging of EVs and anticipated demand–supply balance. The proposed
solution based on opportunistic SDN (Opp-SDN) exploits the use of EVs in two ways: as
energy reservoirs for instantaneous DRM and as forwarding nodes in Opp-SDN.

Summary and Lessons Learned

The summary of network security and management studies is presented in Table 3.
In [110], a token-based authorization mechanism is presented that guarantees exclusive
access of network resources to a certain flow for which the user/app has made the reserva-
tion. This scheme provides an effective mechanism to ensure exclusive access for network
resources. However, resource scheduling and path calculation for flows and the QoS param-
eter are not considered, which may affect network resource utilization. In [111], network
verification is performed, which consists of middleboxes whose forwarding behavior de-
pends on previously observed traffic. It provides a network verification tool that can verify
the networks that comprise middle boxes. However, it lacks the ability to verify middlebox
code. The research work in [112] helps network administrators so that they can troubleshoot
bugs, including root causes of bugs, in their networks to verify that networks are operating
correctly. However, it does not suggest integrating the program semantics into network
troubleshooting tools or knowledge into network control programs. The research in [115]
helps to update and manage network policies in an effective manner. However, it does
not investigate the effects of network policy change by analyzing packet violations. The
research works in [113,116] detect security issues in the network and warn the network
admin to deal with those identified issues. However, the above presented approaches do
not deal with the problem when the access rights (network policies) are changed. In addi-
tion, these also do not consider the flow rules already installed at the data plane as per old
polices. Another SDN approach discussed above is to enable blockchain in the network and
record the operations of the network to enhance the network’s security. In particular, in the
case of distributed SDN infrastructure(i.e., multiple controllers in cloud-fog infrastructure),
blockchain can enhance the network’s efficiency against common vulnerabilities.

The current standardization of the SDN architecture is lacking in terms of security.
In particular, ever-increasing delay-aware applications demand vendor lock-in and ag-
nostic security models from various geographical locations in a network. SDN-integrated
security can help in centralized and distributed network infrastructure. Although various
algorithms are available to make the network secure, mature algorithms are still needed
in distributed SDN controller placement. The distributed controller placement makes the
SDN-enabled infrastructure more scalable and inclined to the objectives of distributed and
fog computing. Security assurance using multiple controller placements in an SDN net-
work requires new solutions for hierarchical, horizontal, and hybrid (T-model) controller
synchronization. Similarly, to tackle the various types of attacks in a network, control
application autonomy is highly appreciated in ultra-reliable low-latency communication
(URLLC). Blockchain technology supports the control layer of the SDN in determining the
transactional behavior; however, it can cause end-to-end latency. While machine learn-
ing and artificial intelligence can help handle SDN security autonomously and efficiently
in 5G and beyond networks, the machine-learning-supported control SDN layer makes
the network more reliable. We know that reliability encompasses various performance
parameters (i.e., security, failure resiliency, multiple controller placement), but the current
era’s main concern is security. With the emergence of fog computing, fog nodes are more
vulnerable due to limited resources. On the other hand, it is hard to replicate the control
layer applications in fog nodes in a similar context to the cloud. Moreover, local and global
(i.e., distributed) network security policies need to be synchronized semantically, which
can help to block malicious intentions close to the source network elements. Currently,
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SDN is lacking in this aspect because the network typologies are in flux in terms of making
the SDN-integrated networks more scalable.

Table 3. Summary of network security and management.

Studies Techniques Description Strengths Weaknesses

Advance
reservation access
control [110]

Ryu controller, OVS
switches, ESNet
100 G SDN testbed

Guarantees exclusive
access of network
resources to a certain flow
for which the user/app is
authorized

Efficiently protects
authorized flows from
competing with the
network traffic

Need to consider path
computation and resource
scheduling functions, QoS

Verifying
reachability [111]

Z3 version 4.4.2, z
Intel Xeon
processors with
256 GB of RAM

Verifies reachability by
slicing complex networks
into small networks
according to the
network-wide
verifications

Provides tool to verify
networks in the presence
of middleboxes

Middlebox code is not
verified, which can affect
network traffic by sending
packets to invalid
interfaces

Systematically
troubleshoot
networks [112]

OpenFlow, TCAM

Helps network
administrators to
troubleshoot bugs and
their root causes to verify
that networks are
operating correctly

Provides a useful tool to
troubleshoot bugs and
their root causes

Does not suggest
integrating the program
semantics into network
troubleshooting tools

SRV [113] Floodlight, Java,
OpenFlow App

Forwards warning
messages and refuses the
identified flow rule
instantly on detection of
malicious flow rules

Helpful to detect
malicious flow rules

Only discusses
priority-based mechanism;
other attack scenarios
should be analyzed

SDN-Actors [114] Erlang, Scala, Akka,
OpenFlow

Models network
applications using actors
and verifies various
correctness properties via
existing model-checking
mechanisms

Offers framework to
model and verify SDN
programs using static and
dynamic verification tools
to validate network
behaviour

Proposed mechanism only
tries to uncover
programming errors by
checking only the SDN
program

Reverse
update [115]

Python, OpenFlow
switch, naive
controller

Ensures maintenance of
flow rules characteristics
during the transition time

Provides a technique to
preserve flow rule
properties during the
network policy change

Lacks an investigation of
the effects of network
policy change by
analyzing packet
violations

SVM [116] Mininet emulator,
Floodlight controller

Support vector machine
(SVM) algorithm is
utilized to judge the traffic
and carry out DDoS attack
detection

Detects DDoS attacks in
SDN to enhance network
security

Although this research has
the ability to detect DDoS
attacks of ICMP traffic, it
is less efficient

FUPE [127]
iFogSim, MATLAB
R2018a, OpenFlow
protocol

Security enhancement
against TCP SYN flood
attacks in fog nodes via
SDN paradigm

Node trust profiling Fault tolerance not
considered

Security
architecture [128]

Mininet-
WiFi/ethernet,
Openday light

Secure and energy-
consumption-aware
communication in
cyber-physical systems
(CPS)

Transactional alteration
localized using
blockchains

No real testbed, only
simulation-based
evaluation
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Table 3. Cont.

Studies Techniques Description Strengths Weaknesses

DHCPguard [131] Floodlight, ONOS,
POX

Sends messages to
controller and blocks
malicious nodes at
forwarding device
interfaces

POX controller is designed
for DHCP starvation
attack mitigation

DHCP failure mitigation
not considered

Strengthen SDN
security [132]

Mininet, POX
controller

Strengthening security
assurance via protocol
dialect approach

Enterprise security Scalability limitation

SDN-based edge
computing [137]

MATLAB, SDN
controller

SDN-supported
authentication, routing
from end device to edge
server, and inter-edge
servers’ communication

Lightweight
authentication method,
activity migration

Single SDN control
channel, low performance
of edge server with scaled
malicious attempts

Near-real-time
security [138]

Python, Keras,
Mininet, Floodlight,
Mininet

Coagulation of the SDN
controller using CNN,
deployed in any ISP from
malicious IoTs

Control channel security Control channel overhead
not discussed

On-the-fly [139] Floodlight controller,
Java, Mininet

Integrates online learning
method to limit packet-in
rate while tending to the
controller queue and
switch space capacity

Malicious nodes remain
restricted until they are
identified as trustworthy

Scalability (hybrid
controller placement)

Securing a smart
healthcare
system [143]

Android, Arduino
Nano V3.0
ATMEGA328, Linux,
Python

Helpful for patient data
preservation and blocking
unauthorized access

Provision of healthcare
system security

Lacking in integration of
SDN control function

5. Memory Management Studies

In SDN, flow tables of OpenFlow-enabled switches include controlling functionalities
for communication to the SDN controller in addition to flow rule entries for communication
in the network. Recent research works revealed that flow rules in data center networks are
from 10,000 to 40,000 per second per server rack. In SDN switches, the forwarding table
memory is much less than in traditional routers. Most SDN switches have limited on-chip
TCAM memory, in which 750 to 2000 flow rules can be stored [144]. These switches utilize
a state-of-the-art Broadcom chipset switch that can accommodate 2000 flow rules [145].
This has become big barrier for network management as well as industrialization. The
reason behind this fact is that flow tables of these switches are implemented in TCAM due
to its better lookup time compared to software-based packet matching. However, TCAMs
suffer from large power consumption [146] and expensiveness compared to other memory,
for example, static random access memory (SRAM) [147]. The idea is to reduce flow rule
entries in the switch flow table by maintaining performance. One approach is to efficiently
utilize the forwarding information base (FIB) by compression mechanisms to reduce TCAM
requirements. It proposes the ESPRESSO heuristic [148] to minimize the logic to compress
prefix-based match fields, which are generated by the optimal routing table constructor
(ORTC) algorithm. The simulation results show that FIB size is reduced by 17%, which
helps to save TCAMs [149].

