
Software Effort, Quality, and Cycle Time:
A Study of CMM Level 5 Projects

Manish Agrawal and Kaushal Chari

Abstract—The Capability Maturity Model (CMM) has become a popular methodology for improving software development processes

with the goal of developing high-quality software within budget and planned cycle time. Prior research literature, while not exclusively

focusing on CMM level 5 projects, has identified a host of factors as determinants of software development effort, quality, and cycle

time. In this study, we focus exclusively on CMM level 5 projects from multiple organizations to study the impacts of highly mature

processes on effort, quality, and cycle time. Using a linear regression model based on data collected from 37 CMM level 5 projects of

four organizations, we find that high levels of process maturity, as indicated by CMM level 5 rating, reduce the effects of most factors

that were previously believed to impact software development effort, quality, and cycle time. The only factor found to be significant in

determining effort, cycle time, and quality was software size. On the average, the developed models predicted effort and cycle time

around 12 percent and defects to about 49 percent of the actuals, across organizations. Overall, the results in this paper indicate that

some of the biggest rewards from high levels of process maturity come from the reduction in variance of software development

outcomes that were caused by factors other than software size.

Index Terms—Cost estimation, time estimation, software quality, productivity.

Ç

1 INTRODUCTION

DEVELOPING software to meet functional needs with
acceptable levels of quality, within budget, and on

schedule, is a goal pursued by every software development
organization. Many organizations are adopting the best
practices in software development, such as those based on
Capability Maturity Model (CMM) [1], ISO 9001 [2], or Six
Sigma [3]. CMM has been one of the most popular efforts in
enhancing software quality and reducing development
costs [4], [5], [6].

Although development effort, software quality, and
cycle time have been studied in prior research on software
estimation [7], [8], [9], [10], most of the published results are
based on data sets that are now considered dated (see
Table 1). Due to various technological innovations such as
the use of object-oriented languages, middleware, and
newer tools and due to increased adoption of best practices
in software development, that is, those based on CMM, ISO
9001, or Six Sigma, there is a need to reexamine relation-
ships between software project development outcomes and
various factors identified from prior literature.

Conventional wisdom suggests that there are conflicting
influences on software development effort, quality, and cycle
time: Cycle time may be compressed at the cost of quality,
experienced professionals may improve quality but at
increased costs, quality may be achieved at the cost of
increased testing effort, larger team size may reduce
development time while raising total costs, process maturity

may improve quality but at high cost, and so forth.
However, research suggests that one of the most im-
portant consequences of improved processes is superior
conformance quality [11]. The reduction in variability is
likely to be most pronounced in development organizations
at CMM level 5, which is the highest level of process
maturity as per the Software Engineering Institute (SEI)
located at Carnegie Mellon University. To our knowledge,
with the exception of a recent study [12], previous studies
on software development outcomes have not exclusively
focused on CMM level 5 projects. The study in [12] presents
models on productivity and conformance quality based on
data from a single organization. Its results, therefore, may
not be generalizable outside the environment where they
were calibrated.

Valuable insights can be gained from a study that focuses
exclusively on CMM level 5 software development projects.
For example, it would be possible to determine the factors
that really matter in determining project development
outcomes, as well as the benefits that are accrued, when
software development processes are at the highest levels of
maturity. Furthermore, benchmarks based on CMM level 5
projects could be useful goals that many non-CMM level 5
software development organizations could strive to achieve
for their own projects.

In this paper, we make two major contributions. First, we
identify key project factors such as software size that
determine software project development outcomes for
CMM level 5 projects. Second, we provide benchmarks for
effort, quality, and cycle time based on CMM level 5 project
data. Our results suggest that estimation models based on
CMM level 5 data are portable across multiple CMM level 5
organizations. This paper is a refinement of a conference
paper [13] that had results not exclusively based on CMM
level 5 data.
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The results in this paper are based on data collected from
37 projects of four CMM level 5 organizations. The
application domains of sample projects primarily pertain
to the general category of management information system
(MIS)/business applications, with 34 out of 37 projects
reported in this category. Start dates for the projects in our

sample ranged from January 1998 to September 2004, and
end dates ranged from May 2001 to October 2004. Software
development data is very difficult to obtain in the best of
circumstances, and the sample size of the 37 projects used in
the study is comparable to other published studies. For
example, the sample sizes are 30 in [4], 24 in [14], 15 in [15],
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and 15 in [16]. The four organizations chosen in our study
represent a convenience sample from a population of
141 CMM level 5 organizations worldwide [17]. Table 1
summarizes the data sets and conclusions from a selected
set of prior studies.

