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Abstract 
 
The design of software has been a focus of software 

engineering research since the field’s beginning.  This 
paper explores key aspects of this research focus and 
shows why design will remain a principal focus. The 
intrinsic elements of software design, both process and 
product, are discussed: concept formation, use of ex-
perience, and means for representation, reasoning, 
and directing the design activity. Design is presented 
as being an activity engaged by a wide range of stake-
holders, acting throughout most of a system’s lifecycle, 
making a set of key choices which constitute the appli-
cation’s architecture. Directions for design research 
are outlined, including: (a) drawing lessons, inspira-
tion, and techniques from design fields outside of com-
puter science, (b) emphasizing the design of applica-
tion “character” (functionality and style) as well as 
the application’s structure, and (c) expanding the no-
tion of software to encompass the design of additional 
kinds of intangible complex artifacts. 

1. Introduction 

Design is the central focus of software engineering. 
Design is both a verb and a noun. It is a key thing we 
do and that we produce.  

Such crisp statements will alternatively strike one as 
obvious or, perhaps, as parochial – if not incorrect. Yet 
if we consider what software engineering is, namely a 
practice directed at the production of software systems, 
then design is seen at its heart, as it is in any other pro-
ductive enterprise, whether the creation of skyscrapers, 
automobiles, toasters, or urban regions. 

Not surprisingly, then, many software engineering 
researchers, or those acquainted with software devel-

opment, have studied and written about software design 
over the past forty years and more. Fred Brooks in-
cluded in his 1975 list of “promising attacks on the 
conceptual essence” the growing of great designers 
[21]. Peter Freeman, in 1976 [31], said “Design is rele-
vant to all software engineering activities and is the 
central integrating activity that ties the others together.”  

Design will remain the focus of software engineer-
ing. Herb Simon, in his classic, The Sciences of the 
Artificial [75], includes a discussion of design in the 
context of “artificial” fields, such as software develop-
ment, saying:  

“The artificial world is centered precisely on this 
interface between the inner [the means] and outer 
[the task] environments; it is concerned with at-
taining goals by adapting the former to the latter. 
The proper study of those who are concerned with 
the artificial is the way in which that adaptation of 
means to environments is brought about – and cen-
tral to that is the process of design itself.” 

Put in software engineering parlance, the outer envi-
ronment is the world of requirements, goals, and wants; 
the inner environment is the set of software languages, 
components, and tools we have for building systems. 
As software engineering researchers, we are always 
“raising the floor” – creating new levels of infrastruc-
ture upon which new developments may be built. In 
Simon’s terms, the “inner environment” or the “means” 
is ever changing and expanding. As the floor rises, 
however, so do our desires and aspirations. Though 
achievements in improving design have been obtained 
over the previous decades, new challenges for design 
will thus continuously arise.  
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Figure 1. The continuing place of design. 

 
Nonetheless, at a suitably abstract level the chal-

lenges for software design today are the same as they 
were forty years ago. They are the intrinsic challenges 
of design: How to create artifacts to obtain goals, how 
to represent new conceptions, and how to analyze 
them. Brooks made this observation twenty years after 
the original Mythical Man-Month was published. He 
said the distinctive concerns of software engineering 
now are exactly those he set out earlier, namely “How 
to design and build a set of programs into a system; 
How to design and build a program or a system into a 
robust, tested, documented, supported product; How to 
maintain intellectual control over complexity in large 
doses.” [20] (pg. 288). Ten years after that statement it 
is still true. 

Arguably all the major threads of software engineer-
ing research are directed at improving our ability to 
meet the challenges of designing software. Work in 
requirements engineering contributes to Simon’s “outer 
environment”; process research addresses the coordina-
tion of all activities focused on creating, implementing, 
and evolving designs; empirical studies improve our 
ability to assess design artifacts and the processes by 
which they were created; analysis research improves 
our ability to assess candidate designs; work at the pat-
terns and frameworks level improves our ability to real-
ize designs in source code; and so on. 

Though a focus on design has been, and will be, the 
central issue in software engineering, the type of design 
on which our energies have been focused has been 
rather lopsided. Our focus has largely been directed at 
the design of software qua software. That is, we focus 
on the structure of software and its attributes, such as 
considering what components and connectors comprise 
a system, and what constraints govern their interac-
tions. A lesser role in software engineering has been 
assigned to the design of software as it exhibits charac-
teristics to its users. For instance, what “interactive 

feel” does the application give to its users? What 
“style” does it exhibit? What is its branding, or distinc-
tive behavioral character? Using the analogy of auto-
motive design can make the distinction clear: design 
research of the first type is directed at the mechanical 
organization and structure of the vehicle; design re-
search of the second type is directed at shaping the 
car’s appearance, performance, sound, and smell. Do-
ing a good job of one type of design does not imply 
doing a good job with the other, yet they are intrinsi-
cally interrelated. Both are important, and are legiti-
mately the subject of (software) design research. 

Work on design of the first type has certainly 
yielded a wide range of important results over the past 
several decades. Numerous development methods have 
been espoused, many based upon the articulation and 
application of design “principles” such as modularity 
and planning for change. Means for representing de-
signs have been devised; domain-specific approaches 
have been created and supporting tools supplied. In 
recent years, particular advances have been made with 
regard to product families and the careful specification 
of system architectures. 

Work on design of the second type has often been 
ignored by software engineering researchers, and in-
stead relegated to either other sub-disciplines of com-
puter science, especially human-computer interaction 
researchers, or simply left to practicing engineers in 
industry. 

Design of both types is increasingly recognized as a 
critical corporate and national asset. Designing of 
products is seen as an activity that cannot be effectively 
off-shored – regardless of the shore on which one is 
standing. Design can be a differentiator that determines 
an organization’s success. The ability to design effec-
tively is typically the partner of the ability to innovate. 

The remainder of this paper seeks to explore how 
and where to advance from the state-of-the art. We 
proceed by first examining some major historical 
threads of design research, then highlighting a few no-
table current trends. These sections are not merely 
background; by straightforward implication from what 
we describe, some key directions for software research 
emerge. Drawing from the perspectives of these two 
sections, we then examine the character of design in 
more detail. The remainder of the paper explicitly lays 
out a set of further research directions, and concludes 
with some challenges and a “long view” of the promis-
ing future of software design.  



2. Paradigms and Persuasions 

The past forty plus years of design research can be 
taxonomized many ways, such as by describing the 
history of models, methods, and tools over time. These 
topics are not independent, however. Rather, the back-
ground or disciplinary orientation of an individual or 
group tends to bring along a set of beliefs, choices, and 
approaches. Any such perspective, then, drives specific 
choices in a variety of areas. 

Prescriptive Design Methods  

Perhaps most familiar to the software engineering 
researcher is the perspective of the “software method-
ologist”. Typified best, perhaps, by work in the 1970’s 
and 80’s by such authors as Yourdon [81, 82], Jackson 
[41, 43], and Parnas [61-65], this strand of work fo-
cuses on the first type of design discussed above, the 
design of software as the artifact of interest, and is an 
approach that states a principle, then prescribes how to 
design based on that principle. 

Much of this work has been top-down in style; prin-
ciples of design are articulated (“separate abstractions”, 
“use information hiding”, “refine higher-level abstrac-
tions into a set of lower-level abstractions”, etc.) and 
then either methods for employing those principles or 
notations which highlight or support application of the 
principles are developed. 

