
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in IEEE Transactions on Software Engineering. This
paper has been peer-reviewed but does not include the final publisher proof-corrections or journal
pagination.

Citation for the original published paper (version of record):

Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P. [Year

unknown!]

Software Development in Startup Companies: The Greenfield Startup Model.

IEEE Transactions on Software Engineering, 0(0)

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-11139



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 1

Software Development in Startup Companies:
The Greenfield Startup Model

Carmine Giardino, Nicolò Paternoster, Michael Unterkalmsteiner, Member, IEEE, Tony

Gorschek, Member, IEEE, and Pekka Abrahamsson, Member, IEEE

Abstract—Software startups are newly created companies with no operating history and oriented towards producing cutting-edge

products. However, despite the increasing importance of startups in the economy, few scientific studies attempt to address software

engineering issues, especially for early-stage startups. If anything, startups need engineering practices of the same level or better

than those of larger companies, as their time and resources are more scarce, and one failed project can put them out of business. In

this study we aim to improve understanding of the software development strategies employed by startups. We performed this state-

of-practice investigation using a grounded theory approach. We packaged the results in the Greenfield Startup Model (GSM), which

explains the priority of startups to release the product as quickly as possible. This strategy allows startups to verify product and

market fit, and to adjust the product trajectory according to early collected user feedback. The need to shorten time-to-market, by

speeding up the development through low-precision engineering activities, is counterbalanced by the need to restructure the product

before targeting further growth. The resulting implications of the GSM outline challenges and gaps, pointing out opportunities for future

research to develop and validate engineering practices in the startup context.

Index Terms—Software Development, Startups, Grounded Theory.

✦

1 INTRODUCTION

SOFTWARE startups launch worldwide every day as
a result of an increase in new markets, accessible

technologies, and venture capital [1]. With the term
software startups we refer to those organizations focused
on the creation of high-tech and innovative products,
with little or no operating history, aiming to aggressively
grow their business in highly scalable markets. Being a
startup is usually a temporary state, where a maturing
working history and market domain knowledge leads
to the analysis of current working practices, thereby
decreasing conditions of extreme uncertainty [2].

The research presented in this paper aims at under-
standing how practitioners engineer software develop-
ment strategies in startups. We focus on the structure,
planning, and control of software projects, in the period
from idea conception to the first open beta release.
We performed semi-structured, in-depth interviews with
CEOs and CTOs from 13 startups, covering a wide spec-
trum of themes and iteratively adjusted the developed
model according to the emerging evidence. With the
resulting Greenfield Startup Model (GSM), we capture

• C. Giardino is with Citigroup Inc., 1 N Wall Quay, Dublin 1, Ireland.

• N. Paternoster, M. Unterkalmsteiner and T. Gorschek are with the
Software Engineering Research Lab Sweden, Blekinge Institute of
Technology, Campus Gräsvik, 371 79 Karlskrona, Sweden.

• P. Abrahamsson is with the Department of Computer and Information
Science, Norwegian University of Science and Technology NTNU, Sem
Sælandsvei 7-9, 7491 Trondheim, Norway.

the underlying phenomenon of software development
in early-stage startups.

New ventures such as Facebook, Linkedin, Spotify, Pin-
terest, Instagram, Groupon and Dropbox, to name a few,
are examples of startups that evolved into successful
businesses. Despite many success stories, the vast ma-
jority of startups fail within two years of their creation,
primarily due to self-destruction rather than competi-
tion [3]. Operating in a chaotic, rapidly evolving and
uncertain environment, software startups face intense
time-pressure from the market and are exposed to relent-
less competition [4], [5]. To succeed in this environment
startups need to be ready to adapt their product to
new market demands while being constrained by very
limited resources [6].

From an engineering perspective, software develop-
ment in startups is challenging as they work in a context
where it is difficult for software processes to follow a
prescriptive methodology [6], [7]. Even though startups
share some characteristics with similar contexts (e.g.
small and web companies), the combination of different
factors makes the specific software development context
unique [8], [6]. Therefore, research is needed to investi-
gate and support the startup engineering activities [7],
guide practitioners in taking decisions and avoid choices
that could easily lead to business failure [9]. However,
despite the impressive size of the startup ecosystem [10],
the research on software engineering in startups presents
a gap [2].

With the Greenfield Startup Model (GSM) we aim to
contribute to the body of knowledge on startup software
engineering. We created the model as an abstraction
of reality [11], based on a systematic procedure and



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 2

grounded on empirical data obtained by the study of
13 cases. While the GSM presents the most significant
themes in the development strategies that characterize
these startups’ contexts, it does not provide guidelines
or best practices that should be followed. However, the
categories in the GSM and the relations among them can
provide a common direction, vocabulary, and model for
future research on software development in startups.

Researchers can use the GSM as a starting point to
understand how technical debt influences the future
growth of startup companies. Furthermore, the model
provides a tool to understand the context in which
startups operate, which is central when developing
methods / models / tools / techniques / practices suited
to these types of development efforts. Filling gaps on the
state-of-practice in startups is also beneficial for startup
practitioners who can apply the discussed strategies to
speed up the development initially, although they need
also to consider the likely drop-down in performance
at a later stage. In this regard, we identified several
commonalities between the issues related to software
development in startups and the research focused on
studying technical debt [12], [13]. This paper makes the
following contributions:

• an empirical investigation into the driving charac-
teristics of early-stage startups

• a rigorously developed model that illustrates how
and explains why startups perform engineering ac-
tivities in a certain manner

• a discussion on opportunities for future research
and potential solutions for the challenges faced by
startups

The remainder of this paper is structured as follows.
Background and related work is covered in Section 2.
Section 3 introduces the research questions and shows
the design and execution of the study. Results are pre-
sented in Section 4, illustrating the GSM. Section 5
discusses the most relevant implications of the GSM.
Section 6 compares results of the study to state-of-the-
art in literature. Section 7 discusses validity threats. The
paper concludes in Section 8.

2 BACKGROUND

Looking at the number of new business incubators
which appeared in the last decade one can estimate
the importance of startups [14]. The wave of disruption
in new technologies has led non-startup companies to
be more competitive, forcing themselves to undertake
radical organizational and innovational renewals, in an
attempt to behave more like startups [15]. However,
the implementation of methodologies to structure and
control development activities in startups is still a chal-
lenge [16]. Several models have been introduced to drive
software development activities in startups, however
without delivering significant benefits [17], [16], [6].

Software engineering (SE) faces complex and mul-
tifaceted obstacles in understanding how to manage

development processes in the startup context. Bach refers
to startups as “a bunch of energetic and committed
people without defined development processes” [18].
Sutton defines startups as creative and flexible in na-
ture and reluctant to introduce process or bureaucratic
measures, which may result in ineffective practices [6].
The limitation of resources leads to a focus on product
development instead of establishing rigid processes [16],
[19]. Attempts to tailor lightweight processes to startups
reported failures: “Everyone is busy, and software engi-
neering practices are often one of the first places devel-
opers cut corners” [20]. Rejecting the notion of repeatable
and controlled processes, startups prominently take ad-
vantage of reactive and low-precision [21] engineering
practices [6], [22], [23], [24].

Startups typically develop software services that are
licensed to customers rather than products that are sold
and customized to a particular client [25]. Market-driven
software development (sometimes called packaged soft-
ware development or COTS software development [26])
addresses issues related to this aspect. Researchers em-
phasize the importance of time-to-market as a key strate-
gic objective [27], [28] for companies operating in this
sector. Furthermore, requirements are “invented by the
software company” [29], “rarely documented” [30], and
can be validated only after the product is released
to market [31], [32]. Hence, failed product launches
are largely due to “products not meeting customer
needs” [33]. To address this issue, startups embrace
product-oriented practices with flexible teams, applying
workflows that provide the ability to quickly change
direction to the targeted market [19], [6]. Therefore,
many startups focus on team productivity, granting more
freedom to the employees instead of providing them
with rigid guidelines [22], [23], [24].

Can the goals of startups, namely accelerating time-
to-market and meeting customer needs, be improved
by the use of solid engineering practices customized
for startups? Even though this specific question is not
the focus of the study presented in this paper, the
detailed investigation of state-of-practice is a prerequisite
for future research into enabling the engineering taking
place in startups.

2.1 General lack of research in startups

Sutton [6] noted in 2000 a general lack of studies in
this area, claiming that “software startups represent a
segment that has been mostly neglected in process stud-
ies”. Further evidence for this observation is provided
by Coleman and O’Connor [16], [17], [34] in 2008. A
Systematic Mapping Study (SMS) [2] performed in 2013
identified only a few studies into software engineering
practices with focus on startups. Moreover, the identi-
fied studies are highly fragmented and spread across
different areas rather than constituting a consistent body
of knowledge. The following subsections discuss the
findings of the SMS.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 3

2.2 Software development in startups

Carmel [35] introduced the term startup to the SE litera-
ture in 1994, studying the time-to-completion in a young
package firm. He noticed how these companies were par-
ticularly innovative and successful, advocating research
to investigate their software development practices and
enabling replication of their success by transferring their
practices to other technology sectors.

Software startups are product-oriented in the first pe-
riod of their development phase [19]. Despite good early
achievements, software development and organizational
management increase in complexity [36], [37] causing
deterioration of performance over time. Briefly, the ne-
cessity of establishing initial repeatable and scalable pro-
cesses cannot be postponed forever [38]. Starting without
any established workflows [9], startups grow over time,
creating and stabilizing processes to eventually improve
them only when sufficiently mature [3].

As startups have little time for training activities, as
discussed by Sutton [6], the focus shifts from prescriptive
processes to team capabilities, hiring people who can
“hit the ground running” [39]. Empowering the team
and focusing on methodological attributes of the pro-
cesses oriented towards prototyping, proof-of-concepts,
mock-ups and demos, testing basic functionalities, have
been the priority in startups [35]. With the startups’
growth, coordinated quality control and long-term plan-
ning processes become necessary [39].

Tingling [40] studied the extent to which maturity of a
company affects process adoption. He reports on intro-
ducing Extreme Programming (XP) principles [41] in the
development process, and the challenges arising from
the need of trained team-members to fully implement
the methodology. Similarly, da Silva and Kon [42] were
only able to start with all the XP practices in place after
six months of coaching the team. Nevertheless, even
then, customization of practices need to be implemented,
adapting the processes to the startups’ context [43].

Contributions to flexibility and reactiveness of the
development process exist by means of Lean [44] and
Agile [45] methodologies (also reported in [46], [47]).
Startups face uncertain conditions, leading to a fast
learning from trial and error, with a strong customer
relationship, and avoiding wasting time in building un-
needed functionality and preventing exhaustion of re-
sources [48], [49], [6]. Customer involvement in software
development has also been discussed by Yogendra [50]
as an important factor to encourage an early alignment
of business concerns to technology strategies.

However, the question remains, to what extent can
improved practices in e.g. requirements engineering con-
tribute to shortening time-to-market or improve target
market accuracy. There have been initiatives to opti-
mize practices for a specific purpose. McPhee and Eber-
lein [51] introduced practices adapted for reducing time-
to-market. Cohen et al. looked at development perfor-
mance and time-to-market trade-off [52]. None of these

studies focus on startups per se, but show that there is
current knowledge that could be useful for startups, or
at least can function as a starting point for performing
research into solutions for startups.

In conclusion, since “all decisions related to prod-
uct development are trade-off situations” [49], startups
generally optimize workflows to the dynamic context
they are involved in. Startups typically adopt any de-
velopment style that might work to support their first
needs, following the “Just do it” credo [53]. As remarked
by Coleman and O’Connor [16], “many managers just
decide to apply what they know, as their experience
tells them it is merely common sense”. This, however,
does not preclude the possibility to collect, package
and transfer experience in a lightweight manner, that
allows flexible adoption of good engineering practices.
On the contrary, startups that cannot benefit from very
experienced team members would increase their success
potential by following validated work practices.

2.3 Software process improvement in startups

The problem of one-size-fits-all, related to some SPI
representations for startups, is described by Fayad [54].
He discusses the problem in actuating the same best-
practices criteria for established companies in 10-person
software startups. Sutton [6] remarks that problems of
rigid SPI models in software startups arise due to:
the dynamic nature of the development process, which
precludes repeatability; organizational maturity, which
cannot be maintained by startups lacking corporate di-
rection; severe lack of resources, both human and techno-
logical for process definition, implementation, manage-
ment, and training. In conclusion, the primary benefits of
one-size-fits-all SPI often do not hold for startups, which
instead of promoting product quality, aim to minimize
time-to-market.

Additionally, the role of rigid SPI has been neglected
because it is seen as an obstacle to the team’s creativity
and flexibility, and to the need of a quick product
delivery process environment [17]. Product quality is
often left aside in favor of minimal and suitable func-
tionalities, shortening time-to-market. Mater and Sub-
ramanian [55] and Mirel [56] report that the quality
aspects mostly taken in consideration in internet startups
are oriented towards usability and scalability. However,
market and application type heavily influence the qual-
ity demand [16], [57].