The rest of the paper is organized as follows: A review
of relevant literature is presented in Section 2. The
research model, design, and methodology used are
presented in Section 3. Section 4 contains data analysis
and results, whereas conclusions are presented in Section 5.
Appendix A contains the significance levels of all
independent variables.

2 LITERATURE REVIEW

We first summarize the impacts of the factors from prior
research, which have been used to estimate development
effort, cycle time, and quality. A summary of relevant
literature is in Table 1.

2.1 Software Development Effort

Software development effort typically includes human
effort expended for high-level design, detailed design,
coding, unit testing, integration testing, and customer
acceptance testing. Effort is often regarded as a surrogate
for software development cost since personnel cost is the
dominant cost in software development.

Many models such as COCOMO [7], PRICE-S [29],
ESTIMACS [30], SEER-SEM [31] have been developed to
estimate software development costs. Effort-estimation
models such as COCOMO primarily use the number of
source lines of code (SLOC) as the basis for effort estimation
[32]. Thus, effort in man-months is expressed as a function
of kilo source lines of code (KSLOC). The COCOMO II
model, which is the current version of COCOMO, uses
17 effort multipliers and five scale factors to estimate
development effort based on project size. Some of these
effort multipliers such as application experience (APEX)
and language and tool experience (LTEX) have been found
to be insignificant [7]. An alternative metric for SLOC is
function points (FPs) [33], where the FP is the product of the
number of function counts and the processing complexity
adjustment [21].

An excellent summary of early models to estimate
software development effort has been provided by Mohanty
[34]. For a software system with 36,000 lines of machine
language executable instructions and well-defined specifica-
tions for all independent variables, the various models
described in [34] have predicted costs ranging from
$300,000 to $2,500,000 and development times ranging from
13 to 25months. Kemerer [15] compared software estimation
models such as COCOMO [7], SLIM [35], Function Points
[14], and ESTIMACS [36] using data from 15 projects with an
average size of a little under 200 KSLOC and found that
various estimation models resulted in average effort estima-
tion error rates ranging from 85 to 772 percent. This wide
range has been attributed to the differences in productivity
between the test environment and the environments inwhich
the models were calibrated, suggesting wide variations in
software development outcomes across organizations. Also,
differences in application domain influenced the accuracy of

these estimates. For example, the projects in the data set used
in [16] were primarily business applications with 12 out of 15
projects implemented in COBOL. In contrast, the COCOMO
database consisting of 63 projects had only seven business
applications [32].

A study by Maxwell et al. [24] found that a relatively
small set of factors explained the required effort to complete
a software project (size in SLOC), and productivity factors
such as application category, language, required reliability,
and programming practices. This study also found that
organization-specific models predicted required effort more
accurately than general models. It was therefore important
to identify organization-level factors that affected software
development costs. Banker and Slaughter [37] found that
data complexity, defined as the number of data elements
per unit of application functionality, significantly increased
the enhancement cost of software.

Specifically focusing on the impact of capability matur-
ity, improvements in process maturity were found to be
associated with reductions in effort [4], [25]. According to
an SEI report [38], by adopting Capability Maturity Model
Integration (CMMI)-based process improvements, Boeing
Australia had a 60 percent reduction in work, whereas
Lockheed Martin achieved a 30 percent increase in software
productivity. Although an increase in the CMM level had a
direct effect of increasing development effort, the associated
improvements in quality reduced development effort,
presumably through reduced rework and improved under-
standing of software requirements. Another study [26]
found that process improvements were not significantly
related to development costs. Perhaps reflecting on the lack
of theory on software estimation, a number of studies found
success at effort estimation by simply using analogies to
compare the features of a new project with earlier projects
[8], [22], [39], [40].

2.2 Software Quality

The definition of software quality has evolved over time
[41]. Initially, it was defined as conformance to a standard
or a specification. Later, the definition was changed to
adapt to highly dynamic business environments. In 1991,
the International Organization for Standardization adopted
ISO 9126 as the standard for evaluating software quality.
This standard defines quality as “the totality of features and
characteristics of a product or service that bears on its
ability to satisfy given needs” [42]. ISO 9126 compliments
ISO 9001, which deals with the quality assurance of the
process used for developing products. A commonly used
definition of software quality is the density of postrelease
defects in a software program, which is measured as the
number of defects per thousand lines of code [6], [43].

Gaffney [18] reported that the best estimator for the
number of errors in a software module was the number of
lines of code. Krishnan and Kellner [23] also confirmed this
finding. Harter and Slaughter [44] found that product
complexity significantly lowered software quality, which is
somewhat contrary to [18], which did not find software
complexity affecting error rates significantly.

