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Vast majority of software development projects seem to ignore past knowledge
about solving specific problems. This might be explained by significant difficulties to
reuse knowledge in such a complex domain as software engineering is. There seem to
be no effective mechanisms to find and reuse past solutions to problems similar to the
currently solved one. The main question that this book aims at solving is the above
inability to reuse knowledge about already solved software development problems. In
this book there is proposed a process for systematic reuse of so-called Software Cases.
Any Software Case contains a precisely expressed problem statement in the form of
a Requirements Model. All elements of this problem statement can be mapped onto
appropriate elements of the problem solution. This solution is formed of (again)
precisely expressed design models and the final code. Software Cases can be reused
on the basis of their similarity to the currently developed system (current Software
Case). This similarity can be determined by comparing the current (perhaps yet
incomplete) requirements model with requirements models of past Software Cases.
The past solution can then be easily reused by modifying it in those places that are
precisely marked as needing rework in order to solve the current problem.

The book contains a detailed discussion on the issues that lead to constructing
a comprehensive requirements-based reuse framework. There are described mecha-
nisms and tools that can support such a framework. A vision of how to organise a
reuse process is presented, including details on how a software development organi-
sation should follow this process. This includes using a specific precise language for
specifying requirements and designing systems. The process and the language are
defined both formally and practically. The book introduces concrete syntax for in-
dividual elements of Software Cases: requirements, architecture and detailed design.
This syntax is used to formulate them in a systematic way. Techniques for transform-
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ing models to form a coherent path from requirements to code are given. Certain
mechanisms for comparing and retrieving Software Cases are also specified. This
includes a query language suitable for formulating queries that allow for match-
ing requirements models thus allowing for reusing solutions to problems specified
through requirements.

Key words: software reuse, software requirements, software model transformations,
software development methodologies
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Introduction and rationale

1.1 Problems faced by software development projects

Contemporary software systems become more and more complex. The com-
plexity of these systems is associated with the complexity and changeability
of problems specified through requirements specifications. Complex problems
lead to even more complex solutions implemented in the technological space
that changes even faster than the problem domain. Despite this complexity
(or maybe - due to it), vast majority of software development projects seem
to ignore past knowledge about solving specific problems. This might be ex-
plained by significant difficulties to reuse knowledge in such a complex domain
as software engineering is. The main obstacle here is that there is no standard
way to capture knowledge about complete cases leading from the problem
(requirements) to its solution (design and code). There also seem to be no
effective mechanisms to find and reuse past solutions to problems similar to
the currently solved one.

The main question that this book aims at solving is the above inabil-
ity to reuse knowledge about already solved software development problems.
This question is illustrated in Fig. 1.1. A software development (SD) project
produces specific artifacts (requirements documents, design documents, code,
etc.). Additionally, certain tacit knowledge is gained by the SD project par-
ticipants. Some of the SD project results can be generalised to form design or
analytical patterns. Unfortunately, the above mentioned artifacts are usually
very hard to reuse, even when the new problem is very similar to the pre-
vious one (or is simply a next version of an existing system). This is caused
by the fact that this knowledge is not structured in a way that would allow
for easy comparison and retrieval. Even the use of design patterns is limited
as it necessitates from developers certain thorough knowledge of pattern li-
braries that go beyond the 23 classical patterns found in [70]. Moreover, in
order to prepare reusable assets or patterns, significant effort is needed in
advance, without clear perspectives of actual return on that effort. We thus
need effective mechanisms for formulating software knowledge, finding simi-
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Fig. 1.1. Reusing unstructured knowledge in software development projects

larities between problem specifications (requirements) and then for showing
appropriate differences in the solutions to these problems, to be re-developed
in the new SD project. These mechanisms should lead to significant reduction
in effort when preparing for reuse and when performing reuse thus reducing
its cost and encouraging software development organisations to apply reuse-
oriented methods in their everyday practice.

1.2 Main concept behind this book

The above “amnesia” problem is not tackled properly by the current ap-
proaches to software reuse, which require significant effort for introducing
reuse mechanisms into organisations and then - for preparing software artifacts
(structuring software knowledge) for reuse and seeking for that knowledge. In
order to reduce this “amnesia” we need to reduce the barriers for reuse by intro-
ducing easy to apply and thus inexpensive mechanisms. We need a complete
framework for systematic creation and reuse of software development artifacts
in all disciplines of software engineering (including requirements, design and
implementation). This framework would thus facilitate reuse of complete soft-
ware development cases that comprise the problem statement (requirements)
and problem solution (design and implementation). These cases would need
to be organized not as a set of loosely coupled documents, models or code.
Models in such reusable cases should be precisely and tightly mapped one
onto another and then - onto code.

The main objective of this book would thus be to propose a process for
systematic reuse of software cases, as illustrated in Fig. 1.2. Such a Software
Case contains a precisely expressed problem statement in the form of a Re-
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Fig. 1.2. Requirements-based reuse of structured software knowledge

Fig. 1.3. Elements of the ReDSeeDS Framework

quirements Model. All elements of this problem statement are then mapped
onto appropriate elements of the problem solution. This solution is formed
of (again) precisely expressed design models (including Architectural Model,
Design Model, etc.) and the final code. Software Cases can be reused on the
basis of their similarity to the currently developed system (current Software
Case). This similarity can be determined by «comparing» the current (per-
haps yet incomplete) requirements model with requirements models of past
Software Cases. The past solution can then be easily «reused» by modifying it
in those places that are precisely marked as needing rework in order to solve
the current problem.

It can be noted that a very important feature of such an approach is
“seamlessness” in formulating reusable cases. The current Software Cases will
have exactly the same structure as the past cases. This means that the only
effort associated with making the current case reusable («recording» it) is
associated with copying it directly into the reuse repository. Of course, certain
effort will be needed to «import» from the existing reusable asset libraries,
software product lines and similar.
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In order to apply the above mechanism in practice, we will propose in this
book a comprehensive reuse-oriented, requirements-based software develop-
ment framework. We will call this framework a Requirements Driven Software
Development System (or shortly: ReDSeeDS). This ReDSeeDS Framework,
illustrated in Fig. 1.3, would be composed of three elements: ReDSeeDS Lan-
guage, ReDSeeDS Engine and ReDSeeDS Methodology. The purpose of the
ReDSeeDS Language would be to allow for precise representation of reusable
Software Cases. The language will be composed of a Requirements Specifi-
cation Language (RSL), a Modelling Language (ML), a Mapping and Trans-
formation Language (MTL) and a SW Case Query Language (SCQL). The
first three languages serve to define cases. The last language is used to find
similar cases and mark differences between them. The ReDSeeDS Engine en-
ables software developers to use the ReDSeeDS Language and realize the reuse
mechanism from Fig. 1.2 in practice. Finally, the ReDSeeDS Methodology de-
scribes the software lifecycle based on creating and reusing SW Cases defined
with the ReDSeeDS Language and performed through the ReDSeeDS Engine.
The methodology aims at receiving significant levels of reuse with the devel-
oped engine. At the same time, these levels would be accomplished with a
significantly lower effort than it is possible today. There would be no need
to prepare for reuse by creating special “manifestation artifacts”, laboriously
generalize components, or conduct complex “variability analysis”.

1.3 Current state of the art

In order to meet the above objectives we need to combine several areas of re-
search in software engineering. The ReDSeeDS framework aims at systematic
reuse of software and thus we need to build on the state of the art in reusable
asset libraries (including software product lines). The assets reused from the
library will be mostly models (graphical and textual) linked through mapping
or transformation relationships. In this area, we need to apply the state of the
art in model-driven development and transformations (including graph trans-
formations). Model and graph technologies will also be used to develop query
mechanisms for reusing models. These would need to be combined with state
of the art in reasoning which is also used for retrieving (reusing) knowledge.
Moreover, these reuse mechanisms will be coupled with the state of the art in
requirements engineering to enable requirements-based reuse. This last area
will also be combined with model-driven development to allow for case-based
reuse of models mapped from requirements.

1.3.1 Model-driven development and transformations

Complexity of contemporary software systems is constantly growing. In order
to deal with this complexity effectively, appropriate abstraction techniques
are needed. Creating models of software, slowly becomes the most prominent



1.3 Current state of the art 9

method for dealing with this complexity and realizing abstraction. Models
allow for managing the structure and dynamics of even the most complex
systems on different levels of abstraction, making it possible to reveal only
the amount of detail that is comprehensible for the model readers.

Here we will concentrate on modeling of software systems based on the
widely used object oriented paradigm. After an initial boom in the area
of software modeling methodologies based on object orientation (see eg.
[133, 226, 225, 37, 38, 30, 177, 97, 145, 81, 90, 187, 91, 83]), current tendency
is to unify different approaches (see [178]). The most prominent example in
this area is the Unified Modeling Language (UML) [153, 154] currently in
its version 2.0. UML is already an ISO standard (in version 1.4 [96]) used
by vast majority of companies in the software industry and managed by an
independent standardization body - the Object Management Group (OMG,
www.omg.org). UML in its current version offers thirteen diagram types that
enable showing various aspects of software and associated problem (business)
domains on different levels of abstraction. Numerous handbooks on UML exist
[43, 160, 173, 68, 193, 123, 7, 163]. Current development of the UML stan-
dard goes in the direction of adding precise semantics to its diagram elements.
Defining precise semantics allows for bringing closer the idea of “visual pro-
gramming”, where coding would mean drawing diagrams instead of writing
textual code (“executable UML” - see [127, 168]).

Beyond UML, there exists an interesting, open extension called SysML1

[205] which is intended to be a systems modelling language, where a system
may include hardware, software, information, processes and even personnel.
In this sense, SysML extends UML from software to more general systems.
It is interesting to note in the context of this book that SysML explicitly
includes requirements as modelling elements. There is also a strong research
and application area of so-called domain-specific modelling languages [210].
These languages are defined for specific application domains by the software
developers themselves. It can be argued that such languages have an advan-
tage over UML of having concrete notation more readable by the language
users. However, counter arguments include the amount of effort needed to de-
velop a specific language for a specific purpose and effort needed to learn the
languages’ syntax and semantics. Finally, it is worth noting that there exist
also “variability modelling” languages oriented on reuse issues. An example of
such language is AMPL (Asset Modelling for Product Lines) defined with the
meta-modelling language AMPL-M [93].

When modeling software we have to remember that the overall model
consists of strongly interweaved and interconnected models, describing re-
quirements, software architectures, as well as executable programs. The most
significant problem in using UML is to organise diagrams into models that
would form a clear path from user requirements, through architectural de-
sign to detailed design and code. Taking this into account, the OMG has

1 http://www.sysml.org/
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introduced a new modelling framework, called Model Driven Architecture
(MDA) [138, 111, 128]. MDA can be viewed as the currently most important
and influential vision of model-based software development. Software develop-
ment based on MDA uses modelling and meta-modelling techniques and also
extends them with the concept of model transformation. According to this
idea, models close to the business domain (Computation Independent Models)
would get transformed into abstract architectural models of the system, inde-
pendent of the programming platform (Platform Independent Models). These
models could then be transformed into models dependent on the software
platform (Platform-Specific Models), and then directly translated into work-
ing code. Such a clear path, from visual, model based requirements, through
design models to code could be partially automated, thus giving faster devel-
opment cycles (see eg. [21], [156]), although certainly does not yet constitute
a panacea for all the software engineering problems [209].

Models used in MDA are expressed in a modelling language combining (as
every formal language) three elements: abstract syntax (language schema),
concrete syntax (notation visible to the users) and semantics (meaning of the
language constructs). The concrete syntax of textual languages is typically
defined by context free grammars, while abstract syntax, especially for graph-
ical languages is defined by means of meta-models (typically in the MOF [155]
notation). MOF 2.0 (which has a common infrastructure with UML 2.0) has
already become a widely accepted notation for meta-modeling.

Next to modelling, model transformation [23] plays an important role in
all model-based approaches. Transformations convert models (starting from
requirements models [196]) into further models including executable code (see
eg. [126] for an interesting approach). Requirements for transformation lan-
guages within the MOF meta-modeling environment are proposed by OMG in
the Query/View/Transform proposal [147]. Various approaches to fulfill these
requirements have been constructed by industry dominated consortia (e.g.
[167, 166]). QVT-Merge [166] is an initiative of QVT-Merge Group, involving
most of the active players in the area. Therefore this proposal most likely
will become the basis of the new standard. The proposed language has both
textual and graphical forms, and is based on the use of a relatively simple pat-
tern mechanism for defining transformations. Slightly extended OCL (Object
Constraint Language) 2.0 [152] is used for model queries. Several problems
with the QVT-Merge approach mean that independent research groups are
working on other approaches (see e.g. [112], [56], [104]).

Transformation approaches can be divided into graph- or text-oriented
variants, which are both relevant here. A coarse overview on transformation
techniques is presented in [51] and a first sketch of a comparison of graph- and
text-based transformation techniques [217] was presented. Textual transfor-
mation techniques based on term rewriting include ASF+SDF [213], Stratego
[216] or TXL [47]. These approaches are successfully applied within program
transformation, based on suitable grammars for the appropriate languages.
An overview on program transformation approaches is given in [215]. Further
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approaches contain template languages like XSLT [218] or TDL [10]. These
approaches are based upon patterns, which are detected during traversal of
models and transformed into a target structure. Graph-based transformation
techniques are based on various underlying graph models. Representatives of
these approaches are AGG [207], ATL [22], BOTL [31], FUJABA [211, 230],
MOLA [104], and PROGRES/MDI [183, 113]. Transformation rules in these
approaches contain patterns of a source graph, whose occurrences are trans-
formed according to a target pattern. An interesting approach based on graph-
rewriting in the context of model reuse was given in [119]. [129] present a
taxonomy of transformation systems and compare some graph-based trans-
formation techniques.

Despite the complexity of problems associated with model transformation,
the purpose is to reduce efforts of software developers. Proper transformations
applied in a software development project can make it very agile as it was
discussed in [191].

1.3.2 Precise modelling of requirements

An important area in general software modelling is requirements modelling.
Efforts in this area lead in the direction of precise requirements specification
as opposed to traditional “common prose” requirements. This precision is cer-
tainly needed by the software developers who need very specific information
on the system’s scope. On the other hand, common prose requirements seem to
be more acceptable by the users who want to understand them in the context
of their everyday business. Unfortunately, it is a common observation that
formal and thus precise requirements are hard to read and understand for the
“ordinary people”. On the other hand, requirements written in common prose,
and acceptable for the users, are usually too ambiguous for the system archi-
tects and designers. It is widely discussed that eliciting requirements should
involve as many diverse group of people as possible, thus improving the quality
of the resulting system (see eg. [146] for a discussion).

It can be argued that the most important problem in requirements engi-
neering is plethora of approaches to requirements specification. Various mod-
elling notations have been introduced and used to create models of require-
ments. These notations include Entity Relationship Diagrams, UML Class
Diagrams and Use Case Diagrams, SysML Requirements [89], Message Se-
quence Charts, Petri Nets, Data Flow Diagrams, Parnas Tables, State Ma-
chines, Decision Tables, Z, SDL and more. Generally these notations can be
divided into formal (like Z) and informal or semi-formal (like UML). Formal
notations have a precisely defined semantics with a textual or graphical syn-
tax. Informal notations have their syntax defined although the notation has
no clear interpretation or the interpretation of models depends on the current
application. With formal notations, appropriate automatic transformations
can be performed which facilitate tracing from requirements into design and
test or code generation. On the other hand, informal notations can be seen as
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much more readable by the users of business applications [45] which facilitates
informal verification (see eg. [220] and [189] for a more detailed insight).

An interesting example of a dedicated formal requirements language is
RML [86, 85]. This language introduces the concept of “conceptual models”
where entities, activities and other real world phenomena are represented as
objects in an object-oriented model.

The most prominent example of informal notation for requirements are
Use Cases introduced around 1992 by Ivar Jacobson [97] and now present as
an important element of UML. The use case notation together with domain
class models can be seen as the currently most widely used model for require-
ments specification. This notation has certainly diminished the role of earlier
notations (like ERDs and DFDs). Many handbooks on use cases exist (see
eg. [40, 11, 182, 3, 117, 157]). This ubiquity of use cases can be seen as an
excellent base for introducing a common requirements language to be used in
reusable Software Cases as proposed in 1.2.

Unfortunately, since 1992 use cases have already been defined in so many
ways by different authors that it certainly leads to huge confusion about the
actual notation and specification techniques (see [13] for an insight). Alistair
Cockburn back in 1997 has counted eighteen different definitions of use case
[39]. These definitions differ in basically four dimensions: purpose, formality
of contents, multiplicity of scenarios and formality of model. Depending on
the definition, the use cases tend to be very formal or quite sketchy. Russel
Hurlbut [94, 95] summarises almost 60 approaches towards use case specifi-
cation. These approaches can be classified in terms of notation into textual,
graphical and dynamic. Textual formats include unstructured text narratives,
structured descriptions (templates), semi-structured scripts, formal expres-
sions and tables. Graphical formats employ structure, state, interaction and
implementation diagrams based often on the UML notation. Dynamic formats
are based on animations and dynamic visualisations of the use case narration
flow. Other notations include storyboards and role playing. This multitude
of notations is caused mainly by imprecise definition of use cases by their
inventor which was eventually not made more precise in the UML standard
(including the latest version 2.0 [154]).

It can be argued that this ambivalence of use cases is caused by many
targets that they aim at. Use cases are often utilised as the driving elements
for the whole software development process. This was introduced by the use
case inventor in [97] and then continued in various methodologies (see eg.
[115, 174, 175]). The analysts write use cases to communicate their under-
standing of the prospective system’s functionality. The users participate in
formulating use cases to make sure their requirements are communicated well.
The developers employ use cases to design architectures fulfilling the required
functionality. User interface designers write storyboards based on use case
scenarios. Testers design use case based test cases. If we browse different ap-
proaches summarised in [95] we can come to a conclusion that an "ideal" nota-
tion for use cases is impossible to reach. If the notation is to be general, it tends
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to be rather informal in its nature. More formal notations are designed for
specific purposes, like user interface specification [46], automatic requirements
verification [200] or test automation [71]. Some use case notations impose ar-
chitectural or design decisions (like the usage of UML interaction diagrams).
Others use Use Case Charts [223], Petri Nets [52], activity diagrams [196] or
BPMN diagrams [143] (for business process modelling). These last two ap-
proaches seem to be promising as they tend to combine formal definition of
the flow of interactions with good comprehensiveness for the users not profi-
cient in complex formal notations. Such graphical notations can be combined
with textual approaches where scenarios [32] seem to play the most prominent
role. However, under the term “scenario” there exist many notations (see eg.
[82, 171, 172, 203, 5, 42, 101]), starting from simple structures (like in [24])
and ending with complex specification languages (as in [71]).

In the context of the idea presented in 1.2, an important issue is the abil-
ity to manage requirements models in tools. This includes tools that facilitate
creation of use case based requirements models (see e.g. [57, 87, 197, 144])
by using the various notations mentioned above. An important element of
such tools is facilitation of transition between the requirements models into
design models (see [100] for a good discussion of such transition). The tools
should allow for tracing the vast arrays of links between the requirement
and design artefacts (see e.g. [59, 60] or [58]) and even try to perform auto-
matic transformations of requirements into executable models (as proposed
e.g. in [223]). It has to be noted that the currently available commercial re-
quirements management tools like RequisitePro (by IBM) or DOORS (by
Telelogic) offer only limited capabilities for tracing into design and concen-
trate more on management and traceability between paragraphs of text. The
main problem here seems to be the lack of widely accepted detailed language
or meta-model for precise requirements specification. This includes assuring
consistency between functional and vocabulary requirements (as proposed eg.
in [74] or [196]) together with non-functional requirements [49]. Unfortunately,
attempts to define such a meta-model are sparse so far. Examples include ap-
proaches to requirements for Software Product Lines [14, 122] and general
purpose requirements languages suitable for organizing mappings into design
[102, 58, 60, 101, 191, 197].

1.3.3 Software reuse approaches

Most of the engineering disciplines are based on repeating certain patterns
when designing and constructing solutions to specific engineering problems.
An average engineer is usually taught these solutions during appropriate uni-
versity courses. In disciplines like architecture or mechanical engineering, con-
structors reuse certain standard elements (eg. windows, doors, or ceilings in
architecture) found in catalogs offered by various producers of such elements.

Also in software engineering, reuse as an idea is present practically since
its emergence as a separate discipline [125]. However, is seems that despite
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efforts and emergence of many reuse methodologies (see [53] for a survey,
and [17] for an initial insight), this idea have failed so far [181] or causes
tremendous problems to make it a success [139, 130]. It can be argued that this
failure is caused by the breadth of problem domains where software systems
are applicable. This makes it impossible to learn even the most important
subset of standard reusable assets or even browse effectively through libraries
containing them. Software development organisations wishing to implement
software reuse in practice need to organise asset libraries specific for their
domain areas (see [176] for survey of approaches). The stored assets need to
be specially prepared in order to make it possible to reuse them in the future.
This is a considerable investment with uncertain return on that investment
necessitating quite complex ROI models [63, 135, 29].

An important specific problem encountered by software developers is the
variety of ways in which reusable assets are stored and the variety of levels of
reuse (see [136] for a good discussion and survey and [69] for a recent one).
Reuse of code which is currently the most widely applied type of reuse, is
usually limited to class libraries in the area of user interfaces and general
data structures. Certain efforts to unify the structure of such reusable asset
repositories are still not getting into the mainstream of software development.
Despite this, certain important research activities in the area of methods and
technology for engineering software reuse repositories have been undertaken
[6]. The concept of reusable assets is accepted in the area of model-driven
development. A standard has been introduced by the Object Management
Group (OMG, www.omg.org) to unify the representation of software assets.
This standard (Reusable Asset Specification [149]) supplies tool vendors with
a unified meta-model for representing various artifacts produced throughout
the software development and meant to manifest these artifacts in a reuse
lifecycle.

Another stream of effort in applying reuse is the application of modelling
patterns. These patterns offer visual solutions to common problems in design
[70], analysis [67], or requirements [3, 157]. This direction seems to be very
promising, as it offers higher level of reuse than just code. With this approach
we can reuse whole software frameworks with several related classes or com-
ponents (and possibly - with underlying code). What is very important, with
the advent of the UML, the reusable pattern artifacts can be expressed in a
uniform notation (see [150]) and can be reused by a vast number of developers
trained in this standard modelling language.

Patterns offer reuse on an abstract level of generalised solutions. However,
a very important aspect of reuse is the reuse of specific problems and their
solutions. This means reuse of specific requirement, architectural or design
models developed in past projects. Model reuse is a current research area
(see eg. [201, 199, 194]). Model repositories offer an alternative to simple
repositories of code components [162]. Software repositories based on UML
offer standard notation and meta-model for repositories that can be searched
with various methods based generally on comparing UML models (see eg.
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[28] for one of the first attempts, and [188] for an overview of comprehensive
reuse of models). UML offers standard mechanisms as stereotypes or tags that
facilitate introducing reuse annotations, as discussed in [118]. This leads to a
conclusion that UML is well applicable as a language for denoting artifacts in
reuse repositories [141]. Specific models expressed in UML can be introduced
into libraries and automatically reused (eg. sequence diagrams as described
in [170]). Methods for reusing UML models include also reasoning [79] which
will be described below.

Many approaches to searching reusable asset repositories exist. For in-
stance, we can apply certain association rules and seek for these rules in the
library [134]. Searching of the reuse repositories can be based on relevancy of
assets compared with the initial queries [159]. This relevancy-based approach
leads us to formulating queries by analogy [88] or using analogical reasoning
[27]. An interesting approach to finding analogies between software artifacts
is the use of the WordNet lexical database [27, 77] which helps in determining
lexical similarities. By using analogy, past software artifacts can be sought
for, by comparing them to initial rough sketches of the problem at hand. This
gives us an advantage of implicit (as opposed to explicit) queries (see [228]
and [8] for some additional insight). Such queries relieve the developers from
additional work associated with formulating them. They can just create initial
analytical or requirements models and seek for patterns in the library solving
similar problems.

