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Abstract—Despite a diversity of software architectures supporting information visualization, it is often difficult to identify, evaluate, 

and re-apply the design solutions implemented within such frameworks. One popular and effective approach for addressing such 

difficulties is to capture successful solutions in design patterns, abstract descriptions of interacting software components that can 

be customized to solve design problems within a particular context. Based upon a review of existing frameworks and our own 

experiences building visualization software, we present a series of design patterns for the domain of information visualization. We 

discuss the structure, context of use, and interrelations of patterns spanning data representation, graphics, and interaction. By 

representing design knowledge in a reusable form, these patterns can be used to facilitate software design, implementation, and 

evaluation, and improve developer education and communication. 
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1 INTRODUCTION 

As recognition of the value of visualization has increased and the 
demand for visual analytics software has risen, visualization 
researchers have developed numerous software frameworks to meet 
these needs. By changing the cost structure governing the design and 
implementation of visualizations, such frameworks carry the 
potential to lower barriers to entry and increase the space of feasible 
visualization designs. Still, there is never a single tool or framework 
that is appropriate for all problems in a given domain. Developers 
often migrate between tools (e.g., when developing on a new 
platform) or build their own systems (e.g., to achieve functionality 
not available elsewhere). In either case, an understanding of the 
design solutions employed within existing tools could aid the 
programmer in learning and evaluating other frameworks and 
furthering their own development efforts. However, inspection of 
source code and design documents, if available, can prove difficult 
and tedious. Descriptions in the research literature often place more 
emphasis on novel features than on recurring design patterns. As a 
result, it can be difficult to identify, evaluate, and re-apply the design 
solutions implemented within existing frameworks. 

Similar issues permeate any discipline steeped in design. 
Originally developed by Christopher Alexander and his colleagues in 
architecture [2], design patterns have proven to be a useful means of 
capturing time-tested design solutions and facilitating their reuse. 
Patterns aim to explicitly represent design knowledge that is 
understood implicitly by skilled practitioners.  

Perhaps nowhere has the pattern approach been more effective 
than in software engineering. Gamma et al. [13] describe software 
design patterns as “descriptions of communicating objects and 
classes that are customized to solve design problems within a 
particular context.” Such patterns document object-oriented software 
design solutions in a fashion independent of specific programming 
languages. Patterns typically consist of a name, a purpose, a 
description of when and why to apply the pattern, structural 
diagrams, examples of use, and a discussion of interactions with 
other patterns.  

Schmidt [18] has noted a number of benefits gained from 
incorporating design patterns into the development process. He 
found that patterns enabled widespread reuse of software architecture 
designs, improved communication within and across development 
teams, facilitated training of new programmers, and helped transcend 
ways of thinking imposed by individual programming languages. 
Schmidt also recommends that practitioners focus on developing 
patterns that are strategic to a domain of interest, while reusing 
general-purpose patterns (e.g., those of [13]) as much as possible—
an approach we now adopt for the design of information 
visualization software. 

Previous research has applied the design pattern approach to 
visualization problems. Stolte et al. [21] introduce design patterns 
describing different forms of zooming within multi-scale 
visualizations. Chen [7] takes a more ambitious approach, suggesting 
high-level visualization patterns addressing general visualization 
concerns. He lists patterns such as Brushing, Linking, and Encoder, 
the latter encompassing in a single pattern the visual encoding 
principles (e.g., use of spatial position, color, size, and shape) 
advocated by Bertin [4], Cleveland [10], Mackinlay [17], and others. 

In contrast, this paper considers patterns at a lower level of 
abstraction, building upon the approaches of Gamma et al. [13] and 
Schmidt [18] to focus specifically on software design patterns for 
information visualization applications. We present a set of twelve 
design patterns that have proven themselves in existing visualization 
frameworks, spanning issues of application structure, data handling, 
graphics, and interaction. The patterns were chosen based upon a 
review of existing frameworks and our own experiences building 
prefuse [14], an open source toolkit for building interactive 
visualizations. As Schmidt warns [18], not everything should be cast 
as a pattern, even if it is possible to do so. We have attempted to 
select only those patterns whose recurrence and/or significance 
warrants their inclusion. 

2 DESIGN PATTERNS 

We describe a set of twelve design patterns for information 
visualization software. Each pattern consists of a name, a summary 
description (in italics), and a more detailed description describing the 
context of use, examples, and relations to other patterns. Each pattern 
is also accompanied by a structural diagram that uses the 
conventions of Gamma et al. [13] to depict the classes and the 
relations between them, such as inheritance, reference, and 
aggregation. Figure 1 provides a legend for interpreting the structural 
diagrams. The structural diagrams do not specify full-blown 
implementations; they provide an abstracted view to communicate 
the essence of the pattern.  
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Figure 1. Structural diagram legend. Classes are depicted as boxes, 
potentially listing attributes and method signatures. Abstract classes are titled 
using italics. Arrows indicate relationships between classes. These relations 
include inheritance, denoted by a large empty triangle; object reference, 
denoted by an unadorned arrow; aggregation, denoted by a diamond base; and 
creation, denoted by a dotted, labeled arrow. A circle at the arrow endpoint 
indicates a 1-to-many relation. Notes, depicted as a box with a folded corner, 
are used to communicate implementation information in pseudocode. 