Banker and Slaughter [37] found software volatility,
defined as the frequency of enhancements per unit of
functionality in a given time frame, to be a significant
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predictor of software errors. Data complexity, defined as
the number of data elements per unit of application
functionality, also increased the number of defects. They
also found that structured programming techniques mod-
erated the effects of volatility and data complexity on
software errors. Using a game-theoretic model, Austin [45]
suggested that under schedule pressures, developers were
likely to compromise on quality. Krishnan et al. [26] found
personnel quality, which is measured using peer and
supervisor assessments, to be a significant estimator of
software quality. They also found that front-end invest-
ments, which improved customer-requirements analysis,
enhanced quality.

A number of approaches have been proposed to improve
software quality [46]. These include total quality manage-
ment (TQM), Six Sigma [3], and CMM [1]. The basic idea
behind all these approaches is to identify ways to improve
quality in a given situation. The relationship between
process improvements and quality has also been investi-
gated [47]. The most significant development in this area
has been the development of CMM [2], [48]. For example, as
a software unit at Motorola improved from CMM level 2 to
level 5, the average defect density reduced from 890 defects
per million assembly-equivalent lines of code to about
126 defects per million assembly-equivalent lines [6]. In an
empirical study using 33 software products developed over
12 years by an IT company, Harter et al. [4], [44] found that
a 1 percent improvement in process maturity was asso-
ciated with a 1.589 percent increase in product quality. In
another study, Krishnan and Kellner [23] found process
maturity and personnel capability to be significant pre-
dictors (both at the 10 percent level) of the number of
defects.

2.3 Cycle Time

Cycle time is an important outcome variable because
software projects are often carried out under strict delivery
schedules. The cycle time for software development, which
depends on two factors (planned development time and
discrepancies between planned and actual development
times) can be tracked by an Earned Value Management
System (EVMS). When planned schedules are longer than
the minimum cost-effective schedule, they do not raise
development costs. This is because, under ideal circum-
stances, projects can be completed using fewer developers
than the optimal staffing strength. However, when sche-
dules get tighter, cycle time can be adversely affected by
dysfunctional team dynamics as per Brooks’ Law [49].

In an empirical study that explored discrepancies
between planned and actual durations, it was found that
the most significant reasons for these discrepancies were
capacity-related issues, such as personnel involved in
unplanned activity, maintenance of earlier projects, and so
forth, and product-complexity related issues such as under-
estimating the application complexity [50].

The number of lines of code has been reported to be a
significant predictor of construction time [4]. The level of
process maturity also has some bearing on the development
time. Based on the measurements at Motorola, Diaz and
Sligo [6] reported that at CMM level 5, the cycle time was
about eight times faster than at CMM level 1. Harter et al.

[4], [51] also reported similar time savings from process
improvements. This is attributed to the reduction in rework
due to improved processes thereby leading to reduced cycle
time.

2.4 The Impact of Process Improvement

Process management is one of the most significant manage-
ment innovations in recent times. Process management
focuses on increasing process control in order to reduce
variances in outcomes. The final step in a process improve-
ment program involves the adoption of standardized best
practices throughout the organization and the continuous
refinement of these best practices [52]. Accordingly, a CMM
level 5 process is characterized as an “optimizing process,”
that is, a quantitatively managed process (CMM level 4) that
is changed and adapted to meet relevant business objec-
tives. One of the major goals of this study is to examine
whether process improvements from level 5 maturity
reduce variance in software development outcomes.

3 RESEARCH MODEL, DESIGN, AND METHODOLOGY

It can be seen from the previous section that prior research
on software process improvement has focused on finding
evidence of reduced effort, improved quality, and faster
cycle times from software process improvements. In this
paper, we examine the impacts of some of the most
important factors identified from prior research on software
development effort, quality, and cycle time, while focusing
specifically on CMM level 5 projects. The various variables
used in the study are described next.

3.1 Development Effort

We define software development effort as the total effort
beginning with the end of the requirements specification
stage until the end of customer acceptance testing. It
includes effort during high-level design, detailed design,
coding, unit testing, integration testing, and customer
acceptance testing. EFFORT represents software develop-
ment effort and is measured in person-days.

3.2 Product Quality

The metric used for product quality (QUAL) is defects,
which were measured as the total number of defects that
escaped to the customer and were detected during the first
three months of production use of the software. A period of
three months is used, as it is typically the warranty period
of newly developed software, and the defect data for the
first three months is generally tracked by software devel-
opment organizations. A low value of QUAL indicates
higher quality software.