Another approach in [150] solves the problem by a flow table reduction scheme
(FTRS) by reducing flow table congestion, which helps to reduce flow table size. The
simulation results suggest that FTRS reduces flow rules in the flow tables by 98% without
compromising network performance and efficiency. In [151], a proactive eviction of flow
rule entries is proposed for the efficient utilization of TCAM resources inside OpenFlow-
enabled switches. It is based on an intelligent flow management strategy in the SDN



Sensors 2022, 22, 5551 21 of 47

controller that combines adaptive idle timeout values for flow rule entries with proactive
eviction mechanism on the current TCAM utilization level. In case of non-matching of
packets for a defined idle time period, the respective flow rule is removed from the switch
flow table. This idle time period is set by the SDN controller before flow rule installation
at the data plane. The experimental results show that the proposed scheme, SmartTime,
provides 58% better results in terms of cost as compared to static timeout values or random
eviction techniques. The authors in [152] investigate the effect of flow rule timeout value
based on miss rate performance and flow table occupancy of switches. They observe that
with an increase in timeout value, miss rate decreases; however, flow table size increases
roughly linearly. They also observe that there is an ideal timeout value, where the miss
rate is ideal and the flow table size is also optimal, and with an increase in that particular
timeout value, the flow table size increases in addition to its effect on the miss rate. In this
research work, a hybrid flow table management mechanism is proposed that combines
timeout value with explicit control plane eviction messages. The proposed scheme is
able to reduce the flow table size by a lower bound of 57% without affecting the miss
rate. However, in the case of TCP-based applications, the flow table size decreases by
around 42%.

In addition, this research work analyses the performance of various flow table eviction
techniques and finds that the LRU strategy outperforms all others. However, it cannot
be implemented in current SDN switches. Moreover, the first-in first-out (FIFO) strategy
does not provide better results than LRU, but it is still better than random replacement
strategies by 0.1%. The research work in [153] addresses the problem of flow rule placement
in firewalls on the basis of ACLs. It aims to reduce the number of flow rules in flow tables
of switches by considering conflicts as well as redundancies along with the relationships
between neighboring devices. There are two key challenges to implementing it. The first
challenge is to check whether a flow rule that is going to be placed in a device is part of a
specific rule set or not. The second one is to check whether the flow rule can be merged
with the other flow rules or not. This research resolves these challenges by proposing
a novel data structure called OPTree to check whether the flow rule belongs to another
and whether it can be merged or not. In addition, it proposes flow rule insertion and
search algorithms to resolve the identified problem. The results indicate that the proposed
approach considerably reduces number of flow rules.

In [154], a mechanism to provide per-flow statistics to the SDN controller is proposed
that enhances network performance. The proposed mechanism comprises three phases.
In the first phase, a max-flow/min-cost, which is an optimization problem, is formulated
to find the optimal forwarding paths. In the second phase, forwarding flow rules for
the identified optimal paths are computed via formulating an integer linear problem
(ILP) in order to minimize exact-match flow rules in the flow tables of switches to reduce
rule-space utilization and to accommodate more flow rules. This is achieved with the
help of two greedy heuristic approaches to solve the problem in polynomial time. In
the third phase, a flow rule redistribution mechanism is proposed by detecting flow rule
congestion at the switches so that new flows can be accommodated in the network. The
results of the proposed mechanism are compared with existing mechanisms, such as
ReWiFlow [155] and ExactMatch, and show clear improvement in network performance.
The research work in [156] proposes a flow rule placement mechanism called “hybrid
flow table architecture” that utilizes the advantages of hardware and software flow table
implementations. The proposed mechanism handles the decision logic of the placement
of flow rules by dynamically placing flow rules in software-based flow tables instead of
expensive TCAM modules of switches, without degrading network performance with
respect to packet delay or packet loss. Packet classification is very important in networking
to perform different tasks (e.g., routing, load-balancing, policy enforcement, etc.).

The research work in [157] proposes a packet classification approach to create packet
classifiers based on lossy compression whose representations are semantically equivalent. It
helps to find a classifier of optimal size to categorize the network traffic so that appropriately
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sized TCAM switches can be used for the communication. In [158], fundamental analytical
tools are presented that are based on independent sets and alternate paths for better
utilizing the TCAMs switches. Moreover, it is useful to validate the optimality of existing
coding schemes. In [159], a compression technique is proposed based on random access for
forwarding tables. In this mechanism, each forwarding table column is encoded separately
via dedicated variable-length binary prefix encoding. The system evaluation reflects that it
provides much better results in the compression of forwarding tables compared to existing
techniques. In [160], a TCAM update optimization mechanism is presented that ensures
consistent packet forwarding. This mechanism is based on a modified-entry-first write-
back scheme that considerably decreases TCAM entries’ movement overhead and detects
reordering cases with the help of efficient solutions.

Summary and Lessons Learned

The summary of memory management studies is presented in Table 4, which describes
the efficient utilization of TCAM resources of switches. In [148], an ESPRESSO heuristic
approach is proposed, which is based on the optimal routing table constructor (ORTC)
algorithm to optimize routing table size for better utilization of TCAMs. This mechanism
is quite effective in traditional networking; however, it needs to be tested in an SDN
environment. The research in [151] presents a flow management strategy in an SDN
controller that offers a proactive eviction mechanism in TCAMs by preventing table misses
at an optimum level. This work is based on idle timeout values for flow rules and does not
consider other parameters, such as initial idle timeout, max idle timeout, or rate of timeout
increase, which are quite helpful in flow rule management. In [152], a hybrid flow table
management scheme is presented that combines timeout value with explicit control plane
eviction messages by considering both the miss rate and flow table size. This strategy is
implemented by using same timeout values for all flow rules, and dynamic timeout values
are not considered, although they impact real-time networks.

OPTree [153] and FlowStat [154] represent two flow rule placement strategies to reduce
the number of flow rules in the flow tables of switches by considering the relationships
between network devices. In addition, the flow rules are installed on optimal paths to avoid
network congestion. These approaches lack an investigation into the network topology
and policy change to install flow rules. In [157,159], flow rule compression mechanisms are
proposed for efficient memory management of switches by classifying the network traffic
to accommodate more flow rules. However, these approaches do not consider flow rules
compression based on a limited-size longest prefix match classifier, which can correctly
classify a high portion of traffic. In addition, managing massive flows in limited-size
switch flow tables remains a challenge. Moreover, proactive flow rule installation in delay-
sensitive applications and non-delay applications or best-effort traffic should benefit from
reactive flow rule installation. It is yet another interesting research area to explore and
propose a scheme considering traffic variability.

Table 4. Summary of memory management studies.

Studies Techniques Description Strengths Weaknesses

Optimal IP
routing
tables [148]

Internet backbone
routing tables

Proposes the ESPRESSO
heuristic to minimize the
logic to compress the
prefix-based match field

Proposed mechanism is
helpful for effective
utilization of TCAMs

Implemented and tested in
traditional IP networking
only

Effective switch
memory manage-
ment [151]

Floodlight, Open
Daylight, OVS
Switch

Based on intelligent flow
management strategy to
combine adaptive idle
timeout values for flow
rules and proactive
eviction mechanism for
TCAM

Beneficial for effective
TCAMs utilization

Initial idle timeout, max
idle timeout, and rate of
timeout increase KPIs and
are not considered to
gauge efficiency
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Table 4. Cont.

