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Abstract—Budgeting, bidding and planning of software
project effort, time and cost are essential elements of any software
development process. Massive size and complexity of now a
day produced software systems cause a substantial risk for
the development process. Inadequate and inefficient information
about the size and complexity results in an ambiguous estimates
that cause many losses. Project managers cannot adequately
provide good estimate for both the effort and time needed.
Thus, no clear release day to the market can be defined. This
paper presents two new models for software effort estimation
using fuzzy logic. One model is developed based on the famous
COnstructive COst Model (COCOMO) and utilizes the Source
Line Of Code (SLOC) as input variable to estimate the Effort (E);
while the second model utilize the Inputs, Outputs, Files, and User
Inquiries to estimate the Function Point (FP). The proposed fuzzy
models show better estimation capabilities compared to other
reported models in the literature and better assist the project
manager in computing the software required development effort.
The validation results are carried out using Albrecht data set.

I. INTRODUCTION

According to Dr. Patricia Sanders, Director of Test Systems
Engineering and Evaluation at OUSD, in her 1998 Software
Technology Conference keynote address, 40% of the DoD’s
software development costs are spent on reworking the soft-
ware, which on the year 2000 equal to an annual loss of $18
billion. Furthermore, Sanders stated that only 16% of software
development would finish on time and on budget.

The dimension and complication of computer based-
systems grown noticeably during the past few decades [1]–[4]
and the tendency will certainly continue in the future specially
in Military Application, NASA Space Shuttle systems, Air
Force and business for huge Enterprises. Some NASA and
Air Force projects have estimated that the cost of software
development could be up to 50% of their development cost. It
was stated in [5]:

Given that software-intensive projects are among
the most expensive and risky undertakings of the
21st century, the investment in weapons from fiscal
years 2003 through 2009 will exceed $1 trillion.
Furthermore, many of the DoD’s most important
technology projects will continue to deliver less than
promised unless changes are made. Improving how
we acquire software-intensive systems is both long
overdue and an imperative.

Although many research papers appears since 1960 pro-
viding numerous models to help in computing the effort/cost
for software projects, being able to provide accurate effort/cost
estimation is still a challenge for many reasons. They include:
1) the uncertainty in collected measurement, 2) the estimation
methods used which might have many drawbacks and 3) the
cost drivers which comes with various characteristics based on
the methodology of development.

In this paper, we provide a detailed study on the algorithmic
software effort estimation models. We provide our initial idea
on using fuzzy models to build a Takagi Sugeno fuzzy model
for the software effort. We developed two fuzzy models. They
utilize both the SLOC and FP parameters. Our experimental
results cover 24 software projects based Albrecht data set.

II. LITERATURE REVIEW

In 1994, Zadeh presented the definition of Soft Computing
techniques [6]. He mentioned that soft computing is not
a homogeneous body of concepts and techniques. At that
time, the principal techniques which compose the domain
of soft computing were fuzzy logic, neurocomputing, and
probabilistic reasoning. Later on, the domain was expanded to
cover techniques such as Genetic Algorithms (GAs), Swarm
Intelligence (SI), Differential Evolution (DE) and many others.
In the past, soft computing techniques were explored to build
efficient effort estimation models structures [7], [8]. In [9],
author explored the use of Neural Networks (NNs), GAs and
Genetic Programming (GP) to provide a methodology for
software cost estimation. Later authors in [10], provided a
detailed study on using Genetic Programming (GP), Neural
Network (NN) and Linear Regression (LR) in solving the
software project estimation. Many data sets provided in [11],
[12] were explored with promising results. In [13], authors
provided a survey on the cost estimation models using artificial
neural networks. Fuzzy logic and neural networks were used
for software engineering project management in [14]. A fuzzy
COCOMO model was developed in [7].

Recently, Soft Computing and Machine Learning Tech-
niques were explored to handle many software engineering
problems. They include the effort and cost estimation prob-
lems. In [15], author provided an innovative set of models
modified from the famous COCOMO model with interesting
results. Later on, many authors explored the same idea with
some modification [16]–[18] and provided a comparison to
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the work presented in [15]. The idea of using Takagi Sugeno
Fuzzy Logic was primary presented in [19] to see how a
rule based system can solve the software effort estimation
problem. Authors in [20] presented an extended work on the
use of Soft Computing Techniques to build a suitable model
structure to utilize improved estimations of software effort
for NASA software projects. On doing this, Particle Swarm
Optimization (PSO) was used to tune the parameters of the
COCOMO model. A data set for NASA software projects [21]
were used to test the developed models. Author provided a
comparison between various software cost estimation models.
They include COCOMO-PSO, Fuzzy Logic (FL), Halstead,
Walston-Felix, Bailey-Basili and Doty models with excellent
performance results.