Although defect density or its reciprocal, which normal-
ize defects for size, have been used as a measure of quality
in prior literature [6], [26], we use total number of defects
instead due to high correlation between defect density and
size. When we do log transforms of variables in our
analysis,

lnðdefect-densityÞ ¼ lnðdefects=sizeÞ ¼ lnðdefectsÞ � lnðsizeÞ;

we find that lnðdefect-densityÞ has a correlation of �0:86
with lnðsizeÞ. Since this correlation is very high and highly
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significant, using quality and size together as independent
variables in the same model causes multicollinearity

problems. Our approach of using total number of defects
as a measure of quality is in line with prior research [23].

3.3 Cycle Time

Cycle time, represented by CTIME, is measured as the
number of calendar days that elapse from the date the
baseline requirements are delivered until the date the

software passes customer-acceptance testing.

3.4 Product Size

Product size (SIZE) can be measured using lines of codes or
using FPs. Lines of code count the actual number of lines in
the application, and FPs count the number of functional
units. In this paper, we use actual lines of codes developed,
excluding comments and blank lines, measured in KSLOC
to represent product size. Although the use of KSLOC is in
line with prior research [23], a limitation of this measure is
that it is usually not consistent across programming
languages. When size data is only available in FPs, we
use backfiring that uses a conversion table in [7, p. 20] to
convert FPs to lines of code. FPs are computed based on
International Function Point Users Group (IFPUG) specifi-
cations. In Section 4, we report the results with and without
observations on FPs.

3.5 Product Complexity

Product complexity (COMPLX) is measured using two
items on a seven-point Likert scale, ranging from low to
high data complexity and decision complexity. Data
complexity is defined as the anticipated level of difficulty
in development because of complicated data structures and
database relationships. Decision complexity is the difficulty
in managing decision paths and structures within the
product. Overall product complexity is computed as the
mean of data complexity and decision complexity.

3.6 Schedule Pressure

Schedule pressure (SP) is defined as the relative compres-
sion of the development schedule mandated by manage-
ment compared to the initial estimate provided by the
development team based on project parameters [27]:

SP ¼ ðTeam estimated cycle-time�Management mandated

cycle-timeÞ=Team estimated cycle-time:

When schedule pressure is zero, the log of schedule
pressure, which is used in log models, is undefined. In such
cases, the numerator in the above expression is set to a
small value (0.1) so that the log of the schedule pressure can
be calculated for use in regression equations for log models.

3.7 Team Size

Software development teams grow and contract at different
phases of the project, and the staffing strengths typically
follow a Rayleigh curve as a function of time [53]. Therefore,
the size of a team (TEAM) at its peak is considered a good
proxy for the relative size of the team compared to other
projects. Also, the peak team size is easier to measure than
the average team size over the life of the team. Therefore,
TEAM is measured as the peak team size.

3.8 Personnel Capability

Various measures for representing personnel capability
have been used in prior research [7], [54]. These include
education levels, industry experience, and subjective ratings
of project supervisors and other team members. Based on
an extensive review and survey, Nelson [55] identified two
dimensions of personnel capability for information systems:
technical skills and organization skills. In this paper, we
measure the technical skills dimension using five subjective
items derived from items reported in [55] using a Likert
scale. Supervisors (that is, managers or team leaders)
provide a mean assessment of team members on program-
ming languages, analysis and design, computer-aided
software engineering (CASE) tools, databases, and data
communications technologies. For example, programming
language skills is measured using the following question,
“What was the average skill level of your team members in using
computer programming languages relevant for the application?”
We use three items to capture team skills, which overlap
with organizational skills in [55]. The items measuring team
skills capture a supervisor’s subjective assessment of the
quality of citizenship, cooperation among team members,
and overall performance of the team.

The technical skill of each project team is computed as
the mean of the five items used to measure the technical
capabilities of the team members. Team skill is calculated as
the mean of the three items used to measure individual
team skills. Finally, we have also included an overall item to
obtain the supervisor’s average rating of the team members.
Personnel capability (PERCAP) is calculated as the mean of
technical skills, team skills, and supervisors’ overall average
rating.

3.9 Requirements Quality

Requirements quality is represented using two variables:
requirements volatility and requirement specifications
quality. Requirements volatility (REQVOL) is measured as
the number of changes made to the baseline specifications
during the development phase. This is obtained as a
numerical measure from project data. Requirements speci-
fications quality (REQUAL) is calculated as the project
supervisor’s mean rating for the eight attributes of good
requirements (that is, correctness, unambiguity, complete-
ness, consistency, ranking, verifiability, modifiability, and
traceability) specified in IEEE Standard 830 [56].