Studies Techniques Description Strengths Weaknesses

OpenFlow
timeouts
demystified [152]

OpenFlow 1.2,
CAIDA/32 Dataset,
UNIV dataset

Provides hybrid flow table
management that
combines timeout value
with control plane eviction
messages

Provides analysis of idle
timeout by considering
miss rate and flow table
size

Dynamic setting of
timeout values based on
network conditions is
missing

OPTree [153] C++, binary search

Addresses the problem of
flow rule placement in
firewalls based on ACLs
and reduces redundancies

Reduces the number of
flow rules during flow
rule placement

Lacks a consideration of
the network topology
change

Flowstat [154] POX, Mininet

Computation of flow rules
for the identified optimal
paths and flow rule
redistribution

Avoids congestion on
network switches

Limited link failure and
fault tolerance capability

Lossy
compression of
packet
classifiers [157]

Gigabit ethernet
Cisco 6500 switch,
WireShark

Offers packet classification
approach to find a
classifier of optimal size to
categorize the network
traffic

Classify network traffic for
effective TCAM usage of
switches

Lacks compressing flow
rules to classify a high
portion of the traffic

Compressing
forwarding tables
for data center
scalability [159]

TCAM, switches

Each forwarding table
column is encoded
separately via a dedicated
variable-length binary
prefix encoding

Offers a useful approach
to compress forwarding
tables, which is quite
helpful in data center
virtualization

Can be extended to
investigate how other
memories (CAM, TCAM)
can be utilized to compress
forwarding tables

6. SDN Simulators and Emulators

To analyze the network performance, instead of implementing a large experimental
testbed, there are two commonly used methods; these are called simulation and emula-
tion. The simulation method provides an application environment where we can test our
implemented software program without real deployment. The emulation method utilizes
a software program to perform executions with real devices by interacting with them as
when required. To analyze network performance by simulation is inexpensive, flexible,
controllable, and scalable compared to an emulator. In addition, the simulators allow
researchers to analyze and test network behaviors as per defined workload. In SDN, with
the development of OpenFlow protocol, the simulation tools have extended support to
additional network components for the testing and experimentation of OpenFlow-based
network applications. Moreover, network emulators based on software switches have
also been developed to test and analyze network applications, for example, Open vSwitch
(OvS) [161], ofsoftswitch13 [162], Indigo Virtual Switch (IVS) [163], and so on.

The Mininet SDN emulator [164] offers a rapid prototyping workflow and virtual-
ization functionalities along with command line interface (CLI) and API on one physical
machine that allows network developers to configure, manage, and test their networks.
It helps to create a network topology for a network scenario that consists of virtual hosts,
switches, links, and controller platforms. It supports research and development, learning,
prototyping, testing, debugging, and any other task related to network experimentation
on a computer. In the basic implementation of Mininet, the performance fidelity is not
included. In Mininet-HiFi [165], these improvements are implemented. It also has a cluster
edition prototype [166], and other releases include Maxinet [167] and Mininet-CE [168],
which fixes the limitations of large-scale implementation of SDN emulations. Finally, two
experimental frameworks for SDN data centers are also developed; these are datacenter in
a box [169] and SDDC [170]. The distributed OF testbed (DOT) [171] is a highly scalable
emulator that provides an emulated network across a cluster of computers that guarantees
computation and network resources to switches, hosts, and links.
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The OFNET [172] emulator provides built-in functionalities to test and debug, and
traffic generation and monitoring tools, which help researchers in the debugging process.
The virtual network overlay (ViNO) [173] network emulation tool provides functionalities
that help to create arbitrary network typologies via Open vSwitches and virtual machines.
The overlay interconnection between virtual machines (VMs) is provided by VXLAN encap-
sulation [174]. EstiNet [175] provides the benefits of both simulation and emulation tools by
offering each host a real Linux OS environment, and any real application program can run
on a simulated host without any modification. FS-SDN [176] is a simulator that is based on
the FS [177] simulation platform and is built in Python language. OMNeT++ [178,179] is a
network simulator that is developed in the C++ language for network modeling, multipro-
cessors, and different distributed or parallel systems. It utilizes the INET framework [180]
for the simulations in the SDN environment by integrating OpenFlow components, basic
switch functions, basic controllers, and OpenFlow messages. The NS-3 network simula-
tor [181] is implemented in C++ and can use OpenFlow switches. In addition, it also offers
the use of external modules to extend NS-3, such as OFSwitch13 [182], which helps for
OpenFlow 1.3 compatibility.

Summary and Lessons Learned

The summary of network simulators and emulators is presented in Table 5. It provides
a comprehensive overview of simulators and emulators that are developed in various
programming languages, such as C, C++, Java, Python, and so on. These tools help in
developing and simulating SDN applications in an SDN environment. Mininet [164]
is an innovative emulation tool that allows network developers to configure, manage,
and test their networks. These networks cannot exceed single-server bandwidth and
cannot run non-Linux-compatible OpenFlow switches or applications. The DOT [171]
emulation tool ensures computation and network resources for switches, hosts, and links
in large SDN deployments. It can be used in an environment where a fixed number of
physical machines are used to emulate a given network and does not support dynamic
scalability and multi-user support. OFNET [172] is an open-source emulator to test and
debug networks for analyzing network traffic. This tool does not support cloud platforms
and large-scale implementation of layer-2 networks. ViNO [173] helps to create arbitrary
network topologies via Open vSwitches and virtual machines. However, its scalability
and OpenFlow support are not specified, and these can be helpful for experimentation
and testing.

The EstiNet [175] network emulator provides accuracy, quickness, repetition, and scal-
ability and is based on a kernel-reentering simulation methodology that allows researchers
to test their applications. The FS-SDN [176] simulator is developed in the Python language
for realistic testing and validation of standard networks. It can be extended for debugging
and tracing capabilities, which can be helpful for developing new SDN applications. The
OMNeT++ [178,179] simulator is helpful for network modeling, multiprocessors, and dif-
ferent distributed or parallel systems. However, its kernel is implemented in C++ and can
only run with a modern C++ compiler. The NS-3 network simulator provides the capability
to add new protocols and allows integration and customizability without remaking the core
of the simulator. However, it is lacking a visual interface for creating a topology and for
visible capability on an experimental level. This study provides a feature-based comparison
of SDN simulators and emulators including a brief description, implementation language,
and the strengths and weaknesses. It can be extended to conduct a performance-based
comparison of these tools under specific scenarios. Finally, new simulators and emulators
need to be developed for hybrid SDN, wireless networks, fog/edge computing, cloud
computing, and so on, to meet the needs of future networks.
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Table 5. Summary of SDN simulators and emulators.

Studies Language Description Strengths Weaknesses

Mininet [164] Python

Offers a rapid prototyping
workflow and virtualization
functionalities to assist network
developers

The emulation tool, which
merges several best features
of emulators, hardware
testbeds, and simulators

Emulated topology can
grow only with residing
machine resources

Distributed OF
Testbed
(DOT) [171]

Java

Supports a cluster of computers
that guarantee computation and
network resources to switches,
hosts, and links

Facilitates large SDN
deployments by distributing
the workload over a cluster
of nodes

Limited number of
physical machines to
emulate, lacking dynamic
scalability and multi-user
support

OFNET [172] Python

Provides built-in functionalities
to test and debug, as well as
traffic generation and
monitoring tools

Helpful in generating
network traffic, monitoring
of OpenFlow messages and
analyzing performance of
SDN controller

Needs to be extended for
large L2 network and
cloud emulation platform

ViNO [173] Java
Helps to create arbitrary
network topologies via Open
vSwitches

Domain-specific language
for topologies and VM
migration in least time

Scalability is not specified

EstiNet [175] C
Any real application program
can run on a simulated host
without any modification

Provides accuracy, quickness,
repetition, and scalability
and supports
kernel-reentering simulation
methodology

Not scalable to a single
process, and results cannot
be repeated

FS-SDN [176] Python Supports realistic test and
validation of standard networks

Scalable and accurate
simulation tool

Limited debugging and
tracing capabilities

OMNeT++
[178,179] C++

Used in network modeling,
multiprocessors, and different
distributed or parallel systems

Popular extensible, modular,
component-based scalable
simulation tool

Its kernel is in C++ and
can only run with modern
C++ compiler

NS-3 [181] C++ Offers help for OpenFlow to
program network devices

Can add new protocols,
supports the lowering of
distance between real
network and simulated
network

Limited visibility of visual
interface for creating
topology

7. SDN Programming Languages

SDN programming languages consist of compilation and validation tools that are
helpful for the translation of high-level constructs into messages understandable by the
SDN controller API. The following section explains some SDN programming languages.
One of the languages is Frenetic [183,184], which is a high-level language for the program-
ming of OpenFlow networks and is useful for the categorization and accretion of network
traffic. Moreover, it is also helpful for defining packet forwarding policies on the basis of a
functional reactive combinator library inspired by Yampa [185], and its implementation
is based on FlapJax [186]. By providing a Frenetic runtime environment, facilities pertain-
ing to installation and querying low-level details are managed. In addition, it provides
compositional constructs that facilitate modular reasoning and enable code reuse. As
NetCore [187] is the successor of Frenetic, it carries an enhanced policy management library.
Moreover, it has the capacity to compile ACL policies and handle the interaction between
controller and switch. In addition to this, for the efficient generation of flow rules, the
run-time system of NetCore is designed. Nettle [188] is a low-level programming language
that deals with streams and does not deal with events. It is quite appropriate for various
functions such as programming controllers, and programming discrete and continuous
operations. Moreover, dynamic policies, including traffic engineering and load balancing,
are also generated through it. As it is declarative in nature, functions that are time sensitive
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and varying can be demarcated. Moreover, the sequential operator provided by Nettle can
also be used for creating compound commands.