One influential strand of work began with Russ Ab-
bott [8], and was then expanded upon and advocated by 
authors such as Grady Booch [17]. This design ap-
proach is, roughly, “design by simulation”, in which the 
software application is straightforwardly designed by 
creating software objects that correspond to entities in 
the real world, and whose methods correspond to ac-
tions in the real world. The work contributed to object-
oriented design, and became in a broader context to be 
supported by methods such as the Rational Unified 
Process [51], with designs represented in the Unified 
Modeling Language (UML) [52].  

Notations 

Notations have been a part of software design since 
the beginning. Any time design thought is externalized, 
such thought must be written down in some structure or 
form that supports interpretation at a later time by oth-
ers, oneself, or a computerized program. It is no sur-
prise, then, that notations continue to serve as a pri-
mary driver of research in the community.  

Notations range from informal conventions that are 
established on-the-fly by a group of designers engaged 
in a design exercise to precise formalisms that are stan-

dards for the field. Two primary concerns in the formu-
lation of new notations are expressiveness and usabil-
ity. Expressiveness concerns what aspects of a design 
can be captured in the notation; usability concerns the 
fluidity with which designers can work with the nota-
tion. Though both factors are equally important, the 
primary driving force behind the development of most 
new notations has been expressiveness – adding model-
ing capabilities, often for a particular analysis purpose.  

Extensibility is a required property of any modern 
notation, as it is now common knowledge that no stan-
dard notation can fulfill all modeling needs. UML pro-
files are perhaps best known in this regard, with a host 
of profiles publicly available that address a broad vari-
ety of modeling concerns. 

The Wisdom of Experience 

Still focusing on the design of software, but coming 
at the problem from essentially a bottom-up perspec-
tive, is a strand of work focused on capturing the les-
sons of experience in such a way that future designs 
can be guided. The work on “design patterns” is typical 
of this strand. While the “Gang of Four” patterns [33] 
are directed at the programming language level, the 
concept can be applied at any level of abstraction, in-
cluding requirements (where the experience may be 
captured as “frames” [42]), whole-concept system 
structure (where the experience is captured as domain-
specific software architectures [10, 38, 79]), and gener-
ally at the level of system components and connectors 
(where the experience is captured as styles and archi-
tectural templates [9, 34]). 

Methods for analysis and restructuring of software 
may reflect insights from this research strand, such as 
are found in refactoring analysis and reverse engineer-
ing. 

Knowledge representation and design rationale re-
search may contribute to the effective employment of 
design based upon the wisdom of experience. 

HCI Design  

Innovation in product design and distinctiveness in 
product design have long been argued as contributing 
to product (and corporate) success [45] – though such 
innovation is no guarantee of commercial success. The 
software engineering literature is relatively silent on the 
matter of such design, possibly because researchers 
view the subject as too domain-dependent, and hence 
exclusively the focus of developers within that domain. 
Even if one assumes that, it is surprising that software 
researchers have not focused on the methods by which 
innovative domain-specific designs are created. 



The exception is user interface design. Often rele-
gated to (at best) the fringes of software engineering 
research, human-computer interaction research includes 
a focus on techniques for developing user interfaces 
which effectively engage and satisfy the user. Some 
lessons of such work are captured, for instance, in pat-
terns for web site design, as found in the work of Lan-
day and colleagues [80]. This work is partially bottom-
up, in the manner described above, but also reflects 
cognitive understandings of how people interact with 
web sites and undertake electronic commerce transac-
tions. 

The importance of considering this field is indi-
cated, in no small measure, by the repeated failure, 
over many years, of standard software engineering top-
down design techniques to create pleasing and effective 
user interfaces. 

Design Outside of Software 

The field of design, and design research, outside of 
software engineering and computer science is enor-
mous. While both types of design discussed above are 
within this wider world’s view, a greater emphasis is 
found on the second type – user experience. Less work 
is found on representational issues; since physical ob-
jects are being designed the representation means (typi-
cally sketching) is natural. More work has been di-
rected at methodological approaches, with [44] a clas-
sic example from the domain of industrial engineering. 
The software patterns work, however, derives its name, 
at least, from work in building architecture [11].  

The relevance of lessons from design “out there” to 
software design has been noted by many. Participatory 
design has been advocated by some in the HCI com-
munity [35], and, arguably, software engineering’s “ag-
ile design” draws from some of its key elements . Less 
directly, the capabilities of CAD systems like CATIA 
have been an inspiration throughout. 

A further perspective on design exhibited by the lar-
ger design world, but which software engineering has 
mostly ignored (or scorned) is that of design as art. 
While Donald Knuth unabashedly titled his monumen-
tal series, “The Art of Computer Programming” (e.g., 
[46]) and promoted “literate programming” [47], we 
have not developed a practice of critiquing the aesthet-
ics of any kind of software design, of endeavoring to 
instill an appreciation for elegant software design, or of 
providing public forums for the promotion and recogni-
tion of excellence in design1. 

                                                           
1 The ACM Software Systems Award is an excep-

tion, though it is not widely promoted – certainly not in 
the software engineering community. 

Cognitive and Social Strategies 

A final strand of design research is exemplified by 
the work of Donald Schön [72], and found in software 
engineering in the work of, for example, Fischer. A key 
perspective emerging from this work is what Schön 
terms reflection: the designer reflects upon the process 
and upon the product. Design in this view emerges as a 
“conversation” between the materials (the external con-
straints on the design, the initial sketches attempting to 
develop a solution) and the designer. 

Design, however, is not a solitary activity. Teams of 
designers interact, varied stakeholders participate, and 
broader communities of practice [29] exist within 
which individual designers perform their work. Design, 
thus, is a social process, one of information exchange, 
learning, creative and cognitive stimulation, and con-
versation – all aspects that must be taken into account.  

3. Contemporary Currents 

Contemporary currents in design sometimes add im-
portant perspectives to the schools of thought described 
above, as well as combine, apply, and refine them. 

Agile Methods 

While for some “agile methods” are a step back-
wards in the history of software design research – be-
cause the design exists only in the code –, the agile 
community has emphasized three important design 
practices. First, it is an example of the application of 
participatory design: by involving the user throughout 
the iterative development process, the product is con-
tinuously shaped to meet the user’s needs. Secondly, 
test-driven development makes the design of function-
ality of equal importance to the design of system struc-
ture, which represents a rudimentary integration of the 
two types of design we discussed in the Introduction. 

Lastly, implicit in the agile approach is that the 
process of design continues throughout development. 
With little extrapolation, design can be seen to continue 
throughout the life of the product – a characteristic not 
shared with many products from the realm of physical 
product design. 

Aspect-Oriented Software Design 

The original aspect-oriented programming paper 
states “A design process and a programming language 
work well together when the programming language 
provides abstraction and composition mechanisms that 
cleanly support the kinds of units the design process 
breaks the system into.” It then makes the argument 



that programming languages must conceptually distin-
guish components (units of a system’s functional de-
composition) from aspects (system properties that can-
not be cleanly separated and instead crosscut compo-
nents) [54]. This view of AOP strikes an important 
chord with design, as separation of concerns is one of 
the leading approaches to tackling a design problem’s 
complexity. Unfortunately, this design-oriented per-
spective seems to have given way to AOP language 
minutiae and a focus on “aspectizing” any and all soft-
ware artifact. Nonetheless, the critical role of the pro-
gramming language in the design process persists, and 
AOP has and continues to have an impact as such.  

