
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS. 20XX.Doi Number 

Software Engineering in Small Software 
Companies: Consolidating and Integrating 
Empirical Literature into a Process Tool 
Adoption Framework 

MICHEAL TUAPE1, VICTORIA HASHEELA-MUFETI2, ANNA KAYANDA3, 

JARI PORRAS 4, AND JUSSI KASURINEN5 
1,4, and 5 Department of Software engineering Lappeenranta-Lahti University of Technology, Lappeenranta, 34, 53850 Finland  
2Department of Computing, Mathematical and Statistical Sciences, University of Namibia, Windhoek, Namibia  
3Information Systems Department, College of Business Education, Dar es Salaam, Tanzania  

Corresponding author: Micheal Tuape (e-mail: micheal.tuape@lut.fi).  

 

ABSTRACT Small software companies face numerous challenges of complexity, unstructured software 

development processes and scarce resources. This notwithstanding, the companies have dominated the 

software market by 80 percent. The practice and products of these companies are still persistently marred 

by quality issues arising from the processes, with evidence indicating that process tools do not fit the unique 

contexts in which they operate. Significant strides have been made in transforming software development 

practice; however, the challenges are still evidently apparent. Hence the need to establish how knowledge 

areas are applied in process practice, understand the context of software development and its implication in 

practice, how process tools are utilised in practice and evaluate quality of research in software literature  

The researchers undertook a systematic mapping study to determine the state of practice in empirical 

literature on software engineering of SSCs by examining and classifying 1096 publications. Other than the 

finding that research quality was low and affecting generalisation and transferability, the results also 

revealed interesting findings which we finally consolidated and integrated to develop two contributions (i) a 

software development process adoption theoretical framework which provides new insights of 

understanding software development and (ii) a 3-point guideline for research quality.  

INDEX TERMS Small software companies, software development practice, systematic mapping studies 

I. INTRODUCTION 

Software has become entrenched in human life that society is 

increasingly dependent on software-intensive systems. 

Software facilitates a plethora of human activities such as 

business processes, governance, medicine, security, 

entertainment, and social interaction. Recent development in 

technology and growth in the software industry has been 

championed by Small Software Companies (SSCs), making 

up over 90% of the companies in the software industry[1]. 
Although software is a crucial driver to today's global 

economy [2] and SSCs contribute significantly to this, these 

companies' failure rate and inferior quality products are a 

point of concern[3].  

The SSCs are business entities involved in producing 

software products, typically employing less than 50 

employees, and their aim is to create one or a few software 

products for their customers[4]. In other definitions, the 

annual turnover is taken as an aspect to consider in defining 

SSCs. However, the threshold differs depending on 

economies. Owing to small sizes and character of SSCs, 

these companies are flexible in their operations, which is to a 

certain extent an advantage for them. This definition also fits 

very small entities (VSE), though with fewer employees and 

start-ups at the initial stage of formation as part of the SSC. 

The European Union defines a small company as an 

enterprise employing less than 50 persons with a 10 million 

Euro annual turnover [5],[6]. In this study, we define SSCs as 

mailto:micheal.tuape@lut.fi


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

enterprises with less than 50 employees that build software 

products, including building and maintaining software 

solutions, web applications, corporate systems, and business 

intelligence tools. We, therefore, consider the three contexts 

to delimit SSCs from the context that does not fit our 

definition for this study.    

In the past decade, research on software development by 

SSCs seems to have gained traction. Despite this attention, 

the studies do not sufficiently cover software engineering 

processes and practices, as Paternoster et al. [7] elaborates. 

To overcome the challenges of software production by SSCs, 

researchers developed several process tools like frameworks 

and standards [8]–[10] to improve software development 

processes. However, the SSCs find adopting these 

frameworks rather difficult, as cited by Alexanda et al. [11]. 

This has not solved the problem because the frameworks are 

used minimally. Researchers suggest that only about 7% of 

SSCs in practice have adopted software process 

improvement (SPI) standards and models[12]. Additionally, 

software development practice in SSCs faces a myriad of 

challenges [13], [14] to the extent that about 50–60 percent 

of software projects either partially or totally fail. However, 

other studies report a higher failure rate; for example, in 

2018, the project failure rate was reported at 70 percent [15]. 

According to the project management statistics  [16], the 

proportion of challenged projects has increased to 43 percent 

resulting from a change in the organisation's priorities, 

inaccurate requirements gathering, change in project 

objectives, and inadequate vision or goal. Other authors[3], 

[15], [17], [18] list scope creep as one of the most prevalent 

factors responsible for project failure.  

The challenges have not stopped the SSCs from considerable 

progress by significantly dominating the highly competitive 

market although, sustaining this business environment with a 

good customer relationship is complex[19]. The companies 

have adapted to the rapid development of cheaper software 

products [20] to meet the market's volatile demand, which 

has affected the quality of the products. 

Notably, SSCs play an essential role in the global 

economy[21] because of their ability to capture the markets 

that larger companies are incapable of reaching or could have 

rejected[4]. However, it is paramount that efficient software 

development processes[4] are used for the SSCs to attain a 

competitive advantage. 

The success of software development in SSCs is dependent 

on the complexity of the system built, business risk, and the 

number of people involved in building the system in 

question, as cited by Wasserman in [22]. The SSCs develop 

products under challenging environments of time pressure 

and limited resources while constantly searching for 

sustainable and scalable business models[23]–[25]. The size 

and flexibility may be an advantage to accommodate 

constant changes, and perhaps this explains the increased 

preference for agile methodologies, which are perceived as 

the most viable approach for SSCs. The SSCs are 

conveniently attracted to agile methods to benefit from 

shorter development schedules and greater delivery 

flexibility [19], [26], [27]. 

There is evidence of growth in the significance and number 

of SSCs. Recent statistics indicate that the percentage of 

people directly employed by small companies has risen to 

over 85 percent[5], of which software companies take up a 

considerable majority [28]. Notably, whereas evidence in 

literature presents SSCs as most prone to difficulty while 

producing software, the rapid growth of SSCs is 

accompanied by stiff competition that breeds good industry 

practice, which must be harnessed and tapped with an aim to 

improve the general software development practices. 

It remains unclear why SSCs are tangled in this dilemma, 

even though software engineering has several knowledge 

areas listed in the software body of knowledge intentioned to 

guide processes and practice. Additionally, researchers have 

tried to develop tools such as frameworks and standards to 

support the processes of software practice evidenced in [29]–
[33]. However, this attention seems not to have delivered the 

much-needed transformation in software processes for better 

software products as the SSCs require sometimes leading to 

frustration.  

Imagine the frustration of applying software process tools in 

vain because of the complexity due to the operational context 

of an organisation. It becomes unfortunate because one must 

abandon the process tool, yet delivery pressure and time 

constraints are at the project doorsteps. This leads to the 

unestablished process that has been existent in software 

practice, especially for small companies that continuously try 

to find a fitting in vain as eluded to by [23], [34].  

This has led to the development of several tools to streamline 

processes suggested by different researchers, for example, 

[19], [35], [36] for requirements and for [37], [38] project 

management. Solutions for process adoption are fragmented 

in the different empirical literature on software processes and 

hence the need to consolidate and integrate the fragmented 

findings for comprehensive theory development in software 

processes adoption for SSCs.  

Theories are known to be important for theorising 

synthesising, preserving and communicating empirical 

knowledge. Notably, that the software industry lacks theories 

about software artifacts [39], and research is predominately 

prescriptive and method-focused [40]. This has led to the 

production of thousands of software development process 

tools like methods and models that remain unutilised. 

The purpose of this study was to review software 

development literature specific to SSCs and published in the 

last 30 years to consolidate and integrate the findings 

fragmented from the empirical literature on software 

processes. To do this, we conducted a systematic mapping 

study to identify the software engineering gaps in research in 

relation to SSCs to improve software practice in SSCs and 

propose a theoretical framework with the consolidated 

findings. We therefore investigated: 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

i. Which knowledge areas have been used in practice 

of SSCs as reported in literature?  

ii. What terminologies are used to refer to the 

companies in the selected articles?  

iii. What software development frameworks/standards 

were used by the companies are reported in 

literature? 

The rest of the paper proceeds as follows: Section 2 presents 

the related work; Section 3 is a description of the 

methodology used in this SMS, section 4 presents the results 

from the mapping study, followed by a discussion of the 

research questions presented in section 5 and lastly the 

conclusions of the study in section 6. 