Procera [189] is a high-level programming language that is helpful to delineate ACL
policies in communication networks. It is quite a resource for the operators as it provides
an expressive and extensible compositional framework. Moreover, it is also quite useful
for designing network applications that not only react to the events produced by Open-
Flow switches but also to external events, for instance, user authorization and bandwidth
usage. Procera was used in several campus networks, as well as home network proto-
type deployments [190]. Flow-based management language (FML) [191] is a high-level
declarative programming language that is based on non-recursive Datalog [192] for han-
dling a network whose aim is to provide efficient and flexible policies. Moreover, it is
also helpful for the operators, as it provides them with eminent management facilities for
configuring ACL policies straightforwardly. Flog [193] is an event-driven programming
language that adopted ideas from FML and Frenetic and is based on logic programming
for the SDN environment, similar to FML. It is composed of three components that are
similar to Frenetic. These components include a mechanism for network state collection,
information processing, and policy generation. Like NetCore, Frenetic-OCaml [194] is also
a successor of Frenetic. It is beneficial in providing mechanisms for network-wide policy
implementation. NetCore is used and is replaced with NetKat for forwarding decisions.
Moreover, its query language permits querying statistics that include traffic and topology.
Being an imperative programming paradigm-based language, Pyretic [195], by specifying
the static and dynamic forwarding policies, assists in developing network applications. By
utilizing the sequential and parallel operators provided by Pyretic, the forwarding policies
can be specified.

FlowLog [196,197] is a declarative language for programming SDN network applica-
tions. Being a finite state language, for the various types of analysis, the model checking can
be applied quite competently. FlowLog has two versions. One is based on NetCore, whereas
the other is built on the packet-handling capability of Frentic-OCaml. The FatTire [198]
SDN programming language is used for writing fault-tolerant network applications. It
is designed for the purpose of specifying the path for packet routing and fault tolerance.
Moreover, it can also be helpful for the programmer who, by using regular expressions,
declaratively states the sets of necessary paths. NetKat [199–202] uses Kleene algebra with
tests (KAT) [203]. This programming language is based on equational theory, for program-
ming and reasoning about the networks. A regular expression can be used for describing
end-to-end paths, and its semantics are inspired by NetKat. Moreover, NetKat is also
beneficial for defining virtual topologies. Merlin [196,197,204,205] is a declarative language
that is useful for distributing and managing the ACL policy implementation process. Its
run-time monitor is used to examine incoming and outgoing network traffic. Being a policy
specification for SDN, PonderFlow [198] aims to extend the Ponder language [206] for
describing OpenFlow flow rules. It is used to define management and security policies in
distributed systems.

PonderFlow provides mechanisms for implementing access control and network ab-
stractions. NOF [207] is a programming language with the objective of enabling network
application to design the network according to the application requirements. It comprises
sets of operations and services, and these are categorized into three groups, namely match-
ing, timing, and query. Operations can be applied to conventional network fields that are
based on host information. Timing includes information about the services, that is, when
they will be installed and how long they will remain functional in the network. Query
operation helps to obtain the network state information, that is, link state, bandwidth
usage, transmission errors, and so on. Kinetic [208] is a domain-specific language that
helps network operators control the dynamic state of their network. In addition, it offers
facilities to validate the accuracy of control programs. The network policies may be stated
with respect to finite state machines (FSMs), which aids in encapsulating the dynamic state
of the network.
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Summary and Lessons Learned

The summary of SDN programming languages is presented in Table 6. Different
SDN programming languages are developed to handle specific problems or to provide
specific functionalities in network applications in a more refined and abstract manner.
Most of the languages, (i.e., Procera [189], Pyretic [195], FlowLog [209,210], FatTire [157],
NetKat [158–161]) provide basic-level flow matching. Pyretic [195] implements native
flow matching and virtualizations, unlike other languages. Frenetic-OCaml [194] and
Frenetic [183,184] provide enhanced monitoring based on query language and windowed
history as well as flow matching. Kinetic [208] provides inherited flow matching and
monitoring services, and it implements the modules in a parallel fashion. We have described
these languages along with their programming paradigms.

These languages help network administrators to implement access control, and to de-
velop and test network applications on the basis of low-level constructs as well as high-level
abstractions. However, there is still a wide scope for researchers to offer new abstractions
and also contribute to the advance of NBI standardization. The future programming
languages may include functionalities of load balancing to avoid congestion on specific
resources. Researchers may be interested in using language constructs to scale-up the
resources in an elastic way. Moreover, future programming languages should incorporate
NFV to manage the virtualized functions and OpenFlow updates to take advantage of
the new features offered by OFP. Network forensics are quite useful to collect information
on network devices to verify the evidence of crimes. However, this important area is
also lacking in research with regard to SDN programming languages. Finally, the current
programming languages still do not provide an open interface to allow new modules
to be developed and incorporated into the language, which is also an interesting future
research area.

Table 6. Summary of SDN Programming Languages.

Studies Programming
Paradigm Description Strengths Weaknesses

Frenetic [183,184] Declarative
(functional)

Useful for the
categorization and
accretion of network traffic

Facilitates modular
reasoning

Lack in flow matching and
monitoring services

NetCore [187] Declarative
(functional)

It is the successor of
Frenetic and carries an
enhanced policy
management library

Effective handling of
controller and switch
interaction

Does not support flow
matching and monitoring
services

Nettle [188] Declarative
(functional, reactive)

Low-level programming
language that deals with
streams and not with
events

Supports dynamic policies,
traffic engineering, and
load balancing

Does not consider
event-driven approach

Procera [189] Declarative
(functional, reactive)

Helps in portraying
reactive and temporal
behaviors

Good for reactive
applications and protocols

Does not support basic
flow matching and
monitoring

FML [191] Declarative (data
flow, reactive)

High-level language based
on non-recursive
Datalog [151]

Provides efficient and
flexible policies

Limited QoS and
monitoring services

Flog [193] Declarative (logic),
event-driven

Event-driven
programming that
adopted ideas from FML
and Frenetic

Supports basic flow
matching and monitoring
capabilities

Limited security and
traffic engineering
capabilities
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Table 6. Cont.