Software reuse is certainly very close to general reuse of knowledge. This
means that Artificial Intelligence (AI) knowledge engineering techniques are
well applicable here (see [75] for an example). Specific reasoning techniques
applicable to software reuse include knowledge-based configuration (KBC),
artificial neural networks (see [2]) and case-based reasoning (CBR). In KBC
typically a combination of logical reasoning methods [15] and constraint pro-
cessing technologies are applied for assembling technical systems from their
parts. In KBC a descriptive and executable configuration model (ontology)
is used for reasoning. Such a model specifies variability and dependencies be-
tween concepts. The configuration model is used by configuration tools for
deriving configurations or products descriptions. The applicability of KBC
techniques to software-intensive systems was recently examined (see [93]). Also
other approaches like LaSSIE have been proposed, which uses the classifier of a
description logic for querying [54]. It can be noted that such knowledge-based
reuse means building an ontology that is equivalent to building a meta-model
(see [55]) which brings this area close to UML reuse [34]. For instance, ontolo-
gies can be used to represent architectures [222] (another approach is shown
in [229]).

Especially interesting reasoning technology in the context of this book is
CBR (see [1] for a very good explanation of CBR). The idea of the ReDSeeDS
framework is based on software cases. This is in accordance to CBR where
cases describe specific problems and respective solutions, which are reused and
revised within a knowledge management cycle. The main strength of CBR
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lies in similarity-based retrieval techniques and in the combination with other
machine-learning techniques. Considering this, CBR has been identified as a
promising technology to implement software repositories and reusable asset
libraries [208]. Several approaches have used case-based reasoning techniques
in order to retrieve similar reusable software assets [66, 92, 180, 80, 78, 98]. For
example, [140] demonstrate an automatic system for retrieval of hierarchically
organized software assets (formed into software cases). Another example shows
the use of CBR to facilitate reuse of object-oriented code [110].

Until the late 1990s the reuse of software mostly focused on what is called
today opportunistic software reuse [17, 109]. Over the last few years work on
software reuse strongly focused on software product lines (SPL) [221, 36, 76].
Software product lines strongly emphasise the need for engineering for software
reuse - instead of just expecting to retrieve adequate components. This has
led to very high rates of reuse: 95% (see [36]) in comparison to 40% (at most)
with opportunistic reuse (see [164]). This success was however possible through
limiting significantly the applicability space of software components. A middle
ground is taken by domain-specific approaches. They aim at defining specific
system development languages that cover the needs of functional area - rather
independent of the individual software products. This approach is represented
by so-called software factories’ approach [84].

An important source of experience comes from the Software Engineering
Laboratory (SEL) at NASA Goddard, which routinely achieves an astounding
75% or higher reuse level [44, 185]. The SEL have adopted a domain analysis
approach, carefully studying and modelling to create reusable components.
The process of domain analysis is similar to requirements analysis, where
requirements are reviewed for past, present, and future space missions. Con-
struction of applications for a specific mission then becomes more configuring
components from a reusable asset library than new development. The key as-
pect of domain analysis is that requirements extend beyond a single project
(see eg. [124] for another interesting approach). This prominent NASA ex-
ample shows high effectiveness of requirements-driven approaches. There are
quite few research approaches to this subject, and they include formal re-
quirements specifications for reuse [161], requirements artifacts classification
for reuse [48], analogical reasoning [204, 121] and requirements meta-model
standardisation [116]. There also exist sparse attempts to reuse use cases and
their scenarios [179, 219, 25, 227]. Finally, an interesting example of formal
requirements reuse that allows for formulating software cases in engineering
can be found in [224].

1.3.4 Software development methodologies and reuse

Modern software development methodologies went far away from the tradi-
tional waterfall approach. Most of them define a flexible, iterative approach
which allows for proper reaction to common risks in a software development
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project. Vast majority of them use appropriate modelling techniques and lan-
guages (mostly UML) to cope with software complexity. Despite these ma-
jor similarities, contemporary general purpose methodologies are basically di-
vided into two groups. Methodologies from the first group are usually called
“formal”, while those from the second group are called “agile”. From the group
of formal methodologies we can mention Rational Unified Process (RUP)
from IBM [115], Microsoft Solutions Framework (MSF2), Application Life-
cycle Management (ALM3) from Borland or independent Object-Oriented
Process Environment and Notation (OPEN) [65]. Of numerous agile method-
ologies, several worth mentioning are eXtreme Programming (XP) [18], Fea-
ture Driven Development (FDD) [158], Agile ICONIX [175] and Crystal meth-
ods [41]. Formal methodologies offer a very comprehensive lifecycle process.
However, being comprehensive they tend to become very hard to grasp by a
typical developer team. Moreover, significant effort is needed to adapt such
a methodology to the specific project. This is often done without necessary
knowledge causing large unnecessary (formal) ballast to be produced. On the
other side, agile methodologies offer a very lightweight process with a small
number of core practices. This obviously relieves projects from the unnec-
essary ballast. Unfortunately, agile processes tend not to scale well to large
projects. Improperly adapted they may reduce design activities causing the
project to shift into “hacking mode”, reducing development activities to cod-
ing. Moreover, agile processes do not tend to produce any documentation (like
design models or requirements specifications) which is a serious problem when
we want to apply reuse (see [142] for an attempt to change this).

The above methodologies are suitable for a whole spectrum of software de-
velopment projects of variable size and problem domain. Unfortunately none
of these methodologies offer a systematic process for reusing knowledge gath-
ered in previous projects. It can be noted that formal methodologies tend to
produce too much of this knowledge, and agile ones - too little. Regardless of
this difference, general purpose methodologies give practically no guidelines
on the issue of reuse in general and requirements-based reuse in particular.
Due to this, dedicated reuse-oriented methodologies have emerged. First of
these methodologies relied mostly on waterfall lifecycle (see [108]) and did
not focus on reuse originating in requirements. In the last years, the reuse-
oriented methodologies shifted their focus to software product line paradigm
(see e.g. [124]), where reusable knowledge is gathered for a family of poten-
tial systems. This knowledge is usually based on domain analysis expressed
through variable requirements. There exist several methodologies in this area.
Most prominent of them include KobrA [14], FORM [107] and ConIPF [93].
These methodologies define software lifecycle in which reuse activities are in-
herently included into the activities of a software development project. Other
attempts to define a software reuse method include generative programming

2 http://msdn.microsoft.com/msf
3 http://www.borland.com/us/solutions/



18 1 Introduction and rationale

[26, 50] and knowledge management methodologies based on general purpose
software development methods (eg. [195] which is based on RUP).

1.4 Going beyond the state of the art

As it was shown in the previous section, the idea presented in 1.2 has a sound
technological basis in the current state of the art. However, in order to meet
these objectives, important new research issues have to be resolved, thus ad-
vancing technology. It has to be stressed that the advancement in state of
the art is needed not only through advancing research in the individual ar-
eas described above. The most significant achievement to be made is skillful
combination of these areas resulting in a coherent framework supporting soft-
ware industry in accomplishing its tasks more proficiently through reusing its
experience. In order to describe prospective advancements in technology, we
will start by describing advancements needed in individual areas. Then we
will show how these advancements can be additionally enhanced by synergy
of combined approaches.

After reading the previous sections, someone might argue that the main
feature of the ReDSeeDS system is that it constitutes a “yet another” reusable
asset library. It is true, but only to the extent that the ReDSeeDS Engine is
in fact a kind of reusable software asset library. The main challenge for future
research is to supply the software developers with a library which is easy to
query and what is perhaps more important - that enables easy introduction of
reusable assets. Unfortunately, present approaches to reusability require from
software developers significant effort to prepare an asset to be reusable (see
eg. [120]). This is the reason why very few software development organisations
decide to invest in arranging a reuse-oriented lifecycle. Moreover, reusable as-
sets are accessible through generalised and informal problem descriptions.
This makes the reuse process tedious and subject to individual knowledge of
skilled “librarians”. Advancement of this project would be to offer the means
for automating these tasks and making the whole reuse process “seamless” to
the developers. The reusable assets in the ReDSeeDS framework would need
no additional effort to be introduced in the library. This would be due to
the fact that Software Cases stored in the ReDSeeDS repository would have
exactly the same meta-model behind them as Software Cases produced dur-
ing a software development project. Introduction of Cases would be as simple
as copying all the models and code that form a case into the repository. No
additional “generalisation” or “variability analysis” would be needed. “Soft-
ware product lines” could thus be replaced with “requirements-driven reuse
frameworks”.

To advance technology in the area of reusable asset libraries we need to
have better means than currently to seek for assets. In ReDSeeDS these means
are based on requirements specifications. In order to be able to reuse software
cases effectively (or rather: automatically), the requirements specifications
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need to be defined very precisely. Only precision would allow for application
of appropriate query mechanisms. This necessitates significant advancement
in defining precise and comprehensive requirements specification languages.
It can be strongly argued that such a unified language is an important step
beyond the current state of the art. The value of this language would lie in
a precise meta-model behind it allowing use of requirements for automatic
querying and mapping into design. Comprehension of the language should be
validated by ordinary people in real-life projects, which should give significant
argumentation for using this language widely in the software development
community.

Seeking for assets through requirements would have no value if we could
not associate these requirements (problem statements) with appropriate so-
lutions. Here, model-driven development comes into play and necessitates ap-
propriate enhancements to the current technology. Currently existing mod-
elling and transformation languages do not have the potential to define fully
reusable Software Cases. These languages mostly concentrate on the design
models of software and transformations between various levels of design. In
ReDSeeDS, we need a modelling and transformation language that could also
enable mapping from requirements into design. For this purpose, a combi-
nation of textual, graph-based and pattern-matching approaches is needed.
Creating an efficient combination of these approaches is a challenge for future
research. Another challenge in this area is to define a transformation language
that is easy to use by software developers. Especially challenging would be to
validate the language in practice for non-trivial applications.

An asset library being part of the ReDSeeDS framework needs efficient
query mechanisms to facilitate reuse of stored cases. Non-standard mecha-
nisms will most certainly be needed. Graph-based or textual queries will most
probably not be enough to retrieve stored cases. This is due to high complex-
ity of cases that comprise models interweaved with mapping and transfor-
mation relationships. An idea is thus to use also reasoning techniques known
in the field of knowledge-based systems. Some good results in using Case
Based Reasoning in software reuse have been shown. However, in order to
implement the ReDSeeDS system we will certainly need a combination of rea-
soning techniques with graph querying. The assets subject to querying are
mostly complex graphs and thus traditional CBR techniques would probably
be not powerful enough to handle them. Thus, another challenge for future
research is to combine reasoning techniques with graph querying to result in
a powerful retrieval mechanism for complex model-based software cases.

Another problem that needs to be resolved when applying queries in the
ReDSeeDS framework is the application of a marking mechanism. For the
software cases to be easily reused, they have to be marked to show differences
between the current problem and the retrieved problem. This is especially
important, when the developers want to query the library with only partially
prepared requirements models. Moreover, the markings need to propagate
into design models and code to show clearly those places where changes are
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necessary. The marking mechanisms are currently used in Software Product
Lines to show variability of product families. These mechanisms can be used
in ReDSeeDS, however the challenge here is to propagate markings along
transformation paths as defined in the transformation language. This would
necessitate a novel combination of techniques from software product lines and
model-driven development. In addition, this combination would need to be
built into the query mechanisms described above.

Having a complete reuse-oriented software development framework we cer-
tainly need to define a methodology to use it. As it was stated in the previous
section, the currently existing general purpose model-based methodologies do
not take into account such extensive reuse as offered by ReDSeeDS. This
means that they need to be extended in the area of knowledge management.
On the other hand, the reasoning-based methodologies are quite weak in han-
dling models and their transformations. This leads to another challenge for
research which is to combine and enhance existing methodologies to give guid-
ance on using novel mechanisms introduced in ReDSeeDS.

To summarise, it can be argued that the prospective ReDSeeDS frame-
work combines several areas of research never combined before in such a co-
herent way. General mechanisms of reusable asset libraries are combined with
advances in requirements engineering, model transformation and querying.
This combination gives a necessary synergy to create a system that facili-
tates efficient reuse of knowledge in software engineering. Advances in all the
mentioned areas strengthen each other as it was shown in the preceding para-
graphs. For example, advancing precise requirements models gives necessary
means to advance Case Based Reasoning for software. Advancements in model
transformations give the possibility of enhancement of query and reasoning
technologies.

1.5 Potential impact on the software development
industry

The impact of the proposed idea is directly associated with the usage of
the ReDSeeDS framework in every-day software development and acquisi-
tion practice. It can be strongly argued that the organisations applying the
prospective results of research described in this book would be able to improve
their procedures in these areas. These changed practices would significantly
enhance the capability of these organisations to reuse knowledge produced in
previous software development projects. This pertains to both the organisa-
tions that produce software and that acquire it, and includes organisations
(communities) having responsibility for creating open-source software.

The area where ReDSeeDS can have significant impact is software acquisi-
tion and maintenance on the public budget levels. For instance, the European
governments and local authorities spend billions of Euro in this area, and
these figures grow systematically as new e-government initiatives emerge. A
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prominent example here is the British government budget for IT (which is
mainly spent on outsourced software development and maintenance), as de-
scribed in [12]. The budget is estimated at 2.6bn GBP, with high percent
of it allocated to outsourced software development projects. Unfortunately
the British National Audit Office (NAO) reports many of these projects be-
ing failures in terms of using public funds. On the other hand, NAO also
finds and studies successful projects: “A number of our reports have drawn
attention to projects that experienced problems. Not every government IT
project, however, experiences difficulties; many are successful. To understand
why these projects avoided the pitfalls that befell others, the study will ex-
amine successful IT-enabled business change projects in both the public and
private sectors.” In addition to this, we can also cite Ian Watmore, head of
the British Government’s eGovernment unit: “We are already doing a lot of
good things. The question is how we can make that more ubiquitous.” The
impact of research directions presented in this book is exactly concentrated
on making the knowledge about “good project” results ubiquitous, and this is
not only on a single state, but also - on the international level. The ReDSeeDS
framework is aimed at capturing results of such projects (Software Cases) and
reusing them in similar environments.

ReDSeeDs gives very important new possibilities of optimising spendings
for software acquisition described above. It includes means for improvement
in software acquisition procedures. An important means to enhance capability
maturity in this area is efficient management of requirements - not only on a
level of single organisation (like a local self-government authority) but more
globally on a level of problem domain areas (like e-government applications
for self-government authorities). This means that a single organisation (be it
governmental, public or private) would have means to reuse the knowledge
about business processes and possible software requirements from other such
organisations or from a central consultancy authority. This would be possi-
ble by applying publicly (openly) available ReDSeeDS frameworks for vari-
ous problem domains. This has a significant potential for strengthening the
international community by giving it means to reuse knowledge about pub-
lic administration processes served by software systems, throughout different
states. On the other hand it would not compromise the ability to maintain
distinctions between various states, as these distinctions could be reflected
through differences in user requirements for different states.

The above would be accomplishable by the requirements-driven charac-
teristics of the ReDSeeDS framework. The organisation could formulate its
initial requirements using the ReDSeeDS Language, and then a similar Case
(or Cases) would be retrieved from a publicly available ReDSeeDS Engine.
After that, tenders can be invited for the development of the required system.
The bidding companies would offer to build a system which is a modification
of a currently existing one. Moreover, the difference between the new and
reused system would be clearly marked by the ReDSeeDS engine. This would
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give good means to calculate the costs of preparing changes, which should be
significantly smaller than with traditional approaches.

It has to be stressed that the potential impact would also relate to commer-
cial IT and software development organisations. Such organisations could use
ReDSeeDS to optimise their development efforts through reusing past cases
thus shifting from a “workshop” to “factory” levels of producing software (see
[190]. This factory would work by supplying it with an initial sketch of user
requirements, which could be quickly matched with an existing case and also
quickly re-developed to fulfill the new or modified requirements. This could
give significant new possibilities for even small organisations to operate on the
global market.

To summarise it can be stated that reusable software cases based on pre-
cise (yet understandable) requirements can reduce levels of effort by adding
higher levels of automation and minimising rework caused by misunderstand-
ing of user needs. If applied by public and private sector organisations, this
approach could lead to significant enhancement in capabilities for produc-
ing and acquiring software in various domains. It thus means that either the
software acquisition budgets could be reduced (eg. by billions of Euro in the
European scale) or (rather) more software in various domains could be pro-
duced thus improving living conditions for people.

1.6 Structure of the book

This Chapter introduces the idea of a requirements-driven software reuse sys-
tem. It shows that many problems faced by the software industry originate
in lack of repeatable solutions and inability to utilise already formulated soft-
ware solutions in the current project. We need certain, easy to use mechanisms
in place that would allow for systematic reuse of software. By analysing the
current state of the art we can see that many elements of these mechanisms
are already available. We need to combine them to form a coherent whole.
In order for this combination to become possible specific new research issues
have to be solved. In the following Chapters we can find a detailed discussion
on the issues that lead to constructing a comprehensive requirements-based
reuse framework.

In Chapter 2 we can find a description of the framework, with mech-
anisms and tools that support it (and generally - make it possible). This
Chapter starts by introducing a vision on how to organise the reuse process
in the context of a software development organisation. It follows with a de-
tailed description of the process that such organisations should follow in order
to achieve significant return from reuse practices. This process is supported
by a software case specification language that allows for building coherent
reusable artifacts. Finally, a sketch of requirements and architecture for a tool
supporting the process is given.
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While Chapter 3 defines the reuse process formally, Chapter 2 gives a
more practical approach to formulating reusable software cases. It introduces
concrete syntax for individual elements of such cases: requirements, architec-
ture and detailed design. This syntax is used to formulate software cases in a
systematic way. Techniques for transforming models to form a coherent path
from requirements to code are given. These techniques can be used regardless
of whether the reuse process would be implemented or not.

Chapter 4 returns to more formal discussion on mechanisms allowing for
requirements-based reuse. It gives a detailed description of three crucial ele-
ments of the reuse framework. Two of these elements elaborate on the meta-
model of the software case language introduced formally in Chapter 2 and
described for practical use in Chapter 3. The first of these important elements
is a requirements specification language. The language presented in this Chap-
ter allows for producing coherent, queryable and transformable requirements
which is necessary for fulfilling the vision from Chapter 1. The second ele-
ment is a method for transforming these requirements into design and then
into code. Here, specific transformation rules are given and a simple trans-
formation language is introduced. The third element described in Chapter 4
is the retrieval mechanism and specifically a query language. The query lan-
guage presented in this book is suitable for formulating queries that allow for
matching requirements models formulated in the requirements specification
language mentioned above.

The final Chapter gives a summary and discussion. Possible directions for
future research are also given. Moreover, some details on current activities
leading to the construction of the described software reuse framework are
presented.
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Mechanisms for requirements-based model reuse

2.1 Vision for organising software reuse

In the previous chapter we have described the idea of a requirements-based
model reuse system. We have briefly mentioned the mechanisms of recording
and reusing software cases. We have also defined the system as a combination
of a language, an engine and a methodology. Now we need to describe the
system and its mechanisms in more detail.

The role of the ReDSeeDS system is to help software development organi-
sations in reducing costs through active reuse of past software ceases. In order
for the system to fulfill this goal, it should efficiently support these organi-
sations in their everyday software development activities. We should try to
optimise these activities assuming the existence of appropriate languages and
tools. Only after this we should design these languages and tools. This means
that before we define the ReDSeeDS language or the ReDSeeDS engine we
need to determine the lifecycle process for using ReDSeeDS.

The ReDSeeDS system can be seen as a software reuse strategy supported
by comprehensive software reuse tools and reuse-oriented software case lan-
guage. It can be argued that the main problem with existing software reuse
strategies so far is the size of investment that needs to be undertaken to enable
the reuse process. Thus, while designing a new reuse strategy we need to con-
sider several topics important from the point of view of software development
teams.

• Compatibility with the existing software development processes.
The new strategy should easily fit into the current practice of software or-
ganisations. It should add as little additional activities as possible. These
additional activities should be treated as very light “plug-ins” to the basic
methodology (e.g. a RUP reuse plug-in, an XP reuse plug-in or FDD reuse
plug-in). For these organisations that do not have a systematic methodol-
ogy in place, the system should offer one, allowing to tailor it to the size
and domain of the organisation.
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• Additional effort needed when formulating software knowledge.
This knowledge is produced during every software development project.
It contains various artifacts written in various notations. It seems crucial
to use notations that are commonly used throughout the industry. In the
areas where such universally accepted notations do not exist, it is necessary
to introduce comprehensible extensions to the existing languages. Ideally,
the process of formulating software knowledge should be seamless from the
point of view of software developers. This means performing exactly the
same set of activities and using the same languages and tools as without
the reuse strategy in place.

• Ease of capturing software knowledge for reuse. Usually, making
software reusable is treated as a laborious task. It is thus treated as an
additional investment and applied only when the perspective of reusing
current artifacts is very probable. However, even then we cannot be cer-
tain that the investment will get a return. Many reuse efforts gain profit
only when the artifacts are reused several times - so high are the efforts
associated with making artifacts reusable. In an ideal world, the effort as-
sociated with capturing software knowledge should be minimal. It could
ideally mean literally copying the current project workspace to an appro-
priate library. The cost should be minimal enough to make saving current
software cases in a reuse library - an obvious routine.

• Ease in reusing past software knowledge. Software developers hesi-
tate to reuse past knowledge for various reasons. Basically, all these rea-
sons lead to high effort levels associated with finding and tailoring past
artifacts. This can be again treated as an investment which might not
give satisfactory return. It is generally very difficult to find past software
knowledge applicable to the current problem specification. With such high
effort rates, software developers would expect to be able to reuse as much
artifacts as possible. Unfortunately, most software strategies offer reuse of
low-level components. Even if certain higher level artifacts (requirements
specifications, architectural designs or such) are reused, they need to be
tailored significantly and significant effort is needed to determine changes
in associated code (if at all available for reuse). We should thus postulate
that as for capturing software cases, the efforts associated with reusing
them should be kept to the minimum. This means that querying a library
of past cases should be based on the artifacts that would be developed any-
way in a normal development practice. Moreover, query results should give
precise pointers to these places that necessitate rework thus minimizing
efforts associated with tailoring.

Now, let us imagine a software development organisation that considers
introducing a reuse strategy into its practice. The first question is usually:
does it make sense from the technical point of view? The second question
is: how much will it cost? And finally: what profits will it give? Technically,
introducing a reuse strategy means that the organisation has to change in
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Fig. 2.1. Three technical areas for implementing a reuse strategy

three areas that constitute its core business. This is illustrated in Figure 2.1.
The organisation’s lifecycle process needs to be updated with additional reuse-
oriented activities. Moreover, the organisation would usually need to change
certain amount of its current practices in software analysis, design, testing
and so on. The notations used by the organisation have to be updated with a
language that allows for formulating, seeking and marking changes in software
cases. It is also highly probable that the organisation would need to change
some or even all of its notations used for producing software artifacts. Finally,
the tools that the organisation uses would need significant enhancement. If
enhancements to existing tools are not possible, the existing tools need to be
changed.

It can be noted that applying reuse strategy in a software organisation
faces two significant cost barriers. The first barrier is in investing in the three
areas from Figure 2.1. The second barrier lies in applying reuse between
projects. This is in contrast to implementing general software development
methodologies. For these methodologies only one investment barrier exists.
The organisations need to change their processes, notations and tools, but
no additional efforts are needed to capture knowledge between projects. This
difference is illustrated in Figure 2.2. The effects of implementing a general
non-reuse oriented methodology can be seen in a significantly shorter period.
For that reason, usually, even the promises for larger return on investment
cannot convince such organisations to apply a reuse strategy.

What can we do to change this situation? The answer lies in the four
topics described earlier in this section. We need a reuse system that is com-
patible with the state-of-the-art software development methodologies, and
significantly reduces efforts in formulating, capturing and reusing software
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Fig. 2.2. Barriers in implementing a software development methodology: a) with a
reuse strategy, b) without a reuse strategy

knowledge. This system should ensure that the initial investment in chang-
ing practices will be as small as possible. Moreover, in case the organisation
invests in implementing a new general software development methodology,
the investment in additionally setting a reuse strategy should be insignificant.
Also the additional investment in formulating reusable software knowledge
should be small enough to be practically dissolved in other activities.

In this book we want to prove that such a system is possible. In the fol-
lowing sections we will present the most important concepts associated with
three combined elements of the ReDSeeDS system. We will start with the ReD-
SeeDS methodology and specifically with the methodology’s lifecycle process.
The methodology will give us the basis to formulate the requirements for the
ReDSeeDS engine and design the tool’s architecture. This architecture will
consider the ReDSeeDS language described in more detail in the last section.