III. CONSTRUCTIVE COST MODEL

Many software cost estimation models where proposed to
help in providing a high quality estimate to assist project
manager in taking best decisions for a project [22], [23].
COCOMO is one of a very famous software effort estimation
models. COCOMO was introduced by Boehm in 1981 [22],
[23]. This model consists of mathematical equations that iden-
tify the developed time, the effort and the maintenance effort.
The model was developed based on 63 software projects. The
estimation accuracy is suggestively improved when adopting
models such as the Intermediate and Complex COCOMO
models [23]. Equation 1 shows the basic COCOMO model:

E = α(SLOC)β (1)

E presents the software effort computed in man-months.
SLOC stands for Source Line Of Code computed in Kilo.
The values of the parameters α and β depend mainly on the
class of software project. Software projects were classified
based on the complexity of the project into three categories.
They are: Organic, Semidetached and Embedded models [24].
Extensions of COCOMO, such as COMCOMO II, can be
found [25], however, for the purpose of research reported, in
this paper, the basic COMCOMO model is used. The three
models are given in Table I. These models are expected to give
different results according to the type of software projects.

TABLE I. BASIC COCOMO MODELS

Model Name Effort (E) Time (T )

Organic Model E = 2.4(KLOC)1.05 T = 2.5(E)0.38

Semi-Detached Model E = 3.0(KLOC)1.12 T = 2.5(E)0.35

Embedded Model E = 3.6(KLOC)1.20 T = 2.5(E)0.32

IV. FUNCTION POINT MODEL

Software size helps in developing an initial estimate for
software effort/cost estimation during software development
life cycle. COCOMO model provided this estimate based on
the SLOC. It was reported that SLOC produced many problems
[26], [27]. For example, in modern software programming,
auto-generate tools produced large number of line of codes.
SLOC also changes with the developer’s experience, difference
in programming languages, variation in the graphical user
interface (GUI) code generation, and lack of functionality. The
estimation of SLOC under this condition seems uncertain to
measure. This is why Albrecht proposed his idea of computing
the software size based on the system functionality [28], [29].

A. Albrecht’s Function Points

Albrecht’s function point gained acceptance during the
1980’s and 1990’s because of the tempting benefits compared
to the models based on the SLOC [30], [31]. Because FP is
self-governing and independent of language type, platform,
it can be used to identify many productivity benefits. FP
is designed to estimate the time required for a software
project development, and thereby the cost of the project and
maintaining existing software systems.

In 1979 Albrecht [28], published his article on FP method-
ology while he was working at IBM. The proposed FP has
no dimension. FP was computed based on the analysis of
project requirements. The requirements help in identifying the
number of function to be developed along with the complexity
of each function. Thus, there was no need to measure the size
of LOC but only concern about project functionality. Once
the number of FP measured, the average number of function
points per month specified and the labor cost per month is es-
timated; the total budget can be computed. Albrecht originally
proposed four function types [28]: files, inputs, outputs and
inquiries with one set of associated weights and ten General
System Characteristics (GSC). In 1983, the work developed
in (Albrecht and Gaffney 1983), proposed the expansion of
the function type, a set of three weighting values (i.e. simple,
average, complex) and fourteen General System Characteristics
(GSCs) were proposed as given in Table II.

In [32], Kemerer provided a famous study reporting the
results of the comparative accuracy for four software cost esti-
mation models. They are the Function Points [28], SLIM [33],
COCOMO [22], and ESTIMACS. The results were produced
using data collected from 15 completed software projects.
Each model was tested based on its predictive capability on
computing software cost. The results showed that the models
require substantial calibration. Kemer also identified the main
attributes which affect software productivity. Recently, using
Albrecht’s Function Point analysis (FPA) method and using
analogous approach, authors [34] provided a methodology they
claim it is more reliable and accurate in predicting the software
size at an early stage of the software life cycle. Recently,
FP gain more attention as a powerful approach for estimating
software effort [35]–[37].

Fig. 1. Function Point Computation Model

In Albrecht FP, there are two parts in the model, which
are Unadjusted Function Point (UFP) and Adjusted Function
Point (AFP). The UFP consists of five components. They are:

• External Inputs (EI),
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TABLE II. 1983 FUNCTION TYPES AND WEIGHTS

Function Type Simple Average Complex

External Input 3 4 6

External Output 4 5 7

Internal Files 7 10 15

External Files 5 7 10

External Inquiry 3 4 6

• External Outputs (EO),

• External Inquires (EQ),

• Internal Logical Files (ILF) and

• External Interface Files (EIF).