Studies Programming
Paradigm Description Strengths Weaknesses

Frenetic
OCaml [194]

Declarative
(functional)

Utilizes proactive flow
rule installation and
handles the low-level
details of the switch to
controller

Effective flow rule
installation for efficient
communication

Does not support flow
matching and monitoring
services

Pyretic [195] Imperative

Helps in specifying static
and dynamic forwarding
policies to assist in
developing network
applications

Provides flexible policy
making and deployment

Limited flow matching,
virtualization, and
monitoring capabilities

FlowLog [209,
210]

Declarative
(functional)

Offers programming for
SDN network applications
and supports model
checking

Provides basic flow
matching and monitoring
facilities

Does not support traffic
engineering and
virtualization

FatTire [211] Declarative
(functional)

Used for writing
fault-tolerant network
applications

Supports basic flow
matching and traffic
engineering functionalities

Does not provide network
monitoring

NetKat [199,202] Declarative
(functional)

Uses Kleene algebra with
tests (KAT) [162], based on
equational theory, for
network programming

Provides sequential and
parallel composition
capabilities

Does not support external
interface monitoring and
QoS

Merlin [197,204] Declarative (logic)

Based on declarative
language and useful for
distributing and
coordinating policy
implementation

Supports more secure data
processing, flow matching,
and monitoring

Does not support link
failure and query language

Ponder
Flow [198]

Policy specification
language

PonderFlow provides
mechanisms for
implementing access
control and network
abstractions

Supports dynamic policy
language and basic flow
matching

Limited monitoring and
virtualization capabilities

NOF [207] Declarative

Enables network
application to design the
network according to the
application requirements

Supports basic flow
matching, topology slicing
and external interface for
monitoring

Limited security and
traffic engineering
functionalities

Kinetic [208] Domain-specific
language

Helps network operators
to control the dynamic
state of their network

Inherits runtime features
of Pyretic and best flow
matching

Limited traffic engineering
and monitoring
capabilities

8. SDN Controller Platforms

The controllers are the brains of SDN networks and act as a strategic control point.
These contain collection of modules that can perform different network tasks including
network topology, network statistics, and so on. Different network applications such as
network policies are installed on the controllers for data communication between end
nodes. In this section, we discuss some controller platforms, which are described below.

Beacon [212] is implemented in the Java programming language and uses centralized
architecture. Moreover, it uses ad hoc northbound API and southbound API with OpenFlow
1.0, which supports CLI and web user interface (WebUI). It also supports multi-command-
line threading and modularity functionality. It serves as the basis of Floodlight, with a focus
on being developer friendly and high performance, and with the ability to start and stop
existing approaches. It has explored areas of OpenFlow controller design. Beehive [213]
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is a distributed control platform implemented in the GO programming language with a
distributed hierarchical architecture. It utilizes REST northbound API and southbound API
with OpenFlow 1.0 and 1.2. It utilizes the Linux supporting platform and supports CLI. The
implementation of DCFabric [214] is based on the C and Java script programming languages,
and it has a centralized architecture. It utilizes the REST northbound API and southbound
API with OpenFlow 1.3. It uses the Linux supporting platform and supports CLI and
WebUI. Moreover, it supports multi-threading and has a good modularity functionality
with good consistency. Disco [215] is implemented in the Java programming language with
a distributed flat architecture. It utilizes the northbound, southbound, and east/westbound
API with REST with OpenFlow 1.0 and AMQP, respectively. It supports proprietary licenses.
It has good modularity with limited documentation. The implementation of Faucet [216]
is based on the Python programming language, and it has a centralized architecture. It
utilizes SBI with OpenFlow 1.3. It employs the Linux supporting platform and supports
CLI and WebUI. It supports Apache 2.0 licenses and multi-threading with good consistency.

Floodlight [217] is implemented in the Java programming language, and it has a
centralized architecture. It utilizes REST, Java, RPC, and Quantum northbound API and
southbound API with OpenFlow 1.0 and 1.3. It utilizes a Linux-, MacOS-, and Windows-
supporting platform and provides CLI and WebUI. It supports Apache 2.0 licenses, which
supports multi-threading, and has a fair modularity with good consistency and documenta-
tion. Flow Visor [218] is implemented in the C programming language with a centralized ar-
chitecture. It utilizes JSON and RPC northbound API and southbound API with OpenFlow
1.0 and 1.3. It utilizes a Linux supporting platform and supports CLI interface. Moreover, it
supports proprietary licenses and has no consistency; however, its documentation is fair.
HyperFlow [219] is implemented in the C++ programming language with a distributed flat
architecture. It utilizes SBI with OpenFlow 1.0 and east/westbound API with publishing
and subscribing messages. It supports proprietary licenses and multi-threading and has no
consistency. Kandoo [220] is implemented in the C, C++, and Python programming lan-
guages, and it has a distributed hierarchical architecture. It utilizes Java RPC northbound
API and SBI with OpenFlow 1.0–1.2 and east/westbound API with messaging channel. It
utilizes a Linux supporting platform and supports CLI and proprietary licenses.

Loom [221] is implemented in the Erlang programming language and has a distributed
flat architecture. It utilizes JSON NBI and SBI with OpenFlow 1.3–1.4. It utilizes a Linux
supporting platform and supports CLI. It supports Apache 2.0 licenses and multi-threading
and has a good modularity with good consistency. However, its documentation is lim-
ited. Maestro [222] is implemented in the Java programming language with a centralized
architecture. It applies ad hoc northbound API and southbound API with OpenFlow
1.0. It utilizes Linux, MacOS, and Windows supporting platform and supports WebUI. It
supports LGPL 2.1 licenses. It supports multi-threading and has a fair modularity with no
consistency, and its documentation is also limited. MsNettle [223] is implemented in the
Haskell programming language and has a centralized architecture. It utilizes southbound
API with OpenFlow 1.0. It utilizes a Linux supporting platform and supports CLI. It
supports proprietary licenses and multi-threading and has a good modularity with no
consistency. Meridian [224] is implemented in the Java programming language and has a
centralized architecture. It utilizes REST NBI and SBI with OpenFlow 1.0 and 1.3. It utilizes
a cloud-based supporting platform and supports WebUI. It supports multi-threading and
has a good modularity with no consistency.

Microflow [225] is implemented in the C programming language with a centralized
architecture. It utilizes Socket NBI and SBI with OpenFlow 1.0–1.5. It utilizes a Linux
supporting platform and supports CLI and WebUI. It supports Apache 2.0 licenses and
multi-threading. Nodeflow [226] is implemented in the JavaScript programming language
with a centralized architecture. It utilizes JSON northbound API and southbound API with
OpenFlow 1.0. It utilizes a Node.js supporting platform and supports CLI. NOX [227] is
implemented in the C++ programming language and has a centralized architecture. It
utilizes ad hoc NBI and SBI with OpenFlow 1.0. It utilizes a Linux supporting platform
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and supports CLI and WebUI. It supports GPL 3.0 licenses and multi-threading (Nox-MT)
and has low modularity with no consistency. ONIX [228] is implemented in the C++
programming language with a distributed flat architecture. It utilizes Onix API northbound
API and southbound API with OpenFlow 1.0 and OVSDB and east/westbound API with
Zookeeper. It supports proprietary licenses and multi-threading and has a good modularity
with no consistency.

ONOS [229] is implemented in the Java programming language with a distributed
flat architecture. It utilizes REST and Neutron NBI and SBI with OpenFlow 1.0 and 1.3
and east/westbound API with Raft. It utilizes a Linux, MacOS, and Windows supporting
platform and supports CLI and WebUI. It supports Apache 2.0 licenses and multi-threading
functionality and has a high modularity and consistency. OpenContrail [230] is imple-
mented in the C, C++, and Python programming languages with a centralized architecture.
It utilizes REST NBI and SBI with BGP and XMPP. It utilizes a Linux supporting plat-
form and supports CLI and WebUI. It supports Apache 2.0 licenses and multi-threading
functionality and has a high modularity with good consistency. OpenDaylight [231] is
implemented in the Java programming language with a distributed flat architecture. It
utilizes REST, RESTCONF, XMPP, and NETCONE NBI and SBI with OpenFlow 1.0 and 1.3
and east/westbound API. It a utilizes Linux, MacOS, and Windows supporting platform
and supports CLI and WebUI. It supports EPL 1.0 licenses and multi-threading function-
ality and has a high modularity with consistency. OpenIRIS [232] is implemented in the
Java programming language with a distributed flat architecture. It utilizes REST NBI,
SBI with OpenFlow 1.0–1.3, and east/westbound API with custom protocol. It utilizes
a Linux supporting platform and supports CLI and WebUI. It supports Apache 2.0 and
multi-threading functionality, with fair modularity and no consistency. OpenMul [233]
is implemented in the C programming language and has a centralized architecture. It
utilizes REST NBI and SBI with OpenFlow 1.0, 1.3, OVSDB, and Netconf. It utilizes a Linux
platform and supports CLI. It supports GPL 2.0 licenses and multi-threading functionality
and has a high modularity with no consistency. However, its documentation is good.