2.2 ReDSeeDS Methodology

In order to realise the vision presented in the previous section we need to con-
struct appropriate tools that would enable “seamless reuse” practices. Only
with such efficient tools we can make a dream of effortless reuse come true.
However, before we start designing a software reuse engine we need to de-
termine its functionality and language used to formulate reusable artifacts.
These requirements should be derived directly from a lifecycle process that
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would include software reuse activities. This lifecycle needs to be optimised
taking into account the described vision.

2.2.1 Adding reuse activities to a modern software development
lifecycle

As it was noted in section 2.1, the reuse activities should be as seamless for
software developers as possible. In other words, these activities should “dis-
solve” in the software development process that they would normally use.
This means that we should try do design a reuse lifecycle that is compat-
ible with major modern software development methodologies. If we assume
that an organisation uses one of these methodologies, the new “software reuse
discipline” could become a natural extension (plug-in) to their current prac-
tices. If however, the organisation doesn’t use any modern methodology, the
implementation of a reuse lifecycle could be associated with introducing the
new methodology. In any case it should be taken as a prerequisite that reuse
activities have to be performed in a high software capability maturity culture
(see. [184] or [214]), with precisely defined roles (see eg. [4]. This culture pro-
motes repeatable process and repeatable structure of its artifacts which is an
important condition for reuse.

Let’s now analyse current software development methodologies. We will
try to find their common elements in order to be able to design a common
“methodological plug-in” for software reuse. This task seems to be quite hard
as there is a large variety of methodologies available. Moreover, their pro-
ponents seem to fight a “methodological war” where the controversies are
concentrated around the level of formality of a given method. From this point
of view, we can divide software development methodologies into “formal” and
“agile”. Formal methodologies are usually designed and maintained by ma-
jor companies or academic consortia. Agile methodologies originate from the
famous “agile manifesto” (see: agilemanifesto.org). Various software develop-
ment methodologies were listen in section 1.3.4.

Agile methodologies concentrate on face-to-face communication between
people in a project. Formal methodologies on the other hand concentrate
on communicating through deliverables (artifacts). For this reason, the first
impression might be that formal methods are overwhelming in production
of “unnecessary” artifacts. For agile methods we could have an impression
that there is too little analysis and design leaving too much space for “code
hacking”. Methodologies use different notations for requirements management.
Some of them use structured prose (MSF, ALM), other suggest using use cases
(RUP, ICONIX), features (FDD) or user stories (XP). They also differ in
defining specific activities, artifacts and tools necessary to develop a software
system. Detailed analysis of differences between methodologies is certainly
outside of scope of this book.

Despite the described differences, we can certainly identify a “methodolog-
ical core” that is common to all of the contemporary methodologies. Most
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of the methodologies use or support using UML as an analysis and design
language. All of them use object-oriented paradigm for software construction
and promote appropriate object-oriented techniques. Methodologies also have
a common technical process. They use iterative lifecycle as opposed to wa-
terfall which certainly facilitates reaction to change and reduces major risks.
They promote requirements (or test) based project control. Finally most of
the methodologies support component-based architectures, or at least rec-
ommend appropriate software modeling techniques that allow for managing
complexity of systems. It can be also noted that some formal methodologies
go in the direction of becoming agile (see eg. [114], [175] or [137]).

Fig. 2.3. Two core elements of a reuse-oriented software development methodology

Having identified important commonalities between methodologies we can
try to identify the area where these methodologies can be extended with
a reuse strategy. From this point of view, the base software development
methodology has to enable maintaining “organisational memory”. This means
that the artifacts created during development have to be captured in elec-
tronic tools. Moreover, the structure of these artifacts has to be repeatable
between projects in order to make their reuse feasible. It can be noted that
capturing artifacts in a standard way does not yet constitute a reuse strategy.
It can be treated as an enabler of such strategy, or a “software reuse enabling
interface” to those activities that form the reuse process. This is illustrated
in Figure 2.3. Thus, when describing our reuse-oriented lifecycle process we
will clearly distinguish activities forming the reuse enabling interface and the
reuse plug-in. We will also separately describe the core methodology.

2.2.2 ReDSeeDS Base Methodology

We will start defining our reuse-oriented lifecycle process by first sketching the
standard software development methodology from Figure 2.3. We will not use
any existing method but our base methodology will be quite close to Agile
ICONIX [175] and FDD [158] which seem to offer a representative balance
between formality and agility.
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Fig. 2.4. Overview of the ReDSeeDS Base Methodology

Figure 2.4 shows a sketch of a typical iterative lifecycle process. We will
call it ReDSeeDS Base Methodology (RBM). The process starts from deter-
mining the scope of the prospective system. With this activity, the resources
for the project can be determined. The determined scope contains appropri-
ate units of functionality to be implemented in consecutive iterations. These
units need to be prioritised for their importance for the client and architec-
tural complexity of implementation. The units chosen for a given iteration,
control the rest of the development process. For this reason, the process can
be described as requirements-driven. After starting a given iteration, units of
functionality are described in detail. Having these details, the development
team can update the architecture for the added functionality (architectural
design). Then, the affected subsystems are designed in order to fulfill neces-
sary services (this can be called detailed design). Based on detailed design
artifacts, the programmers can now write code in a chosen programming lan-
guage. The system extended with new units of functionality can now be tested
and verified by the users (quality check). The results of quality control are
the basis for probable changes in the system’s scope. This can be also affected
by possible change requests submitted during the iteration. After setting the
new scope of the system, the next iteration begins.

Of course, the presented standard lifecycle is far from being complete. Cer-
tain important activities (including project management) have been omitted
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as being outside of scope of this book. Moreover, only some of the presented
general activities will be affected with a reuse strategy. We will thus now con-
centrate on these affected activities leaving other, shown in Figure 2.4 only
for completeness of description.

Fig. 2.5. Details of five activities producing knowledge about the software system

Figure 2.51 shows in “exploded” form, five activities from Figure 2.4. It can
be noted that these activities produce knowledge about the developed soft-
ware system. Moreover, these activities can potentially benefit from reusing

1 In the figure we have omitted initial and final nodes for brevity.
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past knowledge. Here we yet have a non-reuse oriented process, where appro-
priate intermediate artifacts are produced for the purpose of coping with the
complexity of software and helping to build the final system.

Closer look at Figure 2.5 shows that generally the activities are divided
into two parallel “paths”. The first path constructs the dynamic aspect of
the system, while the other one - the static (structural) aspect. These two
orthogonal aspects, combined, form a complete software case2. Consecutive
activities of the development lifecycle gradually build this software case. First,
we build the description of the scope of the system. The scope consists of
the dynamic scope containing units of functionality and static scope that
encompasses essential domain vocabulary (see eg. [165, 62] for an insight).
These two elements are built in parallel (see top activity in Figure 2.5) where
notions defined in the domain vocabulary are used inside descriptions of the
units of functionality. After the scope is known, we can start developing the
system in an iterative cycle. Hence, we repeat appropriate activities building
the system by units of functionality.

Every iteration starts with activities that describe chosen units of function-
ality in detail. This extends the developed software case with detailed stories
and additional notions that form a detailed domain vocabulary. Again, these
notions are used inside stories which describe the dynamics of the system in
detail. After the functionality and vocabulary are known, the developers start
designing the architecture for the described units of functionality. Stories are
translated into story realisations (dynamics of the system). These story re-
alisations are closely related with the structure of the system. The structure
consists of components and interfaces used to describe the system dynamics.
It can be noted that the developers first translate stories and vocabulary
into story realisations and structure of the system. Only after performing
this (possibly partially automatic) translation, they finalise the architecture
by designing those elements that could not be translated directly from the
requirements. A very similar process is performed for detailed design of sub-
systems. This time however, translation is done from the architectural level to
subsystem level. In a given iteration, subsystems are designed to implement
these services that participate in appropriate story realisations. By design-
ing subsystems we finally reach the code level. Writing code (last activity on
Figure 2.5) consists in automatically generating code from design (structure
of subsystems and service realisations) and then writing (or just extending)
procedure methods manually.

It is important to note the the presented base methodology (RBM) is
concentrated on gradual building of a software system, where the produced
artifacts are not only loosely coupled requirements specifications, design docu-
mentation and code. It concentrates on building a coherent piece of knowledge
containing precisely specified models on each level of system’s description.

2 Actually, a complete software case contains also other aspects but we will omit
them here for brevity and to show the general idea.
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These models are translated between themselves and the knowledge about
this translation is kept. Such a general software development lifecycle is cer-
tainly suitable to be extended with software reuse mechanisms.

2.2.3 ReDSeeDS Reuse Enabling Interface

Before we will describe reuse-oriented activities that extend the RBM we
need to define important interface elements that need to be built into the
base process. These interface elements should be built into normal software
development activities. Exactly the same elements could then be used in ap-
propriate reuse activities. By studying carefully the previous section, we can
easily identify the elements of RBM that need to be adapted to enable reuse.
These elements form complete software cases that result from consecutive ac-
tivities in RBM shown on Figure 2.5. These are the pieces of knowledge that
we can later reuse.

Fig. 2.6. Meta-model showing the structure of high level elements of a software
case

Here we will define only the most important elements of what we will call
ReDSeeDS Reuse Enabling Interface (RREI). This interface will describe the
structure of software cases produced normally in RBM and that have fea-
tures enabling their reuse. The main element of RREI is the mentioned case
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specification language (see [169] for a new insight). It also consists of certain
techniques that facilitate creating reusable cases. In this book we will concen-
trate on describing the language itself, leaving the description of techniques
to more detailed work. The ReDSeeDS Language (RL) allows to describe soft-
ware cases structured according to Figure 2.6. We will present the structure
of the RL as a meta-model expressed in MOF [148]. It can be noted that
the presented meta-model can be treated as an ontology for the software case
knowledge.

In Figure 2.6 we can see the main pieces forming a software case, i.e. the
elements that constitute technical knowledge collected during a software de-
velopment project and possibly reused in future projects. It can be noted that
metaclasses representing highest level elements of a software case are stereo-
typed as «model»s and «mapping»s. The first of these stereotypes distin-
guishes these pieces of knowledge that form complex abstractions of a certain
domain or software system. These abstractions are formed of several inter-
connected elements (model elements) and allow for defining the system in a
way understandable to the readers and possibly allowing for automatic pro-
cessing. It can be noted that code is treated here also as a kind of model
(written on the lowest level of abstraction). The second stereotype is attached
to these software case elements that form descriptions of ways to translate
(change) one «model» into another «model». This includes specifications to
translate these models automatically or manually created links between model
elements.

Models in Figure 2.6 are divided into four groups: requirements, archi-
tecture, subsystem design and code. The first three of these groups are still
divided into two aspects: static and dynamic. Code has both of these aspects
combined in a single model. Seven «model»s are connected through three
«mapping»s. These mappings allow for translating models from the highest
level of abstraction (requirements) to the lowest (code). With the mappings
it is possible to form coherent software cases where every model has mapping
(traceability) links to higher and lower level models. These links will enable
requirements-based reuse (as described in the following sections) but they
also improve reaction to changes in a software project. Every change on any
given level of abstraction can be now easily propagated to other levels showing
consequences of this change. The models and mappings from Figure 2.6 are
described in more detail in Figures 2.7-2.10.

Figure 2.7 shows the most general elements of two requirements models.
The functional requirements model is composed of many units of functionality.
Each unit of functionality contains several stories. The domain vocabulary
consists of notions that are used inside the definitions of units of functionality
and stories. We can define these elements of the requirements model as follows.

• Notion - a word or group of words having specific meaning in the domain
associated with the system to be built. Notions contain the notion name
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Fig. 2.7. Meta-model showing main elements of requirements

and notion description (definition). Notions can be used when defining
stories and units of functionality.

• Story - a sequence of interactions between a specific type of user of the
system and that system. The sequence starts when the user requests some-
thing from the system. The sequence is controlled by the system and leads
to a single goal of significant value to the user. However, in a given story,
this sequence might fail to reach the goal. The sequence of events in a
story is defined with the use of notions.

• Unit of functionality - a group of stories starting with the same inter-
action of the user and leading to the same goal. In addition to combining
several stories, units of functionality have an additional essential descrip-
tion common for all stories where the same notions as in stories (subset of
notions) are used. Commonly used units of functionality are use cases.

It has to be noted that the above elements of the requirements model
should facilitate formulating unambiguous and consistent specifications. Such
specifications should be easily used to control production of the remaining
models and at the same should serve as enablers of reuse. Thus, specific ReD-
SeeDS Language constructs for requirements form a precise meta-model with
concrete syntax understandable by different participants of the development
process. This meta-model and syntax are discussed in detail in Chapter 4.1.

The architectural models are presented in Figure 2.8. These two models
describe the structure and dynamics of the system which should be consistent
with the requirements. Thus, by analogy we divide architecture into static - de-
rived mainly from the domain vocabulary, and dynamic - derived mainly from
the units of functionality (functional requirements). It is worth noting that
the architectural models described here show high level logical constructs of
the system without going into details on how these constructs are built. More-
over, we do not describe the elements of physical architecture as being out of
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Fig. 2.8. Meta-model showing main elements of architecture

scope of this work. The static architecture is composed of subsystems. Subsys-
tems contain interfaces and can use interfaces contained in other subsystems.
Every interface may contain several services that realise data processing and
exchange of data packets. The dynamic architecture contains generally sev-
eral story realisations derived from units of functionality. Story realisations
contain objects that dynamically exchange messages. Objects are instances
of subsystems or interfaces. Messages are instances of services. More precise
definitions of elements in Figure 2.8 is given below.

• Data packet - a container holding data exchanged between subsystems.
The data contained in the packet should be consistent with the problem
domain and thus derived from vocabulary notions.

• Service - a feature of an interface that defines a single unit of data pro-
cessing to be performed by a subsystem (or subsystems). Services allow
for exchanging data packets.

• Interface - a set of services grouped logically into a single model element.
• Subsystem - a logical unit of processing in the software system. Sub-

systems communicate with other subsystems through interfaces that they
make available to other subsystems and interfaces that they use from other
subsystems.

• Message - an event in a working software system consisting in passing
control and data from one object to another object. Messages can evoke
services which perform appropriate data processing.
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• Object - a data processing element in a working software system. Objects
can exchange messages.

• Story realisation - a sequence of messages exchanged between objects
that realise a specific story or group of stories (most often: a unit of func-
tionality).

Fig. 2.9. Meta-model showing main elements of subsystem design

The high level subsystems from the architectural model need detailed de-
sign. Thus we introduce subsystem design models where every subsystem’s
structure and dynamics is specified. During a software development project,
developers construct subsystem design models for every subsystem in the ar-
chitectural model. The structure of these models is presented in Figure 2.9. It
can be noted that subsystem design is very similar to architecture. The dif-
ference lies in scale and conformance with programming language constructs.
Instead of interfaces and subsystems we have code units. These code units also
serve as data holders (equivalent of data packets) consisting of data features.
Code units contain operations similar to services on the architectural level.
Due to these similarities we will not give detailed definitions of elements found
in Figure 2.9.

To complete the definition of software cases we need to define mappings
between models described above. The structure of these mappings is shown
in Figure 2.10. This structure is common for all the «mapping»s shown in
Figure 2.6. All of them are derived from a general model-to-model mapping
(see appropriate inheritance relationships). Every mapping is composed of an
automatic mapping definition and mapping instance. The automatic mapping
contains a list of mapping rules. Each rule consists of a source template, target
template and source to target translation. Mapping instance contains several
mapping links which often are resulting from mapping rules (when they are
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Fig. 2.10. Meta-model showing main elements of mappings between models

created by an automatic mapping). Mapping links are attached to elements
from the source and target models (elements found in Figures 2.7-2.9). Brief
definitions of the mapping elements are given below.

• Source template - a piece of abstract model showing configuration of
elements to be found in the source model.

• Target template - a piece of abstract model showing configuration of
elements to be constructed in the target model.

• Source to target translation - a set of instructions and constraints
defining the way the source template should be mapped onto the target
template.

• Mapping rule - a tuple containing source template, target template and
source to target translation. This tuple is executed during automatic trans-
formation process.

• Automatic mapping definition - a kind of “mapping program” consist-
ing of a set of ordered mapping rules.

• Mapping link - a link between two elements from different models. This
link is either generated through an automatic transformation process or
determined by software developers.

• Mapping instance - a complete set of mapping links showing relationship
between a source model and a target model.
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The above meta-models for architectural and subsystem design and for
model mappings lead us to the final code «model». The structure of these
models is very important in order to assure good control over the complexity
of the developed system. The architectural model should allow for good un-
derstanding of the overall system revealing only the most important elements.
Detailed design model on the other hand reveals all the details of individual
subsystems. On the code level we can see individual methods with appropriate
algorithms implemented. While helping software developers to produce good
quality software, the RL should also enable reuse of the constructed software
cases. This necessitates the use of a widely used modelling language which
could be consistent with the presented general meta-model. We need to note
that it is important not only to use a proper general purpose modelling lan-
guage but also profile appropriately the developed models (see [192]). This
should prevent from abuse in using the language by developers (see [19, 20]
for an excellent discussion). In this book we will use UML [154, 153] as our
base language. We will use the concrete syntax of UML and its meta-model as
the basis for constructing the presented «model»s. UML syntax will be also
used to build a transformation language allowing to construct «mapping»s as
defined in this section. UML with appropriate extensions defined in MOF will
be used consistently in order to enable repeatability of software case struc-
ture. This in turn greatly facilitates reuse through appropriate reuse engines.
The meta-model and syntax of the modelling and transformation language is
presented in Chapter 3.

Finally, it can be noted that with the presented RREI (or rather: RL)
we can use any existing modern software development lifecycle. Having such
interface separates reuse activities from the rest of the process. This way,
organisations that already have implemented a standard lifecycle can benefit
also from the ReDSeeDS Methodology. At the same time they need not change
their process dramatically. They only need to implement the “reuse interface”.
This also pertains these organisations that already implement or consider
implementing one of the existing methodologies (like RUP, ALM, MSF, XP,
FDD, and so on).

2.2.4 ReDSeeDS Reuse Methodology Plug-in

Having the above reuse enabling interface language we can define activities
that shall allow for reuse of software cases specified in this language. These
activities should be "plugged" into activities present in a normal software de-
velopment lifecycle shown in Fig. 2.4. Basically, according to what we have
discussed in section 1.2 (see Fig. 1.2) these activities are associated with «com-
paring similarity», «reusing» and «recording» of software cases. We need to
determine during which activities in software development we should retrieve
parts of stored software cases and store software cases we develop.

In Figure 2.11 we can see general reuse actions embedded inside activities
of a general software lifecycle. These actions are performed together with non-
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reuse oriented actions shown on Figure 2.5. Below we shall describe them in
more detail.

Fig. 2.11. Reuse oriented actions plugged into development lifecycle activities

• Retrieve and show differences in similar requirements models -
query for software cases in a repository by finding similarities between
cases based on similarity between their functional requirements (units of
functionality) and domain vocabulary requirements (notions). After per-
forming a query, the most relevant software case is retrieved. Differences
between the current requirements model and the retrieved requirements
model are shown (marked).

• Retrieve and show differences in requirements elements - retrieve
detailed definitions of units of functionality and notions. After retrieving,
the details are marked by pointing to elements which should be updated
or are different in the current requirements model and the retrieved one.

• Retrieve and show modifications necessary in architectural model
- retrieve architectural «models» associated through «mappings» with
found similar requirements. The architectural models and the mappings
are marked to show how they need to be modified in order to realise the
current requirements in comparison to those retrieved from the software
case library.

• Retrieve and show modifications necessary in subsystem models
- retrieve detailed design models of subsystems found in the architectural
model with mappings leading from appropriate requirements and architec-



2.2 ReDSeeDS Methodology 41

tural elements. The detailed design models and the mappings are marked
to show how they need to be modified in order to realise the architecture
associated with the current requirements.

• Retrieve and show modifications necessary in code - retrieve code
of subsystems developed for the stored software case. By analogy to the
detailed design model, the retrieved code is marked to show how it needs
to be modified.

• Store a software case - copy the current software case into a software
case repository.

It has to be stressed that the above activities should be implemented so
that minimal possible effort is needed to realise them, especially when we con-
sider iterative and agile lifecycle process as mentioned in Section 2.2.1. This
necessitates the use of an extensive automatic tool that implements appropri-
ate model mapping and retrieval mechanisms (see [120]).

2.2.5 How should a software organisation change?

When we consider all the elements of the ReDSeeDS framework discussed
above, we certainly come to a conclusion that software development organi-
sation has to make an effort to adapt to it. This effort can be compared to
efforts or investments illustrated in Figure 2.2. However, the major difference
that the ReDSeeDS framework makes is that the investment should be quite
similar to that without reuse strategy (Fig. 2.2.b) but promises returns of
investment close or even greater than those with a standard reuse strategy
(see Fig. 2.2.a) for every consecutive project.

Let’s now summarise all the elements that a software development or-
ganisation should implement to change its practices in consistence with the
ReDSeeDS Methodology. Here we can go back to Figure 2.1 which shows three
technological areas where changes should occur.

In order to implement ReDSeeDS, a software producer should first apply a
systematic iterative lifecycle (left column on Fig. 2.1). In many cases the effort
(and investment) here is minimal as an organisation might already have such
a lifecycle in place. This is the case for organisation which has already im-
plemented a methodology like UP or XP. Implementing an iterative process
is a prerequisite for any modern software development methodology. Thus,
any organisation wanting to improve its processes would need to implement
it anyway. In other words, the effort in this area is not associated with the
ReDSeeDS Methodology. What ReDSeeDS adds is only the need to imple-
ment several additional activities as illustrated in Figure 2.11. When these
activities are supported with a properly configured tool, they should not add
any significant effort (see below).

Another element the organisation would improve when implementing ReD-
SeeDS is the practice of modelling when specifying requirements and designing



42 2 Mechanisms for requirements-based model reuse

software systems. This practice consists in building such systems with a co-
herent software case specification language. This makes the process repeatable
between different projects. A coherent language used to define various mod-
eling artifacts significantly reduces efforts when configuring any new project
(reduced learning curve etc.). Effort associated with this technological area
(see centre column in Figure 2.1) is often already taken by the organisa-
tions. Many organisations already use a unified language to produce models
(mostly UML). This means that applying ReDSeeDS would mean learning a
modelling language plus certain additional elements (like a requirements spec-
ification language) and model well-formedness rules (eg. in the form of UML
profiles). The effort of learning these additional elements can be minimised if
the new notation would be based on the standard UML notation. Yet another
issue associated with implementing the ReDSeeDS Language is the need to
learn model transformation and mapping techniques. These techniques are
already present in MDA (mentioned in Section 1.3.1) or MDD (Model-Driven
Development). Applying ReDSeeDS would thus necessitate applying certain
elements of MDD which is an effort that the software organisation should take
into account.

Third area to consider when implementing ReDSeeDS is the area of CASE
tools (see the right column of Fig. 2.1). This is coupled with the modelling
language as discussed above. The use of a modelling language usually causes
the need to use a modelling tool. In ReDSeeDS the use of such tools should
become systematic and coherent. Thus, certain effort should be taken to teach
software developers appropriate standard tools together with teaching the
modelling language. New elements, specific for ReDSeeDS would include an
engine allowing for storing and retrieving past cases. This engine should be
tightly coupled with a modelling tool which can visualise the current and
reused models. It has to be noted that such an engine, being complex by itself,
should offer ease of retrieval and storage of software cases. This minimises the
effort of performing reuse-oriented activities from Figure 2.11.

In summary we can state that in order to implement a true reuse-oriented
software development process, an organisation should implement a systematic
software development methodology. Within this methodology, the organisa-
tion should consistently use a standard modelling and transformation lan-
guage. This standard language should contain certain elements enabling pre-
cise specification of requirements and generally should allow for capturing and
retrieving software cases. The language with storage/retrieval mechanisms for
software cases should be extensively supported by an appropriate engine (tool
suite).

According to the current state-of-the-art, the use of methodology and lan-
guage can be implemented through appropriate organisational efforts. Within
this effort, appropriate existing CASE tools should be configured to enable
capturing knowledge about models in a standard way. In order to enable reuse
of software cases, the reuse oriented tool should add to this the capability of
capturing knowledge about model mappings. Moreover, it should enable reuse
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of captured cases with as little effort as possible. In the following section we
shall discuss this in more detail.