2.1 Reference Model 

Separate data and visual models to enable multiple visualizations of 
a data source, separate visual models from displays to enable 
multiple views of a visualization, and use modular controllers to 
handle user input in a flexible and reusable fashion. 

Information visualization application development requires 
balancing issues of data management, visual mappings, computer 
graphics, and interaction. Determining the right separation of 
concerns has serious consequences for the complexity, extensibility, 
and reusability of software architectures. The Reference Model 
pattern provides a general template for structuring visualization 
applications that separates data models, visual models, views, and 
interactive controls. 

 
Figure 2. The Reference Model Pattern. A visualization manages visual 
models for one or more data sets, separating visual attributes (location, size, 
color, geometry, etc) from the abstract data. One or more views provide a 
graphical display of the visualization, while control modules process user input 
and may trigger updates at any level of the system. 

The structure of the Reference Model pattern is shown in Figure 
2. A DataSource component, such as a formatted file reader or a 
database connectivity interface, loads data sets to be visualized. One 
or more data sets can then be registered with a visualization. This 
mechanism allows abstract data to be separated from visual attributes 
such as location, size, shape, and color, thereby allowing a single 
abstract data set to be used in multiple visualizations. A common 
approach is to create visual items: lightweight components 
representing an interactive visual object in the visualization. 

The Visualization, View, and Control classes employ the 
standard Model–View-Controller (MVC) pattern [16] of user 
interface development. A visual model can be shown in one or more 
views, with user input processed by controls that can affect change at 
any level of the system. One way of interpreting this pattern is as a 
tiered version of MVC, with the model divided into separate 
abstractions for the data and visual properties. 

The Reference Model pattern has been widely used and 
advocated. Both Chi et al’s data state model [8] and Card et al’s 
infovis reference model [6] proscribe the use of this pattern. In their 
exploration of design choices for architecting visualizations, Tang et 
al. [22] also discuss the importance of separating data and visual 
models. Finally, numerous software frameworks adopt this template 
of application structure, including Advizor [11], Improvise [23], 
Polaris [20, 21], prefuse [14], and SAS/JMP [7]. 

The Reference Model pattern provides a high-level template for 
application design whose implementation can be informed by other 
patterns. The DataSource components may use the Abstract Factory 
or Factory Method patterns of [13] to instantiate objects without 

specifying concrete classes. Update notifications can be passed 
between objects using the Observer (or Listener) pattern [13].  For 
example, Views can listen for update events issued by the 
Visualization. Control objects represent components in a Strategy 
pattern [13], as each represents a strategy for handling user input that 
can be added or removed at run-time. Each of the remaining patterns 
presented in this paper also contribute to the implementation of this 
model. 

2.2 Data Column 

Organize relational data into typed data columns, providing flexible 
data representations and extensible data schemas. 

The most common data representation used in visualization is the 
relational model or “data tables” [6], with a table row representing a 
single data record (also called a relation or tuple) and table columns 
representing individual data fields. The description of a table’s 
column structure, including each column’s name and its contained 
data type, is called a schema. Database management systems 
regularly store relational data in row-major order, as keeping the 
contents of a relation in a contiguous block helps minimize disk 
usage when evaluating queries. Information visualization systems, 
however, primarily manage data sets in main memory and are faced 
with the design decision of internally grouping data by row or by 
column. 

A row-based approach has the advantage of treating data records 
as individual objects, enabling easy grouping and sorting of 
relations. A column-based approach, however, often simplifies data 
management. Columns can be added and removed more easily, and 
columns can be shared across tables, facilitating data reuse. Each 
column can implement its own data management policy to more 
efficiently store data. When representational flexibility and 
extensible schemas are needed, the Data Column pattern can be 
applied to implement column-based relational tables. 

 
Figure 3. The Data Column Pattern. Relational data tables are implemented 
as a collection of column objects. Data columns encapsulate data representation 
and can be shared among tables, propagating value updates using the Observer 
pattern [13]. A factory pattern can be used to facilitate column creation. 