PANE [234] is implemented in the Haskell programming language with a distributed
flat architecture. It utilizes PANE NBI, SBI with OpenFlow 1.0, and Zookeeper east/
westbound API. It utilizes Linux and MacOS platforms and supports CLI. It supports BSD
3.0 licenses and has a fair modularity with no consistency, but with documentation. POF
Controller [235] is implemented in the Java programming language and has a centralized
architecture. It utilizes SBI with OpenFlow 1.0 and POF-FIS. It utilizes a Linux platform
and supports CLI and WebUI. It supports Apache 2.0 licenses, and its documentation is
limited. POX [236] is implemented in the Python programming language with a centralized
architecture. It utilizes ad hoc NBI and SBI with OpenFlow 1.0. It utilizes a Linux, MacOS,
and Windows platform and supports CLI and WebUI. It supports Apache 2.0 licenses;
however, it does not support multi-threading functionality and has a low modularity with
no consistency. Ravel [237] is implemented in the Python programming language and has
a centralized architecture. It utilizes ad hoc NBI and SBI with OpenFlow 1.0. It utilizes a
Linux platform in CLI mode. It supports Apache 2.0 licenses, and its documentation is fair.

Rosemary [238] is implemented in the C programming language with a centralized
architecture. It utilizes ad hoc NBI and SBI with OpenFlow 1.0, 1.3, and XMPP. It utilizes a
Linux supporting platform and supports CLI. It supports proprietary and multi-threading
functionality and has a good modularity with no consistency. RunOS [239] is implemented
in the C++ programming language with a distributed flat architecture. It utilizes REST NBI,
SBI with OpenFlow 1.3, and Maple east/westbound API. It utilizes a Linux supporting
platform and supports CLI and WebUI. It supports Apache 2.0 licenses and multi-threading
functionality and has a high modularity with consistency. Ryu [240] is implemented in the
Python programming language and has a centralized architecture. It utilizes REST NBI
and SBI with OpenFlow 1.0–1.5. It utilizes a Linux and MacOS supporting platform in CLI
mode. It supports Apache 2.0 licenses and multi-threading functionality. SMaRtLight [241]
is implemented in the Java programming language with a distributed flat architecture. It
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utilizes REST NBI, SBI with OpenFlow 1.3, and BFT-SMaRt east/westbound. It utilizes a
Linux supporting platform in CLI mode. It supports proprietary licenses and has no consis-
tency. TinySDN [242] is implemented in the C programming language with a centralized
architecture. It utilizes SBI with OpenFlow 1.0 and a Linux supporting platform in CLI
mode. It supports BSD 3.0 licenses and has no multi-threading functionality or consistency.
Trema [243] is implemented in the C and Ruby programming languages with a centralized
architecture. It utilizes ad hoc NBI and SBI with OpenFlow 1.0. It utilizes a Linux sup-
porting platform in CLI mode. It supports GPL 2.0 licenses and has good modularity, but
it has no consistency. However, its documentation is fair. Yanc [244] is implemented in
the C and C++ programming languages and has a distributed flat architecture. It utilizes
REST NBI and SBI with OpenFlow 1.0–1.3 capabilities. It utilizes a Linux supporting plat-
form and supports CLI. It supports proprietary licenses, and its documentation is limited.
ZeroSDN [245] is implemented in the C++ programming language and has a distributed
flat architecture. It utilizes REST NBI, SBI with OpenFlow 1.0 and 1.3, and ZeroMQ of
east/westbound API. It utilizes a Linux supporting platform in both CLI and WebUI modes.
It supports Apache 2.0 licenses and has high modularity with fair documentation.

Summary and Lessons Learned

The summary of SDN controller platforms is presented in Table 7. These controllers
manage flows to the switches/routers via SBI and the applications/business logic via NBI
to deploy intelligent networks. The controllers install flow rules at the data plane devices
(switches/routers) to perform required functionalities, such as forwarding, dropping, and
so on. There are different kinds of SDN controllers (centralized and distributed), which
are developed to perform various functionalities in different programming languages
(Python, C, C++, Java, etc.). Some of the controllers are java-based (i.e., Beacon [212], Disco,
Opendaylight, SMaRtLight [241], etc.). Some of them are based on distributed approaches.
Ryu is very easy and straightforward to program. Beginners can easily deploy and use this
controller for their network.

Opendaylight is complex, and it is difficult to model new ideas. For experts, it is
good option to use because it provides a dozen southbound APIs and protocols, such as
NetConf, OVSDB, and PCEP, for managing and configuring forwarding devices. If someone
want to rank these controllers on the basis of simplicity, the order would be as follows:
Ryu, Floodlight, ONOS, ODL. The scalability, consistency, reliability, and security are very
important to consider in designing an efficient and robust SDN controller. The current
SDN controllers lack standard data models, anomaly detection, and security mechanisms.
It is observed that developing a brand new SDN controller may not be the best solution;
however, the existing SDN control frameworks need to be enhanced, refined, and improved
to address the above-mentioned issues.

Table 7. Comparison of SDN controller platforms.

Studies Techniques Description Strengths Weaknesses

Beacon [212] Java Uses ad hoc NBI and SBI with
OpenFlow 1.0

Offers high-performance
flow processing
capabilities

No consistency and
limited scalability

Beehive [213] GO language

Distributed control plane that
utilizes REST northbound API
and southbound API with
OpenFlow specification

Supports multi-threading
and good consistency

Weak documentation
and reliability

DCFabric [214] C and JavaScript Supports Linux platform along
with CLI and WebUI.

Supports multi-threading
and has a modularity
functionality

Limited scalability



Sensors 2022, 22, 5551 32 of 47

Table 7. Cont.

Studies Techniques Description Strengths Weaknesses

Disco [215] Java

Based on distributed flat
architecture that utilizes
northbound, southbound, and
east/westbound API with REST
with OpenFlow 1.0 and AMQP,
respectively

Good modularity and
strong inter-domain
connectivity

Limited
documentation and
reliability

Faucet [216] Python Utilizes SBI with OpenFlow 1.3 Supports multi-threading
with good consistency Limited scalability

Floodlight [217] Multi-threaded
Java

Utilizes REST, Java, RPC, and
Quantum northbound API and
southbound API with OpenFlow
1.0 and 1.3.

Strong consistency
Very limited
scalability and
reliability

FlowVisor [218] C

Provides functions to slice the
network resources and is located
between guest controllers and
switching devices

Good for research
experiments and provides
slices for several network
portions

Limited consistency

HyperFlow [219] C++

HyperFlow is implemented in
C++ and utilizes SBI with
OpenFlow 1.0 and
east/westbound API with
publishing and subscribing
messages

Moderate scalability and
reliability

Supports proprietary
licenses,
multi-threading, and
no consistency

Kandoo [220] C, C++, Python Utilizes Java RPC NBI and SBI
with OpenFlow 1.0–1.2

Very good scalability and
utilizes Linux supporting
platform and proprietary
license.

Limited reliability

Loom [221] Erlang

Provides an experimental
network switch controller that
implements the OpenFlow 1.3.x
and 1.4 protocols

Offers scalability and
robustness for large-scale
implementations

Limited consistency

Maestro [222] Multi-threaded
Java

Exploits parallelism along with
additional throughput
optimization techniques

Supports multi-threading
and has a fair modularity

No consistency or
reliability

MsNettle [223] Multi-threaded
Haskell

Utilizes SBI with OpenFlow 1.0
and Linux platform in CLI mode

Supports proprietary
licenses and has a good
modularity.

No consistency and
limited
documentation

Meridian [224] Java
Utilizes REST northbound API
and southbound API with
OpenFlow 1.0 and 1.3

Cloud-based platform that
supports multi-threading

No consistency and
reliability

Microflow [225] C

Utilizes Socket NBI and SBI with
OpenFlow 1.0–1.5 and uses
Linux platform with CLI and
WebUI modes

Supports multi-threading
and has good scalability

No consistency and
reliability

NODE
FLOW [226] Java Script Utilizes JSON NBI and SBI with

OpenFlow 1.0 Good reliability
Cisco license and
limited
documentation

NOX [227] C++

Utilizes ad hoc NBI and SBI with
OpenFlow 1.0 and supports
Linux platform in CLI and
WebUI modes

Supports GPL 3.0 licenses
and multi-threading
(NOX-MT).

Low modularity with
no consistency
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Table 7. Cont.