2.3 ReDSeeDS Engine

2.3.1 Functional requirements for the ReDSeeDS Engine

Having defined a software development lifecycle and reuse-oriented language,
we now need tools to support these two elements of a software reuse frame-
work. As it was stated in the previous sections, these tools should form an
"engine" to enable or facilitate activities associated with formulating and re-
trieving software cases. We shall now present functional requirements for this
ReDSeeDS engine by using the UML use case model. In has to be stressed,
though, that the requirements model presented below is far from being com-
plete. Presenting all the detailed requirements is beyond the scope of this
book.

Functional requirements (i.e. use cases) of the ReDSeeDS Engine can be
divided into two packages. The first package is associated with formulating
software cases, and the second with storing and retrieving them. The require-
ments for formulating software cases relate closely to the ReDSeeDS Language
as briefly described in Section 2.2.3. On the other hand, storing and retriev-
ing software cases is based on the methodology plug-in activities described in
Section 2.2.4.

Formulating software cases

Formulating software cases is associated with following a coherent path from
requirements to the resulting code. Here we shall describe three areas of this
path: formulating the requirements, formulating the architecture and formu-
lating the detailed design. In this path we shall identify certain services a tool
should offer to software developers.

In the area of requirements specification we need support for formulating
units of functionality, stories and notions as presented in Figure 2.7. Appropri-
ate use case model is presented in Figure 2.12. Here we can see four general use
cases described below. Terms used in these use case descriptions can be found
in Figure 2.7 and in Chapter 4.1. Moreover, these use cases can be traced back
to activities performed by Requirements Specifiers during the software devel-
opment process. These activities were presented in Figure 2.5 (“Determine
scope of the system” and “Describe units of functionality in detail”).

• Formulate units of functionality. This use case consists in creating
a model that shows individual units of functionality with relationships
between them. Units of functionality can be created, modified and deleted
from the model by the Requirements Specifier. Relationships between units
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Fig. 2.12. Use cases for formulating the requirements

of functionality can be also depicted. When writing the name of the unit
of functionality or its short description, the Requirements Specifier can
ask for linking notions contained therein with notions from the domain
vocabulary («invoke» Link notion to sentence). While formulating units
of functionality, one can also «invoke» Formulating stories for chosen units
of functionality.

• Formulate stories. In this use case, the Requirements Specifier can write
stories in one of the notations handled by the Engine. Stories are written
for a chosen unit of functionality. While writing stories, Requirement Spec-
ifier links phrases contained in sentences with notions from the domain
vocabulary («invoke» Link notion to sentence).

• Formulate notions. Requirements Specifier can add and modify notions
in the domain vocabulary. This use case allows also to attach appropri-
ate phrases (with verbs or adjectives) to notions. Notions can be linked
through appropriate notion associations.

• Link notion to sentence. This use case allows for linking notions to
elements of sentences. Such links (or: hyperlinks) can be inserted into
the sentence which is currently created or modified within the Formulate
stories use case. To link a notion, the Requirements Specifier chooses a
notion from the vocabulary. The system supports the Specifier by allowing
to search for synonyms or words with similar meaning.



2.3 ReDSeeDS Engine 45

Fig. 2.13. Use cases for formulating the architecture

The Engine should also support the Architects in “Designing architecture
for selected units of functionality” (see Fig. 2.5). Appropriate activities can
be performed according to the use case model shown in Figure 2.13. The use
cases contained there use terms found in Figures 2.8, 2.10 and Chapter 3.

• Create automatic mapping definition. With this use case, the Ar-
chitect can create an automatic mapping definition with all the necessary
mapping rules. This can be done both for requirements to architecture and
architecture to design mappings. The system allows for creating source
templates, target templates and source to target translations.

• Transform requirements to architecture. The Architect can start
this use case when an automatic mapping definition is ready and avail-
able. He/she can also choose from previously prepared definitions. When
a definition is chosen, the current requirements model (units of function-
ality and notions) are transformed into story realisations and subsystems
with interfaces. This transformation results in an architectural model that
is available for further “hand” modifications by the Architect. The resulting
model should be appropriately mapped to the requirements. This mapping
is an instance of the automatic transformation with appropriate mapping
links.
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• Formulate story realisations. The Architect can choose an existing
story realisation or create a new one for an existing unit of functionality.
With the chosen story realisation, the Architect can add objects and mes-
sages that show the dynamics of the system realising a given story or set of
stories. While adding objects and messages, the Architect may Link object
to subsystem or interface by «invoke»ing an appropriate use case. Same
can be done for Linking message to service. When a story realisation is
being formulated, there can be also Updated mapping links to requirements.

• Formulate subsystems with interfaces. This use case consists in mod-
ifying or creating subsystems with appropriately related interfaces. Rela-
tionships between these elements can be changed. Data packets transmit-
ted through interfaces can be changed or created. These data packets can
be added to the services of interfaces. Services can be added or their signa-
tures modified. When subsystems and interfaces are being modified, there
can be also Updated mapping links to requirements.

• Link object to subsystem or interface. For a given story realisation,
the Architect may choose an object and associate it to an appropriate
subsystem or interface. This subsystem or interface will serve as a classifier
for that object. This results in making services of a given subsystem or
interface available for associating with messages.

• Link message to service. For a given message, the Architect may choose
one of available services of the target object classifier. This service will be
then associated with the given message.

• Update mapping links to requirements. When changing any of the ar-
chitectural models, the Architect can manually update mapping links that
lead from appropriate requirements elements to architectural elements.
This might be done for existing mapping links (e.g. created during auto-
matic transformation). Additional links can be also added.

By analogy to supporting the Architect, the Engine should also support
the Designer in “Designing subsystems for selected services” (see Fig. 2.5.
Appropriate use cases are shown in Figure 2.14. Terminology for these use
cases can be found in Figures Figures 2.9, 2.10 and Chapter 3. It can be noted
that there is no specific use case for creating an automatic mapping definition
between architecture and design. This was already done by the Architect.

• Transform architecture to detailed design. The Designer can start
this use case when an automatic mapping definition is ready and avail-
able. He/she can also choose from previously prepared definitions. When
a definition is chosen, the current architectural model (story realisations,
subsystems with interfaces) is transformed into service realisations and
code units. It is also possible that just some parts of the architectural
model are chosen for transformation. This transformation results in a sub-
system design model that is available for further “hand” modifications by
the Designer. The resulting model should be appropriately mapped to the
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Fig. 2.14. Use cases for formulating the detailed design

architecture. This mapping is an instance of the automatic transformation
with appropriate mapping links.

• Formulate service realisations. The Designer can choose an existing
service realisation or create a new one for an existing story realisation.
With the chosen service realisation, the Designer can add objects and
messages that show the dynamics of the subsystem realising a given service.
While adding objects and messages, the Architect may Link object to code
unit by «invoke»ing an appropriate use case. Same can be done for Linking
message to operation. When a service realisation is being formulated, there
can be also Updated mapping links to architecture.

• Formulate code units. This use case consists in modifying or creating
code units with their relationships. Data features and operations can be
added to code units or modified. When code units are being modified,
there can be also Updated mapping links to architecture.

• Link object to code unit. For a given service realisation, the Designer
may choose an object and associate it to an appropriate code unit. This
code unit will serve as a classifier for that object. This results in making
services of a given code unit available for associating with messages.

• Link message to operation. For a given message, the Designer may
choose one of available operations of the target object’s code unit. This
operation will be then associated with the given message.
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• Update mapping links to architecture. When changing any of the
subsystem design models, the Designer can manually update mapping links
that lead from appropriate architectural elements to subsystem design ele-
ments. This might be done for existing mapping links (e.g. created during
automatic transformation). Additional links can be also added.

It can be noted that the above use cases do not allow for generating code
out of design models. Such functionality is available in existing tools.

Storing and retrieving software cases

The Engine supports various developer roles in storing and then retrieving
software cases. With this support, significant parts of stored software cases can
be merged into the current software case. This merging is based on similarity
markings done by the Engine. The marking in turn, can be performed thanks
to mapping links that exist between parts of the stored software cases.

Fig. 2.15. Use cases for storing and retrieving software cases
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• Retrieve and show differences in similar requirements models.
This use case can be started when at least a partial requirements specifi-
cation for a new software case is ready. The Requirements Specifier asks
the engine to search for similar stored software cases. A list of software
cases with similarity measures is shown. Then, the Requirements Specifier
examines the software cases. If satisfied with one of the software cases,
Requirements Specifier chooses it and the Engine retrieves the require-
ments part of the software case into the current workspace. After this, the
Requirements Engineer merges the current requirements model with the
retrieved one. This is done by hand in a model editor.

• Retrieve and show differences in units of functionality. This use
case can be started when a complete requirements specification for some
units of functionality (eg. for one of the iterations) is ready. Then, the
Requirements Specifier can ask the engine to search for similar units of
functionality. The Engine then shows a list of current units of function-
ality with attached lists of most similar stored units of functionality with
similarity measures. Then, the Requirements Specifier examines the similar
units of functionality, and chooses the most relevant. After this, the Engine
clearly marks differences between most relevant stored units of functional-
ity and the current units of functionality. The Requirements Engineer can
still modify the current units of functionality to make them closer to the
stored units of functionality in order to allow for greater levels of reuse.

• Retrieve and show modifications necessary in architectural model.
This use case can start when a complete requirements specification for a
significant part of the system functionality is ready. The Architect asks
the Engine to show relevant stored software cases in their Architectural
parts. The Engine shows relevant software cases with similarity measures.
The Architect can examine the stored architectural models. These models
are marked by the Engine through pointing out story realisations, objects,
messages, subsystems, interfaces, services, data packets (in general: ele-
ments of the architecture) that would need rework. This marking is based
on tracing from the stored requirements model to the stored architectural
model. After choosing one of the models by the Architect, the Engine
transfers it, together with the markings, to the current workspace.

• Retrieve and show modifications necessary in subsystem models.
This use case can be started when a significant part of the architectural
model is ready. The Designer asks the Engine to show relevant stored soft-
ware cases in their Subsystem design parts. The engine shows markings
pointing out those service realisations, objects, messages, code units, op-
erations, data features that would need rework. This marking is based on
tracing from the stored architectural model to the stored design model.
After choosing one of the models by the Designer, the Engine transfers it,
together with the markings, to the current workspace.

• Retrieve and show modifications necessary in code. This use case
can be started when a significant part of subsystem desing for a particular
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subsystem is ready. The Programmer asks the Engine to show relevant
stored software cases in their Code parts. The engine shows markings
pointing out those elements of Code that would need rework. This marking
is based on tracing from the subsystem design model to code.

• Store a software case. This use case can be started then a software case
is judged as complete, and all the necessary tests have been successfully
passed. The Project manager asks the Engine to store the current software
case. The Engine stores the software case by copying its complete contents
into the software case repository.

It has to be stressed that the above retrieval use cases can be interleaved
with use cases from the “Formulating use cases” package. After retrieving
certain elements of a stored software case, the developers should perform
activities associated with merging the query results with the current working
model. This merger should be done using standard use cases to formulate a
software case in various areas.

2.3.2 Architecture of the ReDSeeDS Engine

In order to fulfill the functionality presented above, the Engine has to be
composed of several components. These components are presented in the fol-
lowing section. The components cooperate in order to realise use cases and
these realisations are presented in the last part of this section.

Structure of the Engine

The ReDSeeDS Engine is designed using a tiered (layered) approach. We shall
present the structure of the Engine by using a four tier framework:

• Presentation Layer – This layer presents results and accepts data from the
users. Components on this layer contain code units that handle individ-
ual screens. These code units can generate the screens and accept button
presses. The presentation layer should be responsible only for presenting
and accepting data from the user.

• Application Logic – This layer controls the whole application by asking
other layers for actions in a specified sequence – according to the functional
requirements. Components in this layer contain code units that manage
appropriate sequences of events defined in use cases. These code units know
what to do when a certain button is pressed in a certain situation. They
also react appropriately depending on the state of the system (handled
by the business logic). In summary, Application Logic instructs “everyone”
what to do and when.

• Business Logic – This layer performs data processing actions as asked by
the application logic. Actions performed by the business logic are consis-
tent with the business rules defined in the vocabulary requirements. Com-
ponents in this layer contain code units that represent business vocabulary
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Fig. 2.16. Component diagram showing structure of the Engine for software case
specification

notions. These code units have operations that process data contained in
their objects. Business logic is the right place to integrate applications.
Different applications should integrate by asking for actions on this layer.

• Data Storage Layer – This layer allows for persistent storage and retrieval
of data whenever it is needed by the business logic. Components in this
layer contain databases, file stores, data repositories, knowledge bases etc.
Relational database components (the most common) contain tables with
relationships. Such components can handle queries in a query language
(eg. SQL).

In the proposed architecture of the ReDSeeDS Engine, the Presentation
Layer and Application Logic Layer are closely related. Thus, we will show
these two layers as a single layer.
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Figure 2.16 shows components that take part in specifying software cases.
The top layer of the diagram shows all the involved groups of users. Note that
for brevity we have omitted the Programmer (as using the Engine in the same
way as Designer).

The Requirements Specifier uses the Engine through a Requirements

specification tool. This tool uses the functionality of the Modelling

tool. The modelling tool is basically a standard UML modelling tool, cho-
sen among available on the market. An important feature of this tool should
be the existence of a comprehensive Application Programmer’s Interface that
allows for integrating with external applications or plug-ins. This modelling
tool connects to a Model workspace repository. Normally, this repository
is part of the modelling tool setup. However, we have emphasised this compo-
nent as it includes the meta-model facilities offered by the chosen modelling
tool. The Modelling tool is equipped with an extensive interface that allows
for storing and retrieving models defined in other tools (like the Requirements
specification tool). This interface handles models as defined throughout
this book with appropriate meta-models.

The Modelling tool is used extensively by the Architect and by the De-
signer. They use it as a normal modelling tool but with restrictions set on the
meta-model (eg. by using a UML Profile) as specified in this book. In addi-
tion to this tool, the Architect uses a Transformation specification tool.
This tool offers functionality to define and run automatic mapping specifica-
tions. It is generally equivalent to the Modelling tool in the sense that it also
allows for handling models but these models pertain transformation definition
in the language as sketched in Figure 2.10. The tool uses a specialised engine
(Transformation engine) that performs all necessary transformation opera-
tions on the models stored in the Model workspace repository through the
Modelling tool.

Figure 2.17 presents these components of the Engine that are responsible
for storing and retrieving software cases. The Storage and retrieval tool

is used by all the participants of the development process. The developers (Ar-
chitects, Designers, Requirements Specifiers, Programmers) use it to retrieve
relevant parts of software cases similar to the current requirements model.
The Project managers use it to store the current software case whenever a
decision is made that it is complete and of good quality. The tool uses an ex-
tensive Software case storage and search engine. This engine has spe-
cific algorithms implemented that allow for retrieving software cases. These
algorithms should be based on advanced graph comparison and case based
reasoning techniques (and in general – AI techniques). The engine operates
on the current software case on software cases stored in a repository. The
current software case is handled by the Model workspace repository. The
repository is stored in a Software case repository component. This last
component has certain functionality to handle a specialised query language,
oriented on querying graphs.
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Fig. 2.17. Component diagram showing structure of the Engine for software case
storage and retrieval

Dynamics of the Engine

The purpose of specific components of the ReDSeeDS Engine can be bet-
ter explained by illustrating their usage in use case scenarios. Here we shall
illustrate some of the scenarios with UML sequence diagrams that show in-
teractions between components. The chosen scenarios are most representative
for various functionalities specified in section 2.3.1.

When describing the realisations of use cases we shall not show all the
details of user interaction with the system. This would introduce a lot of
detail and hide the fundamental communication paths between components.
Thus, only most important user actions will be shown here. More detailed
sequence diagrams are left to be designed by the Engine developers.

Formulate stories. (see diagram in Figure 2.18)
In order to formulate a story, the Requirements specifier should interact with
a Requirements specification tool (‘Start formulating stories’). The user
can ask to introduce a new story, giving its details (this interaction between
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Fig. 2.18. Sequence diagram showing Engine dynamics for the “Formulate stories”
use case

the user and the tool is not shown). After the details of the story header are
introduced, the Requirements specification tool communicates with the
Modelling tool to ‘Insert story’. This is in turn performed by inserting an
appropriate model element into the Model workspace repository (‘Insert
model element’). It can be noted that a story has to be mapped appropri-
ately by the Modelling tool. This mapping is done from the software case
meta-model for requirements (see Fig. 2.7) to the standard meta-model of the
modelling tool (normally – the UML meta-model).

When the user wants to insert a new story sentence, the situation is
analogous. After some dialogue with the user, the sentence is formed within
the Requirements specification tool. Then, this sentence is inserted into
the Model workspace repository through the interface contained in the
Modelling tool. It can be noted that while formulating sentences, another
use case can be invoked («invoke» Link notion to sentence), that allows for
adding appropriate links within the created story sentence. This is shown on
the diagram as a message to start this other use case, which is presented below
(note that this notation is an extension, not present in standard UML).

Link notion to sentence. (see diagram in Figure 2.19)
When the Requirements Specifier wants to add a new link (‘Start linking
notion to sentence’), the Requirements specification tool asks for the
notions to be linked (‘Get notions’). The Modelling tool gathers all the
relevant notions contained in the Model workspace repository (‘Get model
elements’). It should be noted that the ‘Get notions’ operation should act
context sensitive. This means that the notions are gathered based on the
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Fig. 2.19. Sequence diagram showing Engine dynamics for the “Link notion to
sentence” use case

sentence element type and certain initial data given by the user (like the
starting characters). This interaction between the two tools is performed while
the user types sentence text.

After the notions are gathered, he Requirements specification tool

shows them to the user (‘Show notions) who can choose one of the notions
(‘Choose notion’). After this, the link is inserted into the current sentence
and this information is stored into the Model workspace repository (‘Insert
notion into sentence’ and ‘Update model elements’).

Create automatic mapping definition. (see diagram in Figure 2.20)
This use case encompasses all the functionality associated with creating the
mapping definition. Generally, every new mapping definition element is cre-
ated in a specific dialogue with the user (Architect) which is not shown on the
diagram. What is shown is that whenever a new element is created, it is in-
serted into the Model workspace repository through the Modelling tool.
It can be noted that by analogy to specifying the requirements, the Modelling
tool has to map the mapping definition meta-model (see Fig. 2.10) into its
internal meta-model (usually the UML meta-model).

Transform requirements to architecture. (see diagram in Figure 2.21)
When the Architect wants to perform a transformation (‘Start transforma-
tion’), the engine allows to pick the appropriate transformation model and
the suorce and target model packages (this dialogue is not shown in the dia-
gram). Then, the Transformation engine gathers all the necessary data: the
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Fig. 2.20. Sequence diagram showing Engine dynamics for the “Create automatic
mapping definition” use case

Fig. 2.21. Sequence diagram showing Engine dynamics for the “Transform require-
ments to architecture” use case

transformation definition (‘Get transformation definition’) and the source re-
quirements model (‘Get source model’). After fetching these two elements, the
transformation program is run based on the transformation definition (‘Run
transformation program’). During this, the resulting model is constructed. Fi-
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nally, the target model is stored in the repository in the chosen package (‘Set
target model’). Together with the target model, mapping links to the source
model are also stored.

Fig. 2.22. Sequence diagram showing Engine dynamics for the “Retrieve and show
modifications necessary in architectural model” use case

Retrieve and show modifications necessary in architectural model.
(see diagram in Figure 2.22)
When the Architect wants to retrieve stored architectural models, he/she
asks the Storage and retrieval tool (‘Start retrieval’). The tool evokes
the retrieval process performed by the Software case storage and search

engine (‘Do retrieve’). The search engine at first gathers the requirements
model to be the basis for formulating a query (‘Get model elements’). Having
the requirements model, the search engine automatically formulates a query
in a language understandable by the Software case repository (‘Formu-
late requirements query’). This query is used to search for relevant software
cases in the repository (‘Search for software cases’). During this, appropriate
similarity metrics are determined and also retrieved.

After retrieving the software cases with similarity metrics, the Software

case storage and search engine marks them for differences in comparison



58 2 Mechanisms for requirements-based model reuse

to the current software case. The algorithm uses traces between the require-
ments models and architectural model in the retrieved cases. Whenever a
difference occurs between the current requirements model, and the retrieved
model, this difference is propagated through the links into the architectural
model. Then, appropriately linked architectural elements are marked as nec-
essary for modifications.

After this, the Architect can browse the marked models (this interaction
is not shown on the diagram). Finally, the Architect can choose on of the
retrieved models (‘Choose software case’). This software case, in its architec-
tural part, is then transferred to the current Model workspace repository

(‘Do transfer’ and ‘Insert model elements’).

Fig. 2.23. Sequence diagram showing Engine dynamics for the “Store a software
case” use case

Store a software case. (see diagram in Figure 2.23)
Whenever the Project manager judges the current software case is stable,
he/she can store it through the Storage and retrieval tool (‘Start stor-
age’). The process is quite simple as it consists in retrieving the complete
software case from the Model workspace repository (‘Get software case’)
and saving it into the Software case repository (‘Put software case’). It
has to be noted that this process does not involve any transformations of
the software case. The current software case already should have necessary
information for easy retrieval in the future.
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Building coherent software cases in a unified

language

3.1 Case specification language in practice

In the previous Chapter, in section 2.2.3 we have introduced fundamental el-
ements to be found in a coherent software case specification language. There,
appropriate metaclasses express the types of elements to be specified by soft-
ware developers. These metaclasses form the abstract syntax of the language.
Software developers, though, need to prepare their specifications in some con-
crete (specific) syntax.

According to the methodology presented in the previous Chapter we divide
the description into four parts, each of the parts describing models to be
prepared in four phases of the software development process.

In the following sections we shall present elements of the concrete syntax
of the language in a less formal way. This concrete syntax shall be formalised
with a detailed metamodel in the next Chapter.

We shall follow the European Space Agency (ESA) standard PSS-05-0
[61], where generally, the software development process is divided into User
Requirements Specification, Software Requirements Specification, Architec-
tural Design and Detailed Design.

3.2 Writing user requirements

User requirements form the top layers of the so called “requirements pyramid”.
They determine the vision and scope of the potential system to be built but
they do not specify any details. Generally, the user requirements are there
to show the client what he/she might expect, and to allow for verifying the
realisation of these expectations. The requirements pyramid is presented in
Figure 3.1. The system vision is a specification of general features of the system
in close connection with the business needs of the client. The system scope
is a specification of the system necessary to determine its size and amount of
effort needed to build it.
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Fig. 3.1. Requirements pyramid containing user requirements and software require-
ments

Often, user requirements are written with unstructured common prose.
However, this usually does not ensure proper quality meaning completeness,
consistency, measurability (testability) and other important features. For this
reason, requirements specifiers should classify their requirements into several
types ensuring proper structure of a requirements specification.

• Functional requirements determine the system’s behaviour while it is
interacting with the user (or other system). They answer to important
questions asked by the users. What services should the system offer? How
should it react to specific input messages? How to behave in specific sit-
uations? The set of functional requirements determines the scope of the
system to be built. Often it is wise to state also what functionality is out
of scope (out of the system’s functionality).

• Vocabulary requirements define the scope of notions and associated
data to be handled by the software system. The vocabulary contains defi-
nitions of notions used inside functional requirements and quality require-
ments. When defining notions we also describe relationships between them.
We can show these relationships graphically.

• Quality requirements describe the quality features of the prospective
system. How fast should be the system? How reliable should be the system?
How safe should be the system? How user-friendly should be the system?
What norms should the system comply to? Non-functional requirements
can be global (pertain to the whole system) or local (directly pertain only
to specific functional requirements).

• Constraint requirements are determined by the business and techni-
cal environment that surrounds the system. They describe the external
conditions set for the system (software, hardware, work conditions). Ex-
amples of constraints are local area network configuration, performance of
client and server machines, database management system owned, working
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environment (in the field, in a factory), or administrative personnel (how
many people).

It can be noted that the requirements meta-model already presented in
section 2.2.3 (see Fig. 2.7) satisfies this classification. There we have Notions,
Units of functionality and Stories. These reflect two types of requirements:
vocabulary and functional (respectively). In this book we shall concentrate
only on these two types.

Fig. 3.2. Example of functional (left) and vocabulary (right) requirements describ-
ing visually two aspects of the same system

It has to be stressed that functional and vocabulary requirements should
form a complete and coherent whole. These two aspects of the same system are
orthogonal, but have very tight links. Inside functional requirements we use
certain notions that should be present and defined in the vocabulary. This is
illustrated for an example system in Figure 3.2. Requirements in this example
are represented visually which gives an excellent overview of the system’s
scope.