The structure of the Data Column pattern is shown in Figure 3. 
Tables are represented as an aggregation of column objects. Column 
objects can be shared across multiple tables, with update 
notifications provided to each enclosing table. Data representation 
strategies can vary by column (an instance of the Strategy pattern 
[13]). For example, integers might be stored in an array, boolean 
values in a compact bit vector, while sparse data representations 
could be applied in situations of low data density. Furthermore, table 
schemas can be modified with little overhead, by simply adding or 
removing column instances from the table.  

Tables can handle column access in multiple ways. Data columns 
can be referenced by number (using an array look-up) or by name 
(using an associative map). It is also useful to include a row 
manager, which tracks the currently occupied rows and, if needed, 
maintains a map between table row numbers and column row 
numbers. These numbers may differ if filtered tables are supported, a 
possibility discussed later (§2.3). A row manager can also be used to 
track added and deleted rows, supporting dynamic tables by reusing 
memory occupied by a deleted row. 

The Data Column pattern has been applied in many visualization 
frameworks, including Advizor [11], the InfoVis Toolkit [12], 
prefuse [14], and SAS/JMP [7]. However, row-based frameworks 
such as Polaris [20] are more amenable to tasks such as sorting and 
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grouping table rows. Creating sorted indices of column values 
relieves some of these issues. An additional solution is to apply the 
Proxy Tuple pattern (§2.5), creating an object-oriented interface to 
individual table rows. Finally, the Abstract Factory or Factory 
Method patterns [13] can be applied to instantiate polymorphic data 
columns based on criteria such as data type and sparsity. 

2.3 Cascaded Table 

Allow relational data tables to inherit data from parent tables, 
efficiently supporting derived tables. 

In many cases, it is necessary to extend the contents of a table 
without modifying it. A motivating example is the creation of visual 
abstractions, which add visual attributes such as location, color, size, 
and shape to an existing data model. In accordance with the 
Reference Model pattern, a separation between the visual data and 
the original data should be maintained. Another example is the 
creation of small multiples displays, which might vary a single visual 
property such as color across each display. It is desirable to reuse the 
remaining properties across each of the display models and 
coordinate updates to these properties. The Cascaded Table pattern 
provides a solution to this problem for relational data by extending 
an existing table without modifying it. 

 
Figure 4. The Cascaded Table Pattern. A cascaded table inherits values 
from a parent table instance. The cascaded table may manage its own set of 
data columns, potentially shadowing columns in the parent. Column references 
not found in the child table are resolved against the parent table. 

The structure of the Cascaded Table pattern is shown in Figure 4. 
A CascadedTable subclasses Table and also maintains a reference to 
a parent table. If a requested column is not found in the child table, 
the request is forwarded to the parent. CascadedTables may contain 
data columns that shadow columns in the parent table. For example, 
adding a new column with the same name as a column in the parent 
will override access to the parent’s column. Update notifications are 
relayed from parent tables to child tables, achieving coordination 
between parent and child. By extending a parent table with 
additional data, the Cascaded Table pattern is an example of Gamma 
et al’s Decorator pattern [13].  

Proper use of the Cascaded Table pattern requires a row manager 
that maps between the rows of the child table and its parent table. 
Such management is especially useful when cascaded tables provide 
filtered views of the parent. For example, clients might specify a 
filter predicate to limit the rows accessible from the cascaded table 
(see the Expression pattern in §2.6). 

The Cascaded Table pattern is used extensively in the prefuse 
visualization toolkit [14] to form visual abstractions, decorating a 
data set with visual properties. The resulting cascaded table provides 
easy access to both visual properties and the underlying data through 
a unified interface. Cascaded tables are also applied to create derived 
visual tables that override only a subset of visual properties, enabling 
reuse both within a display (e.g., adding labels onto shapes) or across 
displays (e.g., the small multiples example discussed earlier). 

2.4 Relational Graph 

Use relational data tables to represent network structures, 
facilitating data reuse and efficient data processing. 

Second to relational data tables, network structures such as 
graphs and trees are amongst the most common data structures used 
in information visualization. These structures are typically 
implemented in an object-oriented fashion, with node objects storing 
adjacency lists of connected node and edge objects. However, in 

visualization frameworks this representation creates an incongruity 
between network and table data structures and sacrifices benefits of 
relational data management (e.g., optimized query processing). The 
Relational Graph pattern addresses the issue by implementing 
network structures using relational data tables. Relational graph 
structures allow the machinery of relational tables to be used on 
network data and enable a level of data reuse unsupported by the 
typical object-oriented model. 

 
Figure 5. The Relational Graph Pattern. Network structures are 
implemented using relational data tables to represent node and edge data. Edge 
tables maintain foreign keys which reference incident nodes. 