To maintain the development activities, oriented to-
wards limited but suitable functionality, studies suggest
externalizing the complexity of parts of the project to
third party solutions by outsourcing activities [58], soft-
ware reuse [59] and open-source strategies [60], [61].

2.4 Technical debt

A new stream of SE research, trying to tackle the problem
of technical debt [62], brings and encompasses various



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 4

implications in studying development in software star-
tups. The metaphoric neologism of technical debt was
originally introduced by Cunningham in 1992 [63] and
has recently attracted the attention of SE researchers1.
Brown et al. [65] provides an illustration of the technical
debt concept: “The idea is that developers sometimes
accept compromises in a system in one aspect (e.g.,
modularity) to meet an urgent demand in some other
aspects (e.g., a deadline), and that such compromises
incur a “debt” on which “interest” has to be paid and
which the “principal” should be repaid at some point for
the long-term health of the project”. Tom et al. [62] iden-
tified five dimensions of technical debt: code, design and
architecture, environment, knowledge distribution and
documentation, and testing. On a daily basis startups
face a trade-off between high-speed and high-quality
engineering, not only in architecture design but in multi-
faceted aspects (weak project management, testing, pro-
cess control). In the context of early-stage startups, we
illustrate empirical evidence on accumulated technical
debt in subsection 4.7 and discuss its implications in
subsection 5.4.

2.5 Terminology

To set a common ground and to prevent ambiguity, we
use the following terminology throughout the paper:

• Software development strategy: the overall ap-
proach adopted by the company to carry out prod-
uct development.

• Engineering activities: the activities needed to bring
a product from idea to market. Traditional engi-
neering activities are, among others, requirement
engineering, design, architecture, implementation,
testing.

• Engineering elements: any practice, tool or artifacts
contributing to and supporting the engineering ac-
tivities.

• Quality attributes: those overall factors that affect
run-time behavior, system design, and user expe-
rience. They represent areas of concern that have
the potential for applications to impact across var-
ious layers and tiers. Some of these attributes are
related to the overall system design, while others
are specific to run time, design time, or user centric
issues [66].

• Growth: an increase in company size with respect
to the initial conditions for either employees or
users/customers, and product complexity for han-
dling an increasing number of feature requests.

• Software product: any software product and/or
software service.

• Software process improvement: any framework,
practice, or tool that supports activities leading to
a better software development process [67].

1. Important contributions characterizing the “debt landscape”
are [12], [13] published at a dedicated workshop [64] organized by
the Software Engineering Institute and ICSE.

3 RESEARCH METHODOLOGY

The goal of this study is to understand how software
development strategies are engineered by practitioners
in startup companies. In particular, we are interested in
structure, planning and control of software projects, in
the period from idea conception to the first open beta
release of the software product.

We set the boundaries of the research by reusing
a previously conducted systematic mapping study [2],
which steered also the formulation of research questions:
RQ-1: How do startups structure and execute their main

engineering activities?
RQ-2: How are product quality attributes considered by

startups?
To answer these questions, we investigated the soft-

ware development approach undertaken by practitioners
of startups. Following a Grounded Theory (GT) method-
ology [68], we executed 13 semi-structured interviews
(with 13 companies) integrated with follow-up question-
naires. We tailored the questionnaires to each startup,
partially taking advantage of the repertory grid prin-
ciples [69]. From this, we elaborated and extracted the
Greenfield Startup Model (GSM) explaining the under-
lying phenomenon of software development in startups.

Following the GT principles, we captured the most
relevant aspects of software development from startup
practitioners, letting a theory emerge from the interviews
and adjusting the research hypotheses and questions as
we proceeded. During these interviews we collected data
related to engineering activities undertaken by startups.
Then, we proceeded with the analysis of the data, find-
ing important relations among concepts with a formal
approach to generate and validate the final theory [68].

As suggested by Coleman, in view of the different
versions of GT, researchers should indicate which “im-
plementation” of the theory is being used [34]. Since
information obtained from the SMS and our direct ex-
perience with startup companies provided a good initial
level of knowledge, in this study we use Corbin and
Strauss’ approach [70]. This GT version empowers the re-
searchers’ “theoretical sensitivity” [71], and encourages
them to outline the research problem beforehand.

Figure 1 shows a complete overview of the study
methodology and execution, illustrating how we tailored
the general GT methodology to our specific needs. The
produced data collection and analysis packages (includ-
ing interview questions, follow-up questionnaires and
codes) are available in the supplemental material of this
paper [72].

The results of our previous SMS provide input to the
study design, contributing to the Design and Execution
of the study. The process depicted in Figure 1 is evo-
lutionary and affects the design at each new iteration.
In Data Collection we integrate the empirical results in a
case study database and subsequently process it in Data
Analysis to form theoretical categories. At each iteration,
the emergent theory is updated following a formal pro-
cedure, Paradigm Model Generation, and after verifying



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 5

Section 3.2 - 

Data Collection 

Systematic 
mapping 

study

Consistency
check

Data 
ordering

Coding
Theoretical 
framework

Theoretical 

saturation?

Section 3.4 - 

Paradigm 

Model 

Generation

NO

YES

Section 3.1 - Design and Execution

Section 3.3 - Data Analysis 

Execution and 
improvements 
of case study

Interview design process

Initial design of 
questionnaire

Questionnaire 
results

Interview 
transcript

Case 

study 

database

Section 3.5 - 

Theory 

Validation

Fig. 1. Research methodology - Grounded Theory process overview

that we achieved Theoretical Saturation2 of categories, we
proceeded to Theory Validation.

The first two authors jointly executed the whole pro-
cedure, handling conflicts by reviewing the rationale
of decisions with the third and fourth authors. When
necessary we performed an in-depth review of the study
design and data collected during the execution process.
The process details are described in the following sub-
sections, structured according to the five macro phases
depicted in Figure 1.

3.1 Design and Execution

In this paper we address technical aspects related to
software development in startups, exploring their oper-
ational dynamics. Lacking agreement on a unique defi-
nition of the term startup, we sampled case companies
according to the recurrent themes characterized in the
definition of startups [2]:

• newly created: with little or no operating history.
• lack of resources: with economical, human, and

physical limited resources.
• uncertainty: with little knowledge of the ecosystem

under different perspectives: market, product fea-
tures, competition, people and finance.

• aiming to grow: with a scalable business in increas-
ing number of users, customers and company’s size.

We sampled the companies in two distinct phases.
First we executed an initial convenience sampling [73],
which led to the identification of eight companies. Then
we included five additional startups during the theory
formation process (theoretical sampling), iteratively im-
proving the sample according to the emerging theory.
The characteristics of the sampled companies are re-
ported in Table 1.

2. The point at which executing more interviews would not bring
any additional value for constructing the theory.

TABLE 1

Characteristics of the studied companies

ID Company age Founding Current First product
in months team employees building time

(developers) in months

C1 11 4 (2) 11 6
C2 5 2 (2) 6 3
C3 18 4 (4) 4 6
C4 17 3 (2) 11 6
C5 20 2 (1) 4 12
C6 30 3 (2) 4 1
C7 12 2 (1) 7 4
C8 24 4 (3) 16 4
C9 5 5 (4) 5 1
C10 43 6 (4) 9 4
C11 36 3 (3) 6 2
C12 12 3 (3) 3 3
C13 24 2 (2) 20 3

All companies, except C10, were founded within the
last three years (2009-2012), by an average of 3 founding
members, who were in majority developers. Moreover,
the number of current employees shows how, to different
degrees, companies expanded the initial teams. All com-
panies, except C5, released their first product to the mar-
ket within 6 months of the idea conception. The products
consist of pure web (8), web- and mobile (4), and web-
and desktop applications (1), launched in six different
nations (United States (4), Italy (4), Germany (2), Sweden
(1), United Kingdom (1), New Zealand (1)). The growing
team size and publicly available data suggest a generally
healthy status of the businesses. A detailed documenta-
tion about the startup sampling and their distribution
can be found in the supplemental material of this pa-
per [72]. We executed the case studies online, supported
by tools for video conferencing, recording each session
which lasted 1 hour on average. The interview subjects
were CEOs or CTOs. When selecting interviewees, we
required that they worked at the company from the



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 6

start. We followed a step-by-step work-flow, consisting
of the actual interview, preparation of the customized
follow-up questionnaire and the iterative adjustment of
the interview package artifacts.

3.2 Data collection

We designed the data collection to allow for triangula-
tion, which integrates multiple data sources (interview,
questionnaire) converging on the same phenomenon.
The interview questions (see Table 10 in the supple-
mental material [72]) cover aspects such as development
process, requirements elicitation, quality requirements,
analysis, design, implementation, testing and deploy-
ment. After transcribing an interview, we sent a follow-
up questionnaire to the interviewee. We designed the
questionnaire to capture additional data, gather missing
information and confirm interview results by triangula-
tion. Note that we did not use the data from the follow-
up questionnaire as input for theory generation. Table 11
in the supplemental material shows the prototype of
the questionnaire that we adapted to each interviewee
and company, based on the data collected in the earlier
interview.

The case study database allowed us to easily retrieve
and search for information, assembling the evidence
from different data sources, as described also by Yin [74].
We constructed and stored the database using the quali-
tative data analysis software package AtlasTI3. We over-
lapped interviews with questionnaire results to reveal
and flag potential inconsistencies in the data.

3.3 Data analysis

The first two authors led the coding procedure and
performed the analysis in a co-located environment, i.e.
working together on a single computer screen. Before
starting the analysis, a data ordering procedure was
necessary as interviews were spread across a multitude
of topics. Therefore, we structured the transcripts into
thematic areas according to different topic cards used
during the interviews. We proceeded horizontally to
analyze the same thematic areas within different tran-
scripts, rather than going through an entire transcript
at one time. Once the data was ordered, we coded the
interviews according the following steps:

• We assigned labels to raw data, and carried out a
first low-level conceptualization using both in-vivo
and open coding [75].

• We grouped concepts together into theoretical cate-
gories and subcategories. By means of axial coding
we first described the different relations between
subcategories, and then relations between subcate-
gories and categories.

• We refined categories several times to create dif-
ferent levels of abstraction and adjusting concepts,
aided by a simple knowledge management tool.

3. Available online at http://www.atlasti.com/.

• We validated consistency among categories by se-
lective coding, exploring and analyzing links among
subcategories.

• We identified the core category - the one with the
greatest explanatory power - by analyzing the causal
relations between high-level categories.

During data extraction we used in-vivo coding com-
bined with the more descriptive procedure of open
coding. Following the example of other grounded the-
ories, developed in related areas such as Information
Systems [76] and Software Process Improvement [77],
we performed the high-level conceptualization during
creation of categories, in the process of refining axial
and selective coding. As we were iterating through the
interviews, we analyzed new data by updating codes
and categories when necessary, and taking notes in the
form of memos to adjust the emerging theory.

After the coding process, we formalized a first rep-
resentation of the GT experience map in a theoretical
model. The model is presented in the form of categories
and subcategories that are linked together according
to cause-effect relationships [71]. The formation of the
theoretical model is a bottom-up approach. From the
empirical data and coding process, the model developed
into two different levels: a detailed level representing
the network of subcategories (identified mainly by the
axial coding process), and a high-level representation of
the main categories network (identified mainly by the
selective coding process).

3.4 Paradigm model generation

As mentioned in subsection 3.1, we tested emergent
theories by integrating additional companies into the
sample, selected following the principle of theoretical
sampling [74].

We used the process of paradigm modeling, intro-
duced by Corbin [71], at each iteration together with
interview execution, systematically analyzing the emerg-
ing theory. The paradigm model is composed of:

• Causal conditions: the events which lead to the
occurrence of the phenomenon, that is our core
category.

• Context: set of conditions in which the phenomenon
can be extrapolated.

• Intervening conditions: the broader set of conditions
with which the phenomenon can be generalized.

• Action/interaction strategies: the actions and re-
sponses that occur as the result of the phenomenon.

• Consequences: specification of the outcomes, both
intended and unintended of the actions and inter-
action strategies.

Within the limits of the critical bounding assumptions,
the role of the generated theory is to explain, predict and
understand the underlying phenomenon.

3.5 Theory Validation

Presenting a grounded theory (GT) is challenging for
a researcher, who must pay attention to structure the

http://www.atlasti.com/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 7

included level of detail, and to the way data is por-
trayed displaying evidence of emergent categories. To
assess our study and to determine whether the GT is
sufficiently grounded, we used a systematic technique
to validate the theory. Strauss and Corbin provided a
list of questions to assist in determining how well the
findings are grounded [70]:
Q1 Are concepts generated, and are the concepts sys-

tematically related?
Q2 Are there many conceptual linkages and are the

categories well developed?
Q3 Is variation4 built into the theory and are the condi-

tions under which variation can be found built into
the study and explained?