Fig. 3.3. Introducing the use case model with actor - use case relationships
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Fig. 3.4. Introducing the domain element model with notion relationships

The above example introduces the need for some concrete syntax of user
requirements. This would allow for specifying them in a uniform way which
gives potential for reuse as postulated in the previous Chapter. Here we shall
propose syntax which is based on use cases and UML class diagrams. User
requirements should thus contain two types of diagrams: use case diagrams
(see Fig. 3.3) and domain element diagrams (see Fig. 3.4). These two types of
diagrams reflect two models that are based on two main meta-classes shown
in Figure 2.7). The use case model is composed mainly of Units of functionality
in the form of use cases. The domain model is based on Notions. More details
on the appropriate meta-models is given in the next Chapter.

• Use case model is composed of use cases and actors. Actors denote “roles”
of people or machines outside the described system. Use case is a small
piece of the system’s functionality that: 1) begins with actor’s interaction
with the system, 2) describes the system’s “dialogue” with the actor, and
3) leads to a specific goal that has a value to the actor. Use case model
shows relationships between actors and use cases.

• Domain element model is composed mainly of notions and relationships
between them. Notions denote data that shall be handled by the system.
Every notion can define a packet of several data elements (attributes).
Notion descriptions include also ways to process this data. It is important
to capture relationships between notions. These relationships denote to us
that one notion can be described in terms of another notion. It has to
be stressed that notions are not UML classes, although notationally they
resemble classes. So, notions do not have operations or attributes. Instead
they can contain related phrases (see Section 3.3).

These two models enable us to describe the behaviour and data exchanged
in a system composed of the “software system to be built” and actors interact-
ing with it. This is illustrated in Figure 3.5. A typical use case is a sequence of
messages between the actor and the software system. Within these messages,
data is exchanged, where the structure of this data is explained through no-
tions found in the vocabulary model. This gives us a coherent specification of
the system’s scope.

Actor describes a role that someone or something can play in respect to
the considered system. Actor represents a group of people (or machines) that
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Fig. 3.5. Exchange of messages in a composite system consisting of actors and the
system to be built

“talk” to our system in the same way. A particular person (or machine) can
play several roles – can be associated with several actors. Actors communicate
with the system by evoking use cases. A use case is a description of behaviour
of a system communicating with one or more actors. In order for a behaviour
description to constitute a use case three conditions have to be met:

• The description should start with an actor’s interaction with the system,
• The description should present messages exchanged between the system

and an actor,
• The description should clearly state the final goal reached at the end of

message passing.

It is important to note that when describing a use case, we should treat
the modelled system to be built as a “black box”. Use case descriptions should
concentrate on the behaviour that is visible to the actors. All the “machinery”
inside the system should be hidden. The system is described as a “white box”
only when we start to design it’s architecture. Use cases with human actors
describe only the user interface and certain business effects of the system’s
behaviour.

From the point of view of concrete syntax, relationship between an actor
and a use case is denoted with an association (a line). Two types of relation-
ships are possible:

• Primary actor for a use case: the actor starts the use case and the system
tries to reach the use case’s goal for this actor

• Secondary actor: the system asks the actor to help in reaching the use
case’s goal; communication with the secondary actor is done before the
use case ends (during communication with the primary actor)

Primary and secondary relationships are denoted with appropriate arrows,
as shown in Figure 3.3.
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Fig. 3.6. Invoking a use case from within another use case

In addition to denoting relationships between actors and use cases, some-
times it is necessary to show that during execution of a use case, some other
use case could be executed. Execution of another use case can be caused by
user intervention, evoked by some condition of the system or performed un-
conditionally. All the interactions of the evoked use case are inserted into the
main use case. It should be stressed that the evoked use case is a “normal”
use case complying with the definition above. This is illustrated in Figure 3.6.
The evoked use case could also be evoked independently of the evoking use
case.

To denote relationships between use cases, UML has two types of invo-
cation dependencies: «include» and «extend». These two dependencies cause
certain level of confusion as their semantics described in the language refer-
ence is very ambiguous (see [186, 212, 132, 131]). For this reason we introduce
a single dependency that substitutes both of the above: «invoke». Invoke
means that interactions of the invoked use case are inserted (conditionally or
unconditionally) into the invoking use case (as illustrated in Fig. 3.6).

Inside the use case description there can be several points where other
(«invoked») use case can be started. These points are called extension points.
This is because they denote places where the main use case is extended with
the functionality of other use cases. Extension point can be unconditional
where the invoked use case is always inserted into the main one or conditional
where the invoked use case is inserted under a certain condition. Conditions
are shown in the example in Figure 3.7.
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Fig. 3.7. Denoting «invoke» relationships

Fig. 3.8. Introducing hyperlinks to requirements descriptions

The use case diagrams contains important information about the system’s
functional scope. However, this is usually not enough for the project team
to determine the size of the system to be built. Thus, a short description of
each of the use cases is needed. It is within this description, and within the
use case’s name where the use case model intersects with the domain model.
This is illustrated in Figure 3.8. It shows a short description of a single use
case (“Record car data”). This description is hyperlinked to descriptions of
appropriate domain elements (notions from the domain model, see [99] for
an initial approach). It can be noted that these hyperlinks are reflected in
the meta-model as an association between Notion and Unit of functionality
in Figure 2.7. This gives us a very coherent and unambiguous requirements
model. Certainly, keeping the hyperlinks synchronised is very tedious without
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a specialised tool. Thus the need for the tool as described in the previous
Chapter.

Defining use cases and domain elements determines the system’s scope.
All the use cases give us the scope for the system’s functionality. All the
notions define the scope for the data to be handled by the system. Scope of
the system obviously determines its size. This gives us the means to make
important cost and time estimates. Having the scope determined we need to
specify the requirements in more detail, before developers start designing and
coding the system. This is where software requirements come into scene.

3.3 Writing software requirements

Before designing the system we need to know more detailed information on
the system’s behaviour and its domain. This consists in extending the use case
model and the domain model. Extending a use case means writing “stories”
on how the system should behave (exchange information) in respect with the
external objects (actors – users, other systems). Unfortunately, usually such
stories are written more like a novel, where descriptions of the domain are
buried inside the story. This leads to many inconsistencies. We often result
in a situation where synonyms and homonyms are used leading to confusion.
This leads to problems with translating requirements into design and then
code.

Fig. 3.9. Homonym problem in a software requirements specification
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The “homonym” problem is illustrated in Figure 3.9. There we can see two
story fragments, which both use the same term “semester”. Unfortunately,
these two terms are defined within the story, and they are both defined differ-
ently. This leads to serious confusion of developers in the future, where it is
not clear which definition of the term “semester” is valid in a given situation.
Keeping a separate and hyperlinked domain vocabulary solves this problem,
as all the definition are kept outside of the story itself.

The proposed solution to the above problems is to specify a uniform for-
mat for writing scenarios. This format should unambiguously link scenario
contents with the domain vocabulary. Moreover, this format should allow for
easy translation into design constructs allowing for transformations as de-
scribed in the previous Chapter.

Fig. 3.10. Scenario with a triggering action, sequence of actions and goal.

When designing the format for scenarios we shall keep in mind their def-
inition. A scenario is a sequence of actions forming a dialog between objects
outside a system and that system. It is performed on behalf of a primary ob-
ject (“primary actor”) that triggers the scenario. The initial trigger is followed
by a sequence of actions performed by the system and by the outside objects
(including the primary object). The sequence is controlled by the system and
leads to a single goal of significant value to the primary object. The sequence
can fail to reach the goal – it is then a failure scenario. This is illustrated in
Figure 3.10. It shows two scenarios with the same triggering action where one
of the scenarios fails.

In order to specify the above sequence of actions it is enough to use the
simplest possible sentences. Such sentences consist of a subject, a verb and one
or two objects (here “object” meaning part of a sentence). With this SVO[O]
structure of a sentence one can express an action performed by the system or
the actor on one or two vocabulary elements. It can be noted that SVO[O]
sentences do not allow for any definitions of domain elements. Appropriate
example is shown in Figure 3.11. In these sentences, the subject is always the
actor’s name (“teacher”, “admin”) or the “system”. Objects reflect notions to
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Fig. 3.11. Scenario sentences written in SVO[O] notation

be found in the problem domain (“user data”, “current marks”, “user”, “user
list”).

Fig. 3.12. Example scenario for a use case

Scenario can be written as a sequence of SVO[O] sentences. It is illustrated
in Figure 3.12. The sequence always starts with the appropriate actor trig-
gering an action. In the Figure we can see two scenarios that start with the
same action (“Admin wants to add a user to the user list”). Then, there are
two sequences of sentences. The difference between both scenarios lies in two
conditions (“user data valid” vs. “user data invalid”) which control the flow of
events. The same two scenarios and a relationship between them can be also
represented visually as an UML activity diagram. It can be noted that the
diagram is equivalent to two textual scenarios. This diagram actually extends
the textual version with another scenario which forms the third path through
the activity diagram.
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Fig. 3.13. Detailed domain model with notions and phrases

In the illustrated scenarios we can easily identify domain notions (“user”,
“user list”). These notions should already exist in the domain model created in
the User Requirements phase. However, certain new notions, associated with
the system’s user interface appear (“user data dialog”, “error dialog”). In other
scenarios, notions associated with system parameters can also be introduced
(see [219] on introducing new notions in the later stages of requirements spec-
ification). This necessitates extension of the domain model, as illustrated in
Figure 3.13. Newly introduced notions in this model have appropriate stereo-
types («UI Window» and «configuration») that allow to distinguish them
from typical domain elements. The Figure also introduces certain phrases as-
sociated with notions. We can notice that for instance the User notion contains
two phrases: enter user data and validate user data. The User list notion also
has an appropriate phrase, and we could also add appropriate phases to other
notions.

The phrases in Figure 3.13 can be compared to sentences in Figure 3.12.
As we can see, these phrases exactly reflect verb-object-object parts of these
sentences. In other words, the predicate (VO-O) part of any SVO[O] sen-
tence can point to an appropriate phrase contained in a notion. This means
that SVO[O] sentences denote in fact execution of sequences of phrases, as
illustrated in Figure 3.14. This Figure can be compared with Figure 3.12. It
reflects the success scenario as it passes through consecutive notions “evoking”
their phrases. Numbers reflect numbering of the scenario sentences.
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Fig. 3.14. Steps of an example scenario through the domain model

As we can see, software requirements update user requirements with ad-
ditional details. The resulting model is still kept coherent while the domain
model is consistently referenced (hyperlinked) within use case scenarios. Now,
having detailed requirements for selected use cases, the developers can start
designing the system.

3.4 Designing the architecture

Before going into the details of software design, including code elements, the
developers should design the overall architecture of the system. Architectural
level is necessary in order to be able to understand the system as a whole. This
is due to inherent complexity of software systems with thousands of code mod-
ules to be designed and then implemented. We also need to handle somehow
the complexity of translating requirements (which are usually also complex by
themselves) to system implementation. Architecture gives a necessary level of
abstraction that allows to see the bigger picture instead of concentrating on
thousands of details.

The problem with designing software architectures is that there is no com-
mon understanding of what architecture is. The Software Engineering Insti-
tute gives over 30 definitions found in the literature (see
http://www.sei.cmu.edu/architecture/definitions.html). There seems to be no
commonly approved “language” to denote software architectures which is in
a sheer contrast with standard blueprint format for building architectures.
For this reason it is often that systems are being built without this necessary
architectural level.

Here we shall assume the following characteristics that the software archi-
tecture should have:
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• Architectural plan (blueprint) for a software system is an articulated set
of decisions made by an architect. Architectural decisions are made on the
basis of client’s requirements and architect’s knowledge about software
development technologies.

• Architectural blueprints show the structure and dynamics of the system
to be built.

• Architectural blueprint takes into account economical and technological
constraints, at the same time making it possible to introduce changes and
extensions to the initial requirements.

• Architectural blueprint is written in a graphical (visual) language under-
standable by the developers (programmers and designers of the software
system).

Software architecture is an overall visual model of a software system, and
architects should draw such visual plans. These plans should not reveal certain
details of the system, thus only “top level” elements should be presented. These
elements can be called components and appropriate architectural style can be
called component architecture which we will present throughout this and the
next Chapter. Component architectures have the following characteristics:

• A component architecture is an architecture where the system is divided
into several (usually: in teens or in tens) logical modules which are indi-
vidually responsible for a precisely defined functionality.

• A component is a “black box” that contains several smaller functional
elements (e.g. classes in code) not visible to the outside world.

• A component makes the functionality of its contents (a set of public oper-
ations) available to the outside world through interfaces.

• When necessary, a component can utilise the functionality of other com-
ponents by using their interfaces (through dependencies).

There are several arguments in favour of components.

• Component architectures make it easier to understand the overall system
by supplying readers with good abstractions (components). Readers have
an instant overview which can be quickly “exploded” into a detailed view,
as the components are opened for closer inspection of their detailed design.

• Components enable better group work by dividing work very precisely.
Groups concentrate on their own components and interfaces they use.

• Components make systems more flexible to change. It is quite easy to in-
troduce new components and distribute components to different machines.

• Component architectures prevent from “spaghetti code” as communication
paths between components are realised only through specified interfaces.

• Components make it easier to detect errors during testing. As independent
black boxes, components are more resistant to errors in other components.
Components are thus good for detecting errors as constituting “error cen-
tres” where errors can be localised.
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• Components enable high levels of code reuse. Well designed and written
components are ideal entities for reuse, which is important in the context
o this book.

Components are high-level logical functional units of a software system.
Every component has properties of a package as it contains other elements
(e.g. classes). At the same time, component presents some behaviour. This
behaviour, realised by certain code hidden inside the “black box” is available
to the users of the system or to other components. Components expose their
behaviour through ports. Ports are public interaction points between a com-
ponent object and other objects. Detailed ways of communication between
components are described with interfaces exposed from ports.

Fig. 3.15. Component exposing its behaviour through ports

A component with ports is illustrated in Figure 3.15. The actual notation
for components is simple, as they are denoted as rectangles (with a small
icon in the top right corner) with protruding ports (small rectangles). The
Figure shows also the behavioural characteristics of a component. It sends
and receives messages to the “outside world” through ports. A component
starts behaving when it receives a message from the outside. The message
instructs the component to “do something”. After receiving a message, the
component starts processing, it might do one or more of the following actions:

• Change its state,
• Perform some calculations,
• Send messages to other components asking for further processing.

When processing finishes, the component might return a result or just pass
back control. This is valid for synchronous messages - asynchronous messages
do not end with any return message.
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Fig. 3.16. Software system composed of components interacting through message
passing

The behaviour of a component software system is based on interactions
between components and users. Components interact by sending messages
to each other which is illustrated in Figure 3.16. Sending a message usually
means passing control (processing) from one component to another. Messages
normally contain some information (data) that is passed. The overall system
dynamics is a sequence of messages.

The above described behaviour of components can be defined more pre-
cisely by defining the interfaces they provide (realise) and interfaces they re-
quire (use). In Figure 3.17 we can see a component with associated interfaces.
One interface is provided by the component (ICarRegistration) and other two
interfaces are required from other components. The diagram to the left is a
component diagram showing an overview, and the diagram to the right is a
class diagram showing also the details of the interfaces. The interface defini-
tions contain lists of operations with possible signatures (lists of parameters
- not shown in the Figure).

Messages are elements of system’s dynamics (dynamic architecture). Op-
erations are elements of the system’s structure (static architecture). Messages
are passed between two objects (user objects or component objects). Mes-
sages can have parameters and return values. Whenever there is an interface
involved in message passing, the set of available messages is limited to those
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Fig. 3.17. Component’s interfaces

Fig. 3.18. Messages vs. operations - keeping coherence

defined in an interface. Whenever we want to add a new message sent be-
tween components we need to add new operation into the interface. This is
illustrated in Figure 3.18. A new message (SetCarIdentifier) should be passed
through an interface. This means that the appropriate interface (compare Fig.
3.17) should be updated with a definition of a new operation.

The above elements of the architectural model reflect the meta-model al-
ready defined in the previous Chapter (see Fig. 2.8). Components constitute
Subsystems with Interfaces. These interfaces contain Services in the form of
operations with parameters (equivalent to Data packets). These elements of
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the Static architecture are tightly related with elements of the Dynamic archi-
tecture - Objects and Messages. The only element of the meta-model not yet
introduced in this Chapter is the Story realisation.

Fig. 3.19. Scenario as a sequence diagram

Fig. 3.20. Use Case realisation

Story realisations form the link between the requirements model and the
architectural model. For every use case in the requirements model we need to
specify the dynamics as a set of messages passing between components through
their interfaces. We can take use case scenarios and for every SVO[O] sentence
- design a sequence of messages revealing the “internals” of the system. It can
be noted that designing the architecture means showing the internals of the
“black box” specified by the use case model. This is illustrated in Figure 3.19.
An example scenario is shown with an associated sequence diagram showing
interface objects and a sequence of messages passing between them. A use
case realisation is then a set of sequence diagrams each realising a scenario of
the use case, as shown in Figure 3.20.

Sequence diagrams contain the mapping links (see Fig. 2.10) that join the
SVO[O] sentences from the requirements model with messages in the architec-
tural model. This leads us to the important issue of mapping between models.
The mappings glue together all the elements of a software cases. Many of the
mappings can be generated automatically having precisely defined transfor-
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mation rules. At this level, these rules should determine the way use cases
with SVO[O] sentences and vocabulary elements should be mapped into com-
ponents, interfaces and messages. We shall briefly describe these rules in this
Chapter and more details will be given in the next.

Before we can define the transformation rules we need to set some well-
formedness rules for the architectural model. We need some guidelines for
forming components into full architectural specifications. Otherwise we would
have too many degrees of freedom in translating the requirements into archi-
tecture. Thus we shall perform our mapping with an assumption about the
architectural framework to be the target of the transformation. This reflects
the Target template in Figure 2.10. We shall use the same approach as was
used when designing the ReDseeDS Engine (see Section 2.3.2). The target ar-
chitecture shall consist of four tiers: Presentation, Application, Business Logic
and Data storage.

Fig. 3.21. Dynamics of the Presentation layer (left) and the Application layer
(right).
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Figure 3.21 shows the two upper layers. The Presentation layer serves
presenting results and accepting data from the users. Components on this
layer contain classes that handle individual screens. These classes can generate
the screens and accept button presses. It has to be noted that in a four-tier
architecture the presentation layer should be responsible only for presenting
and accepting data from the user. No logic should be included here. It shows
screens and accepts data only when instructed to do so by the Application
layer or in response to user interventions.

The Application logic layer layer controls the whole application by asking
other layers for actions in a specified sequence – according to the functional
requirements. Components in this layer contain classes that manage appro-
priate sequences of events defined in use case scenarios. These classes know
what to do when a certain button is pressed in a certain situation. They also
react appropriately depending on the state of the system (asking the Business
Logic). Application logic is the “manager” of the system, it instructs “every-
one” (components in other layers) what to do and when.

Fig. 3.22. Dynamics of the Business logic layer (left) and Data storage layer (right)
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In Figure 3.22 we can see two remaining layers of the architectural frame-
work. The Business logic layer performs data processing actions as asked by
the Application logic. Actions performed by the business logic are consistent
with the business rules defined in the vocabulary requirements. Components
in this layer contain classes that represent business vocabulary notions. These
classes have operations that process data contained in objects of these classes.
Business logic is the right place to integrate with other applications. Different
applications should integrate by asking for actions on this layer.

The Data storage layer allows for persistent storage and retrieval of data
whenever it is needed by the business logic. Components in this layer con-
tain databases, file stores, data repositories, knowledge bases etc. Relational
database components (which are the most common) contain tables with re-
lationships. Such components can handle queries in a query language (eg.
SQL).

The above four layers should be properly “wired” through associations
between interfaces and/or ports. This is illustrated in Figure 3.23 where all
the provided interfaces are connected with appropriate required interfaces.

Having the above sketched framework for the target model we can now give
brief rules for transforming requirements into design. In the next Chapter these
rules will be presented in more detail. Generally, the transformation should
be performed according to Figure 3.24. The uses cases should be grouped
within the requirements model into packages. For every package of use cases,
a component on the Application logic layer should be created. In case of
«invoke» relationships between use cases assigned to different components,
appropriate connections within the Application logic should be generated.

The above rule becomes obvious if we notice that the logic contained in
the Application logic layer reflects use case scenarios. This layer is responsi-
ble for controlling other layers according to scenarios as specified within the
functional requirements model.

Second major rule of the transformation is to package domain notions and
for every such package create a component in the Business logic layer. In case
of associations between notions assigned to different components, appropriate
connections between components have to be made. Again, this rule becomes
obvious when we consider that domain elements contain phrases describing
actions performed within scenarios. These phrases reflect interface operations
on the Business logic. It is the business logic that contains realisations of
verb phrases defined within vocabulary notions (see Software requirements
section).

Third major rule specifies the way the two layers should be connected. This
should be made on the basis of hyperlinks between use case scenario elements
and notions (or rather: phrases contained within these notions). Whenever
such a hyperlink exists, a connection should be generated between the appro-
priate Application logic and Business logic components.

The final major rule describes the way the architectural sequence diagrams
should be generated from use cases. Objects (lifelines) on these diagrams come
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Fig. 3.23. Components connected in a four-tier architecture

from determining components that participate in a given sequence of SVO[O]
sentences. Objects of appropriate components of the four layers are generated
according to the association of use case and notions to these components
made with the previous three rules. When this is determined, messages are
generated by assigning SVO[O] sentences to source and target objects. This
depends on the actual type of SVO[O] sentence. This and other rules shall be
explained in much more detail in the next Chapter.

3.5 Designing the subsystems

Subsystem design is an activity analogous to architectural design. The dif-
ference which is reflected in the meta-model (see Fig. 2.9) lies in the fact
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Fig. 3.24. From requirements to architecture

that at this level, operations (Services) get realised instead of use cases. As-
suming object-oriented design is used, Code units are equivalent to classes (as
present in any OO programming language like Java or C#) with operations
and attributes.

Similarly as for the architecture, two aspects of the system need to be
designed: its dynamics and its static structure. This time however we con-
centrate on interiors of components as illustrated in Figures 3.25, 3.26. We
now need to “explode” components and operation executions associated with
these components. Each of the components realises its provided interfaces.
The static structure is a set of code units (usually - classes) contained within
this component as shown in the first Figure. The dynamics of the component
can be designed by showing message passing between objects of these code
units. The sequence of messages, as shown in the second Figure describes the
details of operation execution on the architectural level. An operation of an
interface is now exploded into several messages showing the internal dynamics
of the given component. It has to be stressed that the relationships between
objects and messages on the dynamics detailed design sequence diagrams and
static diagrams is analogous as in the architectural model.
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Fig. 3.25. Detailed design of a component consisting of several classes

Fig. 3.26. Sequence diagram showing details of an interface operation execution

The above diagrams are already very close to code. In fact, their contents
can serve generating code directly, as shown in Figure 3.27. The structure of
code (classes, files) can be generated directly from design classes. The contents
of class messages can be derived (although good automatic generators are not
yet commercially available) from sequence diagrams. Close examination of the
Figure shows that the code is actually equivalent (or is a combination) of both
the static and dynamic aspect of the design model.
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Fig. 3.27. Code generation from classes and sequence diagrams

3.6 Software cases and what next?

Fig. 3.28. Building a software case from use cases to code

The path from requirements to code which is presented informally in this
Chapter leads to formulating software cases as postulated in the previous
Chapter. Use cases are the basis for organising the software development
lifecycle as shown in Figure 3.28. Together with domain notions they form
the basis for generating and designing the architectural model. The archi-
tecture should be designed in detail by designing individual components and
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the implementation of their interfaces. Both the static and dynamic aspect of
software design gets finally reflected in code being combination of both.

The results of such software development activities can be stored in a li-
brary and retrieved for possible future reuse. In order for this scenario to
become possible, more detailed considerations are needed. First, the require-
ments specification language has to be defined precisely (assuming we already
have the definition of other parts of the software case, in the form of UML
specification). Second, the way to define model transformations has to be
determined and used uniformly. Finally, we need efficient ways to retrieve
software cases. These together would allow for implementing the ReDSeeDS
Engine and are discussed in more detail in the next Chapter.