3.10 Project Supervisor Experience

To account for the management skills of project supervisors,
we use their experience in the software industry (INDEXP),
as well as their experience in managerial roles (MGROL)
within the industry. Both measures are used to examine the
impact of managerial quality on software outcomes. Unlike
the assessment of team members’ capabilities, objective
measures of supervisor experience are preferred over self-
assessments to minimize self-response bias. It is expected
that supervisors with greater industry or managerial
experience would provide better managerial inputs leading
to superior project outcomes.

3.11 Modularity

To measure the impact of increasing complexities arising
from the dependencies between software modules, we
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measure modular complexity (MOD) as nðn� 1Þ=2, where

n is the number of modules in the software [57].

These variables are summarized in Table 2.

3.12 Empirical Models

We use the following empirical models for effort, quality,

and cycle time. Prior research suggests that effort and cycle

time are affected by quality because improved quality

reduces rework and reduces effort and cycle time [19]:

QUAL ¼ fðSIZE;COMPLX; SP;TEAM;PERCAP;REQ-

VOL;REQUAL; INDEXP;MGROL;MODÞ

EFFORT ¼ fðSIZE;QUAL;COMPLX; SP;TEAM;PER-

CAP;REQVOL;REQUAL; INDEXP;MGROL;MODÞ

CTIME ¼ fðSIZE;QUAL;COMPLX; SP;TEAM;PER-

CAP;REQVOL;REQUAL; INDEXP;MGROL;MODÞ:

Prior research suggests that the effects proposed above

are not linear and that software development exhibit

economies of scale [19]. Therefore, the above relationships

are commonly modeled using a log-log transformation as

follows. For brevity, SIZE and QUAL are explicitly shown

below, whereas the other independent variables are
represented by the general representation IV:

lnðQUALÞ ¼ �10 þ �11 lnðSIZEÞ þ
X

i

�1i lnðIVÞi;

lnðEFFORTÞ ¼ �20 þ �21 lnðSIZEÞ þ �22 lnðQUALÞ

þ
X

i

�2i lnðIVÞi;

lnðCTIMEÞ ¼ �30 þ �31 lnðSIZEÞ þ �32 lnðQUALÞ

þ
X

i

�3i lnðIVÞi:

3.13 Data Collection

We collected project data from four large CMM level 5
organizations in the software development outsourcing
industry. These organizations had formal organizational
structures dealing with software quality and process
improvement issues. Data were obtained under the terms
of nondisclosure agreements that placed some restrictions
on the information that could be published. Our primary
contacts were located in the software engineering process
group (SEPG) or equivalent departments of these organiza-
tions and were very knowledgeable about the best practices
in software development. Our contacts interacted with
project supervisors and had access to various tools in the
organizational tool repository for managing project related
data. Most of these tools were proprietary and developed
in-house. Participating organizations reported the use of
tools for project management and tracking, defect analysis
and reporting, sizing projects, and effort reporting. Two of
the organizations also reported using Microsoft Project in
project planning. One of the participating organizations
reported using employee swipe-in and swipe-out data to
cross-check the effort data reported by employees. In
addition to using tools for managing projects, participating
organizations also had an extensive system of reviews for
ensuring the integrity of various project-related data.

With regards to KSLOC size data, all participating
organizations reported the count of actual lines of code
excluding blank lines and comments. For FPs data (there
were a total of eight projects where size was only available
in FPs), IFPUG specifications were followed for counting
FPs. Organizations were asked to select only those projects
where it was easier to report size data attributed to the
effort reported. The actual hours spent by project team
members were used in effort computations. Out of
37 projects, 34 projects were reported to be in the general
category of MIS/business applications. The most common
technologies used were Java and Oracle databases. A partial
list of other technologies used includes C/C++, .NET, J2EE,
PL/SQL, application servers such as WebLogic and Web-
Sphere, and middeware technologies such as MQSeries.
Average industry experience of project supervisors was
about seven years, of which, about three years was in a
managerial role. Mean project size was approximately
360 KSLOC.

To begin with, we collected data on 41 projects. We
scrutinized the data thoroughly, and, when there were any
discrepancies observed, we contacted the concerned orga-
nization for further clarifications. If the clarifications did not
resolve the discrepancies satisfactorily, we dropped the
project from our sample. Out of an initial sample of
41 projects, we dropped four projects from the sample
due to reasons such as incomplete data or inconsistent data.
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Thus, we ended with a sample of 37 projects for further
analysis. Due to the use of various tools and the enforce-
ment of rigorous review procedures in participating
organizations, as well as our own efforts in cross-checking
data for inconsistencies, we believe that the data is of high
quality with minimal biases.

