
NASA-CR'200160 /'_/_ /- G/_.._

IBBBTRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 5, MAY 1995

'/'_..-/._/?j J'7_"

Software Dependability in the

Tandem GUARDIAN System

Inhwan Lee, Member, IEEE, and Ravishankar K. Iyer, Fellow, IEEE

Abstmct_Based on extensive field failure data for Tandem's

GUARDIAN operating system, this paper discusses evaluation of

the dependability of operational software. Software faults consid-

ered are major defects that result in processor failures and invoke

backup processes to take over. The paper categorizes the underly-

ing causes of software failures and evaluates the effectiveness of

the process pair technique in tolerating software faults. A model

to describe the impact of software faults on the reliability of an

overall system is proposed. The model is used to evaluate the sig-

nificance of key factors that determine software dependability

and to identify areas for imProvement.

An analysis of the data shows that about 77% of processor

failures that are initially considered due to software are con-

firmed as software problems. The analysis shows that the use of
process pairs to provide checkpointing and restart (originally

intended for tolerating hardware faults) allows the system to tol-

erate about 75% of reported software faults that result in proces-

sor failures. The loose coupling between processors, which results

in the backup execution (the processor state and the sequence of

events) being different from the original execution, is a major
reason for the measured software fault tolerance. Over two-thirds

(72%) of measured software failures are recurrences of previ-

onsly reported faults. Modeling, based on the data, shows that, in

addition to reducing the number of software faults, software de-

pendabifity can be enhanced by reducing the recurrence rate.

Index Terms--Measurement, fault categorization, software

fault tolerance, recurrence, software reliability, operational

phase, Tandem GUARDIAN System.

I. INTRODUCTION

HIS paper discusses evaluation of the dependability of op-
erational software based on measurements taken from the

Tandem GUARDIAN operating system. The Tandem

GUARDIAN system is a commercial fault-tolerant system

built for on-line transaction processing and decision support.

The GUARDIAN operating system is a message-based operat-

ing system that runs on a Tandem machine. Many studies have

sought to improve the software development environment by

using the failure data collected during the development phase

Manuscript received Aug. 1994; revised Feb. 1995.

This study was conducted while lnhwan Lee was with the Center for Reli-

able and High-Performance Computing, Coordinated Science Laboratory,

University of Illinois at Urbana-Champaign. The authors may be reached by

e-mall at: lec_inhwan@tandem.com, and iyer@erhe.uiuc.edu.

This work was supported by the National Aeronautics and Space Admini-

stration under grant NAG-i-613, in cooperation with the Illinois Computer

Laboratory for Aerospace Systems and Software (ICLASS), by Tandem Com-

puter Incorporated, by the Office of Naval Research under Grant N00014-

914-1116, and by the Advanced Research Projects Agency under grant

DABT63-94-C-01MS.

The findings, opinions, and recommendations expressed herein are those of

the author,s and do not necessarily reflect the position or policy of the United

States Government and no official endorsement should be inferred.

IEEF_..CS Log Number $95008.

455

(.,/<// :./ /;:

/,' "5 / £,-'" "

_; .' LZ; /

[1], [2], [31. The dependability issues for operational software

are typically very different from those for software under de-

velopment, due to differences in the operational environment

and software maturity. Also, the dependability of operational

software needs to be investigated in the context of the overall

system.

A study of the dependability of operational software based

on real measurements requires, in addition to instrumentation

and data collection, an understanding of the system architec-

ture, hardware, and software. It also requires an understanding

of the development, service, and operational environments.

Typically, measurement-based studies attempt to answer sev-

eral questions: What are the key failure modes and their sig-

nificance, how well do specific fault-tolerance techniques

work, and what is a realistic behavior model for the software

and its associated parameters? This paper presents results

based on field failure data collected from the Tandem

GUARDIAN operating system. The data cover a period ex-

tending over four months. The issues addressed include soft-

ware fault categorization, an evaluation of the software fault

tolerance of process pairs (a key hardware fault-tolerance

technique used in Tandem systems), and evaluation of the im-

pact of software faults on the overall system.

The next section discusses related research. Section III in-

troduces the Tandem GUARDIAN system and the measure-

ments made. Section IV investigates the underlying causes

(faults) that resulted in the observed software failures and

categorizes the identified faults. The significance of failure

recurrence is also discussed. Section V evaluates the software

fault tolerance of process pairs. The reasons for achieving this

software fault tolerance are investigated. This evaluation is

important because, although process pairs are specific to Tan-

dem systems, they are an implementation of the general ap-

proach of checkpointing and restart. Section VI builds a model

that describes the impact of faults in the GUARDIAN operat-

ing system on the reliability of an overall Tandem system. A

sensitivity analysis is conducted to evaluate the significance of

the factors that determine software dependability and to iden-

tify areas for improvement. Section VII summarizes the major

conclusions of this study.

II. RELATED RESEARCH

Software errors in the development phase have been exten-

sively studied. Software error data collected from the DOS/VS

operating system during the testing phase were analyzed in [4].

A wide-ranging analysis of software error data collected dur-

ing the development phase was reported in [5]. An error

?

0098-5589/9551M.00 © 1995 IEEE

456 IEEETRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO, 5, MAY |995

analysis technique was used to evaluate software development

methodologies in [6]. Relationships between the frequency and

distribution of errors.during software development, mainte-

nance of the developed software, and a variety of environ-

mental factors were analyzed in [7]. The orthogonal defect

classification, the use of observed software defects to provide

feedback on the development process, was proposed in [8].

These studies mainly attempt to fine-tune the software devel-

opment environment based on error analysis.

Software reliability modeling has also been studied exten-

sively, and many models have been proposed [1], [2], [3]. For

the most part, these models attempt to estimate the reliability
of software by analyzing the failure history of software during

the development phase, verification efforts, and operational
profile.

Measurement-based analysis of operational software de-

pendability has also evolved over the past 15 years. An early
study proposed a workload-dependent probabilistic model for

predicting software errors based on measurements from a DEC

system [9]. The effect of workload on operating system reli-

ability was analyzed using the data collected from an IBM

3081 machine running VM/SP [10]. A Marker model to de-

scribe the software error and recovery process in a production

environment using error logs from the MVS operating system

was discussed in [1 I]. Software defects and their impact on

system availability were investigated using data from the IBM

MVS system in [12]. In [13], results from a census of Tandem

systems were presented. The data showed that soRware was

the major source (62%) of outages in the Tandem system. De-
pendability and fault tolerance of three operating systems---the

Tandem GUARDIAN system, the IBM MVS system, and the

VAX VMS system--were analyzed using error logs in [14].
Software failures have also been studied from the software

fault-tolerance perspective. Two major approaches for soft-

ware fault tolerance---recovery blocks and N-version pro-

grammingmwere proposed in [15], [16]. Dependability model-

ing and evaluation of these two approaches were discussed in

[17]. The effectiveness of recovery routines in the MVS op-

erating system was evaluated using measurements from an

IBM 3081 machine in [18]. Software fault tolerance in the

Tandem GUARDIAN operating system was discussed in [19],

[20]. Architectural issues for incorporating hardware and soft-

ware fault tolerance were discussed in [21], [22], [23].

III. TANDEM SYSTEM AND MEASUREMENTS

The Tandem GUARDIAN system is a message-based mul-

tiprocessor system built for on-line transaction processing and

decision support [20]. A Tandem GUARDIAN system consists
of two to 16 processors, dual interprocessor buses, dual-port

device controllers, input/output (I/(3) devices, multiple I/O

buses, and redundant power supplies (Fig. 1). The key soft-

ware components are processes and messages. With a separate

copy of the GUARDIAN operating system running on each

processor, these abstractions hide the physical boundaries be-

tween processors and systems and provide a uniform environ-
ment across a network of Tandem systems.