 

 
II. RELATED WORK 

Although not explicitly studying SSCs, different researchers 

have expressed concern over the gaps in the literature on 

software development practice. For example, the different 

researchers in [2], [7], [41] explored the gaps in the literature 

using SMS to look at software engineering in start-ups, while 

others have explored gaps in software engineering in SSCs 

through Systematic Literature Reviews [1], [4] Studying 

these gaps helps researchers appreciate how research has 

transformed software engineering practices and is helpful to 

map existing studies. 

Paternoster et al. [7] conducted a SMS to develop a 

classification schema, in which they ranked the selected 

primary studies according to their rigor and relevance; they 

also analysed and reported software development work 

practices in start-ups. This study aimed at structuring and 

analysing the literature on software development in software 

start-ups. They also determined the potential for technology 

transfer and identified software development work practices 

reported by practitioners. The researchers considered 43 

primary studies to synthesise the available evidence on 

software development in start-ups. Their work found 16 

studies entirely dedicated to software development in start-

ups, of which nine studies exhibited high scientific rigor and 

relevance.  

In a similar study by Berg et al. [2] in which 74 primary 

papers from 1994 to 2017, were assessed and compared to 

findings from previous mapping studies. A classification 

schema was developed, and the primary studies ranked 

according to their rigor. Their work discovered that most 

research is conducted within the SWEBOK knowledge areas 

of software engineering process, management, construction, 

design, and requirements, with evidence of a shift of focus 

towards process and management areas. The researchers 

noted that the primary papers published between 2013 and 

2017 were of higher rigor, when compared to those published 

between 1994 and 2013. In addition, there was evidence of 

inconsistency in the characterisation of software start-up 

companies and recommended an alternative classification for 

use in future start-up research.   

In another study, Klotins et al. [41] conducted a SMS on 
software engineering start-ups where they paid specific 
attention to identifying knowledge areas covered by 
software start-up literature of the 14 selected primary 
studies from 1994 to 2014. Their findings from the 11 
knowledge areas covered reveal that inadequate research in 
the software development practice of SSCs is a contributing 
factor to the high failure rates. The same authors also 
highlight the challenges of software development in start-
ups and add that the failure to engineer quality software 
products and inadequacies in applied engineering practices 
is not fully explored and yet is a significant contributing 
factor for the high failure rates. 

 

In addition, other literature studies have been conducted on 

SSCs [1], [4]; although these studies were not SMSs, the 

researchers showed software practice in SSCs, and in both 

cases, the studies pay attention to the challenges affecting the 

development practice. Tuape and Ayalew [1] 2019 conducted 

an SLR on SSCs from 1988 to 2018; this study reported the 

factors affecting software development in SSCs. Whereas 

they found that limited studies had been conducted on SSCs 

specifically, the authors report factors affecting software 

development processes. These factors include organisational, 

business, governance, human and technical factors, which 

converge with the SLR of Nitnaya et al., [4]. Nitnaya et al., 

in 2016, conducted a study in which they selected  41 

primary studies from papers published between 2004 and 

2014. Other than the challenges like process adoption, 

limited documentation, limited technical knowledge and 

capacity, gaps in communication, limited understanding, and 

commitment to quality, which seem to have a point of 

similarity with most empirical literature, this study also 

reported six process areas covered in the literature, which 

translates into eight knowledge areas.  

All the studies significantly highlight the challenges in 

attaining quality software products by the SSCs. 

Interestingly, no significant attention is given to addressing 

the context of software development in attaining quality 

products and improving the process. However, adaptability 

of the process tools such as methods, standards and models is 

highlighted as a major challenge for SSCs. 

III. METHODOLOGY 

A systematic mapping study is a secondary study method that 

builds a classification scheme and structure in the research 

field of interest. This method was initially used in medicine; 

however, researchers have adopted SMS in software 

engineering in the recent past. According to Petersen et al. 

[42], software engineering researchers started adopting SMS 

when Bailey et al. [43] first reported a review of 138 papers 

in their study of evidence related to object-oriented design.  

In this paper, we conducted the SMS following the 

guidelines of Petersen et al., [42].  Significant to this guide is 

the use of a study protocol that ensures that personal bias is 

eliminated.  In dealing with human bias or what is also 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

referred to as subjective vagueness, some authors critic the 

use of statistical techniques, arguing that statistics present a  

limitation in dealing with the subjective vagueness and 

human biases, alternatively suggesting fuzzy mathematics as 

a remedy to such uncertainties in comparison to 

statistics[44].   

While the processes can create room for subjectivity, caution 

was accordingly taken through strict adherence to the study 

protocol and applied qualitative methods as a supplementary 

approach. Additionally, the data collected in this study are 

not subjective data and cannot therefore have any form of 

subjective vagueness as similarly observed in other mapping 

studies [2][7][41] that have used statistical meta-analysis.  

The use of fuzzy mathematics in [45] and [46] is observed as 

a measure to mitigate subjectiveness and personal bias where 

the data collected are subjective, although the latter is a 

systematic literature review that also used the Kitchenham 

guidelines[47] in which  the use of statistical meta-analysis is 

advised.  

We selected 77 primary articles published in 4 databases over 

30 years from 1990 to 2021. The steps undertaken in this 

study are illustrated in Figure 1 and explained in the different 

subsections; subsection A covers the SMS planning, the 

study design is covered in subsection B, the search extraction 

is discussed in subsection C and subsection D discusses the 

process of reporting the SMS. 

A. PLANNING  

During the planning phase, the researchers defined the need 

for the study; established a research protocol to ensure that 

the research questions are developed as planned, the planning 

of a search strategy for the study, and the methods to extract 

data and report the results were drawn.   

1)  PROTOCOL DEVELOPMENT 

The systematic mapping study protocol is a step-by-step 

guide for conducting the study that describes the rationale 

and planned strategy. The protocol was prepared before the 

review started to guide the study, methods, and steps used in 

the study. The protocol was also necessary to reduce the 

possibility of any bias from the researchers. In this study, a 

protocol was developed, the senior researchers reviewed and 

approved it before the commencement of the study.   

2)  RESEARCH QUESTION (SCOPE) 

These questions help develop a scope for the study; research 

questions are the core of the systematic mapping study; the 

questions streamline the study's overall purpose. In addition, 

it helps focus the study, determining the method and strategy 

to use while guiding all inquiry, analysis, and reporting 

stages. 

This study was driven by the goal to understand how 

software engineering in SSCs is supported. To pursue this 

goal, we sought answers to the following research questions: 

RQ1: How has software practice in small software 
companies utilised the software engineering knowledge 
areas in the ISO/IEC TR 19759: 2015? 

Knowledge areas are a vital realm of knowledge with which 

all software engineers should be acquainted. This research 

question focuses on evaluating the extent to which the SSCS 

utilise software engineering knowledge areas in practice. 

This will help establish which knowledge areas have been 

used most in software development by the SSCs and 

highlight those that have not been used in practice. For 

example, Berg et al. also used knowledge areas [48] that 

systemised and prioritised software engineering processes, 

resulting in successful software execution. 

RQ2: What terminologies are used to refer to the 
companies that have been studied in the literature? 

This question focuses on the terminologies used in literature 

to refer to SSCs, premising on the lack of a proper 

classification taxonomy for SSCs, leading to the researcher’s 

usage of different terminologies inconsistently to refer to the 

software companies. Current literature refers to these 

companies in some cases as software start-ups and in other 

cases as small and medium enterprises. Paternoster et al. [7] 

also cite similar situations regarding many unclear 

classifications of small companies.  

RQ3: Which software development 
frameworks/standards do the companies use?  

This question draws the attention of the researchers to 

investigate the software frameworks are reported as used by 

SSCs in literature. Frameworks/standards are used to 

improve the efficiency of processes used in creating and 

maintaining software; Therefore, they are expected to be 

helpful during software development. However, the literature 

indicates that SSCs have failed to adopt frameworks, hence 

compromising the ability to improve developer productivity, 

quality, reliability, and robustness of software products. 

Understanding the most used frameworks will enable further 

investigation into the insufficiency of the frameworks. 

B. STUDY DESIGN 

1)  SEARCH STRATEGY 

Initial pilot searches were conducted to choose suitable 

keywords for the construction of the search string. This 

process was used to determine a sound approach in selecting 

the primary studies from the databases giving optimal results 

and enabling the choice of the four databases used in the 

study.    

2)  KEYWORDS 

Identifying keywords is important in developing a schema to 

guide selecting relevant papers for review. The keywords 

used to generate the search string guaranteed that the relevant 

papers are considered in the study. The trial searches were 

conducted to identify the keywords most used in studies on 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

software engineering in SSCs, VSE, SMEs, and software 

start-ups. The keywords of the articles were identified and 

validated with the knowledge areas in the software body of 

knowledge presented in Table 1. 