4 DATA ANALYSIS AND RESULTS

The distributions of raw project sizes and log transformed
project sizes are shown in Fig. 1 and Fig. 2, respectively.

The figures show that log transformation improves the
distribution of project sizes. To investigate factors that

determine project outcomes, we used linear regression with
EFFORT, QUAL, and CTIME as dependent variables. All
the other variables in Table 2 were used as independent
variables. After examining the distribution of project sizes,
we decided to transform the variables by taking their log
transforms (natural logs) since the distribution by ln(size)
was closer to normal. Table 3 provides descriptive statistics
for log-transformed independent variables.

As seen in Table 3, the mean effort in the sample was e7:21

or 1352.9 person-days. Correlations between independent
variables are reported in Table 4. The number of observa-
tions used in calculating these correlations (28) is less than
the total sample size (37) because of missing data for some
variables in certain observations. It can be seen that there is
only one large correlation (0.79), which is between project
size and team size. Therefore, project size and team size
were not used simultaneously as independent variables in
the regressions. In our data set, 21 out of the 37 projects
(that is, 57 percent) had team-estimated cycle time equal to
the management-mandated cycle time. In these cases, the
numerator in the expression to compute schedule pressure
(SP) was set to 0.1 as described earlier.
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Fig. 1. Distribution of projects by size.

Fig. 2. Distribution of projects by ln(size).
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Regression results for effort, quality, and cycle time are
reported below. We used forward stepwise regression
because of the size of the data set. In each case, we added
one variable from the list in Table 4. If a variable had a
significant effect (at the 0.05 level) on the dependent
variable (EFFORT, QUAL, or CTIME), we retained that
variable in the regression model; otherwise, the variable
was dropped. The numbers in Tables 5, 6, and 7 are the
regression parameter estimates, and the numbers in
parentheses are the t-statistics for the estimates. In all cases,
we estimated a general linear model (GLM) including
OrganizationID as a class (categorical) variable and found
that there were no systematic differences between the
organizations in terms of effort, quality, or cycle time.
OrganizationID was insignificant at the 0.05 level; therefore,
it was not used in the regression models.

The Shapiro-Wilk test was used to check the normality of
residuals. The assumption of normality could not be
rejected in any of the models at the 0.05 level of significance.
White’s test was used to check for the homoscedasticity of
residuals, and in all cases, the assumption of homoscedas-
ticity of residuals could not be rejected at the 0.05 level.
Cook’s distance was used to identify influential observa-
tions. The maximum values of Cook’s distance were less
than 0.2 in all models, indicating that there were no outliers.
These checks indicated that there were no known major
statistical problems in the regression models used.

4.1 Development Effort

Table 5 shows the factors that affected development effort.
We found that project size was the only variable that signi-
ficantly influenced development effort (see Appendix A for
significance levels of all independent variables). There were
no qualitative changes in the results when we removed the
eight observations for which backfiring was used. Size
explained more than 65 percent of the observed variance in

effort in our sample. Overall sample results with backfiring

data in Table 5 indicates that for each 1 percent increase in

project size, effort increased by 0.61 percent.

4.2 Quality

Like development effort, quality was also affected by

project size alone. Larger projects had more defects. Overall

sample results in Table 6 indicate that for every 1 percent

increase in project size, the number of defects increased by

0.3 percent. Size explained about 32 percent of the variance

in quality. The sample size for quality was smaller than the

sample size for effort because defect data was not available

for six projects.

4.3 Cycle Time

With reference to cycle time, the results in Table 7 indicate

that SIZE was the only significant predictor for cycle time.

None of the other variables in Table 2 were significant in a

model that also included SIZE. We found that an increase in

SIZE increased CTIME. However, it may be noted that the

increase in CTIME as a function of SIZE (0.27) was less than

the increase in EFFORT (0.61). This was partly because

larger projects generally had larger development teams (the

correlation between SIZE and TEAM was 0.79), thereby

reducing the impact of project size on cycle time.

4.4 Simultaneous Estimation of Models

The results presented above were based on models for

effort, quality, and cycle time that were estimated sepa-

rately. Prior research suggests that there could be depen-

dencies among quality, effort, and cycle time; as a result,

these equations should be estimated simultaneously.