The structure of the Relational Graph pattern is shown in Figure 
5. A network structure such as a graph or tree can be represented 
using a set of tables. Each table stores the various data attributes of 
nodes and edges in the network. The edge table additionally 
maintains columns referencing source and target nodes, storing 
identifiers (called foreign keys) that map into a node table. This 
model mirrors the standard format of linked structures within 
relational database management systems. Tree structures can enforce 
topological constraints on the edge table, allowing only parent/child 
relationships. Multiple node tables may be used to model partite 
graphs or nodes with varying data schemas. In these cases, separate 
edge tables can be used to record edges between each pair of node 
tables. 

There are numerous advantages to the relational graph approach. 
First, it helps unify data representation issues in multi-purpose 
visualization frameworks. Machinery for processing and 
manipulating relational tables can be applied to network data, 
including query processing, creation of derived columns (e.g., using 
the Expression pattern, §2.6), and the use of Cascaded Tables (§2.3). 
The same node table can be reused across multiple graphs, while 
edge data can be swapped in and out of an existing graph. 
Furthermore, this representation directly maps to the format 
commonly used in database systems, facilitating visualization of 
network data stored in a relational format. 

However, use of the Relational Graph pattern does introduce new 
obstacles. First is the issue of performance, particularly for traversing 
the graph structure. Properly indexing the key fields can significantly 
improve performance, but involves an overhead that may be 
unacceptable for large graphs. As a result, Relational Graph 
implementations often include acceleration structures. The InfoVis 
Toolkit [12] adds auxiliary columns to node and edge tables, 
maintaining references to “next” and “previous” edges and storing 
statistics such as node degrees. Prefuse [14] maintains a separate 
table within the Graph object, storing adjacency lists and node 
statistics. Finally, the Relational Graph pattern replaces the familiar 
object-oriented model of graphs, potentially complicating 
programming tasks. This deficit can be addressed using the Proxy 
Tuple pattern (§2.5). 

2.5 Proxy Tuple 

Use an object-relational mapping for accessing table and network 
data sets, improving usability and data interoperability. 

While patterns such as Data Column (§2.2) and Relational Graph 
(§2.4) improve efficiency, reusability, and extensibility, they 
introduce abstractions more complicated than the naïve approaches 
they replace. In particular, working with table relations and graph 
nodes and edges as simple objects is a more familiar and intuitive 
model to many programmers. The Proxy Tuple pattern provides a 
solution to this problem, using an object-relational mapping to 
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provide a simple interface for accessing, manipulating, grouping, and 
reordering table and graph data. 

The structure of the Proxy Tuple pattern is shown in Figure 6. 
Instead of accessing table or graph data directly, Tuple instances 
constitute a proxy object that allows programmers to work with 
rows, nodes, and edges as simple objects. A Proxy Tuple is a 
lightweight object storing its row number and references to backing 
data sets—a table and, if appropriate, a graph. Tuples also provide 
methods for accessing and manipulating underlying data. Tuple 
instances can be sorted irrespective of their ordering in the backing 
table, and can be aggregated and grouped as desired, even combining 
Tuples from different tables or graphs. Tuples can be created by and 
stored within a tuple manager associated with the backing table or 
graph. The manager initializes Tuples as needed and invalidates 
them when records are deleted. 

 
Figure 6. The Proxy Tuple Pattern. Tuples provide an object-oriented proxy 
for accessing a row of table data. The Node and Edge subclasses play a similar 
role for graphs, also enabling traversal of the network structure. 

Proxy Tuples can also be used to improve data safety. Consider 
the case of using an integer value to refer to a table row. If that row 
is deleted and then later repopulated by a newly inserted row, access 
using the stored row number will not result in an exception and 
operations may carry unexpected consequences. A Proxy Tuple, 
however, can be invalidated immediately upon deletion of its 
backing row, preventing future access through that object and thus 
promoting data consistency. 

The Proxy Tuple pattern is used throughout the prefuse 
visualization toolkit [14] to manage both abstract data elements and 
visual items displayed in a visualization. By providing a simplified 
interface to a complex subsystem, Proxy Tuple applies the Facade 
pattern of [13]. Tuple managers associated with a table or graph can 
employ the Factory Method pattern [13] to control the concrete types 
of instantiated tuples. 

2.6 Expression 

Provide an expression language for data processing tasks such as 
specifying queries and computing derived values. 

Many visualization frameworks require a basic level of database 
functionality. Either programmers or end-users may need to specify 
queries or calculate derived measures from existing data fields. By 
including an Expression language, a visualization framework can 
support such functionality in a general fashion that can be 
reconfigured at run-time. 

The structure of the Expression pattern is shown in Figure 7. The 
pattern is a direct application of Gamma et al’s Interpreter pattern 
[13], customized for data processing needs. Language statements are 
represented as a tree of Expression objects that perform calculations 
over data elements. Common expression objects include literal 
values, arithmetic or comparison operations, and data field 
references. A Predicate is a special type of Expression that returns 
values of type boolean. 