4

Technologies for coherent and reusable software

cases

4.1 Requirements modelling for reuse

As it was postulated in the previous Chapters, we need a uniform language
for specifying requirements. With this language we should be able to define
precise and unambiguous requirements specifications which would allow for
easy transformation into design. When designing a language for requirements
modelling we need to consider the existing general purpose languages as UML
[154], SysML [205] or specialised languages as RDL (Requirements Description
Language, see [35]) or RML (Requirements Modelling Language, see [86]).

The problem with UML is that its basic functional requirements units
– use cases are defined in a very ambiguous manner (see [186] for good a
discussion, still valid for UML2, and [72]). In SysML [205], the basic units of
granularity are requirements themselves – their definitions being paragraphs
of text. This is also the case for most widely used requirements management
tools. Moreover, such models usually do not have precise links to the domain
vocabulary. The vocabulary is often used inconsistently throughout the whole
specification. This lack of common vocabulary also prevents from achieving
any significant level of requirements reuse (see eg. [25] for a discussion on
use case reuse). In turn, specialised requirements languages tend to be formal
which prevents requirements specifiers from using them.

Here we shall provide more details of an approach to unify different ten-
dencies in specifying requirements into a single coherent, yet comprehensible
language. This language is supplied with a formally defined meta-model which
allows for defining automatic transformations and comparison queries. This
meta-model is consistent with the general idea presented in Section 2.2.3.

4.1.1 From natural language to models

As discussed earlier in this book we want to abandon the usual way of speci-
fying requirements with paragraphs of common prose (natural language text).
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Fig. 4.1. Two levels of requirements management

This approach has several limitations that prevent from using such require-
ments as parts of software cases.

First limitation is caused by the fact that requirements as such are man-
aged as wholes. This means that traces or mappings to or from requirements
are done on the basis of “whole” requirements, not considering the requirement
details (expressed through appropriate representations). Second limitation is
based on inability to analyse the contents of requirements for comparison.
Since the contents are paragraphs of text, the only way to compare require-
ments is through natural language processing which has serious limitations.
This makes it practically impossible to compare different requirements specifi-
cations in order to achieve certain reuse of their contents (reuse of functionality
descriptions, reuse of term descriptions and so on).

What can we do with “whole” requirements treated as atomic units? These
requirements can be traced one onto another and can be assigned certain at-
tributes. We can also trace certain requirements into design. Such functional-
ity is offered by major Requirements Management tool vendors (RequisitePro,
DOORS, etc.). Finally, some level of reuse can be achieved by attaching cer-
tain “manifestation” information to the requirement artifacts (as in Reusable
Asset Specification, see [149]). It can be noted that maintaining traces or
manifestation information is quite laborious and has to be done manually.
Moreover we can assure that requirements are met in design only on a coarse
grained level (whole requirements).

Thus, we need a requirements specification language where we can clearly
distinguish between requirements as such and their representations (see [189]
for an insight to this). Requirements as such are just names with identifiers
and attributes. Representations express the information contained within re-
quirements. This distinction introduces two levels of abstraction. On one level
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we handle requirements as atomic units, on the other level we handle the de-
tails of their contents. “Requirements level” allows for coarse grained require-
ments management. “Requirement representations” level allows for automatic
requirements processing (such as transformations and reuse). This is illus-
trated in Figure 4.1. On the upper level we can give order to requirements,
eg. organise incremental delivery in an iterative lifecycle, assign requirements
to people responsible for them or trace requirements into certain design ar-
tifacts. On the lower level we can perform fine-grained tasks of comparing
requirements for reuse (see Section 4.3) and transforming requirements con-
tents into design models (see Section 4.2).

Apart from functional and non-functional requirements, the requirements
specification usually contains some form of a glossary or vocabulary of the
problem domain. In certain approaches, also class diagrams are used to express
the domain model. Diagrammatic approach is very valuable for the means of
representing the domain vocabulary, due to its visual impact and expressive-
ness. However, using class diagrams in requirements specifications most often
leads to design-influenced discussions. Moreover, class diagrams tend to con-
centrate on the “nouns” in requirements (classes and their attributes) rather
than the “verbs” (operations, which are treated as design elements). When
trying to define the verbs, analysts tend to fall into analysing (or rather:
designing) possible message paths between objects. In other cases, “verbs”
are completely ignored in the vocabulary and their definitions are scattered
throughout the functional requirements definitions.

With the above approach we substitute purely natural language specifica-
tions with structured language and diagrammatic representations according
to a specific formal grammar. Functional and non-functional requirements are
made coherent through a central vocabulary of domain notions with associated
phrases. These phrases use a globally recognised terminology which allows for
comparison and leverage the potential for their reuse (see [28] for a domain
based reuse approach with use cases). It can be noted that such a complete
specification resembles a wikipedia, where hyperlinks are extensively used,
as introduced by Kaindl (see [99]). Hyperlinks are organised around domain
diagrams which introduce diagrammatic view of a vocabulary.

4.1.2 Unifying syntax for requirements

In order to reach repeatability between requirements specifications we need a
common syntax for individual elements of such specifications. This syntax is
part of a language which we will call the Requirements Specification Language
(RSL, see [103]). The key concepts of RSL, like requirements, notions and
requirements representations, can be expressed in a graphical way.

An RSL model, consistent with its syntax is called a RequirementsSpecifi-
cation. Such specifications can be composed of RequirementsPackages. Within
these packages, individual Requirements can be placed. Finally, every Require-
ment has its representations contained within it. RSL is mainly a visual lan-
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Fig. 4.2. RSL notation for specifications, packages (a) and requirements, use cases
and relationships between requirements (example of one relationship type) (b) in
diagrams

guage, thus appropriate elements written in this language can be shown in
diagrams: Requirements diagrams, Domain diagrams, sequence and activity
diagrams. Moreover, these elements can be shown as a hierarchy tree in a
tool. Appropriate icons denoting packages are presented in Figure 4.2a. Dis-
tinguished from other Requirements (which can express any kind of require-
ment - functional, constraint, etc.) are UseCases, which specify “sets of actions
performed by a system, which yield an observable result that is, typically, of
value for one or more actors or other stakeholders of the system” (as speci-
fied in [154]). UseCases are denoted with an oval (see Figure 4.2b) in order
to make this notation consistent with the commonly used UML notation and
different from other Requirements. It can be noted that requirements, besides
their descriptive name, have a unique identifier placed in their top left corner.

The above notation allows to depict individual requirements, what we still
need is the way to express relationships between requirements and traces to
design. In Figure 4.2b we can see also a notation for RequirementRelationships.
This diagram shows relationships between one quality requirement and two
use case requirements. Also, other types of relationships are possible, however
we shall omit them here for brevity.

The most important part of the RSL is that pertaining RequirementRep-
resentations. In general, all the representations are based on the concept of
hyperlinks. Even the natural language representations allow for including hy-
perlinks to domain elements or phrases. An example of such a natural language
representation of a requirement from Figure 4.2b is presented below:

• Whenever entering or leaving a [[n: utility]], the time

between [[v: swiping n: card]] and [[v: opening n: utility

gate]] should be smaller than 0.5 second.

• Whenever entering of leaving a utility, the time between swiping : card
and opening : utility gate should be smaller than 0.5 second.

In this example, PhraseHyperlinks to three phrases are used. Two of the
phrases are simple noun Phrases, and one of them is a VerbPhrase. It can
be noted that the RSL notation allows for a “source” version and a “preview”
version of any textual requirement representation. In the source variant, every
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element of a PhraseHyperlink is denoted by a prefix: n: for a noun expression
and v: for a verb expression. In the preview variant, phrase parts are separated
with a colon “:”. In the following examples we shall only show the source
versions. Hyperlinks can also contain modifiers (usually adjectives) but we
shall omit them here for brevity.

In contrast to NaturalLanguageRepresentations described above, Constrained-
LanguageRepresentations have a precise grammar defined. In this section we
shall concentrate on ScenarioSentences where SVOScenarioSentence is the most
important of them. SVO[O] sentences [82], [83], [196] are simple sentences con-
sisting of a subject and a predicate. This predicate is composed of a verb and
and one or two objects (with an optional preposition). Examples of such sen-
tences are given below:

• [[n: FC System]] [[v: opens n: utility gate]]

• [[n: Customer]] [[v: swipes n: card]]

• [[n: Assistant]] [[v: chooses n: bill p: from n: bill list]]

• [[n: FC System]] [[v: prints n: bill]]

The syntax for SVO[O] sentences allows for only hyperlinks. The first Hy-
perlink relates to a domain element representing the sentence subject. This
domain element can be the system to be built or an actor (representing some-
one or something interacting from the outside of the system to be built). In the
example above, the system to be built is “FC System” (Fitness Club System),
and the actors are “Receptionist” and “Customer ”. The second PhraseHyper-
link represents the sentence predicate. It relates to a VerbPhrase contained in
a specific notion in the domain vocabulary.

We can combine sequences of such SVO[O] sentences into ConstrainedLan-
guageScenarios. These scenarios show interactions between an actor (or actors)
and the system to be built. In other words they present a dialogue between
the user and the system. Two example scenarios are shown below:

1. [[n: Customer]] [[v: swipes n: card]]

2. [[n: FC System]] [[v: verifies n: account balance]]

3. ==> cond [[n: Account balance]] not exceeded

4. [[n: FC System]] [[v: opens n: utility gate]]

5. [[n: Customer]] [[v: passes n: gate detector]]

6. [[n: FC System]] [[v: registers n: utility entry]]

7. [[n: FC System]] [[v: closes n: utility gate]]

and

1. [[n: Customer]] [[v: swipes n: card]]

2. [[n: FC System]] [[v: verifies n: account balance]]

3. ==> cond [[n: Account balance]] exceeded

4. [[n: FC System]] [[v: emits n: rejection message]]
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Fig. 4.3. Activity scenario expressed as an activity diagram – consistent with the
constrained language scenarios

Fig. 4.4. Domain diagram showing notation for notions and phrases – targets for
the hyperlinks

As it can be seen, the two scenarios complement each other and show two
alternative paths of the same UseCase: “Enter a utility”. They contain two con-
ditions denoted by ==> cond which control the flow between these two paths.
Both of the scenarios can be placed inside the “Fitness Club Requirements”
specification (see Fig. 4.2) – within the Functional package under the appro-
priate use case. There we can also place another representation of the UseCase
– in the form of an ActivityScenario. This representation is shown in Figure
4.3. The two representations contain almost exactly the same information.
Additional notation for sentences in this diagram allows for distinguishing
parts of SVO[O] sentences forming scenario steps. It can be noted that the
activity diagram contains an additional path and distinguishes success and
failure paths.

The domain model is the target of all the hyperlinks presented in the
above examples. For a domain model we draw domain diagrams. These dia-
grams have certain elements in common with class diagrams, but they shift
the paradigm from classes with operations to notions with phrases. Domain
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Fig. 4.5. Summary of the RSL metamodel

diagrams contain DomainElements (specifically: Notions) expressed as boxes.
These domain elements (notions) can contain Phrases, where every phrase is
also a box. This is shown in Figure 4.4. The diagram contains all the phrases
hyperlinked within the presented example requirements.

Moreover, all the DomainElements are related with appropriate DomainEle-
mentRelationships. These relationships are created on the basis of hyperlinks
in domain element descriptions. Let’s take a description of the “card ” notion:
“... Groups all [[n: utility entries]]. Can be swiped through a [[n: utility gate]] ... for
every card a [[n: bill]] can be issued ...”. As it can be seen, the above hyperlinks
lead to appropriate Notions related to the “card ” notion as shown in Figure
4.4.
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4.1.3 Meta-model of the Requirements Specification Language

Behind the above presented concrete syntax of the RSL, a meta-model defin-
ing the language’s abstract syntax resides. This meta-model is shown in a very
brief overview in Figure 4.5. This Figure presents most of the elements de-
scribed in this section. We can see the Requirement meta-class which denotes
the most important element of the language. Another basic element is the
DomainElement (see Figure 4.8). Both of these elements are RepresentableEle-
ments, ie. elements that have associated Representations. Such ‘representations’
are shown for a UseCase meta-class which is a specialisation of Requirement.
It can be seen that use cases can have as their representations Constrained-
LanguageScenarios and ActivityScenarios. It should be noted that use cases are
specialised from UML UseCases (which are BehavioredClassifiers) and activity
scenarios are specialised from UML Activities.

Below in Figure 4.5, we can see some selected elements of the structure
of the two use case representations. Constrained language scenarios contain
ScenarioSentences as their ‘scenarioSteps’. Activity scenarios generally contain
‘nodes’ which can be (among other) ActivitySVOScenarioSentences. Most of
the sentences in scenarios are SVOSentences (there can be also eg. Condition-
alSentences). Such sentences contain a ‘subject’ and ‘verbWithObjects’ being its
Predicate. These two sentence elements are Hyperlinks that point to a Phrase
or a VerbPhrase respectively.

The meta-model for phrases is presented in Figure 4.6. Phrases are gener-
ally sequences of hyperlinks pointing to terms. These Terms (with their forms,
inflections, cases) are stored in an external, global structure. This structure,
represented by a Terminology (detailed discussion on Terminologies isout of
scope of this book), contains relations between Terms as well. These relations
define the semantics of the Terms. Such structure in fact is an ontology and
can be based on existing dictionaries/ontologies (e.g. WordNet [64]). More-
over, it can be founded upon a set of syntactic rules and semantic elements
taken from natural languages (as is described in [35]).

The simplest Phrase contains just the Object (hyperlink to a Noun). Such
Phrase is adequate for defining names of Notions. Another simple Phrase can
contain optionally a Modifier and a Determiner.

VerbPhrase describes an operation that can be performed in association
with a Noun. VerbPhrase is an abstract subtype of Phrase and it exists
in two concrete variants: SimpleVerbPhrase and ComplexVerbPhrase. Simple-
VerbPhrase is the basic structure for expressing Noun’s behaviour. In addition
to a Phrase, it includes a PhraseVerb (hyperlink to a Verb). It may also contain
a PhrasePreposition (hyperlink to a Preposition). ComplexVerbPhrase describes
a behavioural relation between two Nouns. It extends the SimpleVerbPhrase
with an additional Noun (indirect object) through an Object hyperlink. It
is a kind of VerbPhrase pointing to a SimpleVerbPhrase. It also includes a
PhrasePreposition.



92 4 Technologies for coherent and reusable software cases

  

Phrase

ComplexVerbPhrase SimpleVerbPhrase

Term

Noun

VerbPhrase

Term

Verb

Term

Preposition

TermHyperl ink

Modifier

TermHyperl ink

Determiner

TermHyperl ink

Object

TermHyperl ink

PhraseVerb

TermHyperl ink

PhrasePreposition

Term

Modifier

Term

Determiner

{xor}

1

0..1

1

0..*

l inkedT erm

1

{redefines l inkedT erm }

0..*

l inkedT erm

1

{redefines l inkedT erm }

0..1
1

0..*

l inkedT erm

1

{redefines l inkedT erm }
1

1

11

0..*

l inkedT erm

1

{redefines l inkedT erm }

indi rectObjectPreposi tion

1

0..1
directObjectPreposi tion

0..1

0..1

0..*

l inkedT erm

1

{redefines l inkedT erm }

Fig. 4.6. Meta-model for phrases

  

sign up registered customer for exercises

Verb Modifier Noun Preposition Noun

registered customer

sign up registered customer

sign up registered customer for exercises

Terms

Phrase

Simple Verb Phrase

Complex Verb Phrase

Fig. 4.7. Structure of phrases in concrete syntax

In Figure 4.7 we can see an explanation of the above meta-model in terms
of a concrete example. The example shows a set of terms and several phrases
built of these terms.

In the RSL meta-model every Phrase is tightly combined with the Noun
being part of it. This Noun is the name of the Notion that contains this phrase,
through a NounLink. A simplified meta-model for notions is presented in Figure
4.8.

Every Notion, which is a kind of UML :: Kernel :: Package, can include many
so-called DomainStatements referring to the same noun. These DomainState-
ments can contain free text hyperlinked descriptions as discussed earlier. In its
concrete syntax, a Notion contains an overview of all the Phrases included in
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Fig. 4.8. Meta-model for notions
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Fig. 4.9. Notions represented as nodes in domain diagrams (left) and as trees (right)

it. It can be presented as a domain element icon on a domain element diagram
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Fig. 4.10. Notion represented in textual form



94 4 Technologies for coherent and reusable software cases

  

DomainElementRelationship DomainElementMultiplicity

MultiplicityElementValueSpecification

DomainElement

«Invariant»

{source of Dom ainElem entRelationship

should be d i fferent than i t's target

(Dom ainElem ent cannot be associated

with i tse l f)}

*1

{redefines target}

*1

{redefines

source}

sourceM ultip l i ci ty

0..1

targetM ultip l i ci ty

0..1

owningLower

0..1

{subsets owner}

lowerValue

0..1

{subsets ownedElem ent}

owningUpper

0..1

{subsetsOwner}

upperValue

0..1

{subsets ownedElem ent}

Fig. 4.11. DomainElement Multiplicities

or as a node in a tree view (see Figure 4.9). Notion can be also represented in
a textual form with hyperlinks (see Figure 4.10).

To complete the domain model, we need to define the relationships be-
tween Notions (or: DomainElements, refer to Fig. 4.8). This is illustrated in
Figure 4.11. Here we can see that DomainElements are related through a re-
lationship (see specification of relationships in the UML specification, [154])
called DomainElementRelationship. This relationship can have multiplicities
(DomainElementMultiplicity) with appropriate upper and lower bound, simi-
larly to what can be found in UML class diagrams.

With the above meta-model we can now create domain specifications as
shown eg. in Figure 4.4. It can be noted that through this meta-model we
have achieved that the domain specification can be organised in the form of
a dictionary with hyperlinks, as postulated in previous Chapters. Moreover,
entries in this dictionary (notions and phrases) can be targets of hyperlinks
from the requirements specification (inside SVO[O] sentences or hyperlinked
descriptions).

Having the requirements specification language as described in this section
we now have the means to achieve the postulates formulated earlier in this
book. We can now define formal transformations of requirements into design
and formulate queries seeking for similar requirements. This shall be described
in the following two sections.

4.2 Defining complete cases with model transformations

The above presented requirements specification language can be part of the
overall software case specification language as introduced in Section 2.2.3.
The remaining parts of the language consist of architecture, detailed design
and code. In the previous Chapter we have briefly described the method of
building software cases gradually from requirements to code, containing all
the properly mapped parts. According to the ideas of MDA/MDD it was
proposed to use automatic transformations to support the developers in this
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task (see eg. [73]). Here we shall elaborate on this issue by giving precise rules
for transforming different level models. We shall also give an example of a
language to define transformations which was introduced in Section 2.2.3 (see
Fig. 2.10).

4.2.1 From RSL specifications, through UML models down to code

According to the software development scenarios presented in the previous
Chapters we want to be able to generate as much code as possible from re-
quirements. This does not mean purely automatic transformation. This could
be possible only if no architectural or design decisions were necessary. Most
often however we need to consider specific non-functional requirements which
might significantly influence the architecture of the system and detailed de-
sign solutions. Since we did not include non-functional requirements in the
transformation path, we need to allow for decisions reflected in design mod-
els modified manually by software developers. In any case we will show here
that much of the work done traditionally by architects and designers can be
transferred to “transformation modelers”. Many architectural decisions can be
done in the transformation definitions. These transformations can be used
many times in different projects thus reducing design effort.

While designing rules for model transformation we shall assume a clean
path leading from requirements to code. In this path, a requirements speci-
fication is first transformed into an architectural model. Then, this architec-
tural model is elaborated through a detailed design model. Finally, code is
generated form detailed design. It is important to assume that no “shortcut
mappings” are introduced. Such shortcuts could for instance consist in taking
requirements to influence the detailed design or code. In a clean software case,
all the mappings are made only between two consecutive levels as shown in
Figure 2.6. This means that all the information contained in requirements has
to be somehow included in the architecture. During a transformation between
requirements and architecture we should transform all the elements of the re-
quirements model. Only then, there will be no need to take information from
requirements while generating detailed design or code. Those elements that
are not transformed automatically from requirements to architecture have to
be manually included in the final architectural model before transforming it
into detailed design and code.

When defining transformation rules we need to take certain assumptions
on the architectural and detailed design models. Having these assumptions
we can include them in the rules thus enabling automatic generation. Here
we shall assume exactly the same architectural framework as presented in the
previous Chapter. We shall assume a four-tier architecture depicted with a
UML model consisting of the following elements (compare Fig. 2.8, refer to
[106] for more details):

• static elements of the architecture: Components, Interfaces, Dependencies,
Classes, Packages (component and class diagrams).
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• Dynamic elements of the architecture: Lifelines, Messages (sequence dia-
grams).

This model can be updated by the architects by using additional UML
element types, adding new elements and updating the existing ones. How-
ever, changes in the elements generated from requirements should be taken
with care. Every such change might mean that a certain guideline for the ar-
chitectural model is not kept anymore. This might also mean that a certain
requirement stops being realised in the architecture. This situation can be
compared to generating code from UML models. Every change in the gener-
ated code elements means that the design model becomes out of date. This
then necessitates the usage of reverse engineering techniques (re-generating
model from code) in order to retain consistency.

Now, having the architectural model we can transform it into detailed
design. Again, certain assumptions on it have to be made in order to make
this possible. For the purpose of this book we shall assume that detailed design
shall be written in UML using only the following elements (compare Fig. 2.9):

• Static elements of subsystem design: Classes, Interfaces, Associations, Re-
alisations, Dependencies (class diagrams).

• Dynamic elements of subsystem design: Lifelines, Messages, Combined
fragments or Conditions (sequence diagrams).

While creating transformation rules for the detailed design we have to keep
in mind the purpose of the four tiers. This purpose determines the contents of
components contained in different tiers (classes) and their dynamics (messages
exchanged within and between tiers).

The Presentation Tier contains basically the User Interface elements of
the designed system. We can assume that a single UI component with a single
interface is built for an application. This component serves only for mediating
between the users and the system’s logic. This means, no logic should be
contained in this tier. It is common to implement certain simple validation
logic, however we shall avoid this in our transformation rules.

The Application Logic Tier is responsible for realising the rules specified
through the functional requirements. Thus, according to the previous Chapter,
this tier contains components with logic reflecting use case scenarios. We shall
assume that every use case has an associated interface which handles messages
from the Presentation Tier (reflecting user input in the scenarios). Interfaces
are realised by appropriate components which are generated on the basis of
grouping of use cases. This grouping has to be made by the requirements
specifiers.

The Business Logic Tier handles all the business rules contained in the
requirements. Whenever the Application Logic needs to perform a business
action, it asks the Business Logic to perform it. In turn, the Business Logic
calls the Data Storage Tier to perform basic persistence operations. The Busi-
ness logic layer consists of components, which correspond to related groups
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of domain concepts - notions. Appropriate interfaces are created which reflect
groups of operations on notions.

The Data Storage Tier constitutes direct access to a source of persistent
data (a relational database or a flat file). Interfaces and components in this
tier expose basic CRUD (Create/Read/Update/Delete) operations on data
access objects (DAOs) reflecting every notion in the requirements vocabulary.

In the following two subsections we shall present detailed rules for trans-
forming requirements written using RSL into the above four-tier architecture
and then into detailed design for the components contained in these four tiers.

4.2.2 Rules for transforming requirements into architecture

When designing the rules for transforming requirements into architecture we
need to consider several pre-requisites. We have to remember that the source
model is a requirements specification written in a precise language (RSL). The
target model should be a well formed draft of the architecture that conforms
to best practices of architectural design. Thus, the transformation definition
should:

• Allow for generating architectural model conforming to such good prac-
tices as proper granularity of components, good ratio of interfaces per
component and methods per interface.

• Assure that changes in the source model have predictable impact on the
resulting model thus ensuring good mapping between requirements and
architecture.

• Assure flexibility in customising the transformation rules to specific pur-
poses of a particular project.

When specifying the rules for the transformation we assume that the re-
quirements are specified in a precise manner using RSL as presented in the
previous Section. In order to receive a four-tier architectural model we should
apply the following set of general rules (refined from [106]; see also initial ideas
formulated in [193]):

• Every vocabulary package is transformed into one business component and
one data access component.