Further, as indicated earlier in Section 3.12, quality was

expected to affect both effort and cycle time. We therefore

also estimated the following system of equations using two-

stage least squares:

lnðQUALÞ ¼ �10 þ �11 lnðSIZEÞ;

lnðEFFORTÞ ¼ �20 þ �21 lnðSIZEÞ þ �22 lnðQUALÞ;

lnðCTIMEÞ ¼ �30 þ �31 lnðSIZEÞ þ �32 lnðQUALÞ:

Results are presented in Table 8. Comparing the results

in Table 8 to the results in Tables 5, 6, and 7, we find that

simultaneous estimation did not significantly affect the

impact of SIZE on QUAL, EFFORT, or CTIME. The other

independent factors continued to be insignificant. QUAL

also did not influence EFFORT or CTIME in our sample.
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TABLE 5
Development Effort (EFFORT)

TABLE 6
Quality (QUAL)

TABLE 7
Cycle Time (CTIME)



4.5 Verification of the Predictive Ability of Models

To test the reliability of our results and its usefulness in
predicting software outcomes within and across organiza-
tions, we compared the predictions of our models to actual
values from holdout samples. For within-organization
comparison, for Organization A, which provided more
than 50 percent of the observations in the sample, we had a
holdout sample of five projects from Organization A. We
compared the predictions of our model developed from the
remaining projects of Organization A to the holdout sample
for A (Section 4.5.1). For comparison across organizations,
we estimated a model using data from organizations
excluding Organization A and calculated the prediction
errors for Organization A (Section 4.5.2). We also compared
the predictions from the model based on the overall
Organization A data set with the actual observations from
other organizations (Section 4.5.3). In Section 4.5.4, we
compared the predictions from the model based on overall
sample data (excluding randomly selected observations for
the holdout samples) with the holdout sample observations.

The accuracy of estimation was calculated as the mean
magnitude of relative error (MMRE) percentage for
N estimations as follows [15], [24]:

MMRE% ¼

P

N

i¼1

Actual effort�Estimated effort
Actual effort

�

�

�

�

�

�
� 100

N
:

4.5.1 Organization A

We calculated MMRE by bootstrapping Organization A
using 100 random bootstrapping samples. In each sample,
five observations were retained as holdout observations,
and the remaining observations were used for model
estimation. The estimated model was used to calculate the
errors for the five holdout samples. The means and

standard deviations of MMREs for the 100 bootstrap

samples are shown in Table 9. We found that the relative

errors for effort and cycle time were very low, thereby

indicating very high predictive accuracy, whereas the

relative error for quality was relatively high.

4.5.2 Prediction of Organization A Outcomes Based on

Model Estimated from Other Organizations

In this case, all projects from Organization A were removed

from the main sample and retained in the holdout sample.

Regression parameters were estimated using project data

from other organizations. Statistics on the relative errors for

projects from Organization A are shown in Table 10. Note

that in Table 10, MRE refers to the magnitude of relative

error and is given by

MRE ¼ jðactual effort� estimated effortÞ=actual effortj:

Again, we found that the relative errors were low for effort

and cycle time, but relatively high for quality.

4.5.3 Prediction of Other Organization Outcomes Based

on Model Estimated from Organization A

To verify the portability of the model, we also checked to

see whether a model estimated using observations from one

organization (that is, Organization A) could satisfactorily

predict observations for other organizations. We found that

estimates for effort and cycle time had relative errors below

10 percent, which is still a low figure, whereas quality had a

much higher relative error of about 49 percent with a high

value for standard deviation as seen in Table 11, thereby

making the model less portable for predicting quality.
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TABLE 8
2SLS Estimation of Models

TABLE 9
Mean and Standard Deviation of MMREs for Organization A

TABLE 10
Mean and Standard Deviation of MREs for Organization A



4.5.4 Overall Sample

MMREs for the overall data set using 100 bootstrap samples
were calculated using a procedure similar to the procedure
for Organization A. For each sample, its MMRE was
calculated for five holdout observations. Means and
standard deviations of the MMREs are shown in Table 12.
Again, we could observe that the MMRE for effort and cycle
time were superior to the MMRE for quality.

4.6 Benchmarks

The results from this study provide benchmarks for
software development. These benchmarks are desirable
since they are based on data collected from highly mature
organizations that have achieved high control over var-
iances during software development. The following equa-
tions are based on Tables 5, 6, and 7 and can be used as
benchmark equations for effort, quality, and cycle time:

lnðEFFORTÞ ¼ 4:49þ 0:61� lnðSIZEÞ ð1Þ

lnðQUALÞ ¼ 1:38þ 0:3� lnðSIZEÞ

lnðCTIMEÞ ¼ 4:23þ 0:27� lnðSIZEÞ:

Various organizations can compare their software
development outcomes to the benchmark outcomes ob-
tained from the above equations. For example, if the
development effort in any organization is greater than the
effort predicted by the above effort equation for a given
project, then, clearly, the organization’s productivity is
lower compared to the average productivity of efficient
CMM level 5 organizations participating in this study.
Similarly, benchmarks for cycle time and quality provide
organizations with quantifiable goals to achieve in order to
be efficient.