Design Analysis  

One of the reasons we design is to reduce risk by 
enabling prediction of system properties. Not surpris-
ingly, the field has devised numerous ways of perform-
ing design-based analyses. Many of these have been 
described, for example, in the SAVCBS workshop se-
ries (Specification and Verification of Component-
Based Systems). Most of these analyses concern exter-
nally visible properties, such as reliability, real-time 
constraints, or concurrency, although a fair amount of 
work also concentrates on properties internal to a de-
sign, such as structural quality or reusability [71].  

Different design representations are suited to differ-
ent kinds of analyses; new analyses may require new 
notations to be used. 

Component-Based Design  

A desire to structure large-scale business applica-
tions in terms of standard, reusable components contin-
ues to drive a non-trivial part of the industrial software 
landscape. While each guarantees somewhat different 
properties as emphasized by somewhat different usage 
scenarios, component-based design, model-driven ar-
chitecture, and web services all can be grouped as ad-
dressing this desire in a similar manner. In fact, they 
can be seen as evolving from one another, with compo-
nent-based design focusing on reuse of the individual 
component, model-driven architecture on standardiza-
tion of components into reusable middleware [30, 40], 
and web services on reuse of components and middle-
ware across distributed and decentralized applications.  

Of course, different components do not magically fit 
together. A particular challenge is to design the “glue” 
that bridges mismatches in functionality, interfaces, and 
interaction paradigms. 

Software Architecture 

The many strands of work in software design de-
scribed thus far have most fruitfully blended and ma-
tured into the field of software architecture. With an 
encompassing definition of software architecture as 
“the set of principal design decisions governing a sys-
tem”[78], it engages the full range of design activities 
and includes the full range of participants in the design 
process. Software architecture encompasses work in 
modeling and representation, design methods, analysis, 
visualization, supporting the realization of designs into 
code, experience capture and reuse, product lines, de-
ployment and mobility, security, adaptation, and so on. 

Software architecture research began in earnest in 
the early 1990’s (e.g. [66, 73]), though the term is dec-
ades older (it is found, for instance, in many works 
from the early 70’s). Work in the 90’s was initially 
focused largely on matters of design representation 
[56], though the whole movement could be character-
ized by a desire to provide substance, structure, and 
specificity to the historic field of software design. Ar-
guably, software architecture has been focused on the 
maturation and professionalization of a field previously 
best characterized as craftsman-like. 

The successes achieved by software architecture 
over the past fifteen years span from commercial use of 
product-line architectures, such as at Philips [59], to 
the architectural underpinnings of the World Wide 
Web, as characterized by the REST style [27].  

Architecture is a backdrop for much of the direc-
tions for software design that we characterize in the 
remainder of the paper; its importance is reflected by 
its inclusion in this paper’s title. 

4. Design, Designing, and Designers 

The careful reader will notice that we have, so far, 
refrained from defining software design, or even design 
itself. So it is with the contributions discussed in Sec-
tions 2 and 3, which by and large typify design accord-
ing to a certain perspective (e.g., a phase, in the code, 
art, engineering) and then work within this perspective 
to make their contributions. 

To understand how these perspectives relate and to-
gether help or hinder in advancing the field as a whole, 
it is critical that the field establishes a common basis 
from which its progress can be judged. The following 
summarizes a general model of design that is intended 
to form such a basis [13]. The model consists of two 
interrelated parts: one part capturing the essence of 
design-the-product, the other part capturing the essence 
of design-the-process.  



When used as a noun, design normally indicates the 
artifact (product) that emerges from the design process, 
some physical document or other kind of representation 
that articulates the intent of the designer. This product 
results from the choices the designer made, choices that 
form an abstraction of that what is eventually desired to 
be realized in the real world [49]. 

These words are in some ways obvious, but in other 
ways not sufficiently precise to help guide a field. The 
general design literature has made various characteriza-
tions that can be used as such (e.g., Simon [74], Nor-
man [58], Schön [72]). Figure 2 presents a visual of the 
amalgamate of these characterizations as they pertain to 
the design product. The figure distinguishes the design 
space from the outcome space. During design, we men-
tally operate in the design space (where each point 
represents a unique set of design decisions), but con-
tinuously make decisions that reflect upon the outcome 
space (where each point represents a unique artifact). 
That is, each design decision alters the set of outcomes 
that are still possible (SP), cutting away some and re-
enabling others. A design, then, is a point in the design 
space that represents a set of decisions that together 
delineate a set of possible outcomes in the outcome 
space.2 

The customer brings into this their understanding of 
what are desirable outcomes (D), which, whether or not 
explicitly stated, act as constraints on the design proc-
ess. Another set of constraints is exercised by the avail-
able materials from which an outcome is constructed by 
following a design’s blueprint: a design should describe 
only outcomes that are feasible (F). A successful design 
is one that restricts its still possible outcomes to those 
that are desirable and feasible. 

 

 
Figure 2. Design – The Product. 

                                                           
2 This discussion is not meant to imply the existence 

of a separate design phase. The spaces we refer to are 
ephemeral and largely present as a result of the way in 
which human’s think – through abstraction. 

When used as a verb, design normally indicates the 
process by which a design is achieved. It is understood 
to be a human-centered process, involving varied 
stakeholders. It is also understood to be strongly goal-
driven and drawing upon established knowledge of the 
designer and the field at large.  

The general design literature has made precise char-
acterizations of this process, which are brought to-
gether in Figure 3. The design process is one of infor-
mation manipulation (broadly construed to encompass 
initial creation, transformation, and deletion), with four 
types of information involved: goals, ideas, and knowl-
edge, which are all mental, and representations, which 
are physical expressions of mental information. Each of 
these types of information is phrased in one or more 
languages, and tools may be used to edit and/or inter-
pret representations. Within this setting, designers en-
gage in one or more activities, through which they – 
directly and indirectly – explore the design space. The 
design process, then, is defined as the set of informa-
tion manipulation activities through which a successful 
design is obtained. 

 

 
Figure 3. Design – The Process. 

 
An important property of this general model of de-

sign is that it does not bias itself towards any individual 
perspective on software design. Rather, it supports the 
field in giving it the ability to precisely relate different 
perspectives and understand their emphases, strengths, 
and weaknesses.  

The Elements of Design Research 

A corollary from the preceding discussion is that the 
model points toward exactly where it is possible for a 
discipline as a whole to make progress in better sup-
porting its designers. Particularly, it can: 

• Improve the materials from which a product that is 
envisioned by a (finalized) design is eventually in-
carnated in the real world. For example, the avail-
ability of newer, lighter composites enabled differ-
ent kinds of planes exhibiting different weight and 
aerodynamic properties to be designed.  



• Improve the languages that are used for capturing 
goals, ideas, and knowledge. Alexander’s design 
patterns are an example of such an advance, bring-
ing together goals and ideas in a single representa-
tion that furthermore supports easy adoption. 

• Improve the general knowledge the community has 
about its design domain and design processes. For 
instance, the human genome project is of tremen-
dous value to the design of new medicines, provid-
ing a data bank of knowledge that previously was 
unattainable. 