In the Tandem GUARDIAN system, a critical system func-

tion or user application is replicated on two processors as pri-

mary and backup processes, i.e., as a process pair. Normally,

only the primary process provides service. The primary sends

checkpoints to the backup, so that the backup can take over the

function when the primary fails. The GUARDIAN system

software halts the processor it runs on when it detects nonre-

coverable errors. Nonrecoverable errors are a subset of excep-

tions in privileged system processes. They are detected by the

operating system or explicit software checks made by privi-

leged system processes. The designer determines whether a

specific exception is nonrecoverable. The "I'm alive" message

protocol allows the other processors to detect the halt and to

take over the primaries that were .running on the halted proces-

sor. With multiple processors running process pairs, dual in-

terprocessor buses, dual-port device controllers, multiple I/O

buses, disk mirroring, and redundant power supplies, the sys-

tem can tolerate a single failure in a processor, bus, device

controller, disk, or power supply.

Dual lair Bus

I i I I)

Procecsing Unit 2 to16 Proee_ors

Fig. 1. Tandem GUARDIAN system architecture.

In this paper, a software fault is a defect in the measured

software system, and a software failure is a processor failure

due to software. The terms processor halt and processor fail-

ure are used interchangeably. Fig. 2 illustrates the software

failure and recovery process in the Tandem GUARDIAN sys-

tem. When a fault in the system software is exercised, an error

(a fast error) is generated. Depending on the processor state,

this error may disappear or cause additional errors before be-

ing detected. The impact of a detected error ranges from a mi-
nor cosmetic problem at the user/system interface to a database

corruption. A software failure occurs when the system soft-
ware detects nonrecoverable errors and asserts a processor
halt.

Once a software failure occurs, the system attempts to re-

cover using backup processes on other processors. If this re-

cover), is successful, the system can tolerate the software fault.

The time it takes for the system to detect a processor halt and

for the backup to attain the primary's pre failure state depend.,

LEE AND IYER: SOFTWARE DEPENDABILITY IN THE TANDEM GUARDIAN SYSTEM 457

on several factors, such as the priority of the process, proces-

sor configuration, and workload. The recovery usually takes

about 10 seconds. If a job takeover is not successful or if a

backup process faces the same problem after a takeover, a

double processor halt occurs. Regardless of whether the recov-

ery is successful, the software fault is identified and a fix is

made. A single software fault can cause multiple sothvare fail-

ures at a single site or at multiple sites ("Recurrences" in

Fig. 2).

Ftt|_

Fig. 2. SoRware failure and recovery in the Tandem GUARDIANsystem.

The human-generated soRware failure reports used in this

study were extracted from the Tandem Product Report (TPR)

database, a component of the Tandem Product Reporting Sys-

tem (PRS). A TPR is used to report all problems, questions,

and requests for enhancements by users or Tandem employees

concerning any Tandem product. A TPK consists of a header

and a body. The header provides fixed fields for information

such as the date, problem type, urgency, user and system iden-

tifications, and a brief problem description. The body ofa TPR

is a textual description of all actions taken by Tandem analysts

in diagnosing the problem. If a TPR reports a set, ware failure,

the body also includes the log of the memory dump analyses

performed by Tandem analysts. The information in a TPR

clearly indicates whether the incident was a software failure,

whether the underlying fault was fixed, and whether the TPR

shared the underlying fault with other TPRs. Two-hundred

TPRs for the GUARDIAN operating system that cover a pe-

riod extending over four months in 1991 were used for this

study.

IV. FAULT CATEGORIZATION

Several studies have performed fault categorization based

on faults identified during the development phase [4], [5], [7].

SoRware fault profiles in operational software can be quite

different, due to differences in the operational environment

and soRware maturity. We studied the underlying causes of

200 TPRs that reported processor failures seemingly due to

faults in the Tandem system software [24].

Fig. 3 shows a breakdown of the TPRs into three categories

(SoRware "Cause Identified," Software "Cause Unidentified,"

and "Non-Software Problem"). Determining whether a failure

was caused by software faults is not straightforward, due partly

to system complexity and partly to close interactions between

the soRware and the hardware in the system. The only reliable

approach is to declare an incident to be a software problem

only after analysts have located a fault in the software, repro-

duced the incident, and designed and tested a soRw.are fix.

Software causes were identified "for 153 TPRs ("Cause

Identified"). If a TPR identified a fault in the soft'ware and

resulted in a software fix, the incident was counted as a soft-

ware problem, even if it was initially triggered by a non-

software cause (e.g., a hardware fault). In 26 TPRs ("Cause

Unidentified"), analysts believed that the underlying problems

were software faults, but they had not yet located the faults.

We use the term unidentified failures to refer to these cases.

The rest of the TPRs ("Non-SoRware Problem") were due

mainly to hardware faults (e.g., a failure in power supply) or

operational faults (e.g., incorrectly specifying hardware speci-

fications in a system table). Note that 76.5% of the TPRs that

were initially classified as sottware problems were confn'med

as soRware problems, 13% of them were probably set, ware

problems, and the rest (10.5%) were non-software problems.

The 179 TPRs ("Cause Identified" and "Cause Unidentified")

formed the basis of our analysis. Fig. 3 specifies which groups

of the TPRs were used to build the subsequent tables.

NowSoftwa_ Problem (10.5%)

/ _ _i_.ir_cv6_)]

som,.u__ (89.5_)\ /

T_ n.V,Vt a_tX _

Fig. 3. Problem types.

Table I shows the fault categories we selected in conjunc-

tion with analysts. The table also shows the number of unique

faults and the number of TPRs associated with each category.

For example, the "Data fault" category contained 12 unique

faults, and these faults caused 21 TPRs. Note that a single fault

may recur and generate multiple TPRs, because many users

run the same sottware. The 153 TPRs whose software causes

were identified were due to 100 unique faults.

A software failure caused by a newly found fault is referred

to as a first occurrence; a software failure caused by a previ-

ously reported fault is referred to as a recurrence. Recurrences

exist for several reasons. First, designing and testing a fix of a.

problem can take a significant amount of time. In the mean-

time, recurrences can occur at the same site or at other sites.

Second, the installation of a fix sometimes requires a planned

outage, which may force users to postpone the installation and

thus cause recurrences. Third, a purported fix can fail. Finally

and probably most importantly, users who did not experience

problems due to a certain fault ot_en hesitate to install an

available fix for fear that doing so will cause new problems.

458 IEEETRANSACTIONSON SOFTWAREENGINEERING,VOL. 21, NO. 5, MAY 1995

TABLE I

SOFTWARE FAULT CATEGORIZATION

Fault Catego,ry

Incorrect computation

Datafault

Datadefinition fault

Missing operation:

Uninitializedpointers

Uninitializednonpeinter variables

Not updatingdamstructures on theoccurrence

of certainevents

Not telling otherprocesses aboutthe occur-

fence of certain events

Side effect of code updat¢

Unexpected situation:

Race/timing problem

Errors with no definederror-handlingproce-

dures

Incorrectparameters or invalidcalls from user

processes

Not providingroutinesto handle legitimatebut

rare operationalscenarios

Microcodedefect

Others (cause does not fit any of the aboveclass)

Unable to classify due to insufficient information

All

,,I #F,ultsI
3 3

12 21

3 7

20 27

(6) (7)

(4) (6)

(6) (9)

(4) (s)

4 5

29 46

04) (is)

(4) (s)

(3) (7)

(8) 03)

4 g

10 12

15 24

100 153

Most of the categories in Table I are self-explanatory.

"Incorrect computation" refers to anarithmetic overflow or the

use of an incorrect arithmetic function (e.g., use of a signed

arithmetic function instead of an unsigned one). "Data fault"

refers to the use of an incorrect constant or variable. "Data

definition fault" refers to a fault in declaring data or in defin-

ing a data structure. "Missing operation" refers to an omission

of lines of source code. "Side effect of code update" occurs

when not all dependencies between software modules were

considered when updating the software. "Unexpected situa-

tion" refers to cases in which software designers did not an-

ticipate a legitimate operational scenario, and the software did

not handle the situation correctly. In the 24 TPRs we were

"Unable to classify due to insufficient information," analysts

did not provide detailed information about the nature of the

underlying faults. "Missing operation" and "Unexpected situa-

tion" were the most common types of software faults in the

measured software system. Additional code inspection and

testing efforts can be used to identify such faults.