Lower values for the size exponent in the effort equation
below (derived by taking antilogs of the benchmark effort in
(1)) indicate higher economies of scale [19]:

EFFORT(person-days) = 89:12�Size(KSLOC)0:61: ð2Þ

Equation (2) can be transformed to (3).

Size(KSLOC) = 0.000636�EFFORT(person-daysÞ1:64: ð3Þ

The equation with SIZE as the dependent variable
indicates that as the applied effort increases, the volume
of code written increases exponentially. By comparison, the
exponent of size in the COCOMO II model for effort is 0.92
[7, p. 169]. In another study, Harter et al. [4, p. 462] have
estimated the size exponent as 0.95. Using the data
provided by Kemerer, we estimate the size exponent for
Kemerer’s data set as 0.81. It may be noted that all these
estimates of the size exponent are higher than the exponent

of our data sample (that is, 0.61). This indicates that the
benchmarks presented in this paper correspond to rela-
tively higher efficient software development processes,
thereby indicating the benefits from reaching the highest
level of CMM.

5 CONCLUSIONS

In this paper, we used a data set of 37 projects from four
organizations that were at CMM level 5 to investigate the
impact of various factors on software development out-
comes. We found that software size was the most significant
factor that affected development effort, quality, and cycle
time.

The models, although parsimonious, achieved an
MMRE of about 12 percent in predicting effort and cycle
time and about 49 percent in predicting the number of
defects in holdout samples. This compared extremely
favorably to the widely used software estimation models
that achieved MMREs in effort estimation ranging from
100 percent for FPs [15], [39] to 600-700 percent for
COCOMO [15], [39]. In a study of data from the European
Space Agency, the MMRE for the best effort estimation
model was 36 percent [24].

Our results showed that the potential benefit of achiev-
ing high process maturity was a steep reduction in variance
in effort, quality, and cycle time that led to relative
uniformity in effort, cycle time, and quality. Our models
for effort and cycle time appeared portable across organiza-
tions based on good predictions for effort and cycle time,
whereas our model for quality appeared less portable. Our
results were in contrast to the results of the European
Agency study [24], which found that productivity differ-
ences among organizations were extremely important in
estimating effort and that software estimation models were
not portable across organizations.

Overall, our results indicated that the adoption of highly
mature software development processes during software
development reduced the significance of many factors such
as personnel capability, requirements specifications, re-
quirements volatility, and so forth. Discussions with our
principal contacts at research sites indicated some reasons
for the reduced significance of requirements-related factors:
1) increased adoption of best practices by client organiza-
tions that were to a great degree influenced by the software
development organizations, thereby leading to well-defined
requirements, and 2) software development organizations
leveraging their expertise from prior engagements in
assisting clients in requirements gathering and specifica-
tion. Thus, most projects in our sample had high overall
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TABLE 11
Mean and Standard Deviation of MREs for Other Organizations

TABLE 12
Mean and Standard Deviation of MMREs

When Overall Data Set Is Used



ratings for requirement specifications with minimum
modifications (an average of only seven changes) after
baseline specifications were agreed upon.

The results in this paper are constrained by certain

limitations. First, the paucity of data imposed certain

limitations on our statistical analysis. Most organizations

treat application development capabilities and procedures

to be proprietary and drivers of competitive advantage

over competitors. As a result, it was difficult to obtain

project data. Second, biases due to our convenience

sample of projects imposed some limitation on the

applicability of results. To reduce this bias, a random

sample of projects from a random sample of CMM level 5

organizations would have been preferred. However, for

reasons explained above, this was not possible. Third, the

results were based on project data that were primarily

MIS/business applications, thereby imposing some limita-

tions on the generalizability to other application domains.

Fourth, the use of backfiring for converting FPs to KSLOC

was a possible source of data inaccuracies. However,

these inaccuracies were limited since data analysis with-

out including FP observations yielded similar results

compared to the results from the data set that included

FP observations. Finally, all our data was self-reported,

leading to possible biases that provided a more positive

view of the development process than what was really

true. However, the use of tools and elaborate review

procedures was likely to reduce this bias.

APPENDIX A
See Table 13.
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