Q4 Are the conditions under which variation can be
found built into the study and explained?

Q5 Has the process been taken into account, and does
the theory stand the test of time?

Q6 Do the theoretical findings seem significant, and to
what extent?

In the remainder of this section, we illustrate how
we answered these six questions. We generated the
concepts according to the described coding process (Q1)
and systematically related them through the use of a
network diagram (Q2). At each iteration of the grounded
theory process, we considered and examined a concept
within different conditions and dimensions, trying to
incorporate data from a broader range of practitioners
(Q3). We constructed all the linkages and categories by
the use of Atlas.TI and compared them according to the
data analysis process. Moreover, we connected extensive
explanations, in form of in-vivo statements as reported
by practitioners, to the developed concepts (Q4).

We designed the research process in multiple steps,
explaining the purpose and implementation of each.
Thus, the same process together with the supplemental
material of this paper [72] enables other researchers to
replicate our study within similar contexts (Q5). More-
over, we performed a comparison with the state-of-art
to validate the theory and to strengthen its applicability
within a wider time-frame (Q6). By this comparison
we highlight the areas which have been neglected by
existing studies, providing possible directions for future
studies (see subsections 6.1 and 6.2). Furthermore, we
studied the confounding factors which could interfere
with the application of the GSM (see subsection 6.3).

4 RESULTS: GREENFIELD STARTUP MODEL

The GSM captures the underlying phenomenon of soft-
ware development in early-stage startups. The model is
formed by 128 sub-categories, clustered in 35 groups,
and finally in 7 categories (see Figure 2) at the highest
level of abstraction5. By the means of the GSM we pro-

4. Variation refers to the variety of contexts to which the theory can
be applied.

5. All raw data, including codes, sub-categories and groups, are
available in the supplemental material [72].

vide explanations of the development strategies and en-
gineering activities undertaken by startups. This section
focuses on the data collected from the studied startups,
forming the GSM. Note that in this section, we report
on the GSM which is an abstraction of the collected
empirical data from thirteen startups. The implications
of the GSM and its validity are discussed in Sections 5
and Section 6 respectively.

4.1 Model overview

We have grouped the main concepts representing the
underlying phenomenon together to form high-level
categories. Figure 2 shows the network of causal re-
lationships (represented by arrows) between categories
(represented by blocks).

In the forthcoming explanation of the GSM we make
use of identifiers (i.e. CATx) for the main categories
shown in Figure 2. The network is centered around the
core category, speed up development, which is the most
interconnected node in the theory reflecting the fact that
“it is the one [category] with the greatest explanatory
power” [70].

A contextual condition, which characterizes to some
extent every startup is the severe lack of resources. In fact,
limited access to human, time and intellectual resources
constrain the capabilities of an early-stage startup to
support its development activities. The severe lack of
resources forces the company to focus on implementing
an essential set of functionalities. This is one of the
main reasons why the product quality has low priority with
respect to other more urgent needs6. At the same time,
to be able to deal with such constraints, startups depend
on a small group of capable and motivated individuals.

As unanimously expressed by respondents, the high-
est priority is to speed up the development as much as
possible by adopting a flexible and effective evolutionary
approach. The low attention given initially to architectural
aspects related to product quality facilitates the efficiency
of teamwork. This allows startups to have a functioning
but faulty product, that can be quickly introduced to
the market, starting from a prototype implementation
on day-one.

The initial employees are the ingredients which enable
high levels of performance in software development. To
support a fast-paced production environment, engineers
are required to be highly committed, co-located, multi-
role, and self-organized. In other words, the team is the
catalyst of development. With an essential and flexible
work-flow, which relies on tacit knowledge instead of
formal documentation, startups can achieve very short
time-to-market cycles. However, each line of code, writ-
ten without following structures and processes, con-
tributes to growing the accumulated technical debt, which
is further increased by having almost non-existing spec-

6. There are some exceptions where the quality aspects actually
matter and such cases will be discussed in subsection 6.3.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 8

Fig. 2. Main categories and causal relationships in the Greenfield Startup Model

ifications, a minimal project management and a lack of
automated tests.

The consequences of such debt may not be perceived
in the initial stages of a startup, where finding the
product/market fit as quickly as possible is the most im-
portant priority. Startups, which survive to subsequent
phases will likely increase their user-base, product size,
and number of developers. This will require the com-
pany to eventually pay the accumulated technical debt, and
confront the fact that an initial growth hinders productivity.

In the following subsections we explain the categories
presented in Figure 2, and conclude in subsection 4.9
with the final theory. In the explanations we use identi-
fiers of the companies presented in Table 1 (i.e. C1...C13)
to highlight statements made by the interviewees.

4.2 Severe lack of resources

The concept of severe lack of resources characterizes the
uncertainty of development strategies in startups and it
is composed of three subcategories: time-shortage, limited
human resources and limited access to expertise.

Since startups want to bring the product to market
as quickly as possible, the resource they are the most
deprived of is time. Startups operate under a constant
time pressure, mainly generated by external sources
(investor pressure, business pressure) and sometimes in-
ternal necessities such as internal deadlines and demo
presentations at events. In this regard, C3 commented:
“Investors wanted to see product features, engineers
wanted to make them better. Finally the time-to-market
was considered more important and the teams’ interests
were somehow sacrificed.”

In addition, to compensate for the limited human re-
sources, practitioners empower multi-role and full stack
engineers, as confirmed by C1: “Everyone was involved
in any tasks, from mobile to web development, orga-
nizing themselves in choosing the part to implement”.
The extent to which startups have access to specialized
knowledge - both internal and external to the company
- is reduced when compared to established software
companies. Therefore, to partially mitigate the limited
access to expertise, startups rely on the external aid of
mentors or advisors. Under these strict limitations, most
of the decisions related to software development are
fundamentally trade-off situations.

4.3 Team as the development catalyst

Among the different aspects fostering the speed of
the development process, the startups’ focus is on the
characteristics of the initial team. In startups developers
have big responsibilities. In fact, limited human resources,
discussed in CAT7, cause the team-members to be active
in every aspect of the development process, from the
definition of functionalities to the final deployment.

Engineers in the founding team of startups are some-
times multi-role and typically full-stack engineers. Multi-
role engineers handle both the development and are at
the same time responsible for marketing and sales. C1
observed that: “A developer has many responsibilities,
and needs to quickly move among a variety of tasks as
there is no company hierarchy.” Full-stack engineers can
tackle different problems at various levels of the technol-
ogy stack (generalist developers instead of specialists). C11



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 9

remarked that: “Instead of hiring gurus in one technol-
ogy, startups should hire young developers, generalists,
that know how to quickly learn new technologies, and
quickly move among a huge variety of tasks.”

Moreover, having a very small and co-located development
team enables members to operate with high coordination,
relying on tacit knowledge and replacing most of the
documentation with informal discussions. Practitioners
reported that keeping the development team small helps
startups in being fast and flexible, as remarked by C8: “If
you have more than 10 people, it is absolutely impossible
to be fast”. Then, also basic knowledge of tools and standards
of the working domain and knowing each other before starting
the company support the efficiency of activities by limiting
the need for formalities between team members.

In every software company, skilled developers are essen-
tial for high speed development. Especially in startups,
the “hacking culture” and a tendency to the “just-do-
it” approach allow the team to quickly move from
the formulation of a feature idea to its implementa-
tion. In this regard, C1 comments: “We had a hacker
culture/environment, people hacking stuff without for-
mally analyzing it, but breaking it down and finding a
way around.”

A limited access to expertise forces the team to rely
mainly on their personal abilities, even though intervie-
wees reported that asking mentors for an opinion is a vi-
able practice to aim for feasible objectives. Furthermore,
teams work under constant pressure mainly constrained by
a tight time shortage.

Finally, startups present founders-centric structures,
and especially in the early-stage, the CTO/CEO back-
ground has high-impact on the company’s development
approach. For instance, in case of an academic back-
ground, the CTO might encourage the introduction of
some architectural design before the development phase.
Even though the CTO/CEO initially guides the develop-
ment process, most of the decisions are taken collectively
by all members of the team. Then, the CTO/CEO only
intervenes in situations where conflicts occur.

4.4 Evolutionary approach

Startups prefer to build an initial prototype and iter-
atively refine it over time, similarly to the concept of
“evolutionary prototyping” [78]. The goal is to validate
the product in the market as soon as possible, finding the
proper product/market fit. Indeed, startups can focus
on developing only parts of the system they want to
validate instead of working on developing a whole new
system. Then, as the prototype is released, users detect
opportunities for new functionalities and improvements,
and provide their feedback to developers.

Since flexibility and reactiveness are the main priorities, the
most suitable class of software development approaches
are highly evolutionary in nature. As uncertain conditions
make long-term planning not viable, startups cannot base
their work on assumptions without rapidly validating

them by releasing the product to market. Uncertainty lies
first of all in the team composition. Since the teams are
typically small and project knowledge is generally un-
documented, even a minor change in their composition
(e.g. a developer falls ill) can have a significant impact
on the overall product development. Furthermore, star-
tups operate in a continuously evolving environment of
competitors and targeted market sectors. Then, to get a
competitive advantage in the market, startups typically
make use of cutting-edge solutions, characterized by
an evolution that cannot be foreseen in the long run.
However, user feedback and requests play a special
role in daily decisions as main drivers for defining the
product features in the short term.

To obtain fast user responses and quickly validate the
product, startups build a functioning prototype and iterate
it over time. Quoting C4, “[. . . ] you should start with
something that is really rough and then polish it, fix
it and iterate. We were under constant pressure. The
aim was to understand as soon as possible the product
market/fit iterating quickly, adjusting the product and
releasing fast.” The companies focus on building a small
set of functionalities to include in the first version, and
progressively roll-out to a larger number of people with small
iterations (confirmed by C4: “we deploy from 5 to 20
times a day”).

The objective of this evolutionary approach is to
avoid wasting time on “over-engineering the system”
and building complex functionalities that have not been
tested on real users. By releasing a small number of
good-enough functionalities (see CAT3) the startup ver-
ifies the suitability of the features and understands how
to adjust the direction of product development towards
actual users’ needs. The first version of the product
is typically a prototype containing basic functionalities
developed with the least possible effort that validates
critical features, enabling the startup’s survival in the
short term. Supported by direct contact and observation of
users, automated feedback collection and analysis of product
metrics, startups attempt to find what is valuable for cus-
tomers.

4.5 Product quality has low priority

The interests of software startups, related to the prod-
uct, are concentrated on building a limited number of
suitable functionalities rather than fulfilling non-functional
requirements. This strategy allows them to quickly re-
lease simple products with less need for preliminary
architectural studies.

The quality aspects considered by startups during the
development process are geared towards user experience
(UX7), in particular ease of use, attractiveness of the UI and
smooth user-flow without interruptions. C11 notes that UX
is an important quality factor: “When a user needs to think

7. According to ISO 9241-210 (Ergonomics of human-system inter-
action), UX is defined as “a person’s perceptions and responses that
result from the use or anticipated use of a product, system or service”.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 10

too much on what action should be done next, he will
just close the application without returning”. C3 adds:
“If the product works, but it is not usable, it doesn’t
work”.

The extent to which quality aspects are taken into
account might depend on the market sector and the type
of application. Nevertheless, realizing a high level of
UX is often the most important attribute to consider for
customer discovery of evolutionary approaches in view
of the limited human resources and time shortage, presented
in CAT7. C4 confirms: “None of the quality aspects
matter that much as the development speed does.”

To achieve a good level of UX while dealing with
lack of human resources and time shortages, startups
analyze similar products, developed by larger companies
that can afford more rigorous usability studies. Then,
the users’ feedback and product metrics begin to have
a central role in determining the achieved UX level.
Product metrics are typically web-based statistical hy-
pothesis testing, such as A/B testing [79]. Other than UX,
some other factors can influence the quality concerns of
development:

• The efficiency emerges after using the product, letting
engineers avoid wasting time in excessive improve-
ments of not-validated functionalities.

• The product should be reasonably ready-to-scale to be
able to accommodate a potential growth of the user-
base. Startups externalize complexity to third party
solutions, such as modern cloud services, achieving
a sufficient level of scalability.

• Realizing high reliability is not an urgent priority as
users are fault-tolerant towards innovative beta products.
In these cases, users typically have a positive atti-
tude towards the product, even though it exhibits
unreliable behavior. In this regard, the focus of beta
testing is reducing friction between the product and
the users, often incorporating usability testing. In
fact, the beta release is typically the first time that
the software is available outside of the developing
organization8.

4.6 Speed-up development

Speed up development represents the core category of
the GSM. Firmly grounded as the primary objective of
startups, it shows the most important characteristic of
developing software in the early stages.