 
Figure 7. The Expression Pattern. Expression language statements are 
constructed as a tree of processing objects. Expressions perform calculations 
over data elements and return the result. Predicate expressions returning values 
of type boolean can be used to specify queries. 

Invocation of an expression causes recursive invocation of sub-
expressions, with resulting values propagating up the expression tree 
to calculate the final result. Expressions may be used to specify 
selection queries (as Predicate expressions), create derived data 
fields (e.g., using a concrete Data Column (§2.2) instance that refers 
to an Expression instance), or perform other data processing tasks. 
The structural diagram depicts Expressions that take a single tuple as 
input. Single tuple expressions are sufficient for a range of useful 
calculations, though expanded contexts may be desired, for example 
to compute joins across tables.  

Operations upon the expression tree itself can also be of great 
use. For example, traversals of the tree can be used to identify 
referenced data fields, compute optimized query plans for a 
Predicate, or print a text representation of the expression (also useful 
for generating queries to external databases). Such operations could 
be encapsulated within objects in accordance with Gamma et al’s 
Visitor pattern [13].  

There are multiple means of constructing an expression tree. 
Individual objects can be manually instantiated and assembled into 
the expression tree. An ExpressionParser can be provided to compile 
text strings written in a textual expression language into the tree of 
objects. This approach is used in both Polaris (now Tableau) [20] 
and prefuse [14]. Another possibility, used in the Improvise 
framework [23], is to graphically represent the expression tree and 
allow users to edit expressions in a direct manipulation fashion. 

2.7 Scheduler 

Provide schedulable activities for implementing time-sensitive, 
potentially recurring operations. 

Dynamic visualizations often make use of time-sensitive, 
recurring operations. The most common example is animation, 
which requires updating visual properties and redrawing the display 
at regular time intervals, usually over a specified duration. Other 
examples include time-sensitive responses to user input and 
computations bounded to a specified time duration (e.g., an iterative 
graph layout). The Scheduler pattern provides a solution that enables 
time sensitive operations and supports extensibility. 

 
Figure 8. The Scheduler Pattern. Activity instances are registered with a 
centralized scheduler that runs the activities over a specified time interval, 
repeatedly running the activity at requested time steps. 
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The structure of the scheduler pattern is shown in Figure 8. 
Custom operations are created by subclassing the abstract Activity 
class and implementing the “run” method (an example of the 
Template Method pattern [13]). An Activity has a specified start 
time, a duration, and a step time defining the desired length of time 
to wait between repeated invocations. The run method takes as a 
single argument a fractional value between zero and one that 
indicates the progress of the Activity within its duration. This value 
can increase linearly as time elapses or can be modified through the 
use of a pacing function. Slow-in, slow-out animation can be 
achieved using a pacing function with a sigmoidal shape. 

The Scheduler pattern has been used extensively in visualization 
and user interface frameworks. The Information Visualizer [5] 
included a “governor” that oversaw animation and adjusted the level 
of detail when activities took longer than desired. Hudson and Stasko 
[15] used the Scheduler pattern to provide animation within the 
Artkit user interface toolkit, introducing the use of pacing functions. 
More recent frameworks, including Piccolo [3] and prefuse [14], use 
the pattern. 

An important issue in implementing the Scheduler pattern is 
choosing how to handle concurrency. A common approach is for the 
Scheduler’s dispatch loop to run in a dedicated thread. The Piccolo 
toolkit takes a different approach. Its scheduler runs within the user 
interface event loop, resulting in a single-threaded model that frees 
programmers from explicitly handling concurrency issues. However, 
this approach carries the drawback that greedy activities with long-
running “run” methods will leave all user interface components  
unresponsive, regardless of their relation to the visualization. Prefuse 
attempts a compromise between these models, maintaining a 
separate scheduling thread but performing automatic locking in both 
input controllers and schedulable visualization operators to help 
shelter programmers from concurrency issues. 

2.8 Operator 

Decompose visual data processing into a series of composable 
operators, enabling flexible and reconfigurable visual mappings. 

When designing object-oriented visualization software, 
developers must decide upon the appropriate level of granularity for 
the visualization components of their system. Visualization 
frameworks such as Advizor [11] and the InfoVis Toolkit [12] adopt 
a model similar to traditional user interface toolkits, encapsulating 
different visualization designs into monolithic “widgets”. The result 
is a library of interactive components such as scatterplots, time-series 
charts, or treemaps that can be directly instantiated and then added to 
the user interface. Creating new visualizations requires subclassing 
existing widgets or writing entirely new components. An alternative 
approach is to target a finer level of granularity using an Operator 
pattern. The idea is to deconstruct visualization tasks into 
composable operators whose configuration can be modified at run-
time. Example operators include layout algorithms, visual encodings, 
and distortion techniques. New visualizations can be constructed by 
composing existing operators and/or introducing new operators, 
facilitating reuse at the level of individual visualization techniques. 
The prefuse toolkit [14], for example, includes a demonstration of 
composing layout operators to create custom hybrid layout schemes. 
Operators also simplify many customization tasks, allowing clients 
to directly modify the set of operators that constitute the 
visualization.  