• Every notion used in an SVO[O] sentence is transformed into a data trans-
fer object (DTO). Notions which occur only in “high-level requirements”
and system vision are ignored. Every relationship between notions is trans-
formed into an association between the corresponding DTO classes. As-
sociations between DTO classes reflect the direction and multiplicities of
the relations between appropriate notions (if exist).

• For every notion used in an SVO[O] sentence, a data access object (DAO)
interface is generated in the corresponding data access component. This
interface will provide CRUD operations for any given notion.
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Fig. 4.12. Transformation of requirements into architecture - overview
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Fig. 4.13. Transformation of requirements into architecture - interfaces
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• Every notion contained in a given vocabulary package is transformed into
one interface provided by a business component. An interface correspond-
ing to this vocabulary notion is generated only if the method for this notion
is called on a business component (in the scenario we have a “self message”
with this notion in the predicate).

• Every functional requirements package is transformed into one applica-
tion logic component. It is important to keep the number of functional
requirements in packages low (for instance: less than 4, specified by the
transformation’s parameter), to prevent creation of too complex compo-
nents with too many interfaces (see also the following rule).

• Every use case (a functional requirement) is transformed into one interface
provided by an appropriate application logic component.

• One UI component with one interface is generated for the whole applica-
tion. Further division of this component can be done by an architect at a
later stage.

• All actors are transferred with no changes.

These rules are illustrated in Figures 4.12 and 4.13. There, we can see two
packages with functional requirements and three packages with notions. Every
such package is transformed into one or two components in the appropriate
tiers of the architectural model. Every use case and notion is transformed into
an appropriate interface. For the notions, additional interfaces are generated
in the Data Storage Tier. Figure 4.13 shows some details of the generated
interfaces. The operations contained in them depend on more detailed rules
that shall be presented below.

The above rules pertain only the static structure of the system built. We
also need to assure that the system’s functionality reflects the functional re-
quirements. We thus need to transform use cases with their scenarios into
architectural constructs. Here we shall use sequence diagrams as means to
show the system dynamics. Messages in these diagrams shall be strictly asso-
ciated with appropriate SVO[O] sentences in the original scenarios being the
source of the transformation.

First we need to consider different types of SVO[O] sentences, and specif-
ically their predicates which are to be used to name the target messages. The
following types of predicates can be identified (see the previous Chapters and
the previous Section for examples of SVO[O] sentences and their predicates):

• Initial actor predicate - part of the first sentence in a scenario, denoting
actor’s initial interaction with the system.

• Actor predicate - part of every further sentence denoting actor’s interaction
with the system (ie. every sentence with the actor being its subject).

• System response predicate - part of every sentence denoting system’s ac-
tivity in responding to the actor (ie. every sentence with the system being
its subject, followed by a sentence with the actor being its subject).
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• System self predicate - part of every sentence denoting internal system’s
activity (ie. every sentence with the system being its subject, followed by
another such sentence)

Having the above terminology for predicates we can now present the fol-
lowing detailed transformation rules:

• Initial actor predicate (which represents an action initiating a UseCase) is
transformed into two messages: first one from the actor to an appropriate
presentation layer component and the second one from this presentation
layer component to an appropriate application logic component’s inter-
face. The application logic component is the one that was transformed
from the respective use case package according to the previous rules pre-
sented above. In addition, a dependency between the presentation layer
component and the application logic component’s interface used in this
call should be created.

• Every actor predicate is also transformed using the above rule.
• Every system response predicate (description of an action that is a sys-

tem’s response to the actor’s activity) is transformed into a message from
the application logic component’s interface to the presentation layer com-
ponent’s interface.

• Every «invoke» («include» or «extend», according to the UML specifica-
tion of the use case model) construct is transformed into a message from
the “current” application logic layer component (the one transformed from
the package containing the currently transformed UseCase) to the appli-
cation logic layer component’s interface for the invoked UseCase.

• Every system self predicate is transformed into a message from the applica-
tion logic layer component to a business layer component’s interface. This
business layer component corresponds to a notion which constitutes the
sentence object in the current predicate. For this message, a dependency
between the “source” application logic layer component and the “target”
business layer component’s interface used in this call should be created.

• For every of the above messages an operation is generated within a related
interface.

• Messages to the business logic layer component’s interface should corre-
spond to verb phrases of the notion which corresponds to this interface:

– If the verb phrase in the predicate is a simple verb phrase, then this verb
is used for the operation’s name, and the object part of the predicate is
transformed into the operation’s parameter. Example: [[v: add n: user]]
=> add(User).

– If the verb phrase is complex, then the verb and the direct object
form the operation’s name and both the direct and indirect objects are
transformed into the operation’s parameters. Example: [[v: add n: user
p: to n: user list]] => addUser(User, UserList).
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In addition to the above, also some naming conventions should be set in the
architectural model. Naming of elements in the requirements model is rather
accommodated to the preferences of the users. The system implementors are
used to different naming conventions and thus also transformation of names
is needed. The following rules can be applied to rename elements that got
transformed from notions, use cases, verb phrases, and so on:

• All element names should be converted to UpperCamelCase, e.g. user list
=> UserList
Exceptions:
(1) calls between actors and presentation layer components should remain
in the same form as in SVO[O] sentences
(2) operation names should follow the camelCase naming pattern (small
letter in front).

• In the Business Logic tier all component names should have the word
“Services” added at the end, e.g. FacilityUses => FacilityUsesServices.

• All interface names in all layers should have the letter “I” added in front,
e.g. FacilityDetails => IFacilityDetails.

• All component names in the Data Access tier should be in plural form and
have the words “DataAccess” added at the end, e.g. Device => Devices-
DataAccess.

• All interface names in the Data Access tier should have the additional
acronym “DAO” added at the end, e.g. Account => IAccountDAO.

• All notions (which form the data transfer objects) should have names end-
ing with the acronym “DTO”, e.g. RejectionMessage => RejectionMes-
sageDTO.

Certainly, these naming rules should be flexible. The architects should be
able to change the naming conventions according to the guidelines present in
a given software development organisation or project.

The presented rules for generating messages and names are illustrated
in Figures 4.14 and 4.15. Figure 4.14 illustrates transformation of different
types of SVO[O] sentences (according to the classification of predicates given
above) into messages in architectural sequence diagrams. The lower diagram
in this Figure is equivalent to a use case scenario but transformed into a
preliminary sequence diagram. Every message in this diagram is an exact
equivalent of an SVO[O] sentence in a scenario written textually or with an
activity diagram (see the previous Section). The upper diagram is transformed
from the scenario according to the above given rules.

To make this illustration more specific let’s take the example scenario given
in subsection 4.1.2. The first sentence of this scenario is “Customer swipes n:
card” which is the “initial actor predicate” sentence. The second sentence (“FC
System verifies account balance”) is a “system self predicate” sentence (marked
simply as “self predicate” in Fig. 4.14) as the next one (“FC System opens
utility gate”) has also “system” as its subject. This next sentence is a “system
response predicate” (marked simply as “system predicate” in the Figure). This
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Fig. 4.14. Transformation of requirements into architecture - sequence diagrams
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Fig. 4.15. Transformation of requirements into architecture - interface operations

is because of the following sentence (“Customer passes gate detector”), which
is an “actor predicate”. Finally we have two “system” sentences where the first
one is a “system self predicate” and the last one is “system response predicate”.

It can be noted that actually one of the “system” sentences is preceded by
a condition in the scenario. This sentence is also preceded by this condition in
the preliminary sequence diagram. Now, the arrows in Figure 4.14 show how
to transform sentences (equivalent to messages in the preliminary sequence
diagram) into messages in the architectural level sequence diagram. These
arrows follow the rules presented above. Here we have a transformation which
transforms a sequence diagram into another sequence diagram. Obviously,
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a direct transformation from the equivalent purely textual scenario is also
possible.

Figure 4.15 supplements the above example with the illustration of rules
for generating interface operations. The arrows in this Figure show the rela-
tionships between message names and the names of appropriate operations,
according to the presented transformation rules.

4.2.3 Rules for transforming architecture into detailed design

The architectural model generated with the rules presented in the previous
subsection can be seen as independent of any specific implementation technol-
ogy. We can call it the Platform Independent Model (PIM) according to the
terminology used in MDA/MDD (see [138]). Now, the role of the architects is
to choose a specific technology to be used for implementing the system. The
architects thus should propose a specific platform in order for the designers
to build the Platform Specific Model (PSM, again according to MDA/MDD).

Having the platform chosen we can define rules for transforming the PIM
into PSM. This will give us the necessary detailed design model which can then
be generated into code. Generally, the transformation consists in generating
the contents of components in the four tiers of our architectural model. The
transformation process uses only the information contained in the architec-
tural model, assuming that transformation from requirements to architecture
extracted all possible information for generating the detailed design model.
Obviously, the chosen platform determines the rules of the transformation.
Here we shall give an example of such rules for a generic implementation plat-
form. It has to be stressed that the given set of rules is limited and far from
being complete. Giving a complete set of rules is out of scope of this book as
it would also necessitate presenting and giving an introduction to a specific
technological platform.

For the Application Logic Tier we shall create a structure that enables
the realisation of use case related operations of individual interfaces. The rules
contain also certain naming patterns and relationships that may exist between
elements in this tier.

• A single class serving as a general application logic factory is created. It
is a static class with the name “AppLogicFactory”.

– For every component in the application logic tier, an operation within
“AppLogicFactory”, returning a component factory is generated. The
method name is composed of a “get” prefix and the component name
(e.g. getReservationsFactory)

• For every component in the application logic tier, a corresponding compo-
nent factory is created. They are static classes with the name composed of
the component name with a “Factory” suffix added (e.g. Resevervations-
Factory)
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– For every interface in a given component, an operation returning a re-
alisation of this interface is generated. The method name is composed
of a “get” prefix and the interface name (e.g. getIBrowseAnOfferAn-
dReserve)

• For every interface in the application logic layer, a corresponding interface
and implementation class are generated (with realisation relationship).

– Interface operations are exactly the same (copies) as in the architec-
tural model.

– The generated interface has exactly the same names as in the architec-
tural model (e.g. IBrowseAnOfferAndReserve).

– The generated implementation class has the same name as the interface
without the “I” prefix (e.g. BrowseAnOfferAndReserve)

• For the application logic factory, dependencies to individual components’
factories are generated.

• For every component factory, dependencies to implementation classes are
generated. These dependencies point to each of the classes implementing
the interface of this component.
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Fig. 4.16. Generation of application logic into detailed design
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Figure 4.16 gives an example transformation according to these rules. Two
application logic components are transformed into several classes connected
with appropriate dependency and interface realisation relationships. Appro-
priate interface and class operations were also generated.
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Fig. 4.17. Generation of business logic into detailed design

The Business Logic Tier is generated with a set of rules similar to those
for the application logic. We shall omit these rules for brevity. The rules for the
application logic exemplified in Figure 4.16 can be compared with an example
for the business logic given in Figure 4.17. Similarly, the Data Storage layer
can be generated.

As a final step of the transformation we need to generate relationships
between the layers. These can be made on the basis of architectural sequence
diagrams. Relationships between elements of the application logic layer and
business logic layer can be generated by determining messages passed be-
tween these two layers. Messages between elements of the business logic layer
and the data access layer are not generated during the transformation from
requirements and thus should be set manually by the developers.

4.2.4 Model transformations as models

To perform a transformation compliant with the rules presented in the previ-
ous subsections we need to define it somehow. In fact, a language for defining
transformations should be part of the overall case specification language as
presented in Section 2.2.3. This language supplements the languages to define
models themselves (like RSL or UML). It can be noted that the transforma-
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tion specifications can be written visually and thus treated as models. Thus,
the transformation language is in fact a modelling language.
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Fig. 4.18. Model transformation language architecture based on meta-modeling
layers

The situation for the model transformation language is more complex than
for a “normal” modelling language and thus needs some explanation. The con-
cept is illustrated in Figure 4.18 (see also [198]). We use MOF to define the
meta-model of the language. This is similar to the approach for defining RSL
(see the previous Section) or UML. The specification of the language is on
the “meta” level where the abstract language is defined. Specific models in
the transformation language are specified with a concrete language (with a
concrete notation). This gives us transformation specifications that can be ex-
ecuted. It is important to note that the execution of a transformation consists
in taking a source model (conforming to a specific meta-model; of RSL for
instance) and generating the target model (conforming to a perhaps another
meta-model; of UML for instance). This results not only in the target model
but also in a set o mappings between the source and the target.

Here we shall describe the meta-model of a simple transformation lan-
guage. This definition is far from being complete, as defining a complete lan-
guage is certainly out of scope of this book. Interested readers can be referred
to definitions of languages like QVT (see [166]) or MOLA (see eg. [105]).
Despite not being complete, the current description should supply the reader
with an idea on how to design such languages and situates it within the overall
software case meta-model (see Figures 2.10 and 2.6).

In this subsection we shall present the meta-model of the proposed trans-
formation language which we shall call the Visual Transformation Language
(VTL). In the next subsection, the concrete syntax and a simple transforma-
tion example shall be given.

The source and target elements of our transformations represent appropri-
ate elements found in RSL or UML. We normally want to transform classes,
interfaces, use cases, actors, components or SVO[O] sentences. Such elements
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can be connected through various relationships: associations, dependencies or
generalisations. In order to perform a transformation on such models we have
to find an appropriate pattern, composed of source elements and relation-
ships between them. Having such a pattern we can apply certain transforma-
tion rules. These rules determine the actual mapping from source elements
and relationships into target elements and relationships. Our transformation
language should, thus, be capable of defining templates for patterns in the
source model, rules that describe mapping of elements consistent with these
templates, and templates for relationships in the target model.
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Fig. 4.19. Transformation rules and their application

The above requirements for our language are illustrated in Figure 4.19.
Every transformation specification should contain certain “source templates”
and “target templates”, these being supplemented by “transformation rules”.
The source templates are sought in the source model. Then, a target model
is generated according to the target templates and transformation rules.

These rules are reflected in the meta-model of our transformation language,
shown in Figure 4.20 (this can be compared with Fig. 2.10). Every Trans-
formation is composed of several source and target ComplexElementTemplates
and several ComplexTransformationRules. It can be noted that all these ele-
ments of our metamodel are derived from the Package meta-class found in the
UML specification (in the Kernel package, see [151]). Basic elements of every
Transformation are TransformationElements that reflect elements in the source
and target models of a transformation instance. These TransformationElements
participate in SimpleTransformationRules and SimpleElementTemplates. Every
simple rule is composed of an appropriate link (TransformationLink or Tem-
plateLink) that connects two TransformationElements.

Figure 4.21 shows important details of individual elements in our meta-
model. Every TransformationElement has its type. This type is defined with
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Fig. 4.20. Meta-model of the VTL transformation

the ElementTypes enumeration, which can have values reflecting various meta-
classes found in the UML metamodel (like: Class, UseCase, Inteface an so on).
The transformationSide can be either source or target. This determines, whether
the element can participate in source templates or in target templates. An
important attribute of the TransformationElement meta-class is the stereotype-
Name. The stereotype allows for performing more fine-grained transformations
than only based on element types. By setting the value of this attribute in
a transformation element, the transformation developer can determine dif-
ferences in transforming model elements with different stereotypes. Another
important meta-attribute of the TransformationElement is the packageName.
The value of this attribute specifies the package in the source model where
the element should be sought for or the package in the target model where
the element should be placed in.

The remaining two meta-attributes of TransformationElement define the
type of name conversion and member conversion respectively. Name conver-
sion is very important, as it determines how the name of the current element
will be changed in the element on the other side of an appropriate Transfor-
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Fig. 4.21. Definition of the VTL meta-model elements

mationLink. One possibility is just to copy the name. Another two possibilities
include adding a prefix or a postfix. Member conversion for a transformation
element specifies how the elements members (like attributes, parts or opera-
tions) will be converted in the other element.

Name and member conversions are performed on elements (only between
a source and a target element) connected with TransformationLinks. It can be
noted that these links are directed. The direction determines whether this
particular transformation can be performed between source and target only
or in both directions. We can also observe, that the TransformationLink has
the same conversion attributes as TransformationElement. This is due to the
fact that a single element can be converted to several other elements. In such
situation each TransformationLink coming from a source element can add its
own control over conversion in addition to standard conversion specified inside
this element.

For the definition of transformation to be complete, we also need to define
the TemplateLink. This connector determines relationships between elements
in the source or target templates. TemplateLinks can have types that reflect
meta-classes of the UML specification that derive from the Relationship meta-
class. Thus, we can have TemplateLinks typed eg. as Dependencies, Associations
or Generalisations. TemplateLinks can connect only two TransformationElements
on the same transformationSide. This allows for defining templates for the
source or target models.
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Fig. 4.22. Example source template
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Fig. 4.23. Example target template

4.2.5 Specifying transformations

In order to specify a transformation we shall update the meta-model with con-
crete syntax. This is illustrated in Figures 4.22-4.24. These diagrams contain
a VTL model for a specific transformation. As it can be noted, VTL Trans-
formationElements are denoted with a symbol identical to the UML’s class
symbol. Also attributes and links are similar to those in UML class diagrams.

Figure 4.22 shows the source template of our transformation model. As
we can see, the transformation is performed, whenever a generalisation rela-
tionship between two classes is found. Moreover, these two classes should be
stereotyped as «userInput». The transformation is independent of the package
in which the template elements are found (packageName = ?). Default name
conversion for both of the classes is to add a prefix.

Source model fragments that match template shown on Figure 4.22 will
get transformed into model fragments matching template on Figure 4.23. This



4.2 Defining complete cases with model transformations 113

  

ALGeneral

ALSpecific

DataTransfer

General

Specific

UIDialog

{m em berConversion = none}

{nam eConversion = none}

{nam eConversion = none,

m em berConversion = none}

Fig. 4.24. Example transformation rules

target template contains four TransformationElements representing four classes
in the target model. After transformation, these classes will be related with
a generalisation, two aggregations and two associations. Their stereotypes
will be set - according to the template - to «dialogData», «XMLPacket» and
«dialogWindow». These classes will be placed in appropriate packages (User
Interface, Application Logic and Interfaces). It can be noted that name and
member conversion is not defined, which suggests that the transformation is
uni-directional (only from source to target).

The transformation model is completed with transformation rules, shown
in Figure 4.24. These rules determine which source elements will get con-
verted into which target elements. The arrows show direction of this con-
version (from source to target). Some TransformationLinks are adorned with
constraints. These constraints override standard conversion rules defined in
appropriate source TransformationElements. As we can see, the UIDialog tar-
get elements will have names converted from the Specific source elements only
(with a prefix, according to Figure 4.22). No members will be copied into UIDi-
alog elements. On the other hand, the DataTransfer elements will have member
lists being a concatenation of members from General and Specific elements.

The above described transformation model is the basis for performing the
actual transformation on UML models. An example of such a model is shown
on Figure 4.25. This model contains three classes stereotyped exactly as spec-
ified in the source transformation template. In this model we have two frag-
ments that match correctly the template from Figure 4.22. It can be noted
that these two fragments have a common General class - the UserData class.
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Fig. 4.25. Example source model ready to be transformed into a target model
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Fig. 4.26. Example target model transformed from the source model according to
specified rules

After performing a transformation, the source model gets transformed into
the model shown in Figure 4.26. This diagram contains two fragments that are
derived from the template in Figure 4.23. These two fragments are again joined
by one of the classes (the CUserData class). The joining class is transformed
from the joining class in the source model. It can be noted, that the class name
has been extended with a prefix (letter ‘C’). Both attributes of UserData
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Fig. 4.27. Transformation in a CASE tool

have been copied into CUserData. Attributes from UserData have also been
copied into XADministratorData and XSupervisorData. These two classes have
also attributes copied from two other classes from the source model. This is
consistent with the transformation rules shown on Figure 4.24.

The above example shows a very simple transformation of a requirements
domain model into a design model. For more complex transformations, reflect-
ing all the rules presented in the previous subsections we would need a much
more complex meta-model for our Visual Transformation Language. However,
even with this simple example it can be seen that the vision of supporting de-
velopers by generating architectural and detailed design models is feasible in
practice. In Figure 4.27 we can see an example tool with the transformations
applied. This illustrates the way software developers could use the transfor-
mation specifications in their everyday work. This is also a realisation of the
ReDSeeDS Engine use cases, as presented in subsection 2.3.1.

4.3 Reuse mechanisms based on software cases

The previous two Sections of this Chapter present the details of specifying
coherent software ceses. Having such means to define software cases, we also
would like to be able to reuse them. This would fulfil the vision described in
Chapter 2. Here we shall propose a simple mechanism for finding similar cases
and retrieving them from a software case repository.
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Fig. 4.28. Applying a reusable software case library

4.3.1 Reusable software case repository concept

The general concept of the software case repository is presented in Figure
4.28 (see [9] and [8] for more details). The library system is associated with
two models. The first of the models contains the initial sketch of the problem
or its solution - this is the developer’s current workspace. The second model
is composed of many individual, searchable software cases related to various
problem domains, and forms the actual repository. The first model is the
source of visual queries, usually equivalent to single RSL or UML diagrams
(with several domain elements, use cases, components, scenarios etc.). These
visual queries are transformed into text which can be parsed and used as the
actual query for the pattern library. The software cases in the library can also
be transformed into a textual representation which can be compared to the
query. After performing appropriate comparison, the library’s search engine
returns several results based on their relevancy for the query. These results
can then be incorporated into the developer’s workspace and integrated with
the rest of the model. It can be noted that the described approach is similar
to the idea of applying reuse through ontology matching [16], here equivalent
to matching RSL or UML models. It also needs to be stressed that the query
language presented here serves the purpose of finding similar diagrams (or:
graphs). This is significantly different to an object database query language
which serves the purpose of finding data in a relational or object oriented
structure (see the descriptions of OQL [33] and SBQL [202]).

4.3.2 Query meta-model

The query meta-model is based on an assumption that every two related ele-
ments from the pattern library can be represented as a triple: object-relation-
object. Such a triple denotes a single connection between the source model
elements. This connection might represent eg. associations or dependencies
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Fig. 4.29. General query meta-model

between model elements or membership of element features (like domain ele-
ment attributes or phrases).

According to Figure 4.29, a query is composed of several sentences. Every
such QuerySentence contains the above described triple: two ordered Query-
Objects and a QueryRelationship that connects these two objects. Each of the
objects can be adorned with appropriate QueryMultiplicity. The query as a
whole can be associated with (narrowed to) a specific QueryDomain. We can
also specify the QueryLanguage which allows for applying queries in different
natural languages (with an appropriate language-to-language dictionary).

Objects in a query sentence can represent various meta-classes found in
the UML or RSL specifications. This is reflected by the kind attribute of the
QueryObject, that can have values dependent on the KindOfObject «enumer-
ation». These values include (but are not limited to) the following types of
elements : classes, interfaces, components, attributes, operations, parameters,
actors, use cases. Figure 4.30 shows general mapping of these various types of
model Elements onto QueryObjects. The value of the kind attribute depends
on the actual meta-class derived from the Element which is taking part in
building a query. It can be noted that QueryRelationship has no specified type.
Instead, the name attribute is used to distinguish eg. between an aggregation
and an association. The other features of Relationships reflected in the queries
are their direction and navigability. It can be noted that for an RSL domain
model this direction is irrelevant, however the presented language can also
allow for comparing design models.

Figure 4.30 does not show how membership relationships are mapped onto
QueryRelationships, as we do not have a separate “membership” meta-class
in UML or RSL. If an Element is a member of another Element this gets
reflected in creating a QuerySentence with the two elements mapped onto two
QueryObjects and a relationship named “Ownership”.

Another important element of a query is the multiplicity of participating
objects. QueryMultiplicity can be attached to a QueryObject if the mapped
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QueryObject

nam e:  string

kind:  KindOfObject

QueryRelationship

nam e:  string

navigab le:  boo l  = fa lse

d i rected:  bool  = fa lse

Kernel::

Generalization

Kernel::

Association

Kernel::Element

Kernel::

DirectedRelationship

Kernel::

Relationship

1

2

{ordered}

«m ap»

«m ap»

1..*-/ta rget 1..*-/source

«m ap»

1..*

-/re latedElem ent

Fig. 4.30. General mapping of model elements and relationships onto query ele-
ments

  

QueryMultiplicity

lower:  string

upper:  string

un ique:  bool

ordered:  bool

Element

Kernel::MultiplicityElement

isOrdered:  Boolean = fa lse

isUnique:  Boolean = true

lower:  Integer [0..1] = 1

upper:  Unl im i tedNatural  [0 ..1] = 1

«m ap»

Fig. 4.31. Mapping of multiplicities

model element is adorned with multiplicity. The actual mapping is shown in
Figure 4.31.