Out of the I00 sofb, vare faults observed during the meas-

ured time window, 57 faults were diagnosed before the time

window (i.e., were recurrences) and 43 were newly identified

during the time window (i.e., were fast oceurcences). In other

words, over two-thirds of the TPRs (72%; 110 out of 153)

reported recurrences. When one considers that a single TPR

may list a rapid succession of failures, which are likely to be

caused by the same fault, the actual percentage of recurrences

may be higher.

Recurrences are not unique to Tandem systems. Similar

cases have been reported in IBM [25] and AT&T systems

[26]. In environments where many users run (different versions

of) the same software, the number of identified faults is not the

only factor determining software dependability. Recurrences

can seriously degrade so t_ware dependability in the field. In

[25], a preventive software service policy that takes both the

number of recurrences and the service cost into account was

discussed. An approach for automatically diagnosing recur-

rences based on symptoms was proposed in [27]. The issue of

recurrence is discussed further in Section VI.

V. SOFTWARE FAULT TOLERANCE

DUE TO PROCESS PAIRS

In [13], [19], it was observe.d that process pairs allow the

Tandem GUARDIAN system to tolerate certain software

faults. That is, in many cases of processor halts due to software

faults, the backup of a failed primary can continue the execu-

tion. This observation is rather counterintuitive, because the

primary and backup run the same copy of the software. The

phenomenon is explained by the existence of subtle software

faults that are not exercised again on a restart of the failed

software. Usually, field software faults not identified during

the testing phase are subtle and require very specific condi-

tions to be triggered. Since the process pair technique was not

explicitly intended for tolerating software faults, study of field

data is essential for understanding this phenomenon and for

measuring its effectiveness.

This section investigates the user-perceived ability of the

Tandem system to tolerate faults in its system software [24].

The software faults considered here are major defects that re-

sult in processor failures. Although process pairs are specific

to Tandem systems, they are an implementation of the general

approach of checkpointing and restart. This evaluation is im-

portant because it suggests that these may be low-cost tech-

niques for achieving software fault tolerance in large, con-

tinually evolving software systems. Attempts were recently

made in [28], [29] to take advantage of the subtle nature of

some software faults to enhance software fault tolerance in

user applications.

A. Measure of Software Fault Tolerance

Table II shows the severity of the measured software fail-

ures. In this table, a single processor halt implies that the built-

in single-failure tolei'ance of the system masked the software

fault that caused the halt. All multiple processor halts were

grouped because, given the Tandem architecture, a double

processor halt can potentially cause additional processor halts.

For example, if the system loses a set of disks as a result of a

double processor halt and the set of disks contains files re:

quired by other processors, additional processor halts can oc-

cur. There was one case in which a software failure occurred in

the middle of a system reboot. Since each TPR reports just one

problem, sometimes two TPRs were generated as a result of a

multiple processor halt. There were five such cases. Thus, the

179 TPRs reported 174 software failures.

LEE AND IYER: SOFTWARE DEPENDABILITY IN THE TANDEM GUARDIAN SYSTEM 459

TABLE II

SEVERITY OF SOF_ARE FAILURES

Severity

Single processorhalt

Multipleprocessor halt

Haltoccurring duringsystem reboot

Unableto classify
All

I # Failures

138

31

1

4

174

FurtherCharacterized in

Table HI

TableIV

In this evaluation, the term software fault tolerance (SFT)

refers to the system's ability to tolerate software faults. Quanti-

tatively, it is defined as

SFT = numberofsofb,varefailuresinwhichasingleproccssorishalted (1)
totalnumberofsoRwarefailures

SFT represents the user-perceived ability of the system to tol-

erate faults in its system software due to the use of process

pairs. Table II shows that process pairs provide a significant

level of soRware fault tolerance in the Tandem GUARDIAN

environment. The measure of software fault tolerance is esti-

mated to be 82% (.138 out of 169, excluding the five special

cases). I

B. Outages Due to Software

This evaluation first focused on the multiple processor halts.

For each multiple processor halt, we investigated the first two

processor halts to determine whether the second halt occurred

on the processor executing the backup of the failed primary

process. In these cases, we also investigated whether the two

processors halted because of the same software fault.

TABLE Ill

REASONS FOR MULTIPLE PROCESSOR HALTS

Reasons for Multiple Processor Halts

The second halt occurs on the processor executing the

backup of the failed primary.

The second halt occurs due to the same fault that halted

the primary.

The second halt occurs due to another fault during job

takeover.

Unableto classify.

The second haltis not related to processpairs.

Thesystem hangs.

Faulty parallelsoRwareexecutes.

There is a randomcoincidence of two independent
faults.

A single processor halt occurs,but system coldload is

necessaryforrecovery.

Unabletoclassify.

All

Failures

24

(17)

(4)

O)

(1)

(l)

(1)

(1)

3

31

The level of software fault tolerance achieved with process

pairs is high, but not perfect: a single fault'in the system soft-

ware can manifest itself as a multiple processor halt, which the

i This measure is based on reported soRware failures. The issue of underre-

porting was discussed in [13]. The consensus among experienced Tandem

engineers is that about 80% of software failures are not reported as TPRs and

that most of them are single processor halts. If that assessment is true, then

the softwarefault tolerance may be as high as 96%.

system is not designed to tolerate. Table III shows that in 86%

of the multiple processor halts (24 out of 28, excluding

"Unable to classify" cases), the backup of the failed primary

process was unable to continue the execution. In 81% of these

halts (17 out of 2 I, excluding "Unable to classify" cases), the

backup failed because of the same fault that caused the failure

of the primary. In the remaining 19% of the halts, the proces-

sor executing the backup of the failed primary halted because

of another fault during job takeover. About half Of the multiple

processor halts resulted in system coldloads. (A system cold-

load is a situation in which all processors in a system are re-

loaded.) The data showed that, in most situations, the system

lost a set of disks that contained flies required by other proces-

sors as a result of the first two processor halts, and other proc-

essors also halted. This sequence is the major failure mode of

the system resulting from software faults.

C. Characterization of Software Fault Tolerance

The information in Table II raises the question of why the

Tandem system lost only one processor in 82% of soft-ware

failures and, as a result, tolerated the soRware faults that

caused these failures. We identified the reasons for software

fault tolerance (SFT) in all single processor halts (138 in-

stances; refer to Table II) and classified them into several

groups. Table IV shows that in 29% of single processor halts

(40 out of 138), the fault that caused a failure of a primary

process was not exercised again when the backup reexecuted

the same task after a takeover. These situations occurred be-

cause some software faults are exposed in a specific memory

state (e.g., running out of buffer), on the occurrence of a single

event or a sequence of asynchronous events during a vulner-

able time window (timing), by race conditions or concurrent

operations among multiple processes, or on the occurrence of a

hardware error.

TABLE IV

REASONS FOR SOFTWARE FAULT TOLERANCE

Reasons for Software Fault Tolerance

The backup reexecutes the failed task after takeover,

but the fault that caused a failure oftbe primary is not

exercised by the backup.

Memorystate

Timing

Race orconcurrency

Hardwareerror

Others

Fraction (%)

29

(4)

(7)

(6)

(4)

(7)

The backup, aRer takeover, does not automatically

reexecote the failed task.

It is the effect of error latency.

A fault stops a processor runninl[a backup.

The cause of a problem is unidentified.

Unable to classify.