• Improve the portfolio of activities that are used in 
the design process. IDEO’s focused form of brain-
storming is an example of an activity that led to 
improved results, both in terms of time and out-of-
the-box solutions [45]. 

• Improve the tools with which design activities are 
supported, particularly in creating and interpreting 
representations. For example, the automotive in-
dustry has made significant leaps in their ability to 
design by moving from clay models to CAD/CAM 
designed 3D visualizations. 

All progress, whether in the form of a new methodol-
ogy, notation, metric, or analysis algorithm, to name a 
few, will eventually reduce to these five basic underly-
ing categories. 

The Community of Designers 

Just as it is important to understand the fundamental 
elements of design, so it is important to recognize the 
richness of the community of designers – those who 
design, who contribute to the design, and who must 
interact with design representations, designers, and 
design processes. Historically, design has largely been 
seen as a somewhat provincial task performed by a 
small number of software specialists – perhaps one 
“chief designer” – during a circumscribed period in a 
project’s lifecycle, namely following requirements 
analysis and preceding any implementation. Clearly, 
such a simplistic notion is either counter to what really 
happens in a project, or if actually followed yields sub-
par results. In truth, the number and types of individu-
als with vital interests in a project’s design represents a 
broad community of interest [29]. Existence of this 
community imposes some particular demands on de-
sign; recognition of the breadth of the community high-
lights opportunities for improving our practice and 
expanding our research agenda.  

First, for a project of any significant size, more than 
one designer will be involved. Existence of multiple 
designers thus imposes demands for communication of 
design concepts [21]. Communication implies shared 

representations, an observation that is a natural outflow 
from the general model of design. The effectiveness of 
such communication is determined by the language(s) 
used [22]. Presence of a design team also induces re-
quirements for coordination of its design activities. 
Such coordination could involve formal management if 
the task is large enough. 

Second, however the design is produced, other indi-
viduals, playing other roles, are critically engaged with 
the design. They must be able to understand and use it. 
In traditional development practices wherein the im-
plementation activity is separate from the design (more 
about this below), the implementers must be able to 
comprehend and utilize the design. The practical chal-
lenges of this become highlighted should such imple-
mentation be contracted to another firm, perhaps to one 
on another continent. In other situations, the customer 
may be desirous of participating in substantive review 
of a design. In yet other situations end users may be 
participants in the design process. All of these engage-
ments with design highlight the critical role of and de-
mands on shared representations of design. 

Third, beyond just recognizing the existence of a 
multiplicity of designers and “design readers”, we also 
must recognize that the multiple stakeholders of a sys-
tem (can) all contribute to the design itself. The typical 
perspective has been that, since software is being de-
signed, software specialists are the only ones who 
properly determine the software’s design. As discussed 
in detail in [57], however, both application domain 
experts and business stakeholders are properly con-
tributors to a system’s architecture. Domain experts 
naturally know or determine the key abstractions for a 
system, acceptable strategies for meeting regulatory 
requirements, or provide vital insights on what parts 
and in what ways the design must be flexible to ac-
commodate potential future changes. Business-focused 
stakeholders may determine key boundaries for a prod-
uct-line architecture, and hence determine critical soft-
ware interfaces. Design, thus, is not the exclusive prov-
ince of the software technologist; the multiple and 
proper contributions from the wide community of 
stakeholders must be accommodated. This final com-
ment is not easy to achieve, however. Separate stake-
holders likely require (or at least request) views onto an 
emerging design which are idiosyncratic to their per-
spectives. Supporting multiple viewpoints while ensur-
ing consistency among them constitutes a current chal-
lenge towards which the community has made progress 
(e.g., the 4+1 model [50], analyses to discover incon-
sistencies [26], and an understanding that certain forms 
of inconsistency must be tolerated [15, 28]), but for 
which much work remains to be done. 



Fourth, arguably the design community increasingly 
includes the end user. Common applications such as 
spreadsheets and word processors actively invite the 
end user to customize – i.e., design – their working 
environment and the complex artifacts produced with 
desktop tools. At best the software engineering com-
munity has barely recognized this community of de-
signers; after all, they are not software specialists, have 
little or no formal training in design, and produce de-
signs researchers may dismiss as trivial, or simply as 
poorly done. But the enormous number of end users, 
the substantial ability for customization and design 
presented by desktop applications, and the potential for 
improving the quality of end user designs argues 
strongly for design researchers to turn their attention to 
this special world. As one example, spacecraft systems 
designers use complex, interlocking Excel spreadsheets 
to design new systems and missions [55]. These com-
plex spreadsheets are designed, however, without any 
higher level of abstraction or representation; under-
standing them and “verifying” them is left to the engi-
neer, who must interpret the macros pervading the 
spreadsheets. A better way is surely possible. 

5. Research Directions 

The introductory section of this paper indicated how 
design will remain an enduring challenge. As our abil-
ity to design solutions to current statements of wants 
and needs improves and becomes more predictable, our 
conception of what might be achieved expands. As “the 
means” improves and rises, “the task” becomes more 
adventuresome and demanding. Our ability to design 
must be correspondingly enhanced to make use of the 
improved materials, tools, and mechanisms to create 
solutions to the new goals and dreams. Seen in this 
general light, all the elements of design research listed 
in Section 4 above will persist; it is a matter of under-
standing and improving:  

• the materials – the conceptual building blocks – 
from which designs are eventually realized as arti-
facts in the real world. 

• the languages that are used for capturing goals, 
ideas, and knowledge.  

• the general knowledge the community has about its 
design domain and design processes. 

• the portfolio of activities that are used in the de-
sign process. 

• the tools with which design activities are sup-
ported.  

While comprehensive, this list is too generic to be 
of much use in setting directions; the remainder of this 

section is devoted to discussing a variety of more spe-
cific directions. Before moving to the more specific 
discussion however, we consider three general issues. 

First is the matter of design decisions. Designing is 
fundamentally a matter of making choices – how to 
accomplish something, how to represent something. 
That suggests that an effective approach to design 
should offer a solid understanding of choices: what 
they are, recognizing when they are made, what the 
alternatives were, and capturing them in such a manner 
as to allow retrospection. In typical practice we are far 
from having a grasp on this: decisions are often implic-
itly made. It is not until later that we recognize that 
certain functionalities or properties were precluded, or 
inhibited, by an early choice. Decision support systems 
from the 1980’s, such as gIbis [23], offered explicit 
support for formally considering choices facing a 
group. This type of support is needed, but must be pro-
vided in a lightweight manner that is integral to and 
supportive of design. Perhaps more important, how-
ever, would be practices to aid in recognizing when 
choices are being made. 

Second is the matter of the place of design in the 
software engineering process. As the discussion in the 
previous section indicated, the activity of design is not 
limited to one individual or one circumscribed place in 
the development process. Critical decisions – design 
decisions – are made throughout system development 
by a variety of stakeholders. Talk of “requirements 
engineering” that is wholly independent of design, for 
instance, is frequently either sophistry or simply 
counter-productive. As critical decisions about a sys-
tem are made – whenever they are made – design is 
being done, the architecture is being established and 
should be recognized as such. Similarly, implementa-
tion is improperly and unrealistically considered the 
rote translation of design to code, sometimes to the 
point where a design intentionally does not make a 
choice of programming language so to be general in 
nature. Key choices made in and about the implementa-
tion process, such as the decision to use a particular 
implementation framework or programming language, 
are important parts of system design, affecting future 
strategies for system modification and adaptation. The 
importance of such design should not be overlooked. 
The challenge for design researchers is to provide prac-
tical guidance to those involved in setting system re-
quirements, in coding the system, and indeed in all 
other aspects of system development for their appropri-
ate participation in design. More generally, the ques-
tion is how to structure software development proc-
esses to support a robust, modern conception of design. 