3)  DEVELOPING THE SEARCH STRING 

From SWEBOK ISO/IEC TR 1975:2015, we adopt the 

critical knowledge areas in software engineering to use as 

synonyms for software engineering. Twelve knowledge areas 

identified from the keywords were selected as most prevalent 

in the literature. These include software requirements, 

software design, software construction, software 

maintenance, software testing, software configuration 

management, software management, software process, 

software models and methods, and software quality. This is 

seen in similar systematic mapping studies in software 

engineering by other researchers Klotins et al. [41]. These 

formed the first part of the search string, the terminology 

software was then coined with the Boolean "AND" to the 

terminology identified from the keywords to synonymise 

engineering, and we used the Boolean OR as presented in 

Listing 1.  
TABLE 1 

KEYWORD AND SYNONYM FOR THE SEARCH STRING 
Keywords Synonyms 

Software Engineering development, requirements, 
design, construction, testing, 
management, maintenance, 
configuration management, 
process, models and methods, 
quality, engineering professional 
practice 

Small Software Companies start-up companies, Small and 
Medium Enterprises, Very Small 
Entities, 

  

The first part of the search string connected to the second 

part of the string with the Boolean AND while the terms 

“small software companies” was synonymised with software 

start-up, SMEs, and VSEs all connected with the Boolean 

OR most used by researchers to refer to the same thing. 

Although not precisely researching SSCs but a segment of it, 

other researchers, Klotins et al. [41], use VSEs as synonyms 

of software start-ups. 

 
("Software") AND ("Development" OR 

"Requirements" OR "Design" OR "Construction" 

OR "Testing" OR "Maintenance" OR "Processes" 

OR "Configuration Management" OR 

"Organization" OR "Models” OR “Methods" OR 
"Quality" OR "Professional Practice") AND 

("SME" OR "SSCs" OR "Very Small Entities" OR 

"Start-ups") 

Listing 1: Search string used in the study 

C. SEARCH EXECUTION 

Databases were selected following the guidance of Petersen 

et al., [42], based on the ability of the database to handle 

complex search queries and the history of usage by 

researchers in software engineering related systematic 

mapping studies. Typical examples where these databases are 

used are Paternoster et al. [7], Paulo et al. [49], and Varun et 

al. [50], who have used all the four applied in this study, 

among others, and  Berg et al. [48], who uses 2 of the 

databases. 

1)  STUDY SELECTION 

 
Figure 1: Steps of the study selection process. 

 

The primary articles to consider for this study were selected 

through 6 stages illustrated in Figure 1. First, the search 

string returned 16536 hits; a filter for the year, language, 

relevance and if the study was a primary study returned 

1096; filter for duplicate studies returned 841 non-duplicates 

based on the criteria in Table 2; after reading the titles, 407 

articles were returned; a read of the abstract 112 articles were 

selected presented in Table 3. The selected 112 articles were 

then subjected to the quality evaluation process in Table 4.   

 
TABLE 2 

 INCLUSION AND EXCLUSION CRITERIA 
 Inclusion criteria  Exclusion criteria 

 The study was conducted 
within the last 30 years, 
1990-2021 

The paper was published in 
languages other than 
English. 

 The study is an empirical 
study (Primary study) 

The paper is not peer-
reviewed. 

 The Paper is about Software 
Engineering and any of the 
knowledge areas as 
software engineering 
processes of interest in the 
study. 

Papers considered not to 
cover software engineering 
and the related knowledge 
area in SSCs. 

 The papers are about SSCs 
and their variants of VSE, 
start-ups, and SMEs.   

The papers are not available 
as a complete article. 

  Duplicate papers that appear 
in at least two of the 
databases considered for this 
study. 

 

2)  DATA EXTRACTION 

General data 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

For the general data, we collected details of the authors, the 

papers, the title of the article, year of publication, name of 

database and abstract of the study. 

Specific data 

Specific data collected included knowledge areas are used in 

the software development process described in the empirical 

literature, the research contribution described in the studies, 

category of the research described in the empirical literature, 

terminologies used to describe the software company in 

industry as reported in research, and software development 

frameworks used by the SSCs as reported in research.   

Means of data extraction 

Data extraction was done with the aid of basic tools like 

google forms for collecting the data and eventually extracted 

in an excel sheet. The excel sheet supports the process using 

color coding tools for the initial exclusion based on the 

exclusion criteria. 
TABLE 3 

STAGES OF SCREENING OF THE SELECTED PRIMARY STUDIES 
Database Hits Filters  Titles Abstracts Quality 

ISI Web of 
Science,  

1030 216 117 57 36 

ACM Digital 
Library 

2508 136 36 7 6 

IEEE Xplore,  3037 132 54 13 8 
Scopus 10963 612 200 35 27 
Total 16538 1096 407 112 77 

3)  QUALITY ASSESSMENT 

Rigor and relevance 

The selection of the primary studies was based on the 

evaluation for scientific rigor and industrial relevance 

consistent with the proposal of Ivarsson and Gorschek [51]. 

The selected articles were arrived at through the quality 

evaluation criteria assessing for rigor and relevance using a 

rubric scale shown in Table 4. In this criterion, the 112 

candidate papers screened using abstracts were subjected to 

an evaluation that realised 77 primary papers. This meant that 

the selected study must impact the industry; it was incumbent 

upon the authors of the paper in question to provide tangible 

evidence of the advantages of using the ideas of the research 

done. Ivarsson and Gorschek propose a systematic and 

validity model in which they guide the evaluation of software 

engineering papers for rigor and scientific relevance. This 

model provides for rules and a mechanism of applying 

metrics for measuring rigor and relevance; the model also 

splits the two components of rigor and relevance into 

different features and measures how they are reflected in the 

studies. Table 4 (a) and (b) describe the features and metrics 

for evaluating rigor and relevance adopted from the Ivarsson 

model.  
TABLE 4 

 A RUBRIC SCALE IS APPLIED FOR THE EVALUATION OF RIGOR AND 

RELEVANCE 
(a)  

 Aspect Strong description 

(1) 

Medium 

description 

(0,5) 

Weak 

description 

(0) 

Contex
t 
describ
ed 
(Manda
tory as 
strong) 

the description is to 
the satisfaction clarity 
to compare with the 
context of the study of 
which the article is a 
selected candidate 
paper.  

Context is 
mentioned, 
however, not 
described for 
adequate 
understanding 
and 
comparison 
with context 
under study.  

No specific 
description 
of context 
is 
identified 
in the 
candidate 
paper. 

Study 
design 
describ
ed 

A description of the 
study design is 
evaluated for the 
variables measured, 
the sample selection, 
and the study's 
controls. 

A limited 
description of 
the study 
design 

There is no 
description 
of a study 
design for 
the study. 

Validit
y 

A satisfactory 
discussion of the 
threats to validity and 
how they have been 
mitigated 

Mention and 
description of 
the threats to 
validity with 
less 
satisfactory 
mitigative 
measures 

No 
mention of 
the likely 
threats to 
validity 
posed to 
the study. 

(b) 
 Contribution to 

relevance 
(1) 

No contribution to the 
relevance 

(0) 
Subject
s 

The subjects 
considered while 
evaluating the study 
are actual industry 
practitioners. 

The evaluation was done 
using subjects who are not 
practitioners. 

Resear
ch 
method 

The research method 
used in the study 
including case studies, 
descriptive studies, 
surveys, grounded 
theory, experiments, 
exploratory studies, 
conceptual analysis, 
design science, 
ethnography, 
observations, means-
end analysis, and 
mapping method 

The research method used in 
the study does not involve 
actual industry settings Lab 
experiments, conceptual 
analysis (Mathematical)  

Contex
t  
(Manda
tory as 
relevan
t) 

Evaluation of the 
study based on the 
context of software 
companies under this 
study. (companies 
with less than 50 
persons and are either 
VSEs, SSCs, Start-ups 
or SME)  

Studies are evaluating 
companies with more than 
50 staff. Start-up studies 
evaluating start-ups with 
more than 50 staff, or SME 
evaluating companies, some 
of which have more than 50 

 

Rigor is the precision, exactness of the study's research 

method, and how the study is presented. It influences the way 

practitioners perceived the results of the study and help to 

determine relevance. On the other hand, relevance is the 

realism of the environment in which the research is 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

conducted and how the study is responsive to challenges in 

software engineering. 

This quality criterion for rigor and relevance applied through 

this process was undertaken by three researchers using the 

metric and criterion in Table 4 (a) and (b) for rigor and 

relevance. Each component had to fulfil at least one 

mandatory feature attracting the respective scores and an 

extra score for the other features. 