2O

16

19

12

Fig. 4 shows a real example of a fault that is exercised in a

specific memory state. The primary of an I/O process pair,

which is represented by SlOP(P) in the figure, requested a

buffer to serve a user request. Because of the high activity in

the processor executing the primary, the buffer was not avail-

460 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 5, MAY 1995

able. However, because of a software fault, the buffer man-

agement routine returned a "successful" flag, instead of an

"unsuccessful" flag. The primary used the returned, uninitial-

ized buffer pointer, and a halt occurred in the processor run-

ning the primary because of an illegal address reference by a

privileged process. Clearly, such a situation was not tested

during the development phase. Since a memory dump is usu-

ally taken only from a halted processor in a production system,

a memory dump of the processor running the backup was not

available. Our best guess is that the backup process served the

request again after takeover but did not have a problem, be-

cause a buffer was available on the processor running the

backup.

C_A QDUB

SlOt_B) Buffa

Fig. 4. Differences between the primary and backup executions.

Table IV also shows that, in 20% of single processor halts

(28 out of 138), the backup of a failed primary process did not

have to serve the failed request after a successful takeover.

This happened because some faults are exposed while serving

requests that are important but are not automatically resubmit-

ted to the backup upon a failure of the primary. Fig. 5 illus-

trates an example of such a situation. In the figure, process PK

is an execution of a utility to monitor processor activity for

memory usage, message information, and paging activity.

Process PK does not run as a process pair because, if the proc-

essor being monitored halts while executing PK, there is no

need to monitor the halted processor any longer. Process MS

collects resource usage data, and process TM is in charge of

concurrency control and failure recovery. Both MS and TM

run as process pairs.

When the operator ran PK with a certain option that is not

frequently used, PK used an incorrect constant to initialize its

data structure. As a result, it overwrote (cleared) the page ad-

dresses of the first segment in the segment page table. The fu'st

segment is always owned by MS, and MS was running on the

processor. When MS stored resource usage data, it used incor-

rect addresses (addresses of zero) and corrupted the system

global data. A processor halt occurred as a result of an address

violation when TM accessed and used the address of a system

data table. When the backups of the failed primaries took over,

they did not have problems, because PK was running only on

the halted processor.

Another example is the faults that cause processor failures

during the execution of the operator requests for reconfiguring

I/O units. An I/O unit is a device or program by which an end-

user (a terminal operator, an application program, or an I/0

mechanism) gains access to the system. Utilities to perform

these reeonfigurations run as process pairs, but the operator

command to add, activate, or abort an I/O unit is not automati-

cally resubmitted to the backup, because it is an interactive

task that can easily be resubmitted by the operator if the pri-

mary fails. Suppose that an operator's request to add an I/O

unit caused a failure of the primary. In this situation, the opera-

tor would typically recover the halted processor, rather than

submit the same request to the backup. If the operator wants to

repeat the same request, he or she would normally repeat it on

the primary after the halted processor is reloaded. If the opera-

tor submits the request to the backup instantly upon a failure of

the primary, one of two situations can be expected: the backup

also fails, or the backup serves the request without any prob-

lem due to the factors in Table IV.

In the above examples, the task (i.e., process PK or a com-

mand to add an I/O unit) does not survive the failure. But

process pairs allow the other applications on the halted proces-

sor to continue to run. This situation is not strictly SFT but a

side benefit of using process pairs. If these failures are ex-

cluded, the estimated measure of SFT is adjusted to 78% (110

out of 141).

cPo A

Ruea'v_l l_D'ietl
S_,n_ntt Men_3,

2/i/
I/

r,o

j,

s_r _16

i

oO°°° ®
Fig. 5. Faul_¢xposedbynon-proeess pain.

Another reason for the SFT is that some software faults

cause errors that are detected after the task that caused the

errors finishes successfully (effect of error latency). Fig. 6

shows an example. The figure shows a data transfer between

two primary I/O processes: SIOP(P) and XIOP(P). The under-

lying software fault was an extra line in the SlOP soRware that

caused SlOP(P) to transfer one more byte than was necessary.

This fault did not always cause a problem, because the size of

a buffer is usually bigger than the size of a message. When a

message and a buffer had equal sizes, the first byte in the end

tag of the buffer was overwritten. This corruption did not af-

fect the data transfer, because tags are not a part of data area

(The tags are used to check the integrity of a data structure, bu'

for performance reasons, they are not checked after every dat_

transfer.) The data transfer was successfully completed ant

cheekpointed to the backup. The corrupted buffer tag was no

a part of the checkpoint information. The corruption in the en(

tag was found later, when SIOP(P) returned the buffer to tht

LEE AND IYER: SOFTWARE DEPENDABILITY IN THE TANDEM GUARDIAN SYSTEM 461

buffer manager. The buffer manager checked the integrity of

the begin and end tags, found a corruption, and asserted a halt

of the processor it runs on ("CPU A" in Fig. 6). The backups

of the failed primaries would take over, but they would not

have problems because the data transfer that caused the error

was already completed successfully. The difference between

this case and the first group of cases listed in Table IV is that

the task that caused the failure of the primary did not have to

be executed again in the backup.

CPUA

SlO_

)
Dtta Tnu_

Fig. 6. Effect of error latency.

Table IV also shows that 16% of single processor halts (22

out of 138) were failures of backup processes. This result indi-

cates that the SFT did not come without a cost; the added

complexity due to the implementation of process pairs intro-

duced software faults into the system software. The estimated

measure of SFT (78%) can be adjusted again to 74% (88 out

of 119) when these failures are excluded. All unidentified fail-

ures were single processor halts. This is understandable, be-

cause these failures were caused by subtle faults that are diffi-

cult to observe and diagnose. The reason that an unidentified

failure caused a single processor halt is unknown. Based on

their symptoms, we speculate that a significant number of uni-

dentified failures were single processor halts because of the

effect of error latency.

D. Discussion

The results in this section have several implications. First,

the results show that hardware fault tolerance buys SFT. The

use of process pairs in Tandem systems, which was originally

intended for tolerating hardware faults, allows the system to

tolerate about 75% of reported field faults in the system sot_-

ware that cause processor failures. Subtle faults exist in all

software, but SFT is not achieved if the backup execution is a

replication of the original execution. The loose coupling be-

tween processors, which results in the backup execution (the

processor state and the sequence of events occurring) being

different from the original execution, is a major reason for the

measured SFT. Each processor in a Tandem system has an

independent processing environment; therefore, the system

naturally provides such differences. (The advantages of using

checkpointing, as compared with lock-step operation, in tel-

crating software faults were discussed in [19].) The level of

SFT achieved by the use of process pairs will depend on the

proportion of subtle faults in software. While process pairs

may not provide perfect SFT, the implementation of process

pairs is not as prohibitively expensive as is developing and

maintaining multiple versions of large software programs.

Second, the results indicate that process pairs can some-

times allow the system to avoid multiple processor halts due to

software faults, regardless of the nature of the faults, because

sottware failures can occur while the system executes impor-

tant tasks that are not automatically resubmitted to the backup

on a failure of the primary. In such a case, the failed task does

not survive, but the other applications on the failed processor

do.

Third, short error latency with error confinement within a

transaction is desirable [30]. In actual designs, such a strict

error confinement might be rather difficult to achieve. Errors

generated during the execution of a transaction may be de-

tected during the execution of another transaction. Interest-

ingly, long error latency and error propagation across transac-

tions sometimes help the system to tolerate software faults.

This result should not be interpreted to suggest that long error

latency or error propagation across transactions is a desirable

characteristic. It is a side effect of the system having subtle

soRware faults. Long error latency and error propagation

across transactions can make both on-line recovery and off-

line diagnosis difficult.

Finally, an interesting question is: If process pairs are good,

are process triples better? Our results show that process triples

may not necessarily be better, because the faults that cause

double processor halts with process pairs may cause triple

processor halts with process triples.

E. First Occurrences vs. Recurrences

Table V compares the severity of the three types of software

failures using the 174 software failures discussed in this sec-

tion. There were two special cases ("Others") in the table: a

multiple processor halt due to a parallel execution of faulty

code (a system coldload was not required) and a software fail-

ure during a system reboot. With only a single observation in

each case, the significance of these situations was unclear, and

they were not considered in the subsequent analysis. "Severity

Unclear" cases were also not considered further.