Studies Techniques Description Strengths Weaknesses

ONIX [228] C++

It utilizes Onix API, NBI, and
SBI with OpenFlow 1.0, OVSDB,
and east/westbound API with
Zookeeper

Supports multi-threading
and has a good modularity

Supports proprietary
licenses and weak
consistency

ONOS [229] Java

Utilizes REST and Neutron NBI
and SBI with OpenFlow 1.0 and
1.3 and east/westbound API
with Raft

Supports Apache 2.0
licenses and
multi-threading
functionality

Weak consistency in
cases

Open
Contrail [230] C, C++, Python

Utilizes REST NBI and SBI with
BGP and XMPP and supports
Linux platform with CLI and
WebUI modes

Supports Apache 2.0 and
multi-threading
functionality and high
modularity

Limited scalability

Open
Daylight [231] Java

Utilizes REST, RESTCONF,
XMPP, and NETCONF NBI and
SBI with OpenFlow 1.0 and 1.3

Good scalability and
reliability as well as strong
consistency

Based on Cisco’s
ONE SDN controller

OpenIRIS [232] Java

Utilizes REST NBI, SBI with
OpenFlow 1.0–1.3, and
east/westbound API with
custom protocol

Good reliability and
provides multi-threading

Weak consistency
and no support for
Openstack

OpenMul [233] C
Utilizes REST NBI and SBI with
OpenFlow 1.0, 1.3, OVSDB, and
Netconf

Supports Linux platform
in CLI mode and good
reliability

Weak scalability and
consistency

PANE [234] Haskell
Utilizes PANE NBI, SBI with
OpenFlow 1.0 and Zookeeper
east/westbound API

Supports BSD 3.0 licenses
and has a fair modularity

Limited reliability
with no consistency

POF
Controller [235] Java

Utilizes SBI with OpenFlow 1.0
and POF-FIS and supports
Linux platform along with CLI
and WebUI

Reliable and scalable
Limited
documentation and
consistency

POX [236] Python

Utilizes ad hoc NBI and SBI with
OpenFlow 1.0; uses Linux,
MacOS, and Windows platform;
and supports CLI and GUI

Consistent controller
platform

Limited reliability
and scalability

Ravel [237] Python

Utilizes ad hoc NBI and SBI with
OpenFlow 1.0 and supports
Linux platform along CLI and
WebUI, with fair documentation

Good reliability with
strong consistency

Very limited
scalability

Rosemary [238] C

Utilizes ad hoc NBI and SBI with
OpenFlow 1.0, 1.3, and XMPP
and supports Linux platform,
along with CLI and WebUI

Supports Proprietary and
multi-threading
functionality with good
modularity

No scalability and
consistency

Ryu [240] Python

Utilizes REST NBI and SBI with
OpenFlow 1.0–1.5 and supports
Linux and MacOS platforms
with CLI mode

Good modularity and
support for OpenStack

Limited scalability
and weak consistency

SMaRt Light [241] Java
Utilizes REST NBI, SBI with
OpenFlow 1.3, and
east/westbound API

Supports Linux platform
in CLI mode and has good
reliability and consistency

Proprietary license
and limited
scalability

TinySDN [242] C
Utilizes SBI with OpenFlow 1.0
and supports Linux platform
with CLI mode

Supports BSD 3.0 licenses
and modularity

No multi-threading
functionality or
consistency
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Table 7. Cont.

Studies Techniques Description Strengths Weaknesses

Trema [243] C, Ruby
Utilizes ad hoc NBI and SBI with
OpenFlow 1.0 and supports
Linux platform in CLI mode

Supports GPL 2.0 licenses
and has good modularity

No consistency and
reliability

Yanc [244] C, C++
Utilizes REST NBI and SBI with
OpenFlow 1.0–1.3 and supports
CLI mode

Provides reliable
communication

Limited
documentation and
no consistency

ZeroSDN [245] C++

Uses REST NBI and SBI with
OpenFlow 1.0 and 1.3 and
supports Linux platform with
CLI and WebUI modes

High modularity and
consistency

Does not support
multi-threading and
not scalable

9. Comparison with Existing Studies

SDN is a new networking paradigm that influences the network operations and
management, gaining the attention of the research community and other organizations [246].
The papers have been written to discuss different issues and challenges of SDN, and these
are shown in Table 8. Akyildiz et al. [247] wrote a survey related to fault management, fault
tolerance, topology update, and traffic analysis. They explained different aspects of the
SDN architecture and their interactions. Several studies are classified according to their
specific problems. Xie et al. [248] compile techniques such as routing optimization, QoS, and
resource management security to fill the gaps left by the previous paper. Their main focus
was on blending the QoS-aware techniques and presenting their work in a comprehensive
manner. Meanwhile, Matlou et al. [249] surveyed the same topic to improve on the paper
written by Xie et al. [248]. They targeted wireless sensor networks and SDNs to explain this
topic. They achieved their target, as wireless networking in SDN was considered a unique
topic at that time, and they accepted the challenge to complete the survey. In the same year,
Jose et al. [250] wrote a comprehensive review related to traffic classification and security.
Network intrusion detection is also considered as a point in traffic engineering, and it was
not included in any of the papers mentioned above, so to describe it in a comprehensive
manner, Sultana et al. [251] focused on the four learning algorithms included in the paper.
Similarly, traffic profiling is also an important area of traffic classification. Cui et al. [252]
considered all four learning algorithms and explained several machine learning models,
including traffic profiling and its functioning in SDN networking. It was considered an
important topic at that time due to its uniqueness. Moreover, Loung et al. [253] focused on
the topic of network virtualization, which was explained and included in a survey related
to traffic engineering. They achieved their target by reviewing network virtualization and
ensuring QoS in virtual networks.

Kreutz et al. [254] started their discussion by defining the SDN, its major concepts, and
its differences compared to traditional networks. The architecture of an SDN is presented
in a bottom-up approach. Deep analysis is performed at its architecture, APIs, network
programming, and network layers. They also focused on the major problem of cross-
layering and its solutions. Keeping in view security, performance, scalability, and resilience,
the design of the controller and switches are addressed in this study. Wang et al. [255]
provide a review of diverse problems in networking, including traffic classification, traffic
prediction, self-configuration, and network management, as well as performance inspection
and prediction. They focused on a small number of studies to showcase different aspects
of the workflow. Jamshidi et al. [256] explained applications based on machine learning
(ML) methods and techniques by dividing them into six categories of networking, which
are traffic prediction, network security, cloud services, application identification, domain
name system, and QoS. For all these categories, they determined the ML methods and
input datasets. They also summarize the various challenges and major findings of these
input data and ML methods. In particular, they discovered multiple new aspects of
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ML in networking. They ended their study by discussing research gaps and challenges.
Mohammed et al. [257] review existing different ML and deep learning (DL) algorithms
in the context of SDN networking for the measurement of traffic classification and traffic
prediction. DL approaches are used for traffic prediction. Tam et al. [258] directed their
attention to ML-based security solutions for SDN. ML models used in network prediction
and prevention are identified to be deficient, so attackers can control or avoid the model.
Attackers are also versed in ML capabilities to predict the defending model’s behavior. The
authors suggest some specific recommendations that are helpful for SDN security. They
recommend that a secure development process must be followed. They made an auditable
ML model. This is important to give attention to threat models, instead of scheming ML
solutions, and there must be an operational cost model that is produced at the initial
level. These recommendations are helpful to improve the properties of ML-based solutions
for SDN.

Amin et al. [259] discuss the deployment of SDN among legacy networks. Due to
the speedy growth of the Internet, network structures have become huge and complicated.
This complexity initiates a huge amount of traffic data, and it becomes a challenge to take
traffic measurements such as traffic classification and prediction, in a network. To manage
networks efficiently, the SDN paradigm is adopted, and it has already been adopted by
several organizations. This survey presents a comprehensive study on a specific topic. For
hybrid SDN, some efficient algorithms are needed to measure and deploy the SDN alongside
traditional networking. Priyadarsini et al. [260] provide a comprehensive review and report
of state-of-the-art progress on productive traffic management, including load balancing and
energy-efficient routing. The introduction and deployment of SDN controls, network safety,
and optimum positioning of controllers affecting traffic management are also discussed. This
paper also addresses a few unexplored SDN challenges, such as modular implementation,
convergence with the legacy network, and possible analysis charts. Although there are
multiple studies on SDN, most of them are old and do not cover the state-of-the-art approaches.
Some of them just cover one or two aspects of the SDN environment (i.e., SDN controller
placement [261,262], SDN programming languages [263,264], SDN simulators [265,266]).