 
TABLE 5 

 RESEARCH CONTRIBUTION WITH ITS DESCRIPTION AS ADOPTED FROM 

SHAW IN [52] AND RESEARCH CLASSIFICATION SCHEMA AS PROPOSED BY 

WIERINGA ET AL. IN [53] 
 

Contribution Description 

(a) Research contribution 

Models This is the representation of an 
observed reality by concepts or 
related concepts after a 
conceptualisation. 

Theories these are constructs of cause-effect 
relationships of the determined 
result. 

Frameworks/Methods These are models related to 
constructing software or managing 
software development processes. 

Guidelines These are lists of advice, synthesis 
of the obtained research result. 

Lessons learnt These are sets of the outcome 
directly analysed from the obtained 
research result. 

Advise/Implications These are discursive and generic 
recommendations, deemed from 
opinion. 

Tools Technologies, programs or 
applications used to create, debug, 
maintain or support software 
development processes. 

(b)Research classification 

Validation Research A new investigated technique that 
has not been implemented in 
practice. 

Evaluation Research A Methodology implemented in 
practice followed an evaluation of 
methodology showing how the 
study was conducted and the 
consequences on the 
implementation (pros and the cons).   

Solution Proposal A solution to a problem is 
introduced and explained in detail. 
A description of the benefits and an 
analysis of its applicability are 
required. 

Philosophical Papers A new point of view or even a 
controversial approach is defined. 

Opinion Papers Personal opinions are the main 
contributions of these papers. There 
is no scientific approach to the 
results. 

Personal Experience 

Papers  

These papers explain what and how 
something is done in practice. Of 
course, it has to be the personal 
experience of the author. 

 

D. REPORTING OF THE SYSTEMATIC MAPPING STUDY 

1)  DATA RETRIEVAL AND CLASSIFICATION  

We tabulated the results from the study in terms of 

knowledge areas, the context of the companies (what 

terminology was used to refer to the company) and software 

development frameworks identified by the empirical 

literature. We also used classification facets of the research 

contribution proposed by Shaw in [52] and research 

classification schema defined by Wieringa et al. [53] shown 

in Table 5. as useful in determining the quality of the selected 

articles. 

2)  ANALYSIS 

The data is tabulated showing the primary studies spread 

over the years of publication. To answer research question 1, 

we categorised the selected primary studies on SSCs using 

the knowledge area of the ISO/IEC TR 1957:2015. We also 

mapped the research contribution over the years of study. In 

RQ. 2, we categorised the terminologies used to describe the 

software companies reported in the primary study. Finally, to 

answer RQ. 3, we categorised and mapped the software 

development frameworks/standards utilised by the software 

companies cited in the empirical literature.  

Qualitative and quantitative methods of analysis were applied 

to the data and presented using graphs, charts, and matrix 

bubble charts to illustrate our findings which ultimately 

consolidated and integrated the fragmented findings from the 

empirical literature on software processes. 

IV. RESULTS 

This section presents the results of the general findings, 

answering the research questions according to the study's 

overall objective. The results are presented in 3 subsections 

as follows; Subsection A, presents the general finding of the 

SMS. Subsection B presents the utilised knowledge areas by 

the companies cited with their respective research 

contribution and categories aspects, the terminologies used to 

refer to the companies and the companies utilisation of 

software development process frameworks/standards. 

Finally, sub-section C presents the evaluation of rigor and 

relevance. 

A. GENERAL DATA 

Figure 2 shows the number of studies published on practices 

of small companies in the period 1990-2021; of the 77 

studies selected, 76 are concentrated in the last 20 years as 

the first ten years presents with only 1 study. The last 5 years 

between 2016 and 2021 present with over 60 percent of all 

the studies. The years 2016 and 2017 are the years with the 

highest frequencies, while no studies are presented for the 

years 1990-1994, 1996-1999 and 2013. 

Research contribution aspects described in Table 5(a) 

presents the value research adds to the software engineering 

practice. This contribution has an order of importance and is 

classified as a weak and strong contribution. The weak 

contribution includes advice implication, guidelines, tools, 

and lessons learnt, while vital contributions are framework, 

theory, and models. Figure 3 shows the frequency 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

distribution of the 77 primary articles selected to the seven 

research contribution aspects. For example, lesson learnt 

(32), frameworks/standards (13) and models (10) presenting 

42, 17 and 12 percent, respectively. The other four research 

contribution aspects; guidelines, advice implications, tools, 

and theories share the remaining 29 percent with 4, 5, 6 and 

7, respectively. 

Table 5(b) presents the research category, distinguishing 

between the different types of studies. This is an abstraction 

from the exact research methodology as adopted from the 

 
FIGURE 2:Publication frequency, 1990-2021. 

         

 
FIGURE 3: Frequency distribution of research contribution. 

work of Wieringa et al.[54]. The research categories 

identified in the selected articles are presented in Figure 4 

with the following frequency distribution; validation (11), 

solution proposal (21), philosophical papers (12), personal 

experience (7), opinion papers (5) and evaluation (21). 

 
FIGURE 4: Frequency distribution of research category.  

Figure 5 presents the frequency distribution of the research 

methods identified in the primary studies selected for this 

SMS. The results show case studies (22), descriptive studies 

(21), surveys (17), grounded theory (7), experiments (3), and 

exploratory studies (2). The rest included conceptual 

analysis, design science, ethnography, observations, means-

end analysis, and mapping method, each with one 

publication.  

 
FIGURE 5: Study methodology frequency 

B. KNOWLEDGE AREA, CHARACTERISTICS, AND 
FRAMEWORK 

TABLE 6 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

STUDIES COVERING RESPECTIVE KNOWLEDGE AREAS, CLASSIFICATION 

AND FRAMEWORKS USED. (N=77) 
No Category Frequency Reference 

(a) Knowledge area 

1 Development 
Design and 
Construction 

33 [55]–
[60][24][23][61]–
[70][3][28], [71]–
[84]  

2 Project 
Management 

16 [85]–[100]  

3 Quality 7 [101]–[107]  

4 Processes 5 [108]–[112] 

5 Models and 
methods 

5 [113]–[117] 

6 Maintenance 4 [118]–[121] 
7 Requirement 

engineering 
3 [36][35],[19] 

8 Testing 3 [122]–[124] 
9 Management 1 [125] 

(b) Naming of the companies 

1 VSE 27 [3], [28], [62], [64], 
[69], [71]–[73], 
[77], [80], [82], 
[87]–[92], [103], 
[107], [111], [112], 
[114]–[117] 

2 Start-up 17 [19], [35], [36], 
[68], [70], [74], 
[78], [79], [81], 
[84], [98]–[100], 
[109], [119]–[121]  

3 SSCs 17 [23], [24], [55], 
[58], [59], [61], 
[65], [67], [75], 
[83], [96], [97], 
[101], [106], [113], 
[122], [125] 

4 SME 16 [56], [57], [63], 
[66], [76], [85], 
[86], [93]–[95], 
[104], [105], [108], 
[110], [118], [123], 
[124]  

(c) Framework/standards 

1 None 36 [19], [23], [32], 
[35], [36], [63], 
[66], [68], [70], 
[78], [81], [83]–
[87], [93], [94], 
[96]–[102], [104], 
[109], [118]–[126]  

2 ISO/IEC 
29110 

25 [3], [28], [61], [62], 
[64], [67], [69], 
[71], [72], [77], 
[79], [80], [82], 
[88]–[92], [107], 
[111], [112], 
[114]–[117]  

3 CMMI 7 [56]–[58], [105], 
[108], [110], [113]  

4 ISO/IEC 
15504 

3 [24], [65], [103]  

5 ISO/IEC 
12207 

3 [59], [60], [95] 

6 ISO/IEC 
25010 

1 [73] 

7 ISO 9000 1 [106] 

8 CMM 1 [55] 

    

 

The specific points of interest to this study, namely 

knowledge area, the context of the companies and the 

framework/standards are presented in Table 6 (a), (b), (c). In 

addition, each of the areas studied to answer the research 

questions is presented with the respective category, the 

frequency, and the article's references that cover the specific 

facet under a point of interest.  

Figure 6 (a), (b) and (c) further presents the above data as bar 

chars to aid visualisation. The charts illustrate the years with 

the respective articles and the facets covered with 

percentages of the studies in the specific facet in that 

particular year.  