There are also 14 GSCs factors that affect the size of the
project effort, and each is ranked from ”0”- no influence to ”5”-
essential. GSCs consists of 14 factors known as f1, f2, . . . , f14.
These factors are listed in listed in Table III. The sum of all
factors is then multiplied given in Equation 2 which constitute
the Adjustment Factor (AF) defined in the range [0.65, -1.35].

AF = 0.65 + 0.01
14
∑

i=1

fi (2)

TABLE III. GENERAL SYSTEM CHARACTERISTICS (GSCS)

1 Data Communications

2 Distributed Functions

3 Performance

4 Heavily Used Configuration

5 Transaction Rate

6 Online Data Entry

7 End User Efficiency

8 Online Update

9 Complex Processing

10 Reusability

11 Installation Ease

12 Operational Ease

13 Multiple Sites

14 Facilitate Change

Then, the Unadjusted FP is then multiplied by the UFP to
create the Adjusted Function Point (AFP) count as given in
Equation 3. The Adjusted FP value is always within 35% of
the original UFP figure. A diagram which shows the process
of computing FP is given in Figure 1.

Adjusted FP = Unadjusted FP ×AF (3)

V. WHAT IS FIS?

A block diagram which provide the main architecture of a
fuzzy rule based system is shown in Figure 2. The proposed
fuzzy logic system, used in this study, consists of number of
components.

1) Fuzzification: In this stage, the model inputs and out-
puts variables are defined. These inputs and outputs
are transformed to set of fuzzy domains.

2) Inference Mechanism: Fuzzy inference mechanism
concerns on developing a relationship between the
model inputs and outputs. The mapping constructs
the system decision making. The process of fuzzy
inference include: Membership functions, Fuzzy set

operation, and If-Then rules. FIS may be summarized
as two processes:

• Aggregation: Compute the IF part (i.e. an-
tecedent) of the rules. The antecedent vari-
ables reflect information about the process
operating conditions.

• Composition: Compute the THEN part (i.e.
consequence) of the rules. The rule’s con-
sequent is normally presented as a linear
regression model [38]–[40]. This model has
set of parameters usually estimated using least
square minimization criterion.

3) Defuzzification: The computed output based on the
fuzzy rules are then converted to real values.

Fig. 2. The proposed fuzzy logic system

VI. PROPOSED FL MODEL

The proposed fuzzy model should be able to mathemat-
ically represents the relationship between the effort model
inputs x1, . . . xn and the effort y; n is the number of inputs
to the fuzzy model. The proposed fuzzy model is always
represented by set of If-Then rules. The proposed fuzzy model
equation is given as follows:

y = FM(x1, . . . , xn) (4)

The fuzzy region in the product space is developed based
on the membership functions and the antecedent of the rule.
The antecedent variable gives the condition of the process
status now. The rule’s consequent is defined as a set of local
linear regression models which relates y with x1, . . . , x4 given
as in Equation 5.

y = a0 + a1x1 + · · ·+ anxn (5)

A rule-based fuzzy model requires the identification of the
following:

1) the antecedent,
2) the consequent structure,
3) the type of the membership functions for different

operating conditions and
4) the estimation of the consequent parameters using

least square estimation.

The developed fuzzy models implemented based the
Takagi-Sugeno technique [38], [39]. The proposed technique
does not require any a prior knowledge about the operating
regimes. If a sufficiently number of measurements are collected
which reflects the operating ranges of interest, the developed
fuzzy model will be an efficient one [38], [39].
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VII. COMPUTATION CRITERIA

The performance of the developed two models; the SLOC
and the FP models based FL shall be evaluated using number
of evaluation criteria. They are:

• Variance-Accounted-For (VAF):

V AF = [1−
var(y − ŷ)

var(y)
]× 100% (6)

• Euclidian distance (ED):

ED =

√

√

√

√(

n
∑

i=1

(yi − ŷi)2 (7)

• Manhattan distance (MD):

MD = (

n
∑

i=1

|yi − ŷi|) (8)

• Mean Magnitude of Relative Error (MMRE):

MMRE =
1

N

N
∑

i=1

|yi − ŷi|

yi
(9)

where y and ŷ are the actual effort and the estimated effort
based on the developed fuzzy model and N is the number of
measurements used in the experiments, respectively.

VIII. EXPERIMENTAL RESULTS

A. The Albrecht data set

A statistical summary of the features used in the analysis
of the Albrecht data set is displayed in Table IV. The feature
to be predicted (i.e. goal feature or dependent variable) is ef-
fort, measured in work-hours, while the potential independent
variables (i.e. descriptor features) are adjusted function points,
the number of master files, the number of inputs, the number
of inquiries and the number of outputs [41].