To speed up development, startups adopt evolutionary
approaches supported by a solid team focusing on im-
plementing a minimal set of suitable functionalities. Star-
tups keep simple and informal workflows to be flexible and
reactive, adapting to a fast changing environment. The
fact that teams are typically self-organized and developers
have significant responsibilities facilitates the adoption of
informal workflows. The aim to shorten time-to-market
restricts potential planning activities, as reported by C8:

8. A discussion of the impact of innovative products on the user
satisfaction is presented in subsection 6.3.

“Speed was of essence so we didn’t plan out too many
details”. To deal with such unpredictability, startups
prefer to take decisions as fast as possible, mainly by
means of informal and frequent verbal discussions.

Even though Agile principles embrace change, star-
tups often perceive development practices as a waste of
time and ignore them to accommodate the need for re-
leasing the product to the market quickly. This approach
is possible also in view of a lack of systematic quality
assurance activities; startups focus on user experience
and other quality aspects, such as efficiency, can be
postponed until after the first release.

Another beneficial strategy that startups employ to
quickly deliver products is the externalization of complex-
ity on third party solutions. Startups make use of third
party components (COTS) and open source solutions (for
product components, development tools and libraries).
They take advantage of external services for the sake of
delivering a product reasonably ready to scale for possible
future growth. Moreover, advanced version control sys-
tems are not only used to manage the code-base, but
also in task assignment, responsibility tracing, config-
uration and issue management, automatic deployment,
and informal code walkthroughs when issues occur.
Even though the use of well-integrated and simple tools
allows startups to automate many activities and reduce
their completion time, drawbacks of such approaches are
increased interoperability issues.

Startups further improve development speed by mak-
ing use of standards and known technologies which are
widely recognized, well tested, and supported by strong
communities. Moreover, the use of standards and frame-
works reduces the need for a formal architectural design
since most of the solutions are well documented and
ready-to-use. C1 stated that: “as long as you use Ruby
standards with the Rails framework, the language is
clean itself and doesn’t need much documentation”.

Other important factors that positively impact the
speed of development are the team’s desire to create
disruptive technologies, to demonstrate personal abilities, and
to have the product used in the market. As reported by
practitioners, these factors are essential to enhance the
morale of developers and therefore to achieve higher
team performance. On the other hand, when a developer
is not able to meet deadlines, especially in the typical
sprint-based environments of Agile, the morale goes
down, hindering the development speed.

Finally, the constant pressure under which the com-
pany regularly operates, leads the team to often work
overtime to meet deadlines. But as reported by practi-
tioners, such a way of working can be an effective
strategy only in the short term since it can lead to poorly
maintainable code and developer burnout in the long
run.

4.7 Accumulated technical debt

Startups achieve high development speed by radically
ignoring aspects related to documentation, structures



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 11

and processes. C4 stated that: “You have to accept some
extent of technical debt and some flawed code so you can
move faster. You have to hit the sweet spot of moving
very fast but at the same time without writing code that
is so bad that you can’t update it anymore.”

Instead of traditional requirement engineering activ-
ities, startups make use of informal specification of func-
tionalities through ticket-based tools to manage low-
precision lists of features to implement, written in the
form of self-explanatory user stories [80]. Practitioners
intensively use physical tools such as post-it notes and
whiteboards, which help in making functionalities vis-
ible and prioritizing stories based on personal experi-
ences. C4 commented that “[. . . ] it is the only way. Too
many people make the mistake of sitting down and
write big specs and then they build it for four months,
realizing the product is not valuable only at the end.”

Since startups are risky businesses by nature, even less
attention is given to the traditional phase of analysis,
which they replace by a rough and quick feasibility study.
However, this approach has also disadvantages, as ob-
served by C7: “Some months later I started realizing
the drawbacks: now that we have to grow, it would
be nice to have done some more detailed study. . . But
at the same time, maybe if I did the study, I wouldn’t
have all the agility and flexibility that we have now. It’s
a big tradeoff.” It is generally hard to analyze risks with
cutting-edge technologies. To find out the feasibility of such
cutting-edge projects, startups attempt a first implemen-
tation with rough and informal specifications, assuming
that the project’s complexity will remain limited to a few
functionalities, as discussed in CAT3 (subsection 4.5).
Additionally, by keeping the product as simple as possible
and learning from competitors’ solutions and mistakes,
practitioners use their past experiences in similar contexts to
help to assess the feasibility of the project. Finally, to avoid
restrictions on the flexibility of the team, potentially
limiting decisions are taken only when strictly necessary
and as late as possible. Limiting, early decisions can
increase the technical debt as commented by C8: “Our
biggest shortcoming was a poor initial decision on data
structuring which was fundamental as the whole code
(and the business logic) relied on it. 95% was right, and
5% of the data structure was wrong, and caused a lot of
troubles (refactoring and re-doing code).”

Another important factor that contributes to the accu-
mulation of technical debt is the general lack of architectural
design, substituted by high-level mock-ups and low-precision
diagrams, describing critical interactions with third-party
components only. In particular, the use of well-known
standards, frameworks and conventions removes the
need for formal UML [81] diagrams and documentation,
and provides a minimum level of maintenance costs. C6
stated that: “. . . with perfect hindsight we should have
used a framework to create more maintainability of the
code. At the beginning, we didn’t use the framework
to develop the application faster. We believe that the
additional time needed to use the framework would

have payed off, because it would have increased under-
standability of the code structure and decrease the time
needed for new developers to start working.”

A similar attitude towards verification and validation
brings startups to a lack of automated testing, which is
often replaced by manual smoke tests. Quoting C3,
“Trying the product internally allows us to get rid of 50%
of bugs of important functionalities. Meanwhile, users
report bugs of secondary functionalities, eventually al-
lowing us to mitigate the lack of testing. Indeed, staying
one week in production enables us to identify 90% of
bugs”. However, in certain cases where components of
the system might cause loss of data or severe damages to
the product or users, engineers realize a reasonable level
of automatic testing. In such cases, aided by modern
automatic tools, they quickly assess the status of the
system integration as they add new functionalities to the
product.

Startups perceive rigid project management as a
“waste of time” that hinders development speed since
the uncertainty makes formal scheduling pointless (C9 re-
ported that “initial chaos helps to develop faster”). Star-
tups’ minimal project management is supported by keep-
ing: internal milestones short and informal, low-precision task
assignment mechanisms and a low cost project metrics
(quoting C13, “the only track of progress was made by
looking at closed tickets”). In this context only a final
release milestone is viable, which helps practitioners to
remain focused on short term goals and put new features
in production.

Finally, one of the categories that contributes most to
growing accumulated technical debt is the substantial use
of informal and verbal communication channels on a
daily basis. The high co-location and the fast paced de-
velopment approach increase the volume of tacit knowl-
edge and the severe lack of any kind of documentation.
C4 observed in this regard that: “[. . . ] the issue of having
documentation and diagrams out of the source code is
that you need to update them every time you change
something. There is no time for it. Instead, there is a
huge pay off in having a code that is understandable
itself.” On the other hand, there are situations where this
strategy is not good enough, as observed by C1: “I had
problems due to the lack of documentation. The only
back-end documentation was the front end-design, so I
had to guess what was behind!”.

4.8 Initial growth hinders performance

The lack of attention given in the first phases to engi-
neering activities allows startups to ship code quickly.
However, if the startup survives, the initial product
becomes more complex over time, the number of users
increases and the company starts to grow. Under these
circumstances the need to control the initial chaos forces
the development team to return the accumulated technical
debt, instead of focusing on new users’ requests. Hence,
the initial growth hinders performance in terms of new
functionalities delivered to the users.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 12

When the user base increases, customers become more
quality demanding and scalability issues might start to
arise. Company and user size grow when business events
occur, such as: a new round of funding, a possible acqui-
sition, the release of a competing product on the market, or
when the project is open for the first public release. There-
fore, while the project lacks even minimal processes, the
current team is not able to manage increased complexity of
new functionalities and maintain the codebase.

Subsequently, practitioners start considering the need
for project management activities, also in view of hiring
new staff members, as discussed by C13: “[Project man-
agement] is strictly necessary if you radically change
the team or when the team grows. The informal com-
munication and lack of documentation slow down the
process afterwards”. Project management becomes even
more important when the focus shifts to business concerns.
Part of the effort, which was initially almost entirely
dedicated to product development, moves to business
activities. Moreover, the availability of project informa-
tion becomes an important issue as the accumulated
tacit knowledge hinders the ability of new hires to start
working on project tasks.

Another factor that slows down performance is that
portions of code need to be rewritten and substantial refac-
toring of the codebase is required by increasing prod-
uct demands. Practitioners realized that some decisions
taken (or not taken) during the rough and quick feasibility
study before starting the implementation, have led to
negative consequences on the long term performance
and maintainability of the product. The combination of
these factors leads to the need to re-engineer the product.
By re-engineering the systems, startups aim to increase
the scalability of the product/infrastructure and start to
standardize the codebase with well-known frameworks. C7
reports that: “To mitigate this (lack of frameworks) I had
to make a schema for other developers when we hired
them. We had to do a big refactoring of the codebase,
moving it from custom php to Django, normalizing the
model and making it stick with the business strategy.
I had the code in different php servers communicating
via JSON, some engineering horror. Now that we are
fixing it, it’s really painful. We had to trash some code.
However I don’t regret that I didn’t make this choice
sooner, it was the only way”.

The fear of changing a product, which is working, arises
when product complexity increases. The changes to the
codebase, to support bug fixing, become highly interre-
lated with other functionalities and difficult to manage
because the product is poorly engineered. Therefore, the
fear arises that changing a validated product might cause
changes to users’ responses. The increasing number of
feature requests leads to the growing necessity of having a
release plan. Therefore, startups begin to partially replace
informal communication with traceable systems and introduce
basic metrics for measuring project and team progress to
establish an initial structured workflow. Yet, C11 stated
that: “[. . . ] it is still better to have a reasonable drop-

down in performance when the team grows than lose
time in the beginning”.

4.9 Paradigm model

To explain and understand the development strategies
in early-stage software startups we construct the theory
generated and supported by the above presented GSM:

Theory. Focusing on a limited number of suitable function-
alities, and adopting partial and rapid evolutionary devel-
opment approaches, early-stage software startups operate at
high development speed, aided by skilled and highly co-located
developers. Through these development strategies, early-stage
software startups aim to find early product/market fit within
uncertain conditions and severe lack of resources. However,
by speeding-up the development process, they accumulate
technical debt, causing an initial and temporary drop-down
in performance before setting off for further growth.

We formed this theory by considering the different
elements specified by Corbin [71]:

• “Causal conditions” are represented by three main
conceptual categories: product quality has low prior-
ity, evolutionary approach and team is the catalyst of
development.

• “Phenomenon” is represented by the core category
speed up development.

• “Context” is limited to early-stage web software
startups operating in conditions of severe lack of
resources aiming to early find product/market fit.

• “Intervening conditions” are summarized by the
extremely uncertain development environment.

• “Action and interaction strategies” are represented
by the accumulation of technical debt.

• “Consequences” lead to a temporary performance
drop-off.

5 IMPLICATIONS OF THE GSM

In this section we present relevant implications that
emerge from the behavior of early-stage startups, for-
mally expressed in the GSM. Although the startups we
studied were spread across various nations and market
sectors (see subsection 3.1), certain patterns emerged.
We discuss these patterns with respect to literature and
identify possible venues for future research.

5.1 Light-weight methodology

The most urgent priority of software development in
startups is to shorten time-to-market to find the right
product/market fit. However, focusing on building and
releasing the first version of a product, startups tend to
not apply any specific or standard development method-
ologies or processes. Three interviewees (C5, C7, C13)
referenced the Lean startup methodology [53], a highly
evolutionary development approach, centered around
the quick production of a functioning prototype and
guided by customer feedback. However, none of the



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 13

studied startups strictly followed the complete “build-
measure-learn” cycle proposed by the Lean startup
methodology. One of the main purposes of Lean is waste
reduction, although the identification of waste is not an
easy matter as it spans perspectives and time [82]. For
example, running a value stream mapping is resource
intensive, something that may put off startups. Nev-
ertheless, even though the absence of a basic process
might enable startups to focus more on the product,
startup companies can take advantage of some engineer-
ing activities even in the early stages [83]. For instance,
Taipale [46] reports how startups benefited from tailoring
some simple XP practices to their needs.

Startups in the early stage apply fast cycles of “build
and fix” when necessary to act quickly and decisively
enough to get the first response from the market. How-
ever, the lack of perceivable cause and effect relation-
ships constrains effective analysis [84]. Hence, applying
best practices in a highly uncertain environment might
be counter-productive. There is little to analyze yet, and
waiting for patterns to emerge can be considered a waste
of time. Quickly developing a set of suitable function-
alities allows the team-members to present a prototype
to a small set of potential customers and investors to
start collecting quick feedback and respond accordingly.
However, the studied startups do not explicitly follow
the step-by-step process of “customer development” de-
fined by Blank [8]. Instead, they absorb and implement
the high-level principles from the customer development
methodology, reflected in the GSM by the theoretical
category find the product/market fit quickly.