The general landscape of results from the selected studies 

over the years from which the articles were published is 

presented in Figure 6 with the knowledge area, terminologies 

used to refer to the software companies, and the utilised 

framework/standards denoted as 6 (a), (b) and (c) 

respectively. An overall increase in research is evidently 

observed after 2010, and most of the research activity in all 

the aspects presented as getting visible in empirical literature 

significantly after 2016. Other than for process frameworks 

which were evenly distributed in the first 10 years the other 

areas of interest had mostly two facets dominate the first 10 

years. The Knowledge areas and the use of different 

terminologies are random because of increase in research. 

While the process frameworks are first seen as random and 

later tended to get dominated by the ISO/ IEC 29110 after its 

introduction in 2010.  

 

1)  KNOWLEDGE AREA 

A close look at the knowledge areas of software engineering 

used by the companies as reported in the selected articles 

indicates that general software development and project 

management are most prominent in the knowledge area 

frequency distribution, as presented in Figure 7. 

The data detail specifically indicates the most covered 

knowledge area of software engineering by the articles 

selected in the study. Figure. 7, illustrates 3 most dominant 

knowledge areas presenting up to 46 studies identified on the 

knowledge areas of software development design and 

construction (33), project management (16), and quality (7). 

The remaining 31 studies covered the knowledge areas of 

process (5), models and methods (5), maintenance (4), testing 

(3), requirements (3) and management (1) with the respective 

number of studies. Although the knowledge areas that 

ultimately are observed at a point in time are presented 

decimally in the empirical literature, the initial 10 years show 

that these knowledge areas are not reflected in the empirical 

studies around this time. Figure 6(a) shows the studies in the 

years between 2016 and 2021 present interest in the 

knowledge area of quality, requirements, models and 

methods, and maintenance. Although the numbers are 

minimal, the growing interest of researchers is important for 

the industry and for the transformation of software 

development practice in SSCs. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

 
(a)  
 

 

 

   
(b) 

 

 
(c) 

 

FIGURE 6: (a)The key knowledge areas covered in the primary studies, 
(b) names used to refer to the companies and (c) frameworks/standards 
used by the companies reported in the studies over the years 

  

 
FIGURE 7: Knowledge area frequency. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

2)  TERMINOLOGIES USED TO REFER TO THE 
SOFTWARE COMPANIES 

The terminologies used to refer to the companies covered in 

this systematic mapping study is illustrated in Figure 8. The 

majority 27 studies presented the companies as VSEs; the 

remaining 50 studies are fairly distributed with almost equal 

numbers amongst the 3 other terminologies referring to small 

companies, namely, start-ups (17), SSCs (17) and SMEs 

(16). The two other terminologies, SME and the SSCs are 

reflected in the selected studies although the first 20 years 

portray minimal research. However, the overall outlook of 

the terminologies used to refer to the companies as covered 

in the selected years is presented in Figure 6(b), in which 

VSE and start-up depicted a significant increase from the 

year 2010.      

 

FIGURE 8: The frequency of the terminologies used in referring to small 
software companies in the systematic mapping study (n=77) 

 

1) FRAMEWORKS/STANDARDS 

The frequency of publication in relation to 

frameworks/standards covered in the systematic mapping 

study presents; 36 articles identified as not mentioning any 

process frameworks/standards used in the SSCs studied. The 

remaining 41 articles used frameworks/standards with 

ISO/IEC 29110 being dominant, indicating 25 studies 

reporting reference to this framework/standard in software 

practice.  

 

 
FIGURE 9: Frameworks/standards frequency. 

 

The CMMI followed, indicating 8 articles reporting its usage 

in SSCs; the remaining 3 frameworks/standards were 

recognised as cited in 7 articles with ISO/IEC 15504(3), with 

ISO/IEC 12207(3), and with ISO 9000 being documented in 

1 article as presented in Figure 9. 

C. RIGOR AND RELEVANCE 

Table 7. presents the evaluation scores of the rigor and 

relevance of the selected studies after the application of the 

rubric scale evaluation criteria in Table 3 (a) and 3 (b). The 

scores attained from the 4 features of rigor generate totals 

1.5, 2, 2.5, and 3 with frequencies 3, 54, 5, and 15, 

respectively.  

In the case of relevance, total scores of 2, 3, and 4 with 

frequencies of 14, 49 and 15 accordingly. 

An evaluation of rigor and relevance of the selected primary 

articles is illustrated using the bubble plots. To evaluate rigor, 

we map the scores of the rigor evaluation to the research 

contribution and research category in Figures 10 and 11, 

respectively. Then to evaluate relevance mapping scores of 

relevance evaluation to research contribution and research 

category is presented in Figures 12 and 13. 

 

 
 

TABLE 7 
 EVALUATION SCORES FOR RIGOR AND RELEVANCE 

 
 Total scores from 

evaluation 

Frequency Total 

Rigor 

 1.5 3  

 2 54  
 2.5 5  

 3 15  

   77 

Relevance 

 2 13  

 3 49  

 4 15  

   77 

 

The results indicate that most papers are lessons learnt which 

are considered to have low rigor. This is consistent with the 

findings of other researchers like Klotins et al. [41], who 

reveal that most of the papers have high relevance, although 

the same authors also evaluate rigor of their studies and find 

more experience reports they also consider as having low 

rigor. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

 
Figure 10: Systematic mapping of rigor on research contribution 

 

 

 

 

 

 

 
Figure 11: Systematic mapping of rigor on research category 

 

 

 

 

 

 

Figure 12: Systematic mapping of relevance on research contribution 

 

 

 

 

 

 
 

Figure 13: Systematic mapping of relevance on research category 

VII. ANALYSIS AND DISCUSSION 

In this section, we synthesise the extracted data to 

consolidate and integrate the fragmented findings from the 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

empirical literature on software processes, looking 

specifically at the knowledge areas covered practice as 

reported in the research, the terms used to refer to the 

software companies, and the frameworks/standards used 

while developing software in the companies covered in the 

selected studies. We also mapped each of the facets to the 

research contribution methods of study and research 

category. The analysis and discussion covered in this section 

lead to appreciating the gaps and quality in research in the 

context of SSCs.  

Generally, we visualise the findings from empirical literature 

of three decades in observations of each decade separately. 

The first ten, second ten and the rest of the ten years in which 

we observe 1, 19 and 79 percent of the studies respectively, 

with the last 5 years presenting with 62 percent. This is 

evidence that the years 2016 to 2021 had an increase in 

several studies compared to the prior 25 years. The years 

between 2016 and 2021 have presented with the highest 

percentages equally sharing 24 percent of the studies during 

the time. This is perhaps because new conferences on start-

ups had been initiated. However, the trend is noticed from 

2012 with the standardisation of the ISO/IEC 29110 for 

VSEs.  

The analysis and discussion of this outcome answer the first, 

second, third research questions, the process tools adoption 

theoretical framework, discussion and analysis of rigor and 

relevance of the selected primary papers in the subsections  

A, B, C, D, E, respectively. Then subsection F presents the 3-

point guideline for rigor and quality research, and subsection 

G discusses how the study mitigated the threats to validity.  

A. HOW HAS SOFTWARE PRACTICE IN SMALL 
SOFTWARE COMPANIES UTILISED THE SOFTWARE 
ENGINEERING KNOWLEDGE AREAS IN THE ISO/IEC 

TR 19759: 2015? 

To answer this research question, we analysed and discussed 

the trend, examined how the knowledge areas have been 

translated to process tools to take care of the processes 

covered in the research. The articles considered in this study 

covered 9 knowledge areas for the 30 years; the first 20 years 

period of 1990 to 2011 are dominated by only two 

knowledge areas of software development and project 

management. However, in this same period, a few cases of 

three knowledge areas were observed in the literature in the 

last two years between 2009 and 2011. This indicates that 

researchers started paying attention to other knowledge areas 

in practice, specifically processes, quality, and methods and 

models.  

The subsequent ten years between 2012 and 2021, software 

development and project management are dominant, 

although a considerable rise in the other knowledge areas, 

including requirements engineering, software maintenance, 

software testing among software quality, processes, and 

models and methods. 

Literature on software engineering practice in  SSCs, [2], 

[41]  suggest 9 and 11 knowledge areas, respectively, thus 

presenting a close similarity to the 9 knowledge areas 

identified by this study. Although both studies are not 

precisely on SSCs but rather a variant of it, we notice that 

development design, construction, and project management 

cover up to 64 percent of the articles in this study, with the 

former having 33 percent overall. This implies that the two 

areas have had the most research attention and would 

ordinarily mean the said areas have more attention in 

practice. However, it is imperative to note that the increase 

influences this results in several studies on the VSE because 

of mainly introducing the framework and standard ISO/IEC 

29110, which covers these areas.  