By applying a query, based on the above described meta-model, we can
compare various model elements, like classes, interfaces, components, oper-
ations, parameters, attributes, actors, use cases, use case scenarios, scenario
sentences or sentence parts (sentence subjects, verbs or objects). The map-
ping depends on the value of the kind attribute of the QueryObject. Similarly,
the value of the kind attribute of QueryRelationship determines the type of
relationship between queried model elements. Appropriate mapping between
query sentence parts and the most general UML meta-model elements with
relationships is presented in Figure 4.30. This mapping is quite obvious and
needs no further explanation. Similarly, there is no need to explain the map-
ping of the query’s multiplicity, shown on Figure 4.31.

In addition to the above presented general mappings, Figures 4.32-4.35
show more specific mappings for the class model (or RSL domain model) and
the use case scenario model. These mappings are most important for the types
of queries needed to fulfill requirements level reuse.
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QueryObject

Type

Kernel::Class

Multip l ici tyE lement

TypedElement

Kernel::Operation
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QueryMultiplicity

1 0..1

«m ap» «m ap»

«m ap»
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{ordered}
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«m ap»

«m ap»

0..* {ordered}

-owned

param eter

0 ..1

-operation

«m ap»

«m ap»

0..1

-owned

attribute

0..1

-class

Fig. 4.32. Mapping of classes and domain elements

When mapping a class model we need to transform classes, associations
and dependencies between them, with their properties and operations. This
transformation mapping is shown in Figure 4.32. For every single class there
can be built several QuerySentences. These sentences can describe relations
between this class and another related class or between the class and its at-
tributes or operations. One of the QueryObjects in a sentence is mapped to
this specific class, and another object is mapped to another class or one of the
class features. Also, operation parameters can form QueryObjects in relation
to appropriate operations in a query sentence. In a class-related query, an
important element is the multiplicity of elements in the mapped relationship.
This might reflect the multiplicity of a role in an association or the multiplic-
ity of an attribute. Figure 4.32 does not show mapping of relationships and
memberships, as this is consistent with the general mapping described above.
It can be noted that this mapping can be performed in an analogous manner
for the RSL domain model which is similar to the class model described here
as being more general.

Mapping between use cases should be performed on several levels. On the
highest level, QueryObjects are mapped to UseCases and Actors (see Fig. 4.33).
Relationships between use cases are also mapped appropriately. What is more
important, we can also map the structure of individual use case scenarios. We
can assume that an individual UseCase has several associated Scenarios with
ordered ScenarioSentences. Mapping of use case structural elements into query
elements is shown in Figures 4.34 and 4.35. Scenarios, sentences and sentence
elements are mapped into appropriate QueryObjects. QueryRelationships reflect
aggregation between scenarios, their sentences and sentence parts.
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QueryRelationship
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Fig. 4.33. Mapping of use cases

  

QueryObject

- nam e:  string

- kind:  KindOfObject

QueryRelationship
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- di rected:  boo l  = fa lse

Use Cases::

UseCase

Use Cases::
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Use Cases::

Sentence

«m ap»

1..* 1

«m ap»

1..* 1

«m ap»

1

2

{ordered}

Fig. 4.34. Mapping of use case scenarios

4.3.3 Creating queries

Sentences consistent with the abstract syntax defined in the previous subsec-
tion can be represented in textual form in the following simple concrete syntax
for a single query sentence:

[object multiplicity] [object type] [object name] [relationship] [object

multiplicity] [object type] [object name]

Which is illustrated in the following example:
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QueryObject

nam e:  string

kind:  KindOfObject

QueryRelationship
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navigable :  bool  = fa lse
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Use Cases::

SentenceElement

Use Cases::
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2
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1

1
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1

Fig. 4.35. Mapping for a single scenario sentence

[0,1] [class] [ClassName] [aggregation] [?,?] [class] [ClassName2]

This sentence denotes a relationship between two classes in an aggregation
relationship. The multiplicity of one of the classes (more correctly: classe’s
role) in this relationship is unspecified, and another class has multiplicity of
[0..1]. Having defined the query metamodel in section 3 we can now easily
write the structure of this query in XML:

<query language="English" code="EN" code_page="ISO-8859-1">

<domain="domain name/subdomain name"/> <sentence>

<object>

<multiplicity lower="0" upper="1" unique=true ordered=true>

<name="ClassName">

<kind="Class">

</object>

<relationship name="Aggregation"/>

<object>

<multiplicity lower="?" upper="?" unique=? ordered=?>

<name="ClassName2">

<kind="Class">

</object>

</sentence> </query>

To illustrate application of queries for the purpose of requirements match-
ing we will now build two more complex queries. The first query will be built
by transforming it from a class diagram shown in Figure 4.36. Treating this
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User

- id:  

Customer

- address:  

ShoppingCart

+ checkout() : void

+ em pty() : void

Article

- price:  

- description:  0..*11 1

Fig. 4.36. Class diagram with an example query

diagram as a visual input we can automatically build a query, which is shown
(in a fragment) below:

<query language="English" code="EN" code_page="ISO-8859-1">

<domain="E-commerce/On-line shop"/> <sentence>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=true/>

<name="User">

<kind="Class">

</object>

<relationship name="Ownership"/>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=true/>

<name="id">

<kind="Attribute">

</object>

</sentence> <sentence>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=false/>

<name="User">

<kind="Class">

</object>

<relationship name="Generalization"/>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=true/>

<name="Customer">

<kind="Class">

</object>

</sentence> (some other sentences...) <sentence>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=false/>

<name="ShoppingCart">

<kind="Class">

</object>

<relationship name="Ownership"/>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=true/ >

<name="checkout">

<kind="Operation">

</object>
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Customer

Empty shopping 

cart

Fig. 4.37. Use case diagram with an example query

</sentence> (some other sentences...) <sentence>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=false/>

<name="ShoppingCart">

<kind="Class">

</object>

<relationship name="Aggregation"/>

<object>

<multiplicity lower="0" upper="*" unique=false ordered=false/ >

<name="Article">

<kind="Class">

</object>

</sentence> </query>

The second example shows a query for the use case model shown in Figure
4.37. In addition, the single use case in the model has the following scenario:

1. User presses Empty Shopping Cart button
2. System empties the shopping cart.

We can note that the single UseCase from our example has an associated
single Scenario with two Sentences. Each of the two sentences is composed of
three VocabularyElements (a sentence subject, a sentence verb and a sentence
object). Sentences are numbered and the number constitutes that sentence’s
name. Considering the above relationships we can generate a query, where its
fragment is shown below:

<query language="English" code="EN" code_page="ISO-8859-1">

<domain="E-commerce/On-line shop"/> <sentence>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=false/>

<name="Customer">

<kind="Actor">

</object>

<relationship name="Ownership"/>

<object>

<multiplicity lower="1" upper="1" unique=true ordered= false />

<name="Empty Shopping Cart">
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<kind="Use Case">

</object>

</sentence> <sentence>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=false/>

<name=" Empty Shopping Cart">

<kind=" Use Case">

</object>

<relationship name="Ownership"/>

<object>

<multiplicity lower="1" upper="1" unique=true ordered= false />

<name="Main path">

<kind="Scenario">

</object>

</sentence> <sentence>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=false/>

<name="Main path">

<kind="Scenario">

</object>

<relationship name="Ownership"/>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=false/ >

<name="1">

<kind="Sentence">

</object>

</sentence> <sentence>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=false/>

<name="1">

<kind="Sentence">

</object>

<relationship name="Ownership"/>

<object>

<multiplicity lower="1" upper="1" unique=false ordered=false/ >

<name="user">

<kind="Subject">

</object>

</sentence> <sentence>

<object>

<multiplicity lower="1" upper="1" unique=true ordered=false/>

<name="1">

<kind="Sentence">

</object>

<relationship name="Ownership"/>

<object>

<multiplicity lower="1" upper="1" unique=false ordered=false/ >

<name="presses">

<kind="Verb">
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</object>

</sentence> </query>

Queries like the ones presented above can be generated automatically
(through defined mappings) from the visual model or created “by hand” by
the developer. It is also possible that the initially generated query is modified
or supplemented with additional query sentences.

The algorithm for automatic query generation is as follows:

1. for a given input model package gather all the packaged elements from
the model repository;

2. for every gathered element:
a) determine its type and name;
b) for all the relationships of the element determine:

• source and target element;
• multiplicity of the source and target;
• type of relationship;

3. form QuerySentences out of QueryObjects, QueryRelationships, and Query-
Multiplicities created in step 2

4. form a Query out of created QuerySentences

Such an automatically generated query can now be supplemented or edited
by the developer. The final query can be transformed into an XML packet and
sent to the search engine in order to be applied to the pattern library.

4.3.4 Applying queries

The number of query sentences in a query is not limited. It depends on the
complexity of the source model and the number of sentences added to the
query by the library user. For models containing only a few classes or use
cases with several attributes, operations or scenarios, the number of query
sentences grows into tens, and even hundreds. Having such large queries, an
effective way of comparing the query with the stored software cases has to be
applied.

For every software case inserted into the library, an appropriate XML-
based textual description is generated. These descriptions form an index that
significantly accelerates query application. Every query applied is now com-
pared with these index entries in order to calculate relevance points for each
of the patterns.

The process of applying a query to a pattern library is illustrated in Figure
4.38. Having the initial model (query pattern), an appropriate query is gen-
erated. Query sentences in the generated list can be browsed and modified.
The final query is then applied and several software cases are found. For each
of the software cases found, a number, denoting its relevance (similarity with
the initial pattern) is shown.
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initial

software case

sentence modification

list of found
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Fig. 4.38. Illustration of the search process

The relevance number reflects the number of query sentences that are
matched with sentences of index description for a given library pattern. Sen-
tences are compared by matching their objects and relationships as shown in
Figure 4.39. When calculating relevance numbers, appropriate weights can be
applied. These weights may be assigned to different object and relationship
types and are set by the users before applying a query.

After obtaining a list of relevant software cases, the user can browse them
and choose those that are suited best for the current problem. These chosen
cases can be incorporated into the current workspace and included in the final
solution.

In Figure 4.38 we can see that three relevant software cases have been
found in the library. The most relevant case has 9 relevance points. It is in
fact identical with the initial query (see also Fig. 4.36), and thus, from 9
compared sentences, 9 were matched correctly:

• Class User owns attribute id
• Class Customer owns attribute address
• Class Customer is derived from class User
• Class ShoppingCart own operation checkout()
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<object>

<multiplicity lower=”1” upper=”1”/>

<name=”Empty Shopping Cart”>

<kind=”Use Case”>

</object>

<object>

<multiplicity lower=”1” upper=”1”/>

<name=”Main path”>

<kind=”Scenario”>

</object>

<relationship name=”Ownership”/>

<object>

<multiplicity lower=”1” upper=”1”/>

<name=”Empty Shopping Cart”>

<kind=”Use Case”>

</object>

<object>

<multiplicity lower=”1” upper=”1”/>

<name=”Main path”>

<kind=”Scenario”>

</object>

<relationship name=”Ownership”/>

Fig. 4.39. Calculation of relevance value for a single query sentence

• Class ShoppingCart own operation empty()
• Class Customer is associated with class ShoppingCart with multiplicities

[1..1] and [1..1]
• Class Article owns attribute price
• Class Article owns attribute description
• Class ShoppingCart aggregates class Article with multiplicities [1..1] and

[0..*]

Obviously, the final query scheme should be much more sophisticated in
order to achieve the software reuse vision formulated throughout this book.
However, even with such simple queries, relevant software cases can be found.
By querying requirements models only, we obtain complete solutions, with
mapped architectural models, design and code. What is also important, we
can also retrieve transformation definitions. With these, a new, adapted solu-
tion can be generated from the current requirements model, according to the
description earlier in this Chapter.



5

Summary and discussion

In this book we have presented a comprehensive framework that enables reuse
of software artifacts. The fundamental assumption for this framework is that
reuse is organised around precisely formulated and coherent requirements
models. Such models are formulated in a unified Requirements Specification
Language. Requirements specified in RSL form the basis for creating complete
software cases which have the potential for reusing them. These software cases
can be built using the standard UML notation where certain constraints and
well-formedness rules should be applied. With appropriate guidelines for for-
mulating architectural and detailed design models in place, we can define
transformations that can translate the requirements specifications into de-
sign models. These transformations assure that software cases form coherently
mapped units of reuse.

Having uniformly defined software cases we obtain the potential to organise
a reuse-oriented software development process. Within this process, software
cases are built from requirements into code using automatic transformations
and other design activities performed by software developers. In this pro-
cess, there are maintained clear traces leading from individual requirements
to design solutions and then to code. These traces allow for finding proper
solutions to problems formulated through requirements. Traceable software
cases are stored in a reuse repository. When a new problem arises, the new
requirements specification can be compared with the stored ones. After find-
ing suitable old cases, their solutions can be adapted to the current problem.
This adaptation is feasible due to existence of traces which point to design
components and code elements that potentially need to be reworked.

The reuse framework presented in this book promises high levels of reuse.
This could be possible both for completely new projects as well as for efforts
in maintaining and extending the existing software systems. In the first case,
a search engine could be used to find similar cases after formulating the initial
requirements specification. This search could be done in local repositories of
the given software development organisation. However, there is also possible a
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vision of globally available software cases or partial software cases. With such
global repositories, a “software case reuse market” could emerge.

For projects developing new versions of existing software there are two
possibilities. First, the retrieval engine can precisely find places where the
old version of software should be modified or extended. This is because by
comparing the old and new requirements, the engine can trace differences
into design and code. This gives software developers instant information on
the size of the modification effort and reduces the time they would need to
find appropriate elements to modify, by hand. The second possibility is to find
solutions to newly introduced requirements in other stored software cases. It
is often that the new functionality has already been implemented in other
projects and can be easily retrieved and merged into the current workspace.

In order for the presented framework to become possible, a reuse engine has
to be developed. Such an integrated tool is crucial, as the currently available
tools do not support such a comprehensive reuse originating in requirements.
Appropriate technologies, presented in the state of the art section, exist but
are not properly linked and validated for the purpose. For instance, there
exist commercial requirements engineering tools but they mainly operate on
requirements as such, without necessary handling of the requirements repre-
sentations. Some of the tools allow for linking requirements (or generally, any
text) through hyperlinks but no links to other (especially - visual) software de-
velopment artifacts are possible. We also have several tools to handle model
transformations. These in turn seem to ignore requirements as suitable for
transformation. Finally, retrieval technologies were used to retrieve software
artifacts, but this was mainly done for individual models or artifacts.

In this book we have shown how to combine all the above technologies to
create a comprehensive software reuse engine. There were determined neces-
sary user requirements for such a tool, and its important architectural ele-
ments were identified. Within this architectural framework, appropriate tech-
nologies were discussed in more detail. It was shown that appropriate elements
of the reuse engine can be based on the presented technologies, in order for
the postulated functionality to become possible. All these technologies can be
incorporated into a single reuse engine thanks to a unified meta-model for
all necessary elements, as presented in this book. This meta-model covers the
language for specifying queryable software cases (including the language for
specifying requirements, and the language to specify model transformations)
and the query language. Defining this coherent meta-model is an important
prerequisite to build an appropriate tool to be used by software developers.

It has to be stressed that although the applied technologies form a com-
plex technological framework, the resulting reuse engine can be easy to use by
the developers. It is important to assure that the efforts to formulate reusable
cases and then retrieve them are reduced to minimum. With the system pre-
sented in this book, no special effort is needed to transform a “regular” software
case into a reusable one. All the information needed to retrieve such a case is
already present in the requirements specification. This specification is struc-
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tured in such a way that all functional and vocabulary aspects of the system
can be easily compared with other such specifications. At the same time, re-
quirements formulated in RSL can be automatically transformed into a query.
This means that there is no special effort needed to formulate the query. All
the query information is already incorporated into the newly created require-
ments specification. The developers need only to sketch some requirements in
RSL and treat them as input to the query engine. The engine responds in a
set of prioritised software cases relevant for the current problem.

The presented framework is currently the main subject of a EU funded
project under the Information Society Technologies priority of the 6th Frame-
work Programme for Scientific Research. The ReDSeeDS project 1 is divided
into six major work packages. The first three consist in defining and validating
the three technological elements as specified in Chapter 4. The fourth package
is devoted to building the reuse engine. In the fifth package, the engine and
the overall approach shall be validated in real life industry projects. Finally,
the last package shall formulate a detailed methodology (process) as it was
sketched in Section 2.2.

The presented approach to formulating software cases has already been
validated within the ReDSeeDS project. The RSL was applied to several in-
dustry projects and validation results were formulated by the project Part-
ners. Moreover a case study has been conducted where a complete software
case has been developed, including the resulting code. Prior to this, several
student projects were conducted as part of software engineering courses at the
Warsaw University of Technology (see also [206]) and the University of Carlos
III in Madrid.

The main elements found in Chapter 3 were presented to the students
along with presenting the UML. Six different problem domains were chosen:
fitness club, theme park, video and car rental, parking network and university
campus. Altogether, 16 teams of 3-5 master-level students have prepared full
software cases (except for code) containing a User Requirements Document
(URD) and a Software Requirements Document (SRD). Some of the groups
have also continued work by preparing an Architectural Design Document
(ADD) and a Detailed Design Document (DDD) as described throughout
Chapter 3.

The students were taught syntax and semantics of the case specification
language both during lectures (around 10 hours devoted purely to SVO sen-
tences and domain vocabulary) and hands-on tutorials (6 document validation
sessions). The resulting deliverables contained between 34 and 46 use cases
with short natural language descriptions and from 25 to 37 domain elements

1 www.redseeds.eu, contract no. IST-2006-33596, coordinated by Infovide-Matrix,
Poland with technical lead of Warsaw University of Technology and with Uni-
versity of Koblenz-Landau, Vienna University of Technology, Fraunhofer IESE,
University of Latvia, HITeC e.V. c/o University of Hamburg, Heriot-Watt Uni-
versity, PRO DV, Cybersoft and Algoritmu Sistemos
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briefly defined. Selected use cases (about 30-40% of the total) were described
in detail with SVO scenarios. The groups were free to choose between textual
and activity notation. While writing SVO sentences, the verbs were associated
with appropriate nouns and included in domain elements definitions (treated
as phrases). Some of the groups have used classical class diagrams for the do-
main vocabulary. Typically, the groups have written around 20 main course
scenarios with some alternative ones. Around 40 phrases used within these
scenarios were defined.

The groups that have continued their work in the next semester have trans-
formed their requirements specifications into design documents. For most of
the scenarios, interaction diagrams were created. Domain elements were trans-
formed into design class diagrams, and also used within component diagrams
(transformed into data transfer objects).

It has to be noted that no special tool was used to keep coherence of the
SVO sentences and vocabulary phrases. This is similar to a situation within
a typical requirements specification. However, despite a limited time to check
the coherence, the students did manage to keep most of the hyperlinks valid
(not broken). Only around 15-25% of the links had problems (usually minor
inconsistencies in the names). Of course, their remarks show that keeping this
coherence is time consuming, and a tool would dramatically help in this task.
On the other hand, when transforming to design the students highly appreci-
ated how the requirements specification was made internally consistent. This
allowed to minimise efforts associated with ensuring consistency of interac-
tion and component/class diagrams. The same observations were made when
preparing the case study within ReDSeeDS.

The current book elaborates on several important issues associated with
creating a comprehensive reuse framework. It has to be stressed that the
presented approach is still far from being fully researched. Thus, appropriate
further research and development activities are needed.

With the current state of efforts in defining the case specification languages
and their meta-models, it is already possible to implement a tool fulfilling all of
the presented requirements. An important issue here is to gain the possibility
of validating various elements of the framework. Only the usage of a compre-
hensive tool can give us necessary information on applicability of the approach
to real life projects. Thus the plans of further research (specifically within the
ReDSeeDS project) assume using the created tool to validate the mechanisms
for building and reusing software cases. It is very important to verify that it is
possible to build a full transformation algorithm that would enable automatic
translation of models and creation of coherently mapped cases. Moreover, a
software case retrieval method has to be developed through validating sev-
eral existing methods. Certainly, the transformation and query languages as
presented in this book are not comprehensive enough and appropriate more
elaborate languages and methods need to be used, as indicated in relevant
sections.
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Validation of the presented technologies in practice is an important basis
for building a usable reuse platform. In the ReDSeeDS project this has been
taken as an important element in planning of its schedule. The project as-
sumes two iterations of research work. These two iterations are divided with
the above mentioned validation work. Thus, after validating the developed
platform (technologies with the tool), the results shall be used to improve the
technologies and building the next version of the tool.

This final prototype tool could then be used in software development or-
ganisations to optimise their efforts by enabling easy access to gathered soft-
ware knowledge. Having the tool spread more widely, a vision of software case
reuse community could be fulfilled. Software producers could offer their soft-
ware knowledge on the market or in public domain by publishing their software
cases through publicly available interfaces. This could be an important factor
in improving software manufacturing practices on a global market.
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TWORZENIE OPROGRAMOWANIA PRZY POMOCY
REUŻYWALNYCH PRZYPADKÓW OPARTYCH NA

WYMAGANIACH

Streszczenie

Zdecydowana większość projektów konstrukcji oprogramowania wydaje się ig-
norować wiedzę na temat rozwiązanych wcześniej problemów. Można to wytłu-
maczyć trudnościami w ponownym wykorzystaniu wiedzy w tak złożonej dziedzinie
jak inżynieria oprogramowania. Brakuje efektywnych mechanizmów znajdowania
i ponownego wykorzystania rozwiązań minionych problemów, podobnych do sto-
jących przed nami w danej chwili. Podstawową kwestią, której rozwiązanie jest
celem tej książki jest powyższa niemożność „reużycia” wiedzy o rozwiązanych już
problemach w konstrukcji oprogramowania. W tej książce zaproponowano proces
systematycznego wykorzystywania tzw. przypadków programistycznych (ang. soft-
ware case). Każdy przypadek programistyczny zawiera precyzyjnie sformułowane
stwierdzenie problemu w formie modelu wymagań. Wszystkie elementy tego mo-
delu mogą być przełożone na odpowiednie elementy rozwiązania sformułowanego
problemu. To rozwiązanie jest złożone z precyzyjnie wyrażonych modeli projek-
towych oraz kodu. Przypadki programistyczne mogą być ponownie wykorzystane
na podstawie ich podobieństwa do aktualnie tworzonego systemu (aktualnego przy-
padku programistycznego). To podobieństwo może być określone poprzez porów-
nanie aktualnego (być może jeszcze niekompletnego) modelu wymagań z modelami
wcześniej wytworzonych przypadków. Wcześniejsze rozwiązanie może być z łatwoś-
cią ponownie wykorzystane poprzez jego modyfikację w miejscach oznaczonych jako
wymagające przeróbek aby dostosować je do aktualnego problemu.

Książka zawiera szczegółową dyskusję kwestii, które umożliwiają skonstruowanie
kompleksowego systemu ponownego wykorzystania opartego na wymaganiach. Opi-
sane są mechanizmy i narzędzia wspomagające taki system. Przedstawiono wizję
zorganizowania procesu ponownego wykorzystania, łącznie ze wskazówkami dla
organizacji wytwarzających oprogramowanie. Oznacza to również wykorzystanie
konkretnego, precyzyjnego języka specyfikacji wymagań i projektowania systemów.
Proces i język są zdefiniowane zarówno formalnie jak i od strony praktycznej.
Książka wprowadza konkretną składnię dla elementów przypadków programisty-
cznych: wymagań, architektury i projektu szczegółowego. Ta składnia jest wyko-
rzystana do formułowania ich w sposób systematyczny. Jednocześnie podano tech-
niki dla transformacji modeli w celu utworzenia spójnej ścieżki od wymagań do kodu.
Przedstawiono również określone mechanizmy porównywania i odszukiwania przy-
padków programistycznych. Dotyczy to również języka zapytań odpowiedniego dla
formułowania kwerend pozwalających na dobieranie modeli wymagań, w ten sposób
pozwalając na ponowne wykorzystanie rozwiązań wyspecyfikowanych wymaganiami.

Słowa kluczowe: ponowne użycie oprogramowania, wymagania oprogramowania,
transformacje modeli oprogramowania, metodyki wytwarzania oprogramowania
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