In all of the above-mentioned studies, none of them evaluate the state-of-the-art
approaches related to different classifications of SDN. We categorize the approaches as
network testing and verification, flow rules installations, SDN controllers, SDN simulators,
network security and management, programming languages, and memory management.
Moreover, we provide comparisons of all these categories in the form of tables and discuss
limitations of each technique, which require attention in future research. In SDN, network
devices are controlled using flow rule installations, and there are several methods for rule
installations in different circumstance (i.e., path failure, new rules, rules update). This is
an important aspect that needs to be considered for evaluation of different approaches.
Network devices in SDN are equipped with TCAM memory, which is very limited. It is
necessary to use this memory very efficiently, so many approaches are adopted for memory
management in SDN devices. We cover all these studies and compare their performance
and efficiency.

Table 8. Comparison of existing papers in SDN.

Studies Year Area Discussed Methods Used

Akyildiz et al. [247] 2014 Flow management, fault tolerance,
topology update.

Supervised and unsupervised learning for traffic
engineering

Xie et al. [248] 2017 Routing optimization, QoS, resource
management security

Supervised and unsupervised learning for traffic
engineering

Matlou et al. [249] 2017 SDN, wireless sensor networks Supervised, reinforcement, and unsupervised learning
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Table 8. Cont.

Studies Year Area Discussed Methods Used

Jose et al. [250] 2017 Traffic classification and security Comprehensive study on security and traffic using
traditional and formal methods

Sultana et al. [251] 2018 Intrusion detection Deep and unsupervised learning for IDS

Cui et al. [252] 2018 Traffic profiling Different supervised and unsupervised learning
methods

Loung et al. [253] 2018 Network function virtualization and
QoS Using machine learning and mathematical methods

Kreutz et al. [254] 2014 Comprehensive survey on SDN core
concepts

General discussion based on the traditional and
Openflow concepts

Wang et al. [255] 2015 Heterogeneous networks AI-based techniques

Jamshidi et al. [256] 2016 Cybersecurity intrusion detection Supervised learning and unsupervised learning

Mohammed at al. [257] 2019 Traffic classification and prediction Supervised, reinforcement, and unsupervised learning

Tam et al. [258] 2018 Security in network Machine and deep learning for security

Amin et al. [259] 2018 General concepts of hybrid SDN
and terminologies

Categorization of hybrid SDN based on different
technical models

Priyadarsini et al. [260] 2021
A comprehensive state-of-the-art
progress report on specific topics of
SDN

Classifications of traffic management, load balance,
network safety, and controller placement

10. Future Research Directions

This paper focuses on different techniques found in OpenFlow-based SDN. We observe
that most existing techniques that appear in the literature complement the methods and
subordinate them. Following are the possible future research directions for the research
community. SDN controllers handle communication traffic, and as network traffic grows,
the mapping of flow rules between controller and switches becomes overburdened, while a
few controllers become unburdened. Due to poor throughput and long reaction times, such
an imbalance impairs the performance of the SDN network. It is difficult to manage the
load across several controllers dynamically. In SDN security, several SDN-based defensive
primitives are addressed. To cope with contemporary cyber dangers, both novel primitives
and modular protection systems that employ various primitives are required. Researchers
should focus on improving the security of established network protocols (such as address
resolution protocol (ARP), dynamic host configuration protocol (DHCP), domain name
system (DNS), etc.), as well as novel protocols such as neighbour discovery protocol (NDP)
in Internet Protocol Version 6 (IPV6).

With respect to controller scalability, separation of control and data planes, quantity of
events/requests handled by a controller, and controller–switch communication delay are
all bottlenecks in SDN. The relationship between different approaches used to optimize
controllers and scalability difficulties are also examined. The majority of current storage
systems have been evaluated on small-size networks, such as those with 7–28 nodes and
7–43 connections. As a result, these figures are incomparable to a large number of devices
in a wide-scale network environment, such as Telco, Internet of things (IoT), and so on. In
resource management (i.e., network components such as switches and controllers), ML
approaches are extremely successful. The majority of ML algorithms, on the other hand,
are focused on flow categorization and monitoring. Much less study has been done on
estimating traffic flow for real-time applications and best-effort traffic and deciding which
traffic flow to install ahead of time. These are multiple research areas to explore. In addition,
the energy-efficient SDN networks, wireless networks, network virtualization techniques,
cloud computing platforms, and SDN migration mechanisms are recommended for more
detailed exploration.
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Information-centric networking (ICN) [267] is gaining popularity for the future In-
ternet to increase the efficiency of content delivery and availability. With the increasing
demand for video streaming of public users through mobile devices, the Internet speed
is significant to fulfill the desired need for end-users through efficient use of bandwidth.
Nowadays, different applications of ICN are very popular, such as SDN-based ICN [268],
IoT-based ICN [269], ICN with edge computing [270], green ICN [271], and so on. These
areas need to be explored in more detail to help the ICN community reach the next step
of implementation in live deployments. The network programmability feature of SDN is
used to enrich response functionality. The data plane provides the possibility of adding
new functions that are more competent to secure the entire network. In prevention sys-
tems, security policies are defined to stop attackers from contacting targets, which require
investigation once policies change. The dynamic flow control features of SDN enhance the
detection of attacks without adding middleboxes and virtually turn switches into network
security devices that can prevent attacks dynamically. Moreover, ML-based SDN includes
network optimization, improving network security, and high-quality training datasets.
Some other broader perspectives on SDN, such as software-defined mobile networks and
software-defined vehicular networks, are also important areas to explore. Regarding QoS,
researchers are carrying out experiments with real matrices through different network
topologies so that each flow may have different QoS requirements. If DROM [272] is
extended with QoS routing, more efficient and enhanced results can be generated. The
QoS measures the traffic conditions and traffic classification, while DROM dynamically
measures the reliability, effectiveness, and awareness of QoS. The queuing delay of the
switches and the processing delay of the server improves the QoS.

For traffic engineering, some machine learning techniques provide fundamental im-
provements compared to the traditional traffic engineering paradigm. Many researchers
have devoted their skills to developing efficient systems for traffic classification, routing,
and traffic optimizations. Network policies are formed intelligently using some machine
learning algorithms, for example, random forest, support vector machine (SVM) [273],
k-nearest neighbors (KNN), and so on. Apart from machine learning, deep learning models
such as the artificial neural network (ANN) or convolutional neural network (CNN) may
also be adopted. For example, if we can predict the change in network policies before its
occurrence and take the needed measures, then much better throughput can be achieved.
These approaches will make the controller more intelligent, which results in more efficient
handling of network policy change phenomena. Moreover, quality of service (QoS) pa-
rameters also need to be considered to manage the network traffic to improve network
throughput. However, machine learning algorithms have their own limitations, such as
false negatives [274]. For traffic classification, most of the research conducted so far has
been on labeled datasets using a supervised learning approach. Few works are done using
semi-supervised learning, where some of the data are labeled and some are not given labels.
The same applies to the scenario with unsupervised learning. Another important learning
approach is reinforcement learning, which is a black box approach when we consider traffic
classification. In this regard, algorithms can be designed to classify the data traffic in such a
way that the new classified information can help the algorithm learn from the experience.

11. Conclusions

The SDN architecture has shifted network control and management to a centralized
controller, which provides a variety of benefits including programmability, innovation, and
ease of security policy implementation. In this paper, we briefly reviewed the traditional
networking and SDN structure along with its background, application programming
interfaces, network configurations, and benefits of the SDN paradigm. Afterwards, we
organized this paper into seven groups, namely network testing and verification, flow
rule installation mechanisms, network security and management issues related to SDN
implementation, memory management studies, SDN simulators and emulators, SDN
programming languages, and SDN controller platforms. We discussed each category in
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detail along with the implementation mechanisms and analyzed these mechanisms by
summarizing and comparing each technique along with the lessons learned from the
proposed techniques. Furthermore, we analyze and discuss the latest studies and compare
these papers with our research paper. Finally, comprehensive future research guidelines
are provided, and the paper is concluded.
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