This development is an indication that this framework has 

made the VSE domain clear, organised, and simpler to 

understand. This was followed by an influx of research that 

also organised practice in the areas covered by the 

framework/standard. This is evidenced in literature with 

success factors with the VSE [72], [102], [117], [127] in 

which software development has become successful for 

general software and game development in different places, 

including Canada, Peru, Mexico and Finland.  

Although the dominance of software development and 

project management as knowledge areas most covered in 

literature is very important for software development 

efficiency in SSCs, it is also significant that equal attention is 

given to the other knowledge areas, including requirements 

engineering, software testing, and software maintenance.  

The trend of increased study in the other knowledge area, 

although observed to a minimal extent, probably explains the 

recent improvement noted in software development practice 

in SSCs. This same view is held in a number of recent studies 

[1], [4], [128]. In addition to this, many researchers also 

highlight the significance and call for increased attention on 

the other knowledge areas like requirements engineering, 

software quality, software testing, and software maintenance 

[129], [130]. Putting this together means the knowledge areas 

that seem prominent in empirical literature are effectively 

covered with subsequent process tools in practice more, so 

evidence shows that the same process areas have sufficient 

attention in the literature and are better practised. 

The entanglement of the SSCs in dilemmas of continued high 

failure and persistent production of inferior products gets 

significant explanations at this point. Similarly, the 

knowledge area like requirements, software testing and 

maintenance are predicate to the process tools to utilise in the 

software development process. Unfortunately, they are not 

utilised and this will affect the basic understanding of 

applying them, knowing the challenges, what should be 

improved and hence the development of tools to support the 

processes.  This, therefore, calls for efforts to factor 

investigating these knowledge areas deliberately and the 

practice in the corresponding practice to generate useful 

insights after all literature reveals that processes like 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

requirements [19], [36], [131] and software testing[123], 

[132] are responsible for lots of challenges of software 

development process in practice of the SSCs. It would still be 

interesting to know if perhaps the practitioner’s skill set is 

responsible for this maybe because of choice the practitioners 

tend to skew their skills and practice to other areas other than 

requirements, software testing and maintenance. This brings 

out interesting questions; for example, caring to know how 

much of requirements or testing in practice is enough 

because it seems like requirements are about the client being 

satisfied and the tests are about the errors not being found. 

Interestingly, ignorance of either a function by the client or 

limited test cases by both may affect requirements and 

testing. 

B. HOW ARE COMPANIES REFERRED TO IN 
LITERATURE? 

Key in this research question was to identify the 

terminologies used to refer to the companies in articles 

considered by this study. The identified terminologies used 

while referring to the companies included start-ups, SSCs, 

VSEs, and SMEs.  

The smaller companies are known to have more challenges 

in producing quality software products due to inadequacies in 

the engineering practices[1], [8], [77], [79]. The sizes of 

these companies come with other inherent challenges 

affecting software development from the influencing factors 

like organization, business environment, governance, and 

technical factors[12], [33]. This, therefore, leads to the need 

in understanding context and its effect on the influencing 

factors. There seems to be an indication that researchers have 

not paid significant attention to size and context while 

developing tools and methods for software 

development[101]. This is evidenced by a lack of proper 

classification of small companies seen through author’s 
usage of terminologies leading to contextual challenges in 

research and practice. The study mapped the usage of these 

terminologies in the empirical literature. The absence of a 

proper classification taxonomy has created an inconsistent 

usage of these terminologies while referring to the companies 

in the category of small companies. For example, the 

definition of software start-ups seems to overlap the 

description of VSEs and in some cases, the definition of 

SMEs[5] also seems to overlap the two. Similarly, some 

researchers also highlight the mix-up that would arise from 

using these terminologies [70]. Software engineering is a 

people-centred and intensive knowledge process with a 

specific methodology that requires process maturity [133], 

[134], least of which success may be challenging to attain.  

The usage of the terminology in this study is fairly 

distributed to all the four terms commonly used to refer to the 

software companies. Although the VSEs are dominant with 

about 35 percent it is probably influenced by the ISO/IEC 

29110 standard for VSEs introduced during the period of 

interest for this study. It is also clearly noticed that the term 

start-up is also very common, perhaps due to the increased 

attention on technology innovation that has seen the 

unprecedented promotion of start-ups in most economies as a 

source of employment creation owing to the flexibility they 

present [20]. This took the research community's attention 

with an introduction of a conference track dedicated to 

software start-ups, although unfortunately, the term has been 

used arbitrarily, that some companies are referred to as start-

ups, yet they may not necessarily be start-ups. Starting a 

software company may not require much capital, which has 

attracted many entrepreneurs to venture into such setups. 

This is evidenced by the fact that most start-up owners are or 

employ less experienced people in software development. 

The start-ups, VSEs and SMEs, are ordinarily expected to 

present in different contexts, meaning the processes and 

methods of software development that apply to one may not 

apply. For example, using a general term such as SME 

creates unclear boundaries between small and medium 

companies. This also means that if a method is developed for 

SMEs, it could be applied to both small and medium 

companies, yet it cannot be the case in most cases. Overall, 

the arbitral usage of these terminologies may cause the 

arbitral application of process tools frameworks methods in 

software development, yet they may not apply in context. 

This, therefore, would require a proper classification 

taxonomy for small companies since the category of small 

companies involves the VSE, start-ups and those that remain 

unnamed.   

C. WHAT IS THE PRACTICE OF UTILISATION OF 
SOFTWARE DEVELOPMENT FRAMEWORKS IN SMALL 
SOFTWARE COMPANIES?  

Most of the studies do not cite utilisation of software 

development frameworks/standards in the companies 

researched, although 7 frameworks are cited in the primary 

studies, representing less than 50 percent. This perhaps 

confirms the inability of the smaller companies to adopt the 

existing frameworks, as cited by Alexandre et al. [11] and 

Anacleto et al. [12].  This finding means that more than 50 

percent of the studies are not connected to any specific 

framework or standard. The ISO/IEC 29110 is very 

prominent as a framework for VSEs, and the other 6 are 

decimally covered in the primary studies, as illustrated in 

Figure 9.  

The prominence of ISO/IEC 29110 seems to closely relate to 

this study’s findings that the two knowledge areas of 

software development and project management are 

specifically tagged to this framework. This perhaps explains 

the finding that is followed by numerous studies in software 

engineering and project management areas. The other 

contexts that do not fall under the realm of VSEs and are also 

small companies and may not necessarily be medium or 

larger software companies remain unattended to as far as 

tools and frameworks are concerned. The effective utilisation 

of tools, methods, processes, and frameworks for small 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

companies is largely dependent on the understanding context 

in which the companies operate because context differs; 

therefore, the tools, methods, processes, and frameworks will 

differ. This now gives a proper explanation on why SSCs 

continue to register failure and produce low-quality products. 

Additionally, although the minimal usage of frameworks and 

standards like CMMI is thought to be primarily because of  

affordability to small enterprises [113], an argument also 

fronted by Singh and Gill [108], The issues seem not just 

about costs but rather on the difficulty to fit the tools with the 

context of the companies. However, an opportunity of 

exploring the components that can be useful in improving 

quality still exists just like it is seen for standards like ISO 

IEC 15288 that defines the software lifecycle [135], whose 

models are adopted in ISO IEC 12207 to guide development 

and maintenance [38]. For small enterprises to improve on 

quality within the current environment, the challenges 

associated to software development practice in SSCs that are 

unique to them must be given special attention. Laporte and 

O’Connor [136], stress the fact that all organisations cannot 

be similar, further cautioning that if the developers of the 

software process models do not take into account the 

different operational context, the influence of SPI may be far 

from being achieved and it therefore remains theoretical than 

practical.  

Understanding the company’s context to propose appropriate 

tools and frameworks is, significant in improving software 

development practice by SSC Clarke et al., [137], reinforces 

this recommendation adding that variation in software 

development contexts needs to be considered. Additionally, 

an adoption framework supported by a classification 

taxonomy for SSCs will organise and highlight the need for 

attention in the categories, which currently lack specific 

frameworks and tools to support software practices in SSCs. 

D. THEORETICAL FRAMEWORK  

1)  OVERVIEW OF THEORETICAL FRAMEWORK 

The study consolidates and integrates the fragmented 

findings from the empirical literature on software processes 

and highlights key points related to the utilization of software 

processes tools in SSCs and the ability to attain quality 

products in the context in which software is developed. The 

highlights include (i) insufficient use of the knowledge areas 

in software practice by SSCs is this means the processes of 

software development to ensure effective production of 

software are not being used; (ii) the ill-defined context within 

which SSCs operate, with an implication on the process tools 

– SSCs are expected to use common tools, breeding a 

complexity and; (iii) evidence of minimal usage of process 

tools which raises new concern on how quality software can 

be produced in an environment where the process tools are 

not usable. 