From a research perspective, collaboration with star-
tups and technology transfer to those companies is
challenging. State-of-the-art technology transfer models
require long-term commitment from all participants [85],
an investment that might not be acceptable for an early-
stage startup. Thus, there is a need to develop and val-
idate technology transfer models adapted to the startup
context.

5.2 Empowering the team members

The Lean startup methodology proposed by Ries [53]
emphasizes team empowerment as a critical factor to
pursue the development of a Minimum Viable Product
(MVP). Empowerment allows the team to move rapidly
and cut through the bureaucracy, approval committees
and veto cultures. However, empowerment cannot be
implemented without structure and means to measure
performance [86]. Startups can use lightweight tools, for
example collection and evaluation of key performance
indicators, task management and continuous deploy-
ment, to enable information sharing and autonomy cre-
ation which are key aspects of empowerment [86].

Yang [87], unlike to Ries’ methodology, structurally
differentiates four dimensions that positively impact per-
formance and should be considered in empowerment
programs:

• autonomy of taking decisions, where team-members
can choose the activities they are interested in;

• responsibility for organizational results or success,
keeping track of their own performance;

• information such that team members have influence
on making decisions;

• creativity, enabled by a culture where negative re-
sults are not punished, but attempts are rewarded;

Different forms of coordination methods utilize the
idea of dividing problem and solutions space, like hand-
shaking presented by Fricker et al. [88]. These could also
be investigated, especially since the main manager of a
startup (CTO/CEO) cannot be involved in all solution
decisions [89]. Even though the GSM identifies and ex-
plains the startups’ focus on characteristics of the initial
team, further research is needed to adapt and validate
team empowerment programs in the startup context that
can foster the speed of development processes.

5.3 Focus on minimal set of functionalities

To deliver a product with the right features built in,
startups need to prioritize and filter. From an engineer-
ing point of view, most startups do not explicitly apply
traditional Requirement Engineering (RE) activities to
collect and manage requirements. However, by integrat-
ing simple techniques such as Persona and Scenario,
companies can improve the effectiveness of requirements
elicitation even with mostly unknown final users [90],
thereby also shortening time-to-market.

Another study suggests that using a lightweight
project-initiation framework such as the Agile Inception
Deck can help in preventing premature failure of the
software project due to a wrong understanding of the
project requirements [91]. Looking at RE in general, there
are several good practice guidelines that are adapted for
small organizations, where the organization can choose
what is relevant for them, see e.g. uniREPM [92]. The
key is that even startups can benefit from a limited and
fast inventory of good engineering practices.

5.4 Paying back the technical debt

To be faster, startups may use technical debt as an
investment, whose repayment may never come due. Tom
et al. [62] refer to “debt amnesty” as a written off debt
when a feature or product fails.

Even though potentially useful in the short-term, over
time technical debt has a negative impact on morale,
productivity and product quality. Kruchten et al. [93]
suggest identifying debt and its causes, e.g. by listing
debt-related tasks in a common backlog during release
and iteration planning. Tracking technical debt can also
be conducted by measuring usability and scalability of
the product, paying attention to the customers’ behaviors
through real-time and predictive monitoring [53].

An alternative to control technical debt with small
effort, as stated by many interviewees, is the use of



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 14

modern coding platforms (e.g. Github) and well-known
frameworks. Coding platforms allow developers to inte-
grate several engineering activities such as requirements
lists, issue tracking, source control, documentation, con-
tinuous integration, release and configuration manage-
ment. Frameworks include support programs, compilers,
code libraries and tool sets to enable the initial devel-
opment of a project with limited overhead. However,
these strategies target only particular dimensions [62] of
technical debt, such as environmental and knowledge
debt.

Furthermore, to be effective in the selection of third
party components and frameworks, startups need to
perform an efficient impact analysis of their process con-
figuration. Technology selection frameworks have been
used to stimulate innovation [94], as decision making
support [95], [96], and in tool selection [97]. However,
such approaches need to be adapted to the particular
constraints and context of early-stage startups.

5.5 Synthesis

With slightly different levels of adherence, the presented
implications are reflected in the behavior of most of
the companies we studied. The results of this analysis
indicate that early-stage startups are far from adopting
standard development methodologies. The typical ten-
dency is to focus on the teams’ capability to implement
and quickly iterate on a prototype, which is released
very fast. Thus, in a context where it is hard for even
the most lightweight agile methodologies to penetrate,
research should focus on the trade-off between develop-
ment speed and accumulated technical debt [65], which
appears to be the most important determinant for the
success of an early-stage startup.

Our investigation of early-stage startups opens up sev-
eral opportunities for further research. Most importantly,
the performance drop-down caused by the necessity of
returning the accumulated technical debt while expand-
ing the company’s operations and structuring mitigation
strategies needs to be addressed. This can be achieved
by meeting the following four software development
objectives:

• integrating scalable solutions with fast iterations
and a minimal set of functionalities (this allows
startups to maintain effective planning and realistic
expectations)

• empowering team members enabling them to oper-
ate horizontally in all the activities of the develop-
ment environment simultaneously

• improve desirable workflow patterns through the
initiation of a minimal project management over
time, as a natural result of emerging activities of
tracing project progress and task assignment mech-
anisms

• then, only when the chaos has been initially man-
aged, planning long-term performance by adoption
of Agile and Lean development practices.

Eventually, to enable the introduction and adoption of
new development methodologies, research is needed
on new/adapted technology transfer models from
academia and industry to startups’ contexts.

6 THEORY VALIDATION

In this section we discuss the validity of the GSM
by means of cross-methodological observations, as dis-
cussed in subsection 3.5. As we refer to the GSM’s main
categories throughout the validation, we list their name
and corresponding subsection where they have been
introduced:
CAT1 Speed-up development (4.6).
CAT2 Evolutionary approach (4.4).
CAT3 Product quality has low priority (4.5).
CAT4 Team is catalyst of development speed (4.3).
CAT5 Accumulated technical debt (4.7).
CAT6 Initial growth hinders performance (4.8).
CAT7 Severe lack of resources (4.2).

6.1 Comparison with other models

To validate the generalization of the model, we describe
conceptualizations derived from the GSM that are sup-
ported by previous models developed by Coleman [34],
[17], [16], Baskerville [98] and Brooks [99]. Table 2
presents an overview of the comparison, mapping GSM
categories to aspects reported in literature.

We refer to Coleman’s work since he has conducted
similar studies in the context of startups, even though
with a different focus. Coleman investigated factors in
software development that hinder initiatives of one-size-
fits-all software process improvement (SPI) in a later
stage, representing also companies in the expansion
phase with more than 100 employees.

Coleman aims to highlight how managers consider
two distinct kinds of processes: essentials and non-
essentials. The essential processes are the most closely
linked to product development, such as requirements
gathering, design and testing. The non-essential pro-
cesses are those that might be omitted, such as plan-
ning, estimating and staging meetings. In particular, he
discusses how practices are routinely removed: “With
most methodologies and approaches, very few stick to
the letter of them and they are always adapted, so we
adapted ours to the way we wanted it to work for us,
for our own size and scale” [16].

Coleman’s network is characterized by the “cost of
process” (core category) and all the factors that in man-
agement contributed to the lack of software process
improvements (SPI). The cost of process represents the
lack of formal and prescriptive work-flows in devel-
opment, mainly conducted by verbal communication
without heavy documentation or bureaucracy. Coleman
reports on the practitioners’ perception that documen-
tation alone does not ensure a shared understanding
of project requirements. Moreover, managers perceive
rigid processes as having a negative impact on the



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 15

TABLE 2

GSM categories mapped to concepts reported in related models

Category Coleman [34]

CAT1 Experience the lack of rigid engineering activities and documentation. Flexibility and process erosion maintaining simple and
informal work-flows.

CAT4 CTOs’ and CEOs’ background has a great impact on the adopted development process. Nevertheless, team members remain
self-organized, able to intervene in all the aspects of the development process without any direct supervision.

CAT5 Verbal communication and lack of heavy documentation and bureaucracy.
CAT6 Nimble and ad-hoc solutions prevent the use of heavy bureaucracy and formal communication strategies, even though the

accumulated tacit knowledge is hard to manage and transfer to new hires.

Category Baskerville [98]

CAT1 Make heavy use of simple tools and existing components.
CAT2 Uncertain conditions make long-term planning not viable. Speed-up development by releasing more often the software and

“implanting” customers in the development environment.
CAT3 Tailor the development process daily according to the intense demands for speed, skipping phases or tasks that might impede

the ability to deliver software quickly even though producing lower quality software.
CAT5 Invest time in facilitating development of scalable systems by the use of simple but stable architectural solutions.
CAT7 A desperate rush-to-market. A lack of experience developing software under the conditions this environment imposes.

Category Brooks [99]

CAT1 The most radical possible solution for constructing software is not to construct it at all, taking advantage of what others have
already implemented. It is the main strategy, which enables companies to externalize complexity to third party solutions.

CAT2 Avoid deciding precisely what to build but rather iteratively extract and refine the product requirements from customers and
users.

CAT3 Starting from simple solutions allows creating early prototypes and control complexity over time.
CAT4 People are the center of a software project and it is important to empower and liberate their creative mind.

creativity and flexibility of the development team. This
is in accordance with our generated theory, which bases
the reasons for adopting evolutionary and low-precision
engineering elements on the flexibility and reactivity
attributes of the development process in startups.

As also reported in the GSM, the definition of a
“minimum process” is not a matter of poor knowledge
and training, but rather a necessity that lets the company
move faster. “One-size-fits-all” solutions have always
found difficulty in penetrating small software organiza-
tions [100]. When startups begin establishing any rigid
SPI process, they experience process erosions [16], which
result in work-flows barely satisfying organizational
business needs. Software startups favor the use of agile
principles in support of creativity and flexibility instead
of one-size-fits-all SPI.

Further, Coleman describes a management approach
oriented towards “embrace and empower”, consisting
of trust in the development staff to carry out tasks with
less direct supervision [16]. Nevertheless, software de-
velopment managers and founders still have an impact
on management style and indirectly on the software de-
velopment process. In early-stage startups, founders are
mainly software development managers as CEOs/CTOs
and technical practitioners at the same time. As Coleman
identified the influence of the founders’ and managers’
background on the software development process, the
GSM similarly identifies that the CEOs/CTOs back-
ground shapes the high-level strategies adopted in de-
veloping the initial product.

Baskerville [98] refers to rigid SPI approaches as
typically effective only in large-scale, long-term devel-

opment efforts with stable and disciplined processes.
Internet-speed software development (oriented towards
daily builds, aimed at developing a product with high
speed) differs from traditional software development.
Baskerville studied 10 companies using a Grounded
Theory approach. He found that the major causal fac-
tors that influence development are a desperate rush to
market, a new and unique software market environment,
and a lack of experience developing software under the
conditions this environment imposes. Even though with
different research focus and study context, Baskerville
revealed similar causal factors as the GSM (see Table 2).
He argues that the dawn of the Internet era has inten-
sified software development problems by emphasizing
shorter cycle times as a strategy to efficiently validate a
product to the target market.

With a wider focus, Brooks [99] discusses the chal-
lenges involved in constructing software products.
Brooks divides difficulties in development into essence
(inherent to the nature of the software), and accidents
(difficulties attending software production that are not
inherent). In other words, essence concerns the hard
part of building a software through activities such as
specification, design, testing. Accidents refer to the labor
of representing the software or testing its representation.
Brooks claims that the major effort applied by engineers
was dedicated towards accident problems, trying to
exploit new strategies to enhance software performance,
reliability and simplicity of development, such as the
introduction of high-level languages for programming.
Despite the great achievements in improving develop-
ment performance, the “essence” property of the soft-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 16

TABLE 3

GSM categories’ overlap with the SMS [2]

Author (year) CAT1 CAT2 CAT3 CAT4 CAT5 CAT6 CAT7 Count Ref.