Third is the matter of choice and evaluation [32, 
74]. As designers confront issues, a set of choices 
emerge. Beyond recognizing and recording the choices 
made, designers need support for evaluating alternative 
choices so to guide them towards a design’s objectives. 
Analysis techniques may focus on functional or non-
functional system properties, and may span to analysis 
based on economic arguments [12, 77]. While devel-
opment of individual techniques continues to be 
needed, the field also should find ways in which such 
techniques can be combined to enable multiple proper-
ties to be jointly assessed, in the manner of statistical 
decision theory for example, to enable broadly in-
formed choices to be made. 

Directions Reflecting Good Recent Progress 

In defining a research agenda, it is important to rec-
ognize those research directions that “work”, have had 
impact already, and should be explored further because 
they continue to have promise in advancing the field.  

The first direction we discuss as such is software ar-
chitecture. It is interesting to put architecture in light of 
the five directions of design research presented in Sec-
tion 4. To date, advances have included, among others, 
architectural middleware, description languages, styles, 
design methods, and environments, which collectively 
cover the five research dimensions along which pro-
gress can be made. That is, architecture has turned out 
to be a natural fit in pushing design research forward. 

Of particular importance is the focus on early design 
decisions. Architecture, though it can be mapped onto 
code effectively, is initially about supporting the ex-
ploratory process. Architectural styles are critical in 
this regard, documenting accepted solution strategies as 
sets of reusable design decisions that can be readily 
adopted. Clearly-documented and well-packaged styles 
come closest to the original definition of architecture as 
“structure, form, and rationale” [66]. 

Architecture has also strongly influenced software 
product lines. The vast majority of software product 
lines are actually realized through product line archi-
tectures, which are used to distinguish those parts of 
the system that are shared among all products and those 
parts that are variable and depend on the product at 
hand [70]. The use of product lines has become suc-
cessful with several success stories emerging that detail 
how this kind of domain-driven approach can be bene-
ficial and provide a competitive advantage. 

That said, there is significant work left to do. Design 
involves multiple stakeholders who may have radically 
different concerns. Having focused strongly on compo-
nent-connector centric approaches, current architectural 
description languages lack facilities for specifying and 

relating such diverse sets of concerns. Extensible archi-
tecture description languages are a foundation, but their 
modeling capabilities must be supported with flexible 
environments and design processes. 

This strongly relates to the need to manage evolving 
architectures. When stakeholders make changes, it is 
often the case that the architecture degenerates. Espe-
cially with product line architectures, it is known that 
even a pungently cohesive initial definition slowly but 
surely may morph into a set of disjoint product archi-
tectures. Processes have been employed to ameliorate 
this problem, but overall our level of understanding is 
still limited and our tool support for carrying out such 
processes trails significantly. 

Throughout the design process, whether it is a high-
level architecture or a low-level UML class diagram, it 
is generally important to ensure that certain properties 
are met, such as, for instance, behavioral consistency, 
real-time performance constraints, reliability, levels of 
security, and concurrency behavior. The analysis com-
munity has made steady progress in providing analyses 
that can provide such guarantees and continues to work 
on faster and more efficient analyses, analyses for new 
properties, and general infrastructures[16, 24]. 

A particular challenge is to make these analyses, and 
the modeling of the information that is needed to drive 
them, an integral part of the design process, rather than 
some activity that is performed as a “check” when the 
design process has finished. Two problems persist: the 
need to create precise representations, and the need to 
fully, or almost fully, model a design before it can be 
analyzed. It is incumbent upon the field that these two 
problems are overcome, so that analyses become usable 
throughout and especially when it matters most: during 
rapid generation and evaluation of (not necessarily pre-
cise or complete) alternatives, for which analyses are 
vital in understanding the tradeoffs inherent in the de-
sign decisions made. 

As important as the externally-visible qualities of a 
design are its internal qualities: is its structure sound, is 
it optimal, and will it hold up over time? A recent trend 
has seen attempts to assign “value” to designs, particu-
larly by employing economic analyses that stem from 
adapting and applying established economic theory to 
the domain of software design. Most promising to date 
is the use of Design Structure Matrices [14]; with them, 
it is possible to visually compare different modulariza-
tions, assign these modularizations values, and in so 
doing understand design tradeoffs, such as whether to 
refactor or to apply aspects. These results, however, 
represent only a beginning. Values are assigned mostly 
to entire designs, not necessarily individual design de-
cisions (though these can be valued in the context of 



given design changes). Values also are “instant”, for 
the design as it is now; not how they stand up against 
future design changes. A critical dimension of future 
work, then, is to find mechanisms of valuing individual 
design decisions over time. 

Another important aspect of this work lies in the his-
torical lessons it can teach. Applying Design Structure 
Matrices to numerous designs, both good and bad, can 
build a portfolio of examples from which it furthermore 
may be possible to deduce general principles. 

Finally, we return to the topic of architectural styles 
and, more generally, the capture and reuse of architec-
tural experience. Experience and "good design prac-
tice" can be captured at different levels of abstraction 
(from source code up to the highest level of system 
structure) and with different degrees of generality 
(from useful within all application domains to useful 
only within highly specialized application domains). 
We need the ability to capture the lessons from prior 
developments at all points in this space, and to do so in 
a manner that effectively enables other engineers to 
find, understand, assess, and apply the lessons to the 
development of new systems. In simplest terms this 
could involve developing extensive catalogues of archi-
tectural styles. The richness and variety of experience 
demands better ways of capturing, finding, and using 
knowledge, however. Other design disciplines have 
matured by doing so, it is time we do so as well. 

Directions From New Capabilities 

Progress in computer science has often been pro-
pelled – or compelled – forward as the result of ad-
vances in hardware. So it is now with design. Advances 
in networking, display technology, storage, and proces-
sor speed offer the potential for significant advances in 
the practice of design. 

As a first instance, consider the potential of search-
ing for domain knowledge, prior designs, evaluations 
of designs, “similar structures”, and so on, in the man-
ner of Google. That is, the ability to access information 
across the Internet, and especially the ability to search 
that information in comprehensive fashion, offers the 
potential for exploiting experience from prior designs 
in a manner far beyond anything we have yet seen. A 
simple use of existing Google-like search will not be 
sufficient, however. A designer will seldom be search-
ing, for example, for a module with a specific textual 
interface. A designer will want to search based on vari-
ous architectural abstractions. Enabling search based 
on architectural meta-data, for instance, is a near-term 
possibility for meeting this goal. Yet any search 
scheme that requires some structured meta-data as in-
put stands the risk of being overtaken by a technology 

that employs a brute-force strategy that is able to pro-
vide at least as good results without requiring use of 
any standard mark-up or meta-data. This, of course, is 
the beauty of today’s Google search as applied to 
document searches. One long-term direction, therefore, 
is to develop search algorithms that perform architec-
tural abstraction automatically, and then “page-rank” 
those abstractions against the user’s query, where that 
query is phrased in terms of architectural properties. 