2)  CONCEPTS OF THE FRAMEWORK 

In pursuance of the issues raised from the empirical 

literature, it is necessary for process theory to transform 

software engineering body of knowledge especially paying 

attention to SSCs. Additionally, research in software 

engineering has been predominately prescriptive and 

method-focused [40], producing thousands of software 

development methods that remain underutilized. In order to 

solve the challenges with software practice, practitioners and 

researchers should contribute to the body of knowledge 

[138], given that SSCs dominate the industry and are 

responsible for over 80% of software produced in the market.   

Software engineering literature highlights the difficulty in 

adopting the process tools[11], [39], yet poor quality  

software and high project failure continue to raise concern. 

Whereas companies need the process tools to streamline the 

development processes, the available process tools are 

minimally utilized. Consequently, this paper proposes a 

software process tools adaptability framework to explain how 

process tools for software development are not utilisable by 

the SSCs.  

This theoretical framework is based on a theory that posits 

that. 

 

Software process tools can only be useful to small software 

companies if the context in which these companies operates 

is considered. 

 

This has two implications: first, it implies that for the existing 

process tools to be usable by the SSCs an adaptability 

mechanism must be put in place to streamline the process 

tool with the context of the company, which requires an in-

depth understanding of the characteristics of the companies 

and a classification taxonomy. Secondly, the new process 

tools under construction must take care of the operational 

context of the SSCs, paying keen attention to the fact that the 

SSCs differ in character. This implies that an assessment for 

the character to ensure adaptability must be considered. 

Through the study the researchers extracted four concepts to 

build the proposed process tools adoption framework. The 

concepts are adoption mechanism, process tools, influencing 

factors and software quality.  

Table 8 shows the concepts, their respective descriptions, and 

the references of literature. The theoretical framework is 

developed from the concepts of development process tools, 

influencing factors and quality of software as constructs 

generated from the findings of the study. From the literature 

we also identify assumptions used in software development 

practice in SSCs. 

 

▪ Process tools influence the production of 

quality software and this means that the process 

tools have a relationship to the production of 

quality software.  

▪ The influencing factors of software 

development (organization factors, the business 

environment, the governance factors, and the 

technical factors) within an organization are 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

mediators to the relationship between the 

process tools and the production of quality 

software. 

 

 
TABLE 8  

CONCEPTS FOR THE SOFTWARE PROCESS TOOLS ADOPTION FRAMEWORK 
   

Adoption 

mechanism 

 

Understanding the context in which software 
development is practised has a relationship 
with utilising tools, process frameworks, 
methods, and standards. Evidence shows 
that the adoptability of the tools and 
frameworks is limited, which poses the 
development processes with contextual 
complexity.     
 

[12], 
[38], 
[139] 

Process tools 

 

Process tools are found to be minimally used 
yet they are responsible for the foundation 
of guiding the complete software 
engineering process. This influences the 
quality of software produced through the 
process that are not guided using process 
tools   

[12], 
[48] 

Influencing 

factors 

The knowledge areas define the processes, 
knowledge and skills that a software 
engineer should know to design quality 
software. Requirements, Testing, 
Maintenance are influenced by organization, 
business environment, governance, and the 
technical factors. These create limitations of 
the knowledge areas affects practice and 
process tool ultimately affecting the quality 
of software. 

[1], 
[140], 
[141] 

Quality software 

products 

 

Process tools have a relationship with 
quality, but the tools must be adaptable to 
attain quality. How well a software product 
complies with or conforms to a given 
design, based on requirements or 
specifications and to meet customer 
satisfaction. 

[1], 
[101], 
[142]–
[144] 

 

However, the process tools have a weak relationship to the 

production of quality software, and the weakness is explained 

by the inability of the SSCs to adopt the process tools hence 

failure to produce quality products. The weak relationship 

between the process tools and the production of quality 

software products during the development process is 

highlighted as the gap in research and practice, as evidenced 

by the continued poor  quality of software products [47], 

[101], [140], [145]. The researchers propose the adoption 

mechanism to strengthen the relationship between the 

development process tools and quality software products. 

The role of the adaptation mechanism is to ensure that the 

process tools are adaptable to the contexts of the companies 

for the relationship to be useful. This relationship needs to be 

mitigated with constructs that are moderators in the 

relationship. 

The theoretical framework explains the difficulty to attain 

quality products by SSCs, although software process tools 

seem important and are known or expected to be useful in 

transforming the processes and practices. The framework 

also predicts the likely increase in utility of process tools 

when an adoption mechanism has been applied making the 

process tool adoptable to the SSCs based on a classification 

taxonomy derived through the characteristics.  

Process tools like methods, frameworks and standards are 

designed to support the different activities presumed to be 

vital in delivering quality software, the challenge, however is 

that the different context in which these companies operate 

make the practicality difficult in applying the tool to the 

extent that most companies end up not using the tools at all. 

This theoretical framework also leads to the predictability of 

adoptable software process tools, while developing the tools, 

effective consideration of the specific context of the 

companies to utilise them should be considered. This can be 

achieved using a classification taxonomy from which proper 

categorisation of the SSCs is done and the utilisation of the 

process tools is tailored based on the classification. This 

theoretical framework also becomes an eye-opener to 

researchers who will develop other tools specifically 

challenging the researchers to consider adaptability 

challenges arising from the difference in context in which 

companies operate and the varied characteristics of the 

companies which should be put into account. This theoretical 

framework is crucial to preserve and interconnect empirical 

knowledge and protect the software processes against 

fragmented empiricism and overemphasis on prescriptive 

knowledge that builds many tools.  

Therefore, the researchers posit that for software companies 

to produce quality software while using process tools, the 

company’s limitations, and strengths regarding the 

influencing factors in affecting the quality of software 

products under development should be considered. Secondly, 

software companies are not the same in character and the 

effectiveness of the tools used in the processes are dependent 

on how they fit into the context of the company’s operations.   

The relationships between the constructs and the assumptions 

are evaluated for weaknesses and it is from this that the gaps 

in literature are identified to form the constructs that need to 

be added to fill up the gap in theory.  

The software process tool adoption framework is important 

in explaining the relationship between software process tools 

and software product quality. It also explains the inability of 

the SSCs to utilise the software process tools. This means 

that constructors of process tools will use the proposed 

framework to consider adaptability and operational context 

of the companies to build utilisable tools. The framework 

also creates an opportunity to predict the extent of quality 

attainable by a process tool built to specific context. The 

framework has an impact on practice by simplifying 

adaptability of the software process tools that has not been 

easy to use by the SSCs. Nonetheless, this benefit is 

attainable after factoring adoptability in the process tools 

either while developing the process tool or subjecting the 

existing process tool through an adaptability mechanism as 

suggested by the framework.        



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

This framework was constructed to integrate the fragmented 

findings of the empirical literature of software practice in 

SSCs although our findings show that lots of other 

knowledge areas are not sufficiently covered, presenting a 

possibility of bias. Other researchers share similar sentiments 

suggesting that academic literature has a bias towards formal 

methodologies[138]. This aspect was considered and 

mitigated, although, the researchers recommend increasing 

empirical studies on knowledge areas to create a significant 

impact on improving software development process practice 

in SSCs.  

Knowledge areas like requirements, software quality, 

software testing and software maintenance need to be 

factored in research to positively influence developing 

software products in SSCs an implication shared by other 

researchers in [4], [41]. This will also streamline successful 

and sustainable development practices, especially for the 

SSCs that are pivoting to medium and larger companies.  

 

 

Figure 14 Process tools adoption framework 

 

3)  OTHER THEORIES 

In comparison to other process theories, this theory provides 

predictive and prescriptive support for software engineering 

and also guides the choice of tools during software 

development getting away from the trial and error approach 

in SSCs only to be frustrated by failure to adopt to the tool 

because of contextual complexity [39].  

Other researchers have for example proposed other theories; 

the Sensemaking–Coevolution–Implementation Theory [138] 

and the Function Behavior-Structure Framework [40], both 

adopted as software process theories. The former explains 

how complex software systems are created by cohesive 

software development teams in organizations this theory is 

useful as a process theory however, it falls short of taking 

into consideration the adaptation of the tools used in software 

practice. Similarly, the later fronts a traditional view of the 

process of software development. This theory assumes that, 

during problem framing, the artifact’s structure is driven by 

its requirements, which are driven by goals, and that the 

designers primarily evaluate their designs by predicting 

behaviour from design models. This theory also does not 

look at the context of the software company and the 

adaptability of process tools to create quality software. 