TABLE V

SEVERITY OF SOFTWARE FAILURES BY FAILURE TYPE

]#Failure #Double #System [#Severity [#OthersInstances CPU Halts Coldloads Unclear

First 41 9 6 1 1

occurrence

Recurrence 107 19 12 3 1

Unidentified 26 0 0 0 0

TableV indicates that a recurrence is slightly less likely than

a first occurrence to cause a double processor halt. The bino-

mial test was used to test this observation, because it does not

require an assumption about the underlying distribution to

construct a confidence interval [31]. Each failure was treated

462 IEEETRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 5, MAY 1995

as a random trial with the probability of a double processor

halt being 0.23 (nine out of 39,'following the statistics for the

first occurrence). The hypothesis that the probability of a re-

currence causing a double processor halt is equal to that of a

first occurrence causing a double processor halt was tested by

calculating the probability of having 19 or fewer double proc-

essor halts out of I03 trials. The p-value was 0.16; that is, the

hypothesis was rejected at the 20% significance level.

Two of the six system coldloads due to first occurrences

were single processor halt situations. These two failures cap-

ture the secondary failure mode of the system due to sottware,

wherein a system is coldloaded to recover from a severe, sin-

gle processor halt.

VI. RELIABILITY MODELING

OF OPERATIONAL SO--ARE

Software reliability models attempt to estimate the reliabil-

ity of software. Many models have been proposed [1], [2], [3].

These models typically attempt to relate the history of fault

identification during the development phase, verification ef-

forts, and operational profile. The primary focus is on the

software development phase, and the underlying assumptions

are that software is an independent entity and that each soft-

ware fault has the same impact.

The results from the previous sections indicated that other

factors significantly impact the dependability of operational

software. First, software faults can be highly visible or less

visible. A single, highly visible software fault can cause many

field failures, and recurrences can seriously degrade software

dependability in the field. Second, for a class of software such

as the GUARDIAN operating system, the fault tolerance of the

overall system can significantly improve sottware dependabil-

ity by making the effects of software faults invisible to users.

Clearly, dependability issues for operational software in gen-

eral can be quite different from those for the software in the

development phase. Discussion of software reliability in the

system context was provided in [32]. An approximate model to

account for failures due to design faults was used to evaluate

the dependability of operational software in [33]. The use of

information on system usage (i.e., installation trail) to predict

software reliability and to determine test strategy was dis-

cussed in [34].

This section asks the question: Which factors determine the

dependability of the measured operating system? Using the

software failure and recovery characteristics identified in the

previous sections, this section builds a model to describe the

impact of faults in the GUARDIAN operating system on the

reliability of an overall Tandem system. Based on the model,

the section conducts a sensitivity analysis to evaluate the sig-

nificance of the factors considered and to identify areas for

improvement.

A. Model Construction

We considered a hypothetical eight-processor Tandem sys-

tem whose software reliability characteristics are described by

the parameters in Table VI. In this analysis, the term software

reliability means the reliability of an overall system whtn only

the faults in the system software that cause processor failures

are considered. A system failure was defined to occur when

more than half the processors in the system failed. All parame-

ters in the table except _, and g were estimated based on the

measured data (Sections IV and V). The values of _ and #

were determined to mimic the 30 years of software mean time

between failure (MTBF) and the mean time to repair (MTTR)

characteristics reported in [13]. Thus, the objectives of the

analysis were to model and evaluate reliability sensitivity to

various factors, not to estimate the absolute software

reliability.

TABLE VI

ESTIMATED SOFTWARE RELIABILITY PARAMETEIL$

Failures:

First Recurrence Unidentified

Occurrence

Failure rate _/= 0.24 ;t _ =0.61 _, _ =0.15 ;t

Prob(double CPU C,¢= 0.23 Ca, =0.18 Ca_ =0.0

haltlsoRware failure)

Prob(system failure[Ca/= 0.44 C_a, -- 0.63 C._ = 0.0

double CPU halt)

Prob(system failurel C,,/= 0.05 C,,, = 0.0 C_ = 0.0

single CPU halt)

Failures:

SoRware failure rate = X = 0.32/year

Recovery:

Recovery _te ffi/a = 3/hour

In Table VI, "Prob(double CPU haltlsot_are failure)" is the

probability that a double processor halt (i.e., a failure of a

process pair) occurs given that a software failure occurs.

Similarly, "Prob(system failure[double CPU halt)" is the prob-

ability that a system failure occurs given that a double proces-

sor halt occurs. These two parameters were used to describe

the major failure mode of the system because of software. The

parameter "Prob(system failure[single CPU halt)" represents

the secondary failure mode, which captures single processor

halts severe enough to cause system coldloads. The table

shows these probabilities for first occurrences, recurrences,

and unidentified failures.

Based on the parameters in Table VI and on the following

assumption, we built a continuous-time Markov model to de-

scribe the software failure and recovery in a hypothetical

eight-processor Tandem system in the field.

ASSUMPTION I. The time between software failures in the sys-

tem has an exponential distribution, and the three types oy

failures (first occurrence, recurrence, and unidentified) art

randomly mixed

This assumption was necessary, because determining tht

above characteristics for a single system would require ;

minimum of a few hundred years of measurements. The as

sumption could not be validated using the measured data, be

cause the measured data was collected from a large number c

user systems running different versions of the operating syster

and having different operational environments and syster

configurations. Given this situation, the assumption seeme

reasonable.

LEE AND IYER: SOFTWARE DEPENDABILITY IN THE TANDEM GUARDIAN SYSTEM 463

Fig. 7 shows the.Markov model. In the model, Sj, i = 0 4

represents that i processors are halted because of soRware

faults. A system failure is represented by the Saow, state. To

evaluate soRware reliability, no recovery from a system failure

was assumed. That is, the system failure state is an absorption

state. The RI state represents an intermediate state in which the

system tries to recover from an additional software failure (/th

processor halt) using process pairs.

/

Fig. 7. SoRwarc reliability model.

If a software failure occurs during the normal system opera-

tion (i.e., when the system is in the So state), the system enters

the Rt state. If the failure is severe enough to cause a system

coldload, a system failure occurs; otherwise, the system at-

tempts to recover from the failure by using backups. If recov-

ery is successful, the system enters the St state; otherwise, a

double processor halt occurs. If the two halted processors

control key system resources (such as a set of disks) that are

essential for system operation, the rest of the processors in the

system also halt and a system failure occurs; otherwise, the

system enters the Sz state and continues to operate. The value

of r, the transition rate out of an Ri, is small and has virtually

no impact on software reliability; a value of one transition per

minute was used in the analysis. Since the system stays in an R_

state for a short time, additional failures occurring in an R_

state were ignored; in fact, these failures were implied in the

failure rate (2) in the corresponding Sj and Se, t states. Given

the model in Fig. 7, soRware reliability of the system can be

estimated by calculating the distribution of time for the system

to be absorbed to the Sao_, state, starting from the So state.

In Fig. 7, the three coverage parameters Cd, C,a, and C=

were calculated from Table Vh

Cd = Prob.(doubleCPU haltlsoftwarefailure)

2 fCd/ + ArCdr+ AuCdu (2)

Af+Ar+A u

Csd = Prob.(system failureldouble CPU halt)

A C C +A C C +A C C
= f df sdf r dr sdr u du sdu (3)

/%fCdf+XrCdr +/q,uCdu '

and

Css = Prob.(system failurelsingleCPU halt)

-. 2 fCss f + ArCss r + Au Cssu (4)

Xf + _'r + Au

The parameter Ca includes the two cases explained in Sec-

tion V: the failure of a process pair caused by a single soRware

fault and the failure of a process pair caused by two software

faults (the second halt occurs during job takeover). The pa-

rameter C,d represents the probability thatthe system loses key

system resources as a result of a double processor halt. The

parameter C•a is determined primarily by the system configu-

ration and is discussed further in Section VI.D. The above

three parameters can actually be obtained directly from Table

V in Section V.E. Equations (2), (3), and (4) will be used to

investigate the impact of recurrences (2) on soRware reliabil-

ity in Section VI.B.