Sutton (2000) X X X X X X X 7 [6]
Kajko-Mattson (2008) X X X X X X X 7 [9]
Crowne (2002) X X X X X X X 7 [3]
Coleman (2008) X X X X X X X 7 [17]
Coleman (2008) X X X X X X X 7 [16]
Coleman (2007) X X X X X X X 7 [34]
Carmel (1994) X X X X X X X 7 [35]
Yoffie (1999) X X X X X X 6 [39]
Zettel (2001) X X X X X 5 [101]
Jansen (2008) X X X X X 5 [59]
Heitlager (2007) X X X X X 5 [19]
Deias (2002) X X X X X 5 [43]
Ambler (2002) X X X X X 5 [38]
Wood (2005) X X X X 4 [102]
Tingling (2007) X X X X 4 [40]
Taipale (2010) X X X X 4 [46]
da Silva (2005) X X X X 4 [42]
Mirel (2000) X X X X 4 [56]
Midler (2008) X X X X 4 [48]
Tanabian (2005) X X X 3 [22]
Stanfill (2007) X X X 3 [103]
Mater (2000) X X X 3 [55]
Kuvinka (2011) X X X 3 [47]
Deakins (2005) X X X 3 [104]
Yogendra (2002) X X 2 [50]
Wall (2001) X X 2 [60]
Su-Chuang (2007) X X 2 [105]
Steenhuis (2008) X X 2 [106]
Sau-ling Lai (2010) X X 2 [107]
Kakati (2003) X X 2 [24]
Himola (2003) X X 2 [49]
Häsel (2010) X X 2 [108]
Hanna (2010) X X 2 [58]
Bean (2005) X X 2 [61]
Kim (2005) X 1 [57]
Fayad (1997) X 1 [54]
Chorev (2006) X 1 [23]

Count 29 22 13 26 18 14 20

ware remained unaltered. The basic mitigation strategies
presented by Brooks on the essence (i.e. buy versus
build; requirements refinement and rapid prototyping;
incremental development; and great teams) accurately fit
the GSM (see Table 2), forecasting the state-of-practice in
modern startups.

6.2 Theoretical categories and existing literature

In this subsection we extend the theory validation by
mapping the categories of the GSM to empirical studies
that investigated startup companies. We map the stud-
ies’ main contributions to one or more GSM categories
(Table 3). We sorted the table according to the number
of GSM categories covered by the studies.

Seven out of 37 studies address all GSM categories
in their discussion. All studies address at least one
GSM category. The majority of the retrieved studies (29)
mention issues related to speed up development (CAT1),
the core category of the GSM. Another common category,
addressed by 26 studies, is the team is the catalyst of
development (CAT4). The importance of people has been

widely discussed in other software engineering stud-
ies (e.g. Cooper [109], DeMarco [110], Coleman [111],
Valtanen [112], Adolph and Kruchten [113], and Cock-
burn [114]), advocating for the need to empower people.
Less than half of the studies mention results related
to product quality has low priority (CAT3), accumulated
technical debt (CAT5), and initial grow hinders performance
(CAT6). This indicates a potential lack of research and
suggests directions for future work.

6.3 Confounding factors

The purpose of this subsection is to identify which
confounding factors might threaten the validity of the
GSM. While the mapping in subsection 6.2 validated
the literature coverage of GSM’s categories, here we are
interested in those variables that are not covered by the
GSM and might interfere with the theoretical model
positively or negatively [75]. We report those factors
identified by the SMS, but not considered by the GSM:
creativity and innovation, market requirements and ap-
plication type, and developer experience, summarized in
Table 4.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 17

TABLE 4

Confounding factors in the GSM

Confounding factors Description

Creativity and innovation ([19]) The study reports how product-oriented development, in contrast to process imposition,
provides a degree of freedom to the development team that enhances the creativity of developers
and augments the innovation capability of the company in the early-stage.

Market requirements ([34]) and applica-
tion type ([6], [16], [17])

Their main impact is related to the adoption of flexible and reactive solutions for the develop-
ment process. In particular, the studies refer to the necessity of fulfillment of quality concerns
that goes beyond scalability and UX, when requirements are rigidly imposed or the application
domain is well-known. In these cases providing low-quality products to final users might
determine the failure of a startup.

Developer experience ([3], [39]) Startups often rely at the beginning on clever, but inexperienced developers. However, having
team members with deep experience would be a “double-edged sword”. Experience might
quickly provide structure and maturity to the development process; yet it might cause challenges
in managing self-confident overachievers that almost inevitably clash. Consequently, team
management might require control and coordination activities that hinder flexibility of the
development environment which is essential in early-stage startups.

Understanding the impact of a confounding factor on
the interpretation of the model is important for further
analyses and use of the GSM. A researcher, using the
GSM (Section 4) and its implications (Section 5), has to
contextualize his analysis with the startups’ basic de-
mographic and background characteristics. For example,
market requirements (see Table 4) might undermine the
generalizability of the GSM. In such a scenario, avoiding
minimum expectations of quality assurance in “quality
critical markets”, such as security in banking services,
would profoundly affect the customers’ satisfaction.

7 THREATS TO VALIDITY

In this section we discuss the validity of the overall
research methodology. We structure the discussion ac-
cording to Wohlin’s taxonomy [115].

7.1 External validity

One threat to external validity is the selection of subjects
interviewed for the study. This threat affects GT, a quali-
tative research method using semi-structured interviews,
and centered on respondent’s opinions. To mitigate this
threat we selected interviewees that covered the posi-
tions of CTOs and CEOs. Their broad perspectives on
their startup organization was the only data taken into
consideration in the study.

The majority of the studied startups are successful web
companies, introducing a potential bias in the develop-
ment of the GSM. In particular, we lack the perspective
of failed startups that potentially could have provided
stronger evidence for the relationships in the GSM. We
partially mitigated this threat by comparing the GSM
with similar models. The comparison helped in estab-
lishing the context to which the study findings can be
generalized. In particular the previous model developed
by Coleman [16] has allowed us to identify similarities
and differences, enabling a broader reasoning related to
factors that hinder maturing processes in startups. In
addition, we analyzed literature covered by the SMS on

startups. However, including companies focusing on e.g.
embedded real time systems or failed startups might
have led to different results.

7.2 Internal validity

To enhance internal validity, we created a three-
dimensional research framework. Through a Grounded
Theory approach, supported by a systematic map-
ping study, interviews and follow-up questionnaires, we
searched for convergence among different sources of in-
formation to confirm or contradict the generated theory.
Our strategy included also the collection of supporting
artifacts (e.g. project plans, meeting notes, bug reposi-
tories) to verify the statements made by the interviews.
However, none of the companies could provide access to
this information. Furthermore, the only a subset (9 out
of 13) of the interviewees returned the questionnaire.

To validate the GSM we conducted a comparison of
the emergent theory with existing literature and previ-
ously developed models. With the theory validation we
highlighted and examined similarities, contrasts and ex-
planations [116]. In this regard, Eisenhardt stated: “Tying
the emergent theory to existing literature enhances the
internal validity, generalizability, and theoretical level
of the theory building from a case study research [. . . ]
because the findings often rest on a very limited number
of cases.” We identified important confounding factors,
related to innovation, market requirements and devel-
oper experience (see subsection 6.3). These factors are not
catered for in the GSM, even though they are regarded
(by other studies) to be relevant for the startup context.

We mitigated reporting bias by packaging all needed
material for conducting new studies, providing an in-
terview package with instructions available in the sup-
plemental material of this paper [72]. Moreover, two re-
searchers not involved in the execution of the study con-
ducted a peer-review analysis of the theory’s constructs.
To control distortion during analysis we made extensive
use of memos and comparative analysis, through which



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 18

we were able to check if data fit into the emerging theory
and countered subjectivity.

7.3 Construct validity

One threat to this study is a possible inadequate descrip-
tion of constructs. To diminish this risk, the entire study
constructs have been adapted to the terminology utilized
by practitioners and defined at an adequate level for each
theoretical conceptualization. For instance, we defined
Time shortage in terms of Investor pressure, CEO/business
pressure, Demo presentations at events and internal final
deadline as used by most of the interviewees in the study.
Moreover, during the coding of interview transcripts,
we adopted explanatory descriptive labels for theoret-
ical categories, to capture the underlying phenomenon
without losing relevant details.

The second important threat is caused by the fact
that interviewees might already be aware of the possible
emergent theories analyzed by researchers. To reduce
this risk, we did not disclose any goal or emergent results
to the interviewees.

7.4 Conclusion validity

Grounded Theory has been applied by other researchers
in similar contexts to attest relationships among con-
ceptualizations of an examined phenomenon (see [34],
[117], [17]). Those relationships should be verified in
such a way that emerging findings remain consistent as
further data is collected. In particular we were prepared
to modify generated categories so that the new data
could be adapted into the emerging theory according to
the concepts of theoretical sampling and saturation.

According to the theoretical sampling concept, we
adjusted our study design and the emergent theory
until only marginal results were generated. Moreover,
to enhance reliability of the outcome conceptualizations
and relations, we conducted the coding of interviews by
following a systematic process.

An important issue is related to the fact that the
limited number of interviews might not represent the
complete scenarios in our study context. This issue is
partially mitigated as result of the theoretical satura-
tion concept. Ramer [118], comparing quantitative to
qualitative studies, states that: “reaching data saturation,
which involves obtaining data until no new information
emerges, is critical for obtaining applicability in qual-
itative research”. After attesting that no more relevant
information could be gathered from executing additional
interviews, we iterated the Grounded Theory cycle one
more time, verifying that the explanatory power of the
core category was fulfilled.

8 CONCLUSION

Startups are able to produce cutting-edge software prod-
ucts with a wide impact on the market, significantly

contributing to the global economy. Software develop-
ment, especially in the early-stages, is at the core of
the companies’ daily activities. Despite their high failure
rate, an earlier systematic mapping study [2] found that
the proliferation of startups is not matched by a scientific
body of knowledge. To be able to intervene on software
development strategies of startups with scientific and
engineering approaches, the first step is to understand
startups’ behavior. Hence, in this paper, we provide an
initial explanation of the underlying phenomenon by
means of a Grounded Theory study based on 13 cases.
We focused on early engineering activities, from idea
conception to the first open beta release of the product.

We grounded the Greenfield Startup Model (GSM)
on the hindsight knowledge collected from practitioners
with the aim of explaining how development strategies
are engineered and practices are utilized in startups. The
explanatory capability and correctness of the model has
been validated through systematic comparisons with the
state-of-the-art. The SMS revealed a multi-faceted state-
of-the-art, lacking support for software development
activities in startup companies. On the other hand, the
study presented in this paper, provides a broad set
of empirical evidence obtained by a Grounded Theory
approach.

The overall results of this study found that the driv-
ing characteristics of startups were uncertainty, lack of
resources, and time-pressure. These factors influence the
software development to an extent that transforms every
decision related to the development strategies into a
difficult trade-off for the company. Moreover, although
startups share characteristics with similar SE contexts
(e.g. market-driven development, small companies and
web engineering), a unique combination of factors poses
a whole new set of challenges that need to be addressed
by further research. When bringing the first product
to market, startups’ most urgent priority is releasing
the product as quickly as possible to verify the prod-
uct/market fit, and to adjust the business and product
trajectory according to early feedback and collected met-
rics. At this stage, startups often discard formal project
management, documentation, analysis, planning, testing
and other traditional process activities. Practitioners take
advantage of an evolutionary prototyping approach, us-
ing well-integrated tools and externalizing complexity to
third party solutions.

However, the need to restructure the product and
control the engineering activities when the company
grows counterbalances the initial gain of flexibility and
speed. If successful, the startup will face growth of cus-
tomers, employees and product functionalities that leads
to the necessity of controlling the initial chaotic software
development environment. The most significant chal-
lenge for early-stage startups is finding the sweet spot
between being fast enough to enter the market early and
controlling the amount of accumulated technical debt.

What follows from the GSM are four software devel-
opment objectives that need to be considered by early-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 19

stage startups and researchers seeking to improve state-
of-the-art:

• Integration of scalable solutions with fast iterations
and minimal set of functionalities.

• Empowerment of the team-members granting them
the responsibility and autonomy to be involved in
all activities of the development phase.

• Improvement of workflow patterns through the ini-
tiation of a minimal project management.

• Adaptation of Lean and Agile development prac-
tices after the initial chaotic startup phase.

In this paper we discussed a number of novel chal-
lenges for both practitioners and researchers, while pre-
senting a first set of concepts, terms and activities for
the rapidly increasing startup phenomenon. By making
a comparison with Berry’s definition of SE [119], we
would like to see the rise of a new discipline - startup
engineering - which can be defined as the use of scientific,
engineering, managerial and systematic approaches with the
aim of successfully developing software systems in startup
companies.

ACKNOWLEDGMENTS

The authors would like to thank the Blekinge Institute
of Technology (Sweden) and the Free University of
Bolzano (Italy), all the participants for their support of
this research, and Philip Stastny for proofreading the
manuscript.

REFERENCES

[1] D. Smagalla, “The truth about software startups,” MIT Sloan
Manage. Rev. (USA), vol. 45, no. 2, p. 7, 2004.

[2] N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek,
and P. Abrahamsson, “Software development in startup com-
panies: A systematic mapping study,” Information and Software
Technology, vol. Volume 56, no. Issue 10, pp. 1200–1218, October
2014.

[3] M. Crowne, “Why software product startups fail and what to
do about it,” in Proceedings International Engineering Management
Conference (IEMC), 2002, pp. 338–343.