The structure of the Operator pattern is shown in Figure 9. The 
basic structure is intentionally quite simple. An operator has a single 
required method that performs the operation (an instance of the 
Template Method pattern [13]), simplifying the creation of new, 
general-purpose operators. An operator performs processing on a 
Visualization instance. Operators may maintain a reference to the 
Visualization (as pictured), or have the Visualization passed as a 
parameter to the “operate” method (if stateless operators are desired). 
An individual operator may have any number of additional 
parameters, depending on its function. For example, a color encoder 

might include a color palette used to determine color values of items 
retrieved from the visualization. Operators can be aggregated into 
composites, enabling sequential batch execution or conditional 
evaluation of operators. 

 
Figure 9. The Operator Pattern. Operators are modules that perform a 
specific processing action, updating the contents of a visualization in accordance 
with a data state model [8]. Possible operators include visual encodings (for 
size, shape, color, etc), spatial layout algorithms, visibility filters, and animated 
interpolation. Composite operators aggregate individual operators to enable 
sequential or conditional execution. 

Operators may be implemented as Activity instances in the 
Scheduler pattern (§2.8), enabling time-sensitive or recurrent 
invocation. Once schedulable, operators can additionally be used to 
implement animated transitions, as done within the prefuse toolkit 
[14]. Operators can also employ Expressions (§2.6). For example, a 
Predicate could be used to select a group of visual items for the 
operator to process. It is possible to implement operators within the 
Expression language itself, an approach partially supported in 
Improvise [23]. 

As described here, the use of operators fits squarely within the 
data state model defined by Chi [8]. The operators act upon the 
visualization, whose state updates as a result. Another variant of the 
operator pattern is the data flow model. Data flow operators have 
specific input and output types and are chained together in directed 
acyclic graphs to define processing flows. This approach is used in a 
number of 3D visualization frameworks, including the Visualization 
Toolkit [19]. Chi [9] has demonstrated that applications written in 
one model can be equivalently formulated in the other. We focus on 
the data state model due to its greater prevalence in information (as 
opposed to scientific) visualization. 

2.9 Renderer 

Separate visual components from their rendering methods, allowing 
dynamic determination of visual appearances. 

Standard user interface toolkits use a component or “widget” 
model, in which interactive components are represented as individual 
objects responsible for drawing themselves and handling user input. 
Typically, such components include a “paint” method that issues the 
drawing commands for rendering the object onscreen. Changing the 
appearance of a component often requires subclassing that 
component and overriding the paint method. This approach is 
common in many visualization frameworks. For example, each 
visual item in the Piccolo toolkit [3] has its own paint method, and 
each visualization provided by the InfoVis Toolkit [12] is 
implemented as a stand-alone widget. This approach has the 
advantages of low overhead, familiarity, and simplicity. However, it 
also limits dynamic changes in appearance. For example, 
implementing a semantic zoom in the standard model requires either 
(1) creating entirely new sets of objects and swapping them based on 
the current zoom level or (2) creating a subclass with a custom paint 
method that explicitly handles each zoom level. The Renderer 
pattern solves this problem by decoupling the representation of a 
visual item from its rendering, enabling dynamic, run-time changes 
in visual appearance. 

The structure of the Renderer pattern is shown in Figure 10. 
Rendering of visual items is performed by dedicated, reusable 
modules responsible for mapping the item’s visual attributes into 
actual pixels. Renderers perform the view transformation step of 
Card et al’s infovis reference model [6]. In addition to a drawing 
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routine, a Renderer should also provide access to the pixel-level 
geometry, testing if a given point is contained within the item (useful 
for identifying when an item is underneath the mouse pointer), and 
calculating bounding boxes. Visual items might contain a direct 
reference to their current Renderer, or, as illustrated in Figure 10, a 
RendererFactory can be used. The RendererFactory dynamically 
assigns Renderers to items based on current conditions. The 
Renderer pattern supports extensibility through the introduction of 
new Renderers. 

 
Figure 10. The Renderer Pattern. The mapping between items and their 
visual appearance is determined using Renderer modules, responsible for 
drawing, interior point testing, and bounds calculation. A RendererFactory can 
be used to assign Renderers to items based on current conditions, such as data 
attribute values or the zoom level. 