The model (Fig. 7) includes the effect of multiple independ-

ent software failures. For example, if a software failure occurs

when the system is in the S_ state (i _ 0), the following three

system failure scenarios must be considered (Fig. 8):

1) The system fails regardless of whether the new failure

causes a single or double processor halt. This is because

when the first processor halts because of the new failure,

key system resources (such as a set of disks) become in-

accessible.

2) The system fails because the new failure is severe and

can only be recovered by a system coldload.

3) The new soRware failure causes a double processor halt,

and the second processor halt causes a set of disks to be-

come inaccessible.

I Ancw softw_ faiha'c_iatelyrmflt_ key re.sourc_minar._'cc_iblc?

IThe _w failureism=vcx_ *ad earnotalybc t"_ow:red by • syst_n eoldlo_17

System Fail_c

Sys_'m F_Itre

©
The new mttwa_s fmihm._ _ No

• Syslem in Stale Si+ 1
• double CPU hilt'/

TI_ _kJitlomtl _cm_i CPU ludt No G

-_ Sys_ra m Sine _÷2
makes key _ in_ible?

, ®
' System Failua'_

Fig. 8. Effect of multiple independent software failures.

It was not possible to directly measure the branching prob-

abilities in Fig. 8 for each state from the data, because the

major failure mode (i.e., a software failure occurred when the

system is in the So state, causing a double processor halt and

subsequently causing a system failure) was dominant. These

probabilities were estimated using the three measured parame-

ters: Ca, C,a, and C_,. Table VII shows the branching prob-

abilities in Fig. 8 estimated for each S, (i ¢ 0) state. For exam-

464 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 5, MAY 1995

TABLE VII

PARAMETERS FOR MULTIPLE INDEPENDENT SOFTWARE FAILURES

] i = 1 (i.e., system in $1)

PathA C._#

PathB (I C_#)Cu

PathC (I C._)(I Cu)(l Ca)

PathD (l C_#)(I Cu)C#(I C._)2

PathE (I C,#)(I C_)C¢(I (I C_t)2)

1=2 i=3 i=4

I (I Csl) 2' I (I C_) 3 l

(I C_)2C_, (I C,#)3C= -

(I C_)2(I C_)(l Ca) (I C_)3(I C._)(l Ca) -

(I C_)2(I C_)Ca(l C_d)3 -

(I C_)2(I C,,)Cd(l (I C,_)3) (l C,#)3(l C,,)C#

pie, given that an additional soRware failure causes a double

processor halt when the system is in the S_ state, the probabil-

it), that the third processor halt does not cause a system failure

(path D in Fig. 8) is (1 C,d) 2. This is because the probability

that the third processor halted and either of the two processors

that were already halted control key system resources (i.e.,

cause a system failure) is Csa. The branching probabilities in

Table VII were used to determine the corresponding transition

rates in the model (Fig. 7).

The same recovery rate was used regardless of the number

of processors halted. This was because the recovery time is

typically determined by the time required to perform a quick

diagnosis and take a memory dump, which is done for one

processor at a time. Previous studies assumed that the failure

rate is proportional to the number of processors up and work-

ing [35]. The same software failure rate was assumed in all

states, considering that, as more processors halt, the remaining

processors will receive more su'ess. Again, the dominance of

the major system failure mode did not allow us to estimate the

parameters from the data.

The distribution of time for the system to be absorbed to the

system failure state, starting from the normal state, was evalu-

ated using the model in Fig. 7. SHARPE [36] was used for the

evaluation. Fig. 9 shows the software reliability curve of the

modeled system and confirms the assumed software MTBF of

30 years.The figure representsthe reliability of an overall

Tandem system inthefieldwhen onlythe faultsinthe system

softwarethatcausedprocessorfailureswere considered.

Reliability

1

0.8 --

0.6

I
0.4.- : =

I

0.2

o
I I i I

o 20 40 6O

Fig. 9. System reliability due to software.

Ye_(s)

8o IOO

B. Reliability Sensitivity Analysis

Table VIII shows the six factors considered in the analysis.

The second column of the table shows activities related to

these factors, and the third column shows the model parame-

ters affected by the factors. For example, a 10% reduction in

the recurrence rate (g,), which can be achieved by improving

the software service environment, will reduce 3. by 6.1%

(Table VI) and change Ca, Cse, and Cs, accordingly. Refer to

Equations (2), (3), and (4).

The coverage parameters Ca and C,a are determined primar-

ily by the robustness of process pairs and the system configu-

ration, respectively. For example, Ca can be reduced by con-

duct/ng extra testing of the routines related to job takeover.

The parameter C_a is determined by the location of failed proc-

ess pairs and the disk subsystem configuration. This parameter

is discussed further in Section VI.D. Analytical models for

predicting coverage in a fault-tolerant system and the sensitiv-

ity of system reliability/availability to the coverage parameter

were discussed in [37]. The recovery rate/.t can be improved

by automating the data collection and reintegration process.

TABLE VIII

FACTORS OF SOFTWARE RELIABILITY

Factor

S'oflwam fa/lum rate

Recurrence rate

Coverage parameter C#

Coverage parameter Cu

Coverage parameter.C,,,

Recovery t/me

.[[Activity

Software development

Software service

Robusmcss of process

)a/re

System configuration

Diagnosability/

maintainability

Related Parameters

Detailed] Overall

Ca/,Ca,,C_

C,_ C,#r, Cs_u

C,,/, C,,,, C,_

/a

Csd

c,,

g

Fig. 10 shows the software MTBF evaluated using the

model in Fig. 7 while varying the six factors in Table VIII, one

at a time. It is interesting to see that Ca and C_a are almost as

important as 2 in determining the software MTBF. For exam-

ple, a 20% reduction in Ca or Csa has as much impact on soft-

ware MTBF as an 18% reduction in 3.. (The figure shows that

the impact is approximately a 20% increase in software

MTBF.) This result is understandable because the system fails

primarily because of a double processor halt causing a set of

disks to become inaccessible, not because of multiple inde-

pendent software failures.

Fig. 10 also shows that the recurrence rate has a significant

impact on software reliability. A complete elimination of re-

currences (2, = 0 in Table VI) would increase the software

MTBF by a factor of three. The impact of C_ on soRware reli-

ability is small, because severe, single processor halts causing

system coldloads are rare. The impact of# on soRware MTBF

is virtually nil. In other words, recovery rate is not a factor as

far as software reliability is concerned, again, because the

system is unlikely to fail because of multiple independent

soRware failures.

LEE AND IYER: SOFTWARE DEPENDABILITY IN THE TANDEM GUARDIAN SYSTEM 465

M'/'BFw 2

r/'BFe" ! .8 -

1.6-

1.4-

1.2-

1

II I I I

0.6 0.7 0.8 0.9

FaC/_" w

Fac/_"mvm f

0.5 I 1.1

Fig. 10. SoRwareMTBFsensitivity.

Typically, it is assumed that the number of faults in software

is the only major factor determining software reliability.

Fig. 10 clearly shows that in the Tandem system, there are four

degrees of freedom in improving the sott'ware reliability: the

number of faults in software, the recurrence rate, the robust-

ness of process pairs, and the system configuration strategy.

The first two are general factors, and the last two are platform-

dependent factors. Efforts to improve software reliability can

be optimized by estimating the cost of improving each of these

four factors.