TABLE IV. SUMMARY STATISTICS FOR ALBRECHT DATA SET [41]

Feature Count Min Max Mean Median

Effort 24 0.5 105.20 21.88 11.45

FP 24 199.00 1902.00 647.62 506.00

Files 24 3.00 60.00 17.38 11.50

Inputs 24 7.00 193.00 40.25 33.50

Inquiries 24 0.00 75.00 16.88 19.3

Outputs 24 12.00 150.00 47.25 39.00

B. Fuzzy Effort Model based SLOC

We developed a fuzzy model based COCOMO for the
effort taking in consideration one attribute which is the SLOC.
We used the FMID MATLAB Toolbox [42] to develop our
experimental results. The set of rules which describe the effort
as a function of SLOC is given in Table V. In Table VI,
we show the values of each evaluation criteria adopted in
this study. In Figure 3, we show the membership function
for the SLOC based model. Three membership functions are
shown which reflect the relationship between the SLOC and
the Effort on three sub-models. Figure 4 show the actual and
estimated effort using fuzzy logic. The values of the actual and
computed effort based fuzzy model is presented in Table VII.
The characteristics between the two curves look very similar
with high VAF criteria.

TABLE V. FUZZY RULES FOR THE EFFORT BASED SLOC MODEL

1. If SLOC is A1 then

E = 3.20 · 10−1SLOC + 1.57 · 10−1

2. If SLOC is A2 then

E = 2.25 · 100SLOC − 1.96 · 102

3. If SLOC is A3 then

E = −1.47 · 100SLOC + 3.24 · 102

TABLE VI. COMPUTATION CRITERIA FOR THE FL BASED SLOC
MODEL

VAF ED MD MMRE

96.158% 2.85×10−13 100.27 0.4337

C. Fuzzy Effort Model based FP

We developed a fuzzy model for the effort taking in
consideration four attribute inspired by the FP model. Three
memberships were used. The set of rules which describe the
effort as a function of FP is given in Table V. In Figure 5,
we show the membership function for the FP based model.
Figure 6 show the actual and estimated effort using fuzzy
logic based FP model. We received a very high VAF reflecting
good performance modeling. The actual and estimated values
of the effort based the FP model is given in Table IX. The
developed model’s performance were computed using three
different criteria as reported in Table X. It can be seen that the
performance of the developed fuzzy models based historical
data were able to achieve significant modeling results.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we studied the problem of effort estimation for
software projects. This is a challenging problem for software
project manager. We explored the use of fuzzy logic as a soft
computing technique which can simplify the modeling process
of the effort. Two models inspired from the COCOMO and
FP were developed based fuzzy logic. The developed fuzzy
models implemented based the Takagi-Sugeno technique. The
developed fuzzy models were tested using the Albrecht data
set reported in [41]. The models are simple and show the
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Fig. 3. Membership functions for the FL based SLOC Model
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TABLE VIII. FUZZY RULES FOR THE EFFORT BASED FP MODEL

1. If Inputs is A11 and Outputs is A12 and Files is A13 and Inquiries is A14 then

FP = 5.30 · 100Inputs + 4.52 · 100Outputs − 8.10 · 100Files + 4.54 · 100Inquiries + 1.08 · 102

2. If Inputs is A21 and Outputs is A22 and Files is A23 and Inquiries is A24 then

FP = −3.55 · 100Inputs + 1.23 · 101Outputs + 1.12 · 101Files + 9.29 · 100Inquiries − 6.48 · 101

3. If Inputs is A31 and Outputs is A32 and Files is A33 and Inquiries is A34 then

FP = 7.08 · 100Inputs + 1.11 · 101Outputs + 1.45 · 101Files − 8.52 · 100Inquiries − 4.18 · 102
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Fig. 4. Actual and estimated Effort for the FL based SLOC Model

TABLE VII. ACTUAL AND ESTIMATED EFFORT: FL-SLOC MODEL

SLOC Effort FL-Effort

3 0.5 1.0333
15 3.6 4.2453
20 11.0 5.6040
22 2.9 6.1542
24 7.5 6.7096
24 11.8 6.7096
28 10.0 7.8400
29 6.1 8.1276
30 4.9 8.4177
35 8.0 9.9177
40 4.1 11.4941
40 18.3 11.4941
42 12.0 12.1397
48 12.9 14.1040
52 8.9 15.4103
54 21.1 16.0532
57 10.8 16.9950
62 28.8 18.4773
93 19.0 24.9212
94 38.1 25.2247
96 15.8 25.9818
110 61.2 60.0224
130 102.4 103.0938
318 105.2 104.7296

mathematical relationship between the effort and the main
model inputs. This work can be extended by exploring other
forms of soft computing techniques.
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