Modular renderers have been applied in various frameworks to 
allow clients to extend or change rendering behaviours of provided 
widgets. For example, the Java Swing user interface toolkit uses a 
Renderer pattern to allow clients to specify the rendering behavior of 
individual items within Swing JTable and JTree widgets. The prefuse 
toolkit [14] uses the Renderer pattern for drawing visual items, using 
a RendererFactory to dynamically assign Renderers to visual items. 
The Renderer pattern can also be used in conjunction with other 
patterns. RendererFactory instances can apply the Production Rule 
pattern (§2.10) to provide customizable rule sets for Renderer 
assignment. By pooling and reusing individual Renderers for use 
with any number of items, a RendererFactory applies the Flyweight 
pattern [13]. 

2.10 Production Rule 

Use a chain of if-then-else rules to dynamically determine visual 
properties using rule-based assignment or delegation. 

In many design scenarios, a designer may specify numerous 
default settings and then override these settings to deal with special 
cases. For example, Cascading Style Sheets (CSS) are a widely-used 
technology enabling web designers to specify document properties 
such as typeface, color, and alignment and then override these 
settings as needed. Special cases could include custom settings for a 
particular class of document elements or events such as a mouse 
over. Similar needs arise in visualization software. For example, a 
particular color encoding may be desired by default, but overridden 
in special cases such as user interaction or inclusion in search results. 
Writing a custom color encoding to handle these cases would be an 
inefficient use of time and unnecessarily bloat the software with 
more class definitions. The Production Rule pattern provides a 
flexible solution to this need. 

 
Figure 11. The Production Rule Pattern. A series of nested rules can be 
used to return individual values that meet desired conditions. 

The structure of the Production Rule pattern is shown in Figure 
11. Given a data item (e.g., a Tuple instance) as input, a rule set tests 
the data item against the conditions and returns a matching value. 

Rule sets can begin with a default value; new conditions and values 
can then be added to handle special cases. The result is a dispatching 
structure employing Gamma et al’s Chain of Responsibility pattern 
[13]. Production rules can be modified at run-time, allowing the rule 
set to change while an application is running, possibly as a result of 
user interaction. As formulated here, the implementation of 
Production Rule uses predicate objects to encapsulate the rule 
conditions. When used in conjunction with the Expression pattern 
(§2.6), not only the predicates, but the entire rule structure may be 
implemented using expression constructs (i.e., using “if” statements). 

Other visualization software patterns can benefit from the use of 
production rules. An implementation of the Renderer pattern (§2.9) 
may use production rules to assign renderers to visual items. The 
Operator pattern (§2.8) can use production rules for visual encoding 
operators. For example, a color encoding might use a production rule 
that evaluates to a specific color value in one condition (e.g., a color 
indicating a mouse-over event) but to a delegate color encoding by 
default (e.g., a nominal color encoding based upon a data attribute).  
Both of these approaches are used within the prefuse toolkit [14]. 

2.11 Camera 

Provide a transformable camera view onto a visualization, 
supporting multiple views and spatial navigation of data displays. 

Spatial navigation operations, such as panning and zooming, are 
often used to explore large data sets. Such techniques are often 
applied in conjunction with multiple views, for example to create 
overview+detail displays. A common approach to implementing 
such functionality is to treat the data display as a camera within the 
geometric space of the visualization. Moving, zooming, or rotating 
the camera accordingly changes the viewpoint seen by users. 
Multiple cameras can be used with a single visualization, enabling 
multiple views with unique perspectives. 

 
Figure 12. The Camera Pattern. A view component maintains an affine 
transformation matrix that is applied to visual items when rendering. The affine 
transform matrix can be used to specify translation, rotation, scale, and shearing 
transformations on the geometry of the view. 

The structure of the Camera pattern is shown in Figure 12. A 
view instance (a user interface component providing a graphics 
canvas) maintains an affine transformation matrix describing the 
current position, scale, and orientation of the camera view. When the 
display draws itself, all graphics operations are subject to this 
transform. As most modern 2D and 3D graphics libraries allow 
transformation matrices to be applied directly to a graphics context, 
this can be implemented in a straightforward way. Multi-view 
displays are created by instantiating any number of view components 
and setting their transforms. 

The camera pattern has a long history of use in graphics libraries 
such as OpenGL and is found in nearly any framework that supports 
geometric zooming, such as Piccolo [3] and prefuse [14]. One 
limitation of the pattern is that it only supports affine geometric 
transformations. Non-geometric techniques, such as semantic 
zooming, can instead be implemented by changing the rendering 
behavior of visual items in response to the transform settings. 
Dynamic rendering behavior can be implemented in a modular and 
extensible manner using the Renderer pattern (§2.9).  Animated view 
transitions can be achieved using the Scheduler pattern (§2.7); 
activity instances can incrementally update the view transformation 
and trigger repaints. 
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2.12 Dynamic Query Binding 

Allow data selection and filtering criteria to be specified 
dynamically using direct manipulation interface components. 