C. Reliability Sensitivity to Fault Category

This section investigates the impact of software faults in dif-

ferent fault categories (Table I in Section IV) on sottware reli-

ability. In this section, a failure group is deemed as the group

of software failures caused by all faults that belong to a fault

category. We estimated the sottware MTBF by assuming that

each failure group is empty, i.e., the faults in a fault category

did not cause software failures. The failure rate and the cover-

age parameters for the model in Fig. 7 were adjusted:

2=

(5)
total no. ofsottware failures- no. of software failures in a failure group ;t,

total no.ofsoRware failures

total no. of double CPU halts- no. o f double CPU halts in a failure group (6)

total no. ofsottware failures- no. ofsoRware failures in a failure group

C_d= (7)
total no. of system failures - no. of system failures in a failure group

total no. of double CPU halts - no. of double CPU halts in a failure group'

and

c,,=

total no. of severe, single CPU halts - no. of severe, single CPU halts in a failure group
(8)

total no. of software failures - no. of software failures in • failure group

In Equation (7), only those system failures caused by double

3rocessor halts (i.e., failures of process pairs) were counted.

Table IX shows the results. The last column of the table

_hows the improvement in software MTBF when failures

=aused by each fault category were eliminated. Only those

:ategories that have more than 10 failures were considered.

['he table shows that "Missing operation" caused the greatest

eliability loss. Further analysis showed that uninitialized

3ointers (Table I in Section IV) were responsible for more

han half of the loss caused by this group of failures. The table

also shows that "Unexpected situation" was another significant

source of reliability loss. Most of this loss is attributed to faults

such as incorrect parameters passed by user processes, illegal

procedure calls made by user processes, and not considering

all legitimate operational scenarios in designing software. (The

reliability loss is not attributed to subtle faults, such as race

conditions and timing problems.) Additional code inspection

and testing efforts can be directed to these fault categories.

Unidentified failures had virtually no impact on software reli-

ability, because all of these failures caused single processor

halts.

TABLEIX
RELIABILITY SENSITIVITY TO FAULT CATEGORY

Fault Category

Incorrect computation

Data fault

Data definition fault

Missing operation

Side effect of code update

Unexpected situation
Microcode defect

Others

Unidentified

Unable to classify

#Failures

3

21

7

27

5

46

8

12

26

24

1.00

1.47

1.35

1.06

1.00

1.12

D. Impact of System Configuration

on Software Dependability

System configuration is an issue that demonstrates the im-

portance of considering the interactions between hardware,

software, and operations. Table X shows a breakdown of the

process pairs whose failures caused the 18 observed system

failures, based on their configurability. In the table, a

"Location-free" process pair is a pair that can be placed on any

two processors in the system, independent of hardware con-

figuration. The location of a nondisk or disk I/O process pair is

determined by hardware configuration. The failure of a non-

disk I/O or location-free process pair causes a system failure,

because the process pair executes on the two processors that

execute a disk process pair. Thus, a double processor halt re-

sulting from a failure of such a nondisk I/O or location-free

process pair would cause a set of disks to become inaccessible.

TABLE X

CONFIGURAB1L1TY OF FAILED PROCESS PAIRS

THAT CAUSED SYSTEM FAILURES

Failed Process Pair #System Failures

Location-free process pair 7

Nondisk I/O process pair 5

Disk I/(3 process pair 2

Others 4

Table X shows that the number of system failures could po-

tentially be reduced by 67% (12 out of 18) by avoiding the

overlap in location between disk process pairs and the failed

nondisk I/O or location-free process pairs. This result demon-

strates the importance of considering software dependability in

the context of an overall system.

466 IEEETRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 21. NO. 5, MAY 1995

VII. CONCLUSIONS

Based on field failure data collected from the Tandem

GUARDIAN operating system, this paper discussed evaluation

of the dependability of operational software. The software

faults considered are major defects that result in processor

failures and invoke backup processes to take over. The paper

categorized the underlying causes of software failures, dis-

cussed the significance of failure recurrence, and evaluated the

effectiveness of the process pair technique in tolerating soft-

ware faults. The paper built a model to describe the impact of

faults in the GUARDIAN operating system on the reliability of

an overall Tandem system. The model was used to evaluate the

significance of key factors that determine software depend-

ability and to identify areas for improvement.

An analysis of the data showed that about 77% of processor

failures that are initially considered due to software are con-

fLrmed as software problems, 13% of them are probably soft-

ware problems, and the rest are confirmed as non-software

problems. The analysis showed that hardware fault tolerance

buys SFT. Using process pairs in Tandem systems, which was

origin.ally intended for tolerating hardware faults, allows the

system to tolerate about 75% of reported software faults that

result in processor failures. The loose coupling between proc-

essors, which results in the backup execution (the processor

state and the sequence of events) being different from the

original execution, is a major reason for the measured SFT.

This shows that the checkpointing and restart technique can be

used as a low-cost SFT strategy. The results indicated that the

actual level of SFT achieved by the use of process pairs de-

pends on the degree of difference in the processing environ-

ment between the original and backup executions and on the

proportion of subtle faults in the software.

Over two-thirds (72%) of reported software failures in Tan-

dem systems are recurrences of previously reported faults. The

modeling, based on the data, showed that, in addition to reduc-

ing the number of software faults, software dependability in

Tandem systems can be enhanced by reducing the recurrence

rate and by improving the robustness of process pairs and the

system configuration. Omission of lines of source code and not

providing routines to handle rare but legitimate operational

scenarios are the most common types of software faults in the

GUARDIAN operating system. These types of faults are also

the major causes of software reliability loss. The investigation

of the impact of system configuration on software dependabil-

ity demonstrated the importance of considering software de-

pendability in the context of an overall system.

It is suggested that more measurements and analyses be

conducted in the manner proposed here so that a wide range of

information on the dependability of operational software is

available.

ACKNOWLEDGMENTS

We thank Tandem Computers Incorporated for their assis-

tance in conducting this study. Many Tandem engineers pro-

vided technical help throughout the study. Special thanks are

due to Gil Pitt and Bob Horst for their support and helpful

suggestions, to Alan Wood and Randy McRee for their useful

comments, and to Max Dietrich, Harish Joshi, Gary Smith,

David Wong, and Leon Zar for their help in understanding the

data. Thanks are also due to Fran Wagner for proofreading the

manuscript.

REFERENCES

[1] C. V. Ramamoothy and 17. B. Bastani, "Software reliability--status and

perspectives," IEEE Trans. on Software Engineering, vol. 8, no. 4, pp.

354--371, July 1982.

[2] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability: Meas-

ureraent, Prediction, Application. New York, N.Y.: McGraw-Hill Book

Company, 1987.

[3] S. Yamada, M. Ohba, and S. Osaki, "S-shaped software reliability

growth models and their applications," IEEE Trans. on Reliability, vol.

33, no. 4, pp. 289--292, Oct. 1984.

[4] A. Endres, "An analysis of errors and their causes in system programs,"

IEEETrans. on Software Engineering, vol. I, no. 2, pp. 140-.149, June

1975.

[5] T. A. 3"hayer, M. Lipow, and E. C. Nelson, Software Reliability. New

York, N.Y.: Elsevier North-Holland Publishing Company, Inc., 1978.

[6] D. M. Weiss, "Evaluating software development by error analysis: The

data from the architecture research facility," J. System and Software,

vol. 1, pp. 57-70, Mar. 1979.

[7] V. R. Basili and B. 3". Perrieone, "Software errors and complexity: An

empirical investigation," Comm. of the ACM, vol. 22, no. 1, pp. 42-52,

Jan. 1984.

[8] R. Chillarege, L S. Bhandari, J. K. Chant, M. J. Halliday, D. S. Moebus,

B. IC Ray, and M.-Y. Wong, "Orthogonal defect classifieation--a con-

cept for in-process measurements," IEEE Trans. on Software Engineer-

ing, vol. 18, no. I1, pp. 943-956, Nov. 1992.

[9] X. Castillo and D. P. Siewiorek, "A comparable hardwawdsoftware

reliability m_lel," Ph.D. dissertation, Carnegie-Mellon University,

Pittsburgh, Pa., July 1981.