The networking that is a key enabler of Internet 
search is also a key enabler of improved communica-
tion between individuals and teams. As the legitimate 
role of the many stakeholders in a design process is 
recognized, advances in network communications can 
be brought to bear to improve their participation. Col-
laboration technologies in general offer significant po-
tential for the design process [39]. Communication 
technologies are, relatively-speaking, free; designers 
should exploit that. 

Display technology offers another basis for im-
provement in design practice. Very high resolution, 
very large screen displays are now readily available. 
Such displays give designers the potential of seeing 
more of a design from more perspectives simultane-
ously. And why should design be confined to the flat-
land of 2-D displays? Other scientific disciplines have 
already exploited high-resolution displays; it remains 
for software designers to design such support for their 
own discipline. Designers should have displays on their 
desktops that are at least as large as the televisions in 
their homes. Beyond the desktop, there is no reason 
why teams do not have specialized design rooms 
equipped with numerous touch-sensitive displays and 
batteries of computers that enable instant analysis. 

The continuing decline in the price of storage with 
an accompanying increase in capacity suggests other 
new directions for design. Why not always record de-
sign rationale – even as video? Keying video/audio 
capture to the designers workstation activities, context, 
and display offers unprecedented potential for retro-
spectively understanding a design and reusing the in-
sights present at the time of design. In the case of de-
sign forensics following a system failure, for example, 
such storage offers the potential for identifying the root 
cause of a failure, and hence for eliminating related 
latent errors elsewhere in a system. 

Lastly, the continuing rise in processor speeds sug-
gests that designers, and those who develop design 
tools, should never be restrained by a perception of 
something “taking too long”. Nor should tool develop-
ers be distracted into complicated optimizations of, 
e.g., analysis procedures, when the use of simple brute 
force suffices. If something seems to take too long, just 



task a few dozen more processors to the problem, or 
simply wait for the next generation of processors to 
appear. The time to develop a reliable optimization 
may well exceed the time for a doubling of processor 
speed. 

In summary, let us as designers exploit advances in 
computation to advance the practice of design. Our task 
is as worthy of innovative use of technologies as our 
clients’ tasks are. 

Directions From Design Imperatives 

For software design and architecture to mature into 
a robust discipline capable of handling the challenges 
posed by emerging applications, advances in several 
areas are imperative. Our list here is eclectic, reflecting 
our perception of particularly poignant needs. 

First is adequate support for moving from architec-
ture to implementation, and fluidly moving between 
design and coding tasks. If design does not ultimately 
support production of a satisfactory implementation 
(assuming that the resources and the will to produce are 
both present), then it is a failed effort. Many current 
design approaches fall silent when it comes to imple-
mentation. Since key design decisions may be made in 
the implementation context, evolution of the architec-
ture must be seamlessly integrated across the contexts. 
Seamless integration implies full traceability between 
code and higher abstractions, and supports accountabil-
ity of design decisions. 

Second is the ability to represent all stakeholders in-
terests, as discussed earlier. Multiple interests and mul-
tiple perspectives impose demands for assessing or 
guaranteeing consistency of design decisions (or for the 
management of inconsistencies between them), as well 
as demands for multiple presentations of select design 
data. 

Third, as software applications become ever-more 
interwoven into organizations and society, we must 
develop means for the co-design of software and or-
ganizational/societal systems. Introduction of a tech-
nology into a group or organization may radically 
change how the group behaves – think, for example, of 
how e-mail has altered both personal and public com-
munication patterns. While a robust literature exists 
describing how such organizational changes have oc-
curred as the result of introducing software technolo-
gies, we need a design discipline which integrates the 
intentional shaping of software technology with the 
intentional shaping of organizations (one easy example 
is the integrated performance of business process reen-
gineering with design of software systems for that busi-
ness). For co-design to take place, a broad range of 
expertise must be woven into the process of design. To 

continue without such breadth invites organizational 
“surprises” and application system failures. 

Fourth is the design of applications as seen and ex-
perienced by users. This was discussed in the Introduc-
tion as the “second type” of design. The need and op-
portunity is profound; further discussion is reserved for 
the Challenges section. 

The next two directions are closely related and are 
motivated, at least in part, by economics. The first of 
these is supporting design recovery and analysis. Estab-
lished systems represent significant economic assets. 
To the extent that such assets can be used to meet new 
organizational needs, economic efficiencies are real-
ized. Recovering the architecture of existing systems 
enables assessments of potential future uses to be made 
so that adaptations can be based on solid architectural 
understandings. While several research projects in this 
field exist and have yielded promising initial results 
(see, e.g., [18, 36, 37]), there is still much to be done. 
The second and related direction is actively managing 
design evolution – in particular mitigating architectural 
decay. Here the issue is not recovering a design to 
merely enable the first steps of progress to a new or 
improved system, but the task of assessing an existing 
design and evaluating alternatives for modifying it to 
meet new and changing needs. Clearly to the extent the 
architecture is explicit and faithful to the implementa-
tion, this process is facilitated. But that is only the be-
ginning; an evaluation framework and process to assist 
in comparing alternative modifications is needed. Such 
evaluations must not only support examining how im-
mediate demands can be met, but predict likely conse-
quences for future, as yet unspecified, demands. 

Lastly, emerging application needs argue for design 
techniques that yield self-adaptive systems. An impor-
tant topic in its own right, we refer the reader to [48]. 

Directions From Examining Our Past  

We learn from our successes, but we also learn from 
our mistakes. This is an age-old lesson that has fueled 
much progress in other design fields. Bridge design as 
it is today would not be as advanced without the careful 
study of past structural failures [76]. The study of “why 
things break” has fueled the creation of newer, stronger 
materials [25]. And a central theme in Petroski’s well-
known writings is how failure has been a motivator for 
design innovation [67-69]. 

How do we perform in software in this regard? Un-
fortunately, the answer is “not good”. We do experi-
ence failures, but the field does not profit from them as 
other disciplines do. A “we will just fix it in the code” 
attitude is far too prevalent, and we seem to have been 
lulled into a modus operandus in which the importance 



of design is, consciously and subconsciously, underval-
ued. Compare the software view of design once again 
with that of bridge design. First off, one must appreci-
ate the effort that goes into a bridge’s design. Except 
for a few systems, our discipline rarely performs this 
much design. Second, when something fails on a 
bridge, it is the design that is examined, and lessons are 
drawn from it. Such is not the practice in software; we 
rarely go back, carefully study a “failed design”, de-
duce lessons as to why the software (use, deployment, 
or even development itself) failed, and what we should 
do differently, design-wise, next time – let alone share 
these lessons with the community. 

Any approach to learning from the past must start 
with examples. Unfortunately, no software design ex-
amples seem to be available. Textbooks contain small-
ish systems. Search the web for “Good Software De-
sign” or “Bad Software Design Examples” and not a 
single system comes forward (though lots of advice on 
how to create a “good” design comes forward). Com-
pare this to building architecture, where one can find 
book after book in the bookstore, including books of 
“great designs”. Clearly, a first challenge for the com-
munity is to begin assembling archives of good and bad 
design examples. By this we do not just mean UML 
diagrams, but carefully documented, multi-level and 
multi-view explanations that provide in-depth insight 
into underlying design decisions and their ramifica-
tions. It is interesting, in this regard, to examine the 
HCI literature. In it, one can find numerous papers that 
introduce novel interfaces and describe their underlying 
design motivations. Such a practice has not transitioned 
into the software engineering conferences as of yet. 