Dynamic queries are a central technique in information 
visualization, allowing users to refine a data view through direct 
manipulation [1]. Any number of user interface widgets, such as 
sliders, range sliders, checkboxes, and text boxes may be used to 
input query conditions. The Dynamic Query Binding pattern 
describes the mechanisms by which one can easily create one or 
more widgets bound to a general-purpose query predicate, 
automatically updating both the predicate and any other bound 
components when interaction occurs. 

The structure of the Dynamic Query Binding pattern is shown in 
Figure 13. As pictured, a particular data set and a field of interest are 
used as input to a dynamic query binding that maintains both a 
selection predicate and a data model. The data model participates in 
a Model-View-Controller pattern [16] and provides coordinated state 
for any number of dynamic query widgets. The concrete 
implementation of the model might store a bounded range of values, 
a list of selected items, or a textual search query. By providing 
Factory Methods [13], the dynamic query binding can instantiate and 
configure user interface widgets at the client’s request. For example, 
a range query binding might provide methods for creating 
appropriately configured range sliders. As users interact with these 
widgets, changes to the data model result in notifications to the 
dynamic query binding, which then updates the query predicate. 
Other observers can in turn be notified of changes to the predicate 
and take action accordingly. By explicitly representing query criteria 
as a predicate (possibly applying the Expression pattern, §2.6), 
dynamic queries can be used in a very general fashion. The predicate 
could be used to control item visibility, as is typically done, or as 
criteria for any number of alternative visual encoding or data 
processing operations. 

 
Figure 13. The Dynamic Query Binding Pattern. Given a data set and data 
field as input, a dynamic query binds a selection predicate to a data model. The 
data model can be used as the backing state for any number of user interface 
widgets. The binding also serves as a factory for creating and configuring an 
appropriate set of dynamic query widgets. 

Although most infovis frameworks provide support for dynamic 
queries, not all implement them in full generality. Some frameworks, 
such as the InfoVis Toolkit [12], do not provide generalized query 
predicates and so instead must update data structures directly, 
reducing the applicability of the pattern.  An implementation might 
also forego using the Factory Method pattern, instead requiring 
clients to instantiate and configure the user interface widgets on their 
own. Alternatively, one might maintain a single instantiated widget 
instead of a backing model. By maintaining a backing data model, 
the general form of the pattern supports any number of coordinated 
components. Various widgets can be generated from a single binding 
and incorporated into different parts of an interface. All affect the 
same query predicate and simultaneously update in response to 
changes originating at any of the other bound widgets. 

 

3 CONCLUSION 

While many of the patterns presented can be fruitfully applied in 
isolation, it is often in the relationships among patterns that their 
greatest value is realized. For example, combining the Scheduler 
(§2.7) and Operator (§2.8) patterns enables the creation of reusable 
animation operators, while combining the Relational Graph (§2.4) 
and Proxy Tuple (§2.5) patterns provides a programmer-friendly 
interface to a powerful and flexible data representation. Figure 14 
provides a partial illustration of the relationships between the 
patterns discussed in this paper, including both the proposed 
visualization patterns and related patterns from Gamma et al. [13]. 
The figure provides a roadmap to applying patterns in a holistic 
fashion. 

Given the limited format of this paper, a great deal of discussion 
and a rich space of examples had to be curtailed. Each pattern 
warrants a longer discussion than we have provided here. In addition, 
some candidate patterns have been left out. For example, the 
Scenegraph abstraction used in 3D toolkits such as VTK [19] and 2D 
toolkits such as Piccolo [3], can be usefully described in a pattern 
format. We would also note that observing patterns within real world 
source code plays an important part in understanding the value of 
pattern-infused design. Interested readers may wish to explore one or 
more of the visualization frameworks freely available online, 
including Improvise [23], the InfoVis Toolkit [12], Piccolo [3], 
prefuse [14], and the Visualization Toolkit [19]. 

Finally, we reiterate that patterns are not static entities, but 
evolving descriptions of best practices. We make no claims as to the 
finality or completeness of the patterns presented here, only to their 
observed effectiveness in visualization contexts. We look forward to 
these and other patterns being proposed, challenged, refined, and 
applied. 
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Figure 14. Design Pattern Relationships. The network depicts interactions between design patterns, intending a more holistic pattern of how the various 
patterns apply or mutually reinforce each other. Patterns with italicized text (e.g., Flyweight) are taken from Gamma et al. [13]; those with a standard typeface 
were introduced in this paper. To simplify the diagram, patterns used extensively by the visualization patterns (e.g., Observer) have been omitted. 
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