[4] A. Maccormack, “How Internet Companies Build Software,”
MIT Sloan Management Review, vol. 42, no. 2, pp. 75–84, 2001.

[5] K. M. Eisenhardt and S. L. Brown, “Time pacing: competing in
markets that won’t stand still.” Harvard Business Review, vol. 76,
no. 2, pp. 59–69, 1998.

[6] S. M. Sutton, “The role of process in software start-up,” IEEE
Software, vol. 17, no. 4, pp. 33–39, Aug. 2000.

[7] G. Coleman, “An empirical study of software process in prac-
tice,” in Proceedings Hawaii International Conference on System
Sciences (HICSS), 2005, p. 315c.

[8] S. Blank, The four steps to the epiphany, 1st ed. CafePress, Feb
2005.

[9] M. Kajko-Mattsson and N. Nikitina, “From Knowing Nothing
to Knowing a Little: Experiences Gained from Process Im-
provement in a Start-Up Company,” in Proceedings International
Conference on Computer Science and Software Engineering (CSSE),
2008, pp. 617–621.

[10] T. W. Archibald, L. C. Thomas, and E. Possani, “Keep or return?
Managing ordering and return policies in start-up companies,”
European Journal of Operational Research, vol. 179, no. 1, pp. 97–
113, May 2007.

[11] R. Frigg and S. Hartmann, “Models in science,” in The Stanford
Encyclopedia of Philosophy, fall 2012 ed., E. N. Zalta, Ed., 2012.

[12] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model
of technical debt and interest,” in Proceedings 2nd Workshop on
Managing Technical Debt (MTD), 2011, pp. 1–8.

[13] C. Izurieta, A. Vetrò, and N. Zazworka, “Organizing the tech-
nical debt landscape,” in Proceedings 3rd Workshop on Managing
Technical Debt (MTD), 2012, pp. 23–26.

[14] R. Grimaldi and A. Grandi, “Business incubators and new ven-
ture creation: an assessment of incubating models,” Technovation,
vol. 25, no. 2, pp. 111–121, Feb. 2005.

[15] C. M. Christensen, The Innovator’s Dilemma. Harvard Business
School Press, 1997.

[16] G. Coleman and R. O’Connor, “An investigation into software
development process formation in software start-ups,” Journal
of Enterprise Information Management, vol. 21, no. 6, pp. 633–648,
2008.

[17] ——, “Investigating software process in practice: A grounded
theory perspective,” Journal of Systems and Software, vol. 81, no. 5,
pp. 772–784, May 2008.

[18] J. Bach, “Microdynamics of process evolution,” Computer, vol. 31,
pp. 111–113, 1998.

[19] I. Heitlager, R. Helms, and S. Brinkkemper, “A tentative tech-
nique for the study and planning of co-evolution in product,”
in 3rd International Workshop on Software Evolvability, 2007, pp. 42
–47.

[20] K. Martin and B. Hoffman, “An open source approach to devel-
oping software in a small organization,” Software, IEEE, vol. 24,
no. 1, pp. 46 –53, Jan. 2007.

[21] A. Cockburn, Surviving Object-Oriented Projects. Addison-Wesley
Professional, 1998.

[22] M. Tanabian, “Building high-performance team through effective
job design for an early stage software start-up,” in Proceedings
International Engineering Management Conference (IEMC), 2005, pp.
789–792.

[23] S. Chorev and A. R. Anderson, “Success in Israeli high-tech start-
ups; Critical factors and process,” Technovation, vol. 26, no. 2, pp.
162–174, Feb. 2006.

[24] M. Kakati, “Success criteria in high-tech new ventures,” Techno-
vation, vol. 23, no. 5, pp. 447–457, May 2003.

[25] M. Marmer, B. L. Herrmann, E. Dogrultan, R. Berman, C. Eesley,
and S. Blank, “The startup ecosystem report 2012,” Startup
Genome, Tech. Rep., 2012.

[26] B. Regnell, M. Höst, J. N. och Dag, P. Beremark, and T. Hjelm,
“An industrial case study on distributed prioritisation in market-
driven requirements engineering for packaged software,” Re-
quirements Engineering, vol. 6, no. 1, pp. 51–62, 2001.

[27] J. Natt Och Dag, “Elicitation and management of user require-
ments in market-driven software development,” Ph.D. disserta-
tion, Department of Communication Systems Lund Institute of
Technology, 2002.

[28] P. Sawyer, I. Sommerville, and G. Kotonya, “Improving market-
driven re processes,” in International Conference on Product-
Focused Software Process Improvement (PROFES), 1999, pp. 222–
236.

[29] C. Potts, “Invented requirements and imagined customers: re-
quirements engineering for off-the-shelf software,” in Proceedings
2nd International Symposium on Requirements Engineering (ISRE),
mar 1995, pp. 128 – 130.

[30] L. Karlsson, Å. G. Dahlstedt, J. Natt Och Dag, B. Regnell,
and A. Persson, “Challenges in market-driven requirements
engineering - an industrial interview study,” in Proceedings 8th
International Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ), 2002.

[31] A. Dahlstedt, “Study of current practices in marketdriven re-
quirements engineering,” in Third Conference for the Promotion of
Research in IT, 2003.

[32] M. Keil and E. Carmel, “Customer-developer links in software
development,” Commun. ACM, vol. 38, no. 5, pp. 33–44, May
1995.

[33] C. Alves, S. Pereira, and J. Castro, “A Study in Market-Driven
Requirements Engineering,” Universidade Federal de Pernam-
buco, Tech. Rep., 2006.

[34] G. Coleman and R. O’Connor, “Using grounded theory to under-
stand software process improvement: A study of Irish software
product companies,” Information and Software Technology, vol. 49,
no. 6, pp. 654–667, 2007.

[35] E. Carmel, “Time-to-completion in software package startups,”
Proceedings of the System Sciences, pp. 498–507, 1994.

[36] M. Lehman, “Programs, life cycles, and laws of software evo-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 20

lution,” in Proceedings of the IEEE, vol. 68, no. 9, Sep. 1980, pp.
1060 – 1076.

[37] R. Banker and G. Davis, “Software development practices, soft-
ware complexity, and software maintenance performance: A field
study,” Management Science, vol. 44, no. 4, pp. 433–450, 1998.

[38] S. Ambler, “Lessons in agility from Internet-based develop-
ment,” IEEE Software, vol. 19, no. 2, pp. 66–73, 2002.

[39] D. Yoffie, “Building a company on Internet time: Lessons from
netscape,” California Management Review, vol. 4, no. 3, 1999.

[40] P. Tingling, “Extreme programming in action: a longitudinal
case study,” Proceedings 12th International Conference on Human-
computer Interaction: Interaction Design and Usability (HCI), pp.
242–251, 2007.

[41] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

[42] A. da Silva and F. Kon, “XP south of the equator: An experi-
ence implementing XP in Brazil,” in Proceedings 6th International
Conference on Extreme Programming and Agile Processes in Software
Engineering (XP), 2005, pp. 10–18.

[43] R. Deias and G. Mugheddu, “Introducing XP in a start-up,”
European Internet Services Company, 2002.

[44] N. Gautam and N. Singh, “Lean product development: Max-
imizing the customer perceived value through design change
(redesign),” International Journal of Production Economics, vol. 114,
no. 1, pp. 313–332, Jul. 2008.

[45] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile soft-
ware development methods,” Relatório Técnico, Finlândia, 2002.

[46] M. Taipale, “Huitale - A story of a Finnish lean startup,” in Lean
Enterprise Software and Systems, ser. Lecture Notes in Business
Information Processing, 2010, vol. 65, pp. 111–114.

[47] K. Kuvinka, “Scrum and the Single Writer,” in Proceedings of
Technical Communication Summit, 2011, pp. 18–19.

[48] C. Midler and P. Silberzahn, “Managing robust development
process for high-tech startups through multi-project learning:
The case of two European start-ups,” International Journal of
Project Management, vol. 26, no. 5, pp. 479–486, Jul. 2008.

[49] O.-P. Hilmola, P. Helo, and L. Ojala, “The value of product
development lead time in software startup,” System Dynamics
Review, vol. 19, no. 1, pp. 75–82, 2003.

[50] S. Yogendra, “Aligning business and technology strategies: a
comparison of established and start-up business contexts,” in
Proceedings Internal Engineering Management Conference (IEMC),
2002, pp. 2–7.

[51] C. McPhee and A. Eberlein, “Requirements engineering for time-
to-market projects,” in Proceedings 9th International Conference on
Engineering of Computer-Based Systems (ECBS), 2002, pp. 17–24.

[52] M. A. Cohen, J. Eliasberg, and T.-H. Ho, “New product devel-
opment: The performance and time-to-market tradeoff,” Manage-
ment Science, vol. 42, no. 2, pp. 173–186, Feb. 1996.

[53] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Contin-
uous Innovation to Create Radically Successful Businesses. Crown
Business, 2011.

[54] M. Fayad, “Process assessment considered wasteful,” Communi-
cations of the ACM, vol. 40, no. 11, pp. 125–128, 1997.

[55] J. Mater and B. Subramanian, “Solving the software quality
management problem in Internet startups,” in Proceedings 18th
Annual Pacific Northwest Software Quality Conference, 2000, pp.
297–306.

[56] B. Mirel, “Product, process, and profit: the politics of usability
in a software venture,” ACM Journal of Computer Documentation
(JCD), vol. 24, no. 4, pp. 185–203, 2000.

[57] E. Kim and S. Tadisina, “Factors impacting customers’ initial
trust in e-businesses: an empirical study,” in Proceedings 38th
Hawaii International Conference on System Sciences (HICSS), vol. 07,
2005, pp. 1–10.

[58] R. Hanna and T. U. Daim, “Information technology acquisition in
the service sector,” International Journal of Services Sciences, vol. 3,
no. 1, p. 21, 2010.

[59] S. Jansen, S. Brinkkemper, and I. Hunink, “Pragmatic and Oppor-
tunistic Reuse in Innovative Start-up Companies,” IEEE Software,
vol. 25, no. 6, pp. 42–49, 2008.

[60] D. Wall, “Using open source for a profitable startup,” Computer,
vol. 34, no. 12, pp. 158 –160, dec 2001.

[61] L. Bean and D. D. Hott, “Wiki: A speedy new tool to manage
projects,” Journal of Corporate Accounting & Finance, vol. 16, no. 5,
pp. 3–8, Jul. 2005.

[62] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical
debt,” Journal of Systems and Software, vol. 86, no. 6, pp. 1498–
1516, 2013.

[63] W. Cunningham. The WyCash Portfolio Management Sys-
tem. [Online]. Available: http://c2.com/doc/oopsla92.html (Ac-
cessed : Nov. 25, 2013).

[64] Fourth International Workshop on Managing Technical Debt.
[Online]. Available: http://www.sei.cmu.edu/community/
td2013/ (Accessed : Nov. 25, 2013).

[65] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten,
E. Lim, A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Sea-
man, K. Sullivan, and N. Zazworka, “Managing technical debt
in software-reliant systems,” in Proceedings FSE/SDP Workshop on
Future of Software Engineering Research (FoSER), 2010, pp. 47–52.

[66] Microsoft, Microsoft Application Architecture Guide. Microsoft
Press, 2009.

[67] M. Unterkalmsteiner, T. Gorschek, A. Islam, C. K. Cheng, R. Per-
madi, and R. Feldt, “Evaluation and measurement of software
process improvement:a systematic literature review,” Software
Engineering, IEEE Transactions on, vol. 38, no. 2, pp. 398–424,
March 2012.

[68] B. G. Glaser, Theoretical sensitivity : advances in the methodology of
grounded theory. Sociology Press, 1978.

[69] H. M. Edwards, S. McDonald, and S. Michelle Young, “The
repertory grid technique: Its place in empirical software engi-
neering research,” Information and Software Technology, vol. 51,
no. 4, pp. 785–798, Apr. 2009.

[70] A. L. Strauss and J. M. Corbin, Basics of Qualitative Research: Tech-
niques and Procedures for Developing Grounded Theory, P. Labella,
Ed. Sage Publications, 1998.

[71] J. Corbin and A. Strauss, “Grounded theory research: Proce-
dures, canons, and evaluative criteria,” Qualitative Sociology,
vol. 13, no. 1, pp. 3–21, 1990.

[72] C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek,
and P. Abrahamsson, “Supplemental material to ”Software
development in startup companies: The greenfield startup
model”,” 2015. [Online]. Available: http://www.bth.se/com/
mun.nsf/pages/greenfield

[73] C. W. Dawson, Projects in Computing and Information Systems A
Student ’ s Guide. Pearson Prentice Hall, 2009.

[74] R. K. Yin, Case study research: design and methods. Sage Publica-
tions, 1994.

[75] Colin Robson, Real World Research: A Resource for Social Scientists
and Practitioner-Researchers. John Wiley and Sons, 2009.