We must also promote excellence in design. The 
SPLC product line hall of fame is an example of such 
recognition, as is the aforementioned ACM Software 
Systems Award. In either case, though, we note that 
regrettably the actual details of the product and design 
that received the award are never shared with the 
broader community. Perhaps ACM or IEEE should 
consider establishing an annual prize for the best soft-
ware design, requiring that winning designs are placed 
in the public domain.3 

From examples, we must then deduce patterns, prin-
ciples, do’s and do not’s, and other general understand-
ings that help individuals in building up a repertoire of 
knowledge that can assist them in designing. Some of 
that effort is underway; we mention architectural styles, 
software patterns and anti-patterns, design critics, bad 
smell detection and refactoring techniques, HCI design 

                                                           
3 Of course, we can leave our version of the Razzies 

(http://www.razzies.com) to an appropriate blog.  

guidelines, and a small handful of general design prin-
ciples. This work has to continue and be broadened to 
cover all aspects of the design product and process. 

Finally, we observe that we must not just understand 
good and bad design products, but also focus some of 
our efforts on understanding good and bad design prac-
tices. By this we explicitly do not mean high-level ap-
proaches (e.g., Agile), but rather the approaches and 
techniques that expert designers employ in designing 
their software. For instance, it is well-known that prod-
uct designers may sketch hundreds of alternatives be-
fore honing in on an eventual choice. Do software de-
sign experts follow such an approach? If not, what do 
they do that makes them successful? Can these skills be 
explicated and communicated to others?  

Overall, the undercurrent of this section is that soft-
ware design is still far removed from being an estab-
lished discipline. To move forward, it is critical the 
field engages in the necessary deep scientific study of 
software design and designing. 

Directions From Looking Outside of CS 

While the design of software is a relatively new ac-
tivity, having only been around for sixty years at the 
most, design has been practiced in other fields for cen-
turies. While sometimes still taught as a craft, or 
learned through apprenticeship, design is newly taking 
shape as an academic discipline, even as a science. 
There is a Design Research Society [1] (which spon-
sors a conference on doctorate research in design), and 
a wide literature. New university programs in design 
are emerging, such as Stanford’s “d-School” [7]. All 
this suggests that there is much that software research-
ers can consider and draw from in order to advance 
design specifically within the software field. A few 
examples have already appeared in the preceding text: 
we have referred to work in industrial engineering [44], 
architecture [11, 19], design processes [72], and 
civil/mechanical engineering. We provide a few addi-
tional examples here, most of which are inspired by 
building architecture. 

While architecture has already been mentioned, and 
has been used for many years as, at least, an analogous 
activity to building software, the richness of the build-
ing architecture discipline suggests that there are still 
further insights to mine. For instance, Parnas’s dictum 
about designing software for ease of change [63] is 
explored, by analogy, with substantially greater rich-
ness in Stewart Brand’s “How Buildings Learn” [19]. 
The several layers of a building’s architecture deter-
mine the ways in which the building can be adapted to 
meet new needs. Bottom-up and top-down approaches 
to such design are considered and extensively illus-



trated. It is a book that, while containing no reference 
to software development, can be read, appreciated, and 
applied by software engineers. 

Another practice from architecture is that of a de-
sign charette. A charette is related to software’s design 
reviews and walkthroughs, but is closer in spirit to ag-
ile design, for the purpose of a charette is to move a 
design forward quickly, by developing and critiquing 
design in a group setting. In educational settings, cha-
rettes are part of design studios, where regular design 
reviews take place. The normal practice of architecture 
is to develop models suitable for and used in periodic, 
active, productive, constructive group design reviews. 

Perhaps most inspirational from the world of archi-
tectural design is the development of computer-based 
building models that enable designers and users (ten-
ants, residents) alike to fly through a proposed design, 
simultaneously seeing, as desired, both the internal 
structure of the building and the appearance and ser-
vices of the building. In software design these concepts 
are almost always reviewed separately: how the code is 
organized is considered almost independently of what 
the user’s experience with the application will be. In 
building architecture, the intrinsic relationship between 
these two views is understood; if the residents of a 
house know in advance where load-bearing beams are 
they can adjust their expectations for how the building 
might be modified in the future. Seeing how well, or 
how poorly, the user interface is separated from the rest 
of an application’s code can reveal whether managers 
could sensibly direct a desktop application to be retar-
geted as a web service. 

Architecture even suggests how we might rethink 
the composition of our academic teaching faculty. Ar-
chitecture schools typically include many practicing 
architects, just as music schools include many practic-
ing musicians. The conviction is that students can only 
have an adequate understanding of their discipline 
through engagement with faculty regularly acquainted 
with the full breadth of disciplinary challenges. One 
could examine many computer science departments and 
find no faculty qualified to construct any application 
larger than a compiler – a task trivial in comparison 
with the challenges regularly faced by many profes-
sionals in industry. Students must also engage in the 
practice, and do so repeatedly. 

Many design professions have another practice from 
which we could benefit: the study of designs. Designers 
of luxury goods, buildings, machinery, and consumer 
goods alike spend significant time assessing – studying 
– existing designs. The objective is not only to under-
stand how something works, but to assess its “non-
functional properties” – what brand sense it conveys, 

what its aesthetic is, how it affects its user. In contrast, 
most software engineering courses spend no time 
studying existing design, instead plunging ahead with 
green-field approaches, yielding a too-predictable out-
come. 

Barriers To Progress  

Having made a broad set of suggestions, we must 
acknowledge that significant barriers persist to making 
these kinds of advances a reality in practice. First, as 
we observed earlier, design is seriously undervalued by 
many. On the one hand, we admit that there is some 
basis for such undervaluing: the tools and techniques 
available to the average practitioner are not necessarily 
very good, especially when put in light of the full spec-
trum of considerations discussed in Section 4. This 
state of affairs makes it difficult to convert the skeptic 
or to provide credible evidence that proper design(ing) 
does make a difference. On the other hand, such nega-
tive attitude hinders progress: the effort spent objecting 
might be better spent making advances or at least en-
couraging others to do so.  

Second, designers are not necessarily equipped with 
the right skills and, worse, they may or may not know 
whether their skills match up to a project at hand. Who 
is qualified and how do they acquire their skills? Cer-
tainly, some designers are simply great, whether by 
experience or intuition. But a vast majority has to ac-
quire their skills somehow, yet a culture of apprentice-
ship is virtually non-existent. Granted, not all software 
needs a great designer, but even the “average designer” 
must learn somehow. 

Compounding this problem is the remarkable toler-
ance that software professionals seem to have. If the 
tools that we use to design are incomplete, inelegant, 
and difficult in their use, then how can we be expected 
to produce designs that are complete, elegant, and lead 
to easy-to-use systems? And this does not just hold for 
design tools. Poorly designed user interfaces and 
clunky programs abound. Where are we to find our 
inspiration for quality? 