4)  EVALUATION OF THE THEORETICAL FRAMEWORK 
TABLE 9  

CONCEPTUAL EVALUATION OF THE SOFTWARE PROCESS TOOLS 

ADAPTABILITY FRAMEWORK 
 Evaluation criteria indicative parameters 

1 Feasibility 
Is there a fit between the 
theory and the problem? 

The theory helps to mitigate 
inadequacies in software 
engineering by guiding the 
processes 

2 Excitement  
Does theory promote new 
insight? 

The theory is promoting the 
concept of context and adaptability 
of the process tools that are not 
easily utilisable by SSCs. 

3 Context  
Is the theory appropriate in 
the context of the current 
problem? 

The theory fits well in mitigating 
the challenges of software practice 
in SSCs. 

4 Cost 
Is the theory affordable in 
terms of time and effort? 

The theory is affordable in terms 
of effort and time to understand. 

5 User friendly 
is the language of theory 
understandable and 
enlightening 

The theory uses simple and 
familiar words normally used by 
software practitioners. 

6 Fruitful  
Is theory useful  

The theory is useful for developing 
adaptability of process tools and 
this can also guide the building of 
process tools to take adaptability 
into account. 

E. RIGOR AND RELEVANCE 

The assessment of methods and quality of research is vital to 

this study in demonstrating the extent of rigor and relevance 

of the selected articles in this study. Although the high 

relevance observed demonstrates how much evidence 

produced in the study has been adduced to working with the 

software companies themselves, this demonstrates how the 

study can influence the industry practice. On the other hand, 

rigor is reported as inadequate, and this is an area that 

requires substantial attention. This is similar to the findings 

of similar mapping studies of Klotins et al., [41] and 

Paternoster et al., [7]. This means that the description of 

context and study design in most of the studies has remained 

a challenge and, therefore a threat to generalizability and 

knowledge transfer.  

Although the studies are conducted in real industry settings, 

this breeds a sense of realism and therefore making the study 

outcome transferable, it simply means that most of the 

studies included in the SMS are relevant. Unfortunately, the 

extent of rigor is what remained wanting. This, however, 

poses a threat to transferability, particularly in terms of 

context, study design, assessment of threats to validity of 

specific studies, and the extent to which these aspects of rigor 

are addressed in the selected studies expected. This is 

consistent with other findings from other studies [41] and [7].   



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

We therefore present a set of guidelines to ensure that 

researchers have a reference point to guide their work to 

quality.    

F. 3-POINT GUIDELINES FOR RIGOR AND QUALITY 
RESEARCH  

As a remedy to the challenges unveiled, we develop a 3-point 

guideline as a recommendation to ensure that the research is 

both of quality and of high rigor, so that it is generalisable 

and easily transferable to industry. The guidelines cover 

aspects of methodology, the results, and the conclusion. 

1)  THE GUIDELINE ON METHODOLOGY 

The study method and its processes should be described to 

detail the work’s repeatability. The detailed description 

should also enable confirmability[146], A well-defined 

context and design of the study is very significant in 

supporting and promotion of research relevant to industry. It 

creates an avenue for applying the success reports of 

technologies and methods recorded in research in real-life 

industry software projects  as highlighted by Ivarsson and 

Gorschek [51].  

2)  THE GUIDELINE ON PRESENTATION OF RESULTS 

Results should be presented in a natural form while 
ensuring honesty and transparency[147]. It is important to 
avoid heavy undertones that are unnecessary Authors are 
encouraged to use robust descriptive language to provide 
sufficient contextual information that enables the reader to 
determine credibility, transferability, dependability and  
confirmability [148]. Communication to the reader should 
be clear and that the results must be based or reflect the 
information gathered from the participants. Efforts should 
be put in place to ensure that the results are not biased 
interpretations of the researcher[149]. Additionally, the 
geographical location of the study, characteristics of 
participants that have taken part in the study, and the 
specific time of data collection and analysis should be 
thoroughly described for the readers to appreciate the 
context of the study[150]. 

3)  THE GUIDELINE ON THE CONCLUSION 

The conclusion of the study should be arrived at based on the 

results and must enhance the study’s contribution [151]. This 

should be reflected in the discussion and the paper’s 
conclusion while answering questions like so what? Why the 

results matter? What next? This needs to pay significant 

attention to both the conceptual and practical perspectives of 

the study. An avaricious narrative should be used while 

explaining results to enhance understanding of the research 

questions while relating the findings to each other[152]. 

The 3-point guideline set out statements on processes of 

writing the methodology, reporting the results, and writing 

the conclusions in a manuscript intentioned to determine a 

course of action while conducting research software 

engineering research. This guideline aims to streamline 

processes of writing to ensure quality of research.  

The guideline is important because it has been derived from 

evidence in empirical literature that highlights the areas in 

research writing which require attention[41], [48], [153]; it 

takes care of the parts which are most wanting and has a 

significant effect on the quality of research in software 

engineering. The guidelines cover only what has been 

identified as the areas that remain unclear in software 

engineering literature yet are important in reproducibility, 

generalisability and transferability.   

Akin to this, researchers are advised to make an effort to 

collaborate with industry to ensure transfer and widespread 

use of research results in industry. This will also ensure that 

research results are evidence-based. 

G. THREATS TO VALIDITY 

While conducting systematic mapping studies, threats to 

validity must be considered. The descriptive, theoretical, 

generalizability, interpretive and repeatability present 

different levels of the threats to validity and mitigation 

measures have been put in place as discussed herein. 

1)  THEORETICAL VALIDITY 

This is defined as the ability of a study to report what is 

intended for the study. Theoretical bias arises out of the 

challenges in the processes of identification and selection of 

the primary studies. The search strategy was designed to be 

as inclusive as possible in this study, although we ended up 

with 77 primary studies, out of 16538 search results from the 

4 databases. However, this seems like a limitation of the 

search string because terms like “software start-up” and 

“SMEs” return mostly irrelevant results. To mitigate this 

threat, we had an opportunity to include qualifiers like 

“software start-up” and “software SME”; however, many 

papers do not necessarily qualify the start-ups and the SMEs.  

To this effect, we enforced the inclusion and exclusion 

criteria in Table 2 to ensure that the empirical literature was 

what precisely we were looking for and had originated from 

a software engineering database.  

Before arriving at the selected 77 primary studies, it was 

noticeable that using the term SME in the search phrase 

would pose invalidity to the selection, simply because many 

studies inconsistently used this term. Specific attention was 

given to each of the papers that reported on SME to strictly 

ensure that the paper had covered a considerable majority or 

all companies we considered small companies, particularly 

with 50 persons or less. Similarly, for start-ups, there are 

instances in literature where companies are classified as start-

ups based on lack of resources and use immature processes, 

as cautioned by Paternoster et al. [7].  

2)  DESCRIPTIVE VALIDITY 

The ability of the research study to describe the gathered 

information accurately ensures descriptive validity. Clearly 

defining and justifying the objectives in the study protocol 

paved way for a precise understanding of the data to be 

gathered in the study. Data extraction was carefully done 

using google form to accurately record the information that 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

we used to populate generated schema that led to answering 

the research questions. Additionally, experienced reviewers 

had to go through and approve the protocol, the final 

findings, and the reporting to ensure descriptive validity. 

3)  GENERALIZABILITY 

The result obtained from this systematic mapping study is 

generalisable to practitioners and researchers in different 

knowledge areas of software engineering for SSCs. This is 

because the study ensured the coverage of a broad research 

area for a time interval of 30 years, which is long enough to 

capture most literature as far as software engineering in SSCs 

have been reported.  

The researchers also considered the choice of databases to 

extract the papers as significant to ensure generalizability. 

The researchers chose four(4) databases ISI web of science, 

ACM digital library, IEEE Xplore, and Scopus, believed to 

be among the most popular to the software engineering 

audience as guided by Kitchenham and Chanters[47]  and are 

also commonly used by other researches in similar 

systematic mapping studies in [2], [7], [49], [50]. The 

coverage of a broad area in software engineering practice of 

SSCs over a significant period and the consideration of the 

most used databases makes the result of this study quite 

generalisable.    

4)  INTERPRETIVE VALIDITY 

The ability of researchers to interpret the gathered data 

accurately without using their own perspective is referred to 

as interpretive validity. To ensure this, the conclusions in this 

research were based on the data we gathered and the diverse 

perspectives about the data, resulting in similar 

interpretations of the data collected. The joint involvement of 

all researchers with expertise in software engineering and 

empirical research (especially mapping studies and reviews) 

contributed to ensuring interpretive validity. 

5)  REPEATABILITY 