[76] W. J. Orlikowski, “CASE Tools as Organizational Change: Inves-
tigating Incremental and Radical Changes in Systems Develop-
ment,” MIS Quarterly, vol. 17, no. 3, p. 309, Sep. 1993.

[77] G. Coleman and R. O’Connor, “Software process in practice: A
Grounded Theory of the Irish software industry,” in Proceedings
13th European Conference on Software Process Improvement (Eu-
roSPI), 2006, pp. 28–39.

[78] A. Davis, “Operational prototyping: a new development ap-
proach,” IEEE Software, vol. 9, no. 5, pp. 70 –78, 1992.

[79] S. Borodovsky and S. Rosset, “A/b testing at SweetIM: The
importance of proper statistical analysis,” in Proceedings 11th
International Conference on Data Mining Workshops (ICDMW),
2011, pp. 733–740.

[80] S. Zhong, C. Liping, and C. Tian-en, “Agile planning and de-
velopment methods,” in 3rd International Conference on Computer
Research and Development (ICCRD), 2011, pp. 488 –491.

[81] R. Pooley and P. King, “The unified modelling language and
performance engineering,” IEE Proceedings Software, vol. 146,
no. 1, pp. 2 –10, 1999.

[82] M. Poppendieck and T. Poppendieck, Implementing Lean Software
Development: From Concept to Cash. Addison-Wesley Profes-
sional, 2006.

[83] F. Maurer and S. Martel, “Extreme programming. rapid devel-
opment for web-based applications,” IEEE Internet Computing,
vol. 6, no. 1, pp. 86–90, 2002.

[84] C. F. Kurtz and D. J. Snowden, “The new dynamics of strat-
egy: Sense-making in a complex and complicated world,” IBM
Systems Journal, vol. 42, no. 3, pp. 462 –483, 2003.

[85] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson, “A model for
technology transfer in practice,” IEEE Software, vol. 23, no. 6, pp.
88–95, 2006.

[86] W. Randolph, “Navigating the journey to empowerment,” Orga-
nizational Dynamics, vol. 23, no. 4, pp. 19 – 32, 1995.

http://c2.com/doc/oopsla92.html
http://www.sei.cmu.edu/community/td2013/
http://www.sei.cmu.edu/community/td2013/
http://www.bth.se/com/mun.nsf/pages/greenfield
http://www.bth.se/com/mun.nsf/pages/greenfield


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 21

[87] Y. Seung-Bum and C. Sang Ok, “Employee empowerment and
team performance: Autonomy, responsibility, information, and
creativity,” Team Performance Management, vol. 15, no. 5/6, 2009.

[88] S. Fricker, T. Gorschek, C. Byman, and A. Schmidle, “Handshak-
ing with implementation proposals: Negotiating requirements
understanding,” IEEE Software, vol. 27, no. 2, pp. 72–80, 2010.

[89] S. Fricker, T. Gorschek, and M. Glinz, “Goal-oriented require-
ments communication in new product development,” in Proceed-
ings 2nd International Workshop on Software Product Management (
IWSPM), 2008, pp. 27–34.

[90] M. Aoyama, “Persona-and-scenario based requirements engi-
neering for software embedded in digital consumer products,”
in Proceedings 13th International Conference on Requirements Engi-
neering (RE), 2005, pp. 85–94.

[91] J. Rasmusson, “Agile project initiation techniques - the inception
deck and boot camp,” in Proceedings of the Conference on AGILE,
2006, pp. 337–341.

[92] M. Svahnberg, T. Gorschek, T. Nguyen, and M. Nguyen,
“Uni-repm: validated and improved,” Requirements Engineering,
vol. 18, no. 1, pp. 85–103, 2013.

[93] P. Kruchten, R. Nord, and I. Ozkaya, “Technical debt: From
metaphor to theory and practice,” Software, IEEE, vol. 29, no. 6,
pp. 18–21, 2012.

[94] R. Rohrbeck, J. Heuer, and H. Arnold, “The technology radar -
an instrument of technology intelligence and innovation strat-
egy,” in International Conference on Management of Innovation and
Technology (ICMIT), 2006, pp. 978–983.

[95] N. Shehabuddeen, D. Probert, and R. Phaal, “From theory to
practice: challenges in operationalising a technology selection
framework,” Technovation, vol. 26, no. 3, pp. 324 – 335, 2006.

[96] G. Azzone and R. Manzini, “Quick and dirty technology as-
sessment: The case of an italian research centre,” Technological
Forecasting and Social Change, vol. 75, no. 8, pp. 1324 – 1338, 2008.

[97] G. Aranda, A. Vizcaino, A. Cechich, and M. Piattini, “Technology
selection to improve global collaboration,” in Proceedings Inter-
national Conference on Global Software Engineering (ICGSE), 2006,
pp. 223–232.

[98] R. Baskerville, B. Ramesh, L. Levine, J. Pries-Heje, and S. Slaugh-
ter, “Is ”internet-speed” software development different?” IEEE
Software, vol. 20, no. 6, pp. 70–77, 2003.

[99] F. Brooks Jr, “No Silver Bullet — Essence and Accidents of
Software Engineering,” Computer, vol. 20, no. 4, pp. 10–19, 1987.

[100] M. Staples, M. Niazi, R. Jeffery, A. Abrahams, P. Byatt, and
R. Murphy, “An exploratory study of why organizations do not
adopt CMMI,” Journal of Systems and Software, vol. 80, no. 6, pp.
883–895, Jun. 2007.

[101] J. Zettel, F. Maurer, J. Münch, and L. Wong, “LIPE: a lightweight
process for e-business startup companies based on extreme pro-
gramming,” in Proceedings 3rd International Conference on Product
Focused Software Process Improvement (PROFES). Springer, 2001,
pp. 255–270.

[102] D. Wood, “Open Source Software Strategies for Venture-Funded
Startups,” MIND Laboratory, University of Maryland, Tech. Rep.
TR-MS1287, 2005.

[103] R. Stanfill and T. Astleford, “Improving Entrepreneurship Team
Performance through Market Feasibility Analysis, Early Iden-
tification of Technical Requirements, and Intellectual Property
Support,” in American Society for Engineering Education Annual
Conference, 2007.

[104] E. Deakins and S. Dillon, “A helical model for managing inno-
vative product and service initiatives in volatile commercial en-
vironments,” International Journal of Project Management, vol. 23,
no. 1, pp. 65–74, Jan. 2005.

[105] S.-C. Li, “The role of value proposition and value co-production
in new internet startups: How new venture e-businesses achieve
competitive advantage,” in Portland International Center for Man-
agement of Engineering and Technology (PICMET), 2007, pp. 1126
–1132.

[106] H.-J. Steenhuis and E. de Bruijn, “Innovation and technology
based economic development: Are there short-cuts?” in Proceed-
ings 4th International Conference on Management of Innovation and
Technology (ICMIT), 2008, pp. 837–841.

[107] S.-l. Lai, “Chinese Entrepreneurship in the Internet Age : Lessons
from Alibaba.com,” World Academy of Science, Engineering and
Technology, vol. 72, pp. 405–411, 2010.

[108] M. Häsel, N. Breugst, and T. Kollmann, “IT Competence in
Internet Founder Teams An Analysis of Preferences and Product

Innovativity,” Business & Information System Engineering, vol. 52,
no. 4, pp. 210–217, 2010.

[109] R. Cooper, “An Investigation into the New Product Process :
Steps, Deficiencies, and Impact,” Journal of product innovation
management, vol. 3, no. 2, pp. 71–85, 1986.

[110] T. DeMarco, Peopleware: Productive Projects and Teams, 2nd ed.
Dorset House, 1999.

[111] G. Coleman, “eXtreme Programming (XP) as a ”Minimum”
Software Process : A grounded theory,” in Proceedings 28th
Annual International Computer Software and Applications Conference
(COMPSAC), 2004, pp. 4–5.

[112] A. Valtanen, “Big Improvements with Small Changes : Improv-
ing the Processes of a Small Software Company,” in Proceedings
9th International Conference on Product-Focused Software Process
Improvement (PROFES), 2008, pp. 258–272.

[113] S. Adolph and P. Kruchten, “Reconciling Perspectives: How
People Manage the Process of Software Development,” in Pro-
ceedings of the 2011 Agile Conference, 2011, pp. 48–56.

[114] A. Cockburn, “Characterizing people as non-linear, first-order
components in software development.” in Proceedings 4th Inter-
national Multi-Conference on Systems, Cybernetics and Informatics,
1999.

[115] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering: an introduc-
tion. Kluwer Academic Publishers, 2000.

[116] K. M. Eisenhardt and K. M. Eisenhardt, “Building Theories
from Case Study Research,” The Academy of Management Review,
vol. 14, no. 4, pp. 532–550, 2007.

[117] S. Basri and R. O’Connor, “Towards an Understanding of Soft-
ware Development Process Knowledge in Very Small Com-
panies,” in Informatics Engineering and Information Science, ser.
Communications in Computer and Information Science, 2011,
vol. 253, pp. 62–71.

[118] L. Ramer, “Quantitative versus qualitative research?” Journal of
obstetric, gynecologic, and neonatal nursing, vol. 18, no. 1, pp. 7–8,
1989.

[119] D. Berry, “Academic Legitimacy of the Software Engineering
Discipline,” Software Engineering Institute, Tech. Rep. Novem-
ber, 1992.

Carmine Giardino received a BSc degree
in Computer Science from the University of
Salerno in 2010, a MSc in Software Engineering
at the Free University of Bolzano/Bozen and
Blekinge Institute of Technology in 2013. He is a
software engineer at Citigroup Inc. His research
interests include software startups and informa-
tion services with focus on trading securities.
Contact him at carmine.giardino@gmail.com.

Nicoló Paternoster received a BSc degree
in Applied Mathematics from the University of
Roma - Tor Vergata in 2009 and a MSc in
Software Engineering at the Free University of
Bolzano/Bozen and Blekinge Institute of Tech-
nology in 2013. He works as freelance software
engineer and consultant mainly for early-stage
startups. His research interest includes software
startups and blockchain technology. For more
information or contact: http://adva.io



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 22

Michael Unterkalmsteiner received a BSc de-
gree in Applied Computer Science from Free
University of Bozen-Bolzano in 2007, a MSc and
PhD degree in Software Engineering at Blekinge
Institute of Technology (BTH) in 2009 and 2015
respectively. He is a postdoctoral researcher at
BTH. His research interests include software
repository mining, software measurement and
testing, process improvement, and requirements
engineering. He is a member of the IEEE. For
more information or contact: www.lmsteiner.com

Tony Gorschek is a Professor of Software En-
gineering at Blekinge Institute of Technology
(BTH). He has over ten years industrial expe-
rience as a CTO, senior executive consultant
and engineer, but also as chief architect and
product manager. In addition he has built up five
startups in fields ranging from logistics to inter-
net based services. Currently he manages his
own consultancy company, works as a CTO, and
serves on several boards in companies develop-
ing cutting edge technology and products. His

research interests include requirements engineering, technology and
product management, process assessment and improvement, quality
assurance, and practical innovation. www.gorschek.com

Pekka Abrahamsson received the PhD degree
in software engineering from the University of
Oulu, Finland, in 2002. He is a full professor
of software engineering at the Department of
Computer and Information Science, Norwegian
University of Science and Technology, NTNU,
Trondheim, Norway. Prior to his current appoint-
ment, he has served in professor positions at
the Free University of Bozen Bolzano, University
of Helsinki and VTT Technical Research Centre
of Finland. His research interests are in the

empirical software engineering, software startups and innovation. He is
the recipient of Nokia Foundation Award in 2007 for his merits in agile
software development research and his European research project on
Agile methods in embedded systems received ITEA Achievement Silver
award in 2007. He heads today the global Software Startup Research
Network and is a member of the IEEE and ACM.


	Introduction
	Background
	General lack of research in startups
	Software development in startups
	Software process improvement in startups
	Technical debt
	Terminology

	Research methodology
	Design and Execution
	Data collection
	Data analysis
	Paradigm model generation
	Theory Validation

	Results: Greenfield Startup Model
	Model overview
	Severe lack of resources
	Team as the development catalyst
	Evolutionary approach
	Product quality has low priority
	Speed-up development
	Accumulated technical debt
	Initial growth hinders performance
	Paradigm model

	Implications of the GSM
	Light-weight methodology
	Empowering the team members
	Focus on minimal set of functionalities
	Paying back the technical debt
	Synthesis

	Theory Validation
	Comparison with other models
	Theoretical categories and existing literature
	Confounding factors

	Threats to Validity
	External validity
	Internal validity
	Construct validity
	Conclusion validity

	Conclusion
	References
	Biographies
	Carmine Giardino
	Nicoló Paternoster
	Michael Unterkalmsteiner
	Tony Gorschek
	Pekka Abrahamsson