[10] R. K. lyer and D. J. Rossetti, "Effect of system workload on operating

system reliability: A study on IBM 3081," IEEE Trans. on Software

Engineering, vol. 11, no. 12, pp. 1,438-1,448, Dec. 1985.

[11] M. C. Hsueh and R. IC lyer, "A measurement-based model of software

reliability in a production environment," Prec. 11th Ann. lnt'l Com-

puter Software & Applications Conf., Tokyo, Japan, Oct. 1987, pp.

354-360.

[12] M. S. Sullivan and R. Chillarege, "Software defects and their impact on

system availability---a study of field failures in operating systems,"

Prec. 21st lnt'l Syrup. on Fault-Tolerant Computing, Montreal, Canada,

June 1991, pp. 2-9.

[13] J. Gray, "A census of Tandem system availability between 1985 and

1990," IEEE Trans. on Reliability, vol. 39, no. 4, pp. 409-418, Oct.

1990.

[14] I. Lee, D. Tang, R. IC lyer, and M. C. Hsueh, "Measurement-based

evaluation of operating system fault tolerance," IEEE Trans. on Reli-

ability, vol. 42, no. 2, pp. 238--249, June 1993..

[15] A. Avizienis and L P. J. Kelly, "Fault tolerance by design diversity:

Concepts and experiments," IEEE Computer, pp. 67-80, Aug. 1984.

[16] B. Randeil, "System structure for software fault tolerance," IEEE Trans.

on Software Engineering, vol. l, no. 1, pp. 220-232, June 1975.

[17] J. Arlat, M. Agnera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E.

Martins, and D. PowelL "Fault injection for dependability validation: A

methodology and some applications," IEEE Trans. on Software Engi-

neering, vol. 16, no. 2, pp. 166-182, Feb. 1990.

[18] P. Velardi and R. K. Iyer, "A study of software failures and recovery in

the MVS operating system," IEEE Trans. on Computers, vol. 33, no. 6,

pp. 564-568, June 1984.

[19] J. Gray, "Why do computers stop and what can we do about it?" Tan-

dem Computers Inc., Cupertino, Calif., Tandem T_hnical Report 85.7,

June 1985.

..LEEAND IYER: SOFTWARE DEPENDABILITY IN THE TANDEM GUARDIAN SYSTEM 467

[20] J. Bartlett, W. Bartlett, R. Carr, D. Garcia, J. Gray, R. Hoist, R. Jar-

dine, D. Lenoski, and D. McGuire, "Fault tolerance in Tandem com-

puter systems," Tandem. ComPuters Inc., Cupertino, Calif., Tandem

Technical Report 90.5, May 1990.

[21] K.H. Kim and H. O. Welch, "Distributed execution of recovery blocks:

An approach for uniform treatment of hardware and software faults in

real-time applications," IEEE Trans. on Computers, vol. 38, no. 5, pp.

626-636, May 1989.

[22] J. H. Lala and L. S. Alger, "Hardware and software fault tolerance: A

unified architectural approach," Proc. 18th int'l Syrup. on Fault-

Tolerant Computing, Tokyo, Japan, June 1988, pp. 240-245.

[23] J.-C. Lapde, J. Arlat, C. Beounes, and K. Kanoun, "Definition and

analysis of hardware- and software-fault-tolerant architectures," IEEE

Computer, pp. 39-51, July 1990.

[24] I. Lee and R. K. Iyer, "Faults, symptoms, and software fault tolerance in

the Tandem GUARDIANg0 operating system," Proc. 23rd Int'l Syrup.

on Fault-Tolerant Computing, Toulouse, France, June 1993, pp. 20-29.

[25] E. N. Adams, "Optimizing preventive service of software products,"

IBM J. of Research and Development, voi. 28, no. 1, pp. 2-14, Jan.

1984.

[26] Y. Levendel, private communication.

[27] L Lee and R. K. Iyer, "Identifying software problems using symptoms,"

Proc. 24th Int'l Syrup. on Fault-Tolerant Computing, Austin, "rex., June

1994, pp. 320-329.

[28] Y. Huang and C. Kintala, "Software implemented fault tolerance: Tech-

nologies and experience," Proc. 23rd Int'l Syrup. on Fault-Tolerant

Computing, Toulouse, France, June 1993, pp. 2-9.

[29] Y. M. Wang, Y. Huang, and W. K. Puchs, "Progressive retry for soft-

ware error recovery in distributed systems," Proc. 23rd lntL Symposium

on Fault-Tolerant Computing, Toulouse, France, June 1993, pp. 138-

144.

[30] F. Cristian, "Exception handling and software fault tolerance," IEEE

Trans. on Computers, voL 31, no. 6, pp. 531-540, June 1982.

[31] R. V. Hogg and E. A. Tanis, Probability and Statistical Inference, third

edition. New York, N.Y.: Macmillan Publishing Co., inc., 1988.

[32] H. Hecht and M. Hecht, "Software reliability in the system context,"

IEEE Trans. on Software Engineering, vul. 12, no. I, pp. 51-58, Jan.

1986.

[33] J.-C. Lapde, "Dependability evaluation of software systems in opera-

tion," IEEE Trans. on Software Engineering, vol. I0, no. 6, pp. 701-

714, Nov. 1984.

[34] T. Stalhane, "Assessing software reliability in a changing environment,"

IFACSAFECOM, London, U.K., 1990, pp. 83-88.

[35] M. D. Beaudry, "Performance-relatedreliabilitymeasures for computing

systems,"IEEE Trans. on Computers, vol.27, no. 6, pp. 540-547, June

1978.

[36] R. A. Sahner and K. S. Trivedi,"Reliabilitymodeling using SHARPE,"

IEEETrans. on Relia.b.ility,vol.36, no_ 2,pp. 186-193, June 1987.

[37] J. B. Dugan and K. S. Trivedi,"Coverage modeling for dependability

analysisof fault-tolerantsystems," IEEE Trans. on Computers, vol.38,

no. 6,pp. 775-787, June 1989.

Inhwan Lee received his BS and MS degrees in

electrical engineering from Seoul National Uni-

versity, Korea, in 1979 and 1985, respectively, and

his PhD in electrical and computer engineering

from the University of Illinois at Urbana-

Champaign in 1994. From 1979 to 1986, he was a

research engineer at the Agency for Defense Devel-

opment in Korea. He is now with Tandem Comput-

ers Incorporated. His research interests include

fanlt-tolerant computing, performance and depend-

ability measurement and modeling, software engi-

neering, and computer architecture.

Ravishankar IL Iyer holds a joint appointment as

Professor of Electrical and Computer Engineering,

Computer Science, and the Coordinated Science

Laboratory at the University of Illinois at Urbana-

Champaign. He is also Co-Director of the Center for

Reliable and High-Performance Computing and the

Illinois Computing Laboratory for Aerospace Sys-

tems and Software, a NASA Center for Excellence

in Aerospace Computing. Professor Iyer's research

interests are in the area of reliable computing, meas-

urement and evaluation, and automated design. He

has served on several program committees for international conferences and is

on the editorial boards of the Journal of Electronic Testing, the Springer-

Veriag Series on Dependable computing, and the IEEE Trans. on Parallel

and Distributed Systems. He is currently Program Co-Chair for FFCS-25 (the

Silver Jubilee of the International Symposium on Fault-Tolerant Computing).

Prof. Iyer is an IEEE Computer Society Distinguished Visitor, an Associate

Fellow of the American Institute for Aeronautics and Astronautics, a Fellow

of the IEEE, and a member of ACM, Sigma Xi, and the IFIP technical

committee (WG 10.4) on fault-tolerant computing. In 1991, he received the

Senior Humboldt Foundation Award for excellence.in research and teaching.

In 1993, he received the AIAA Information Systems Award and Medal for

"fundamental and pioneering contributions towards the design, evaluation,

and validation of dependable aerospace computing systems."