A root cause can be found in the education of soft-
ware engineers [49, 53]. Most stem from a “standard” 
Computer Science program, which incorporates at best 
a few software engineering courses and involves nu-
merous other courses which ignore the lessons of soft-
ware engineering altogether. Extensive practice with 
significant software design problems is impossible in 
this setting. The past decade has seen the emergence of 
Software Engineering (e.g, [5, 6]) and Informatics 
(e.g., [2-4]) majors. The focus of most such programs 
is on design, a trend we welcome. Still, the materials 



available from which to teach design are limited and 
much innovation is necessary in this regard. 

To offer hope, there is the advantage of time. Early 
reports from the SIGSOFT Impact project indicate that 
research advances may take up to ten or sometimes 
even twenty years from initial idea to widespread prac-
tical use, as the original idea must find traction and 
morph to reflect practical needs and considerations 
[60]. So, in a field that is as young as software engi-
neering, perhaps we are not doing so badly? 

Improvements and overcoming the barriers we men-
tioned, though, will require the community to undergo 
a drastic change in mindset. Rather than following the 
next hype into believing software development “can be 
made easy”, a true discipline must emerge in which it is 
recognized that design is a critical activity that involves 
serious and difficult work. And herein may lay the most 
difficult barrier of them all. 

6. Challenges and Vision 

Design and architecture as described comprises a 
broad field and arguably sits at the very core of soft-
ware engineering. All of its aspects are vital: ways of 
designing, architectural representations, means for per-
forming analysis, techniques for transitioning a design 
into an implementation, ways of capturing design ex-
perience, and so on. Absence of progress in any one of 
the areas discussed impedes progress in the others. 
Thus, broadly based advancement on the whole set of 
sub-topics constitutes a grand challenge for software 
engineering – an appropriate, critical focus for software 
engineering research. We conclude, therefore, not with 
a specific design problem as a grand challenge for the 
field, but rather repeat and highlight a few technical 
items, providing a bit of a vision for the future, offer 
some directions for community activities, and finish 
with a speculation on the long future of “software” de-
sign. 

Technical Challenges 

Designing a software application involves designing 
its structure as well as its user-observable properties, 
functional and non-functional alike. By removing the 
counterproductive boundary between requirements and 
design, a holistic view of product conception emerges. 
By analogy to building architecture, a building can be 
seen as being composed of beams, bricks, pipes, glass, 
and wires, but also being composed of living spaces, 
galleries, sun rooms, and cooking facilities. Building 
architects can show clients cut-away views of build-
ings, simultaneously revealing both structure and facil-
ity, the interrelationships between natural light and 

ceiling truss. Imagine now interactive cut-aways of 
buildings, whereby the designer could move skylights 
and see the consequences for the roof’s structure, or 
change specifications on a window and note how the 
quality of interior light improves.  

Realizing an analogous vision for software design 
requires our supporting the design and visualization of 
user functionality at least as well as our supporting the 
design and visualization of software structures. Not 
only must we see and manipulate components and con-
nectors in an architecture, but see, as we do so, how the 
user’s data display is changed, or how the electronic 
commerce purchasing experience is shaped, or how 
facilities for controlling the chemical plant are set. 

The community must develop the languages, tech-
niques, and tools for enabling the multitude of stake-
holders in an application design to sketch, evaluate, 
revise, and refine design concepts for applications. 
Success will be achieved when clients are able, through 
working with the design team, to see their tasks in new 
ways and are able to innovate new ways of meeting 
those tasks. 

Community Challenges 

Achieving the technical vision will require long-
term financial support, new venues for publication and 
community analysis of designs and design technology, 
a new sense of who the design community comprises, 
and, perhaps, some “incentives”. 

The critical enabler for progress is, of course, ade-
quate funding. The centrality of design and architecture 
to software development demands that significant, sta-
ble funding be directed to these activities. The National 
Science Foundation’s Science of Design program is a 
good start in this direction, but support for design re-
search should not be limited to the NSF; other agencies 
should make this field a priority as well. Such support 
should also be continuing. Design will not be “solved” 
after three years of work; indeed, as we have argued, 
design will always be a challenge – our aspirations will 
not abate. 

Software design and architecture research also needs 
adequate forums for the presentation and review of 
research advances. Drawing from the study of design in 
other fields, forums are also needed for the public pres-
entation and review of designs themselves. Such review 
can inspire other designers, reveal properties of new 
design techniques and tools, and add to the repertoire 
of design experience. Design research often does not 
have the same character as research in other fields, 
such as software testing and analysis. Hence traditional 
forums and criteria are unlikely to be adequate or ap-
propriate for review of design advances. 



New forums for the discussion of software design 
would also be supportive of expanding the community 
of contributors. As software design is recognized as 
engaging teams of designers with expertise spanning 
specific application domains, business planners, and 
software specialists, a forum in which all would feel “at 
home” would be productive. 

Lastly, there is nothing like an incentive to spark 
quick advances in a field. Building architects are annu-
ally awarded the Pritzker Prize, an award that carries 
not only international fame but a $100,000 reward. In 
fact, design awards are common in many fields: auto-
motive design, industrial design, fashion design, and so 
on. Why not spark innovation in software design by 
creation of a corresponding prize? A similar kind of 
inducement for advancement is a challenge prize, such 
as the Ansari X-Prize was for space flight. Establishing 
appropriate criteria and processes for evaluating soft-
ware designs would be a challenge, but the effect on 
the community could be significant. For instance, the 
evaluation could cover the process by which the design 
was produced, as well as design itself. 

A Vision For The Long Future 

One of the themes of this article has been that soft-
ware design and architecture has been, and will remain, 
an intellectual challenge: as our abilities to effectively 
design for one set of challenges become more effective, 
a new set of design challenges emerge to demand yet 
further advances. The limit on this cycle is simply the 
definition of “software”. By expanding our sense of 
what software is, in a very liberal sense, numerous ex-
citing opportunities for contributions from software 
design researchers emerge, opportunities for which we, 
as software designers, have some distinct advantages 
over designers from many other fields.  

Consider, for example, the interaction design prob-
lem faced by automotive designers. One could argue 
that what car manufacturers are selling is not sheet 
metal and rubber, but a “driving experience”. Such an 
experience constitutes a structured amalgam of sights, 
sounds, feelings, and smells. Driving a car involves 
interaction with not only the control devices in the car, 
but interaction with passengers, audio and visual in-
puts, interaction with other vehicles, laws, and traffic 
control systems outside the vehicle. If the design prob-
lem is to design that interaction experience, what rep-
resentation does that design have? The interaction is 
fundamentally intangible. Traditional design disci-
plines, such as automotive design, are strongly 
grounded in the physical materials of their traditional 
products and designers are unaccustomed to a final 
reality that is intangible. Software designers, by con-

trast, have always dealt with an intangible product: 
software; we are accustomed to designing, modeling, 
and assessing a broader set of realities.  

If we therefore extrapolate the concept of “soft-
ware” beyond the traditional confines of the computer 
to encompass radically different intangible products, 
such as this example automotive interaction, an excit-
ing frontier opens up. Software designers may be able 
to lead the way into conceptualizing, modeling, and 
building new kinds of intangible products. Working 
cooperatively with designers from other specialties, the 
prospect is for creating new kinds of highly complex 
systems that are now barely imaginable. 

Software design and architecture have a long future 
ahead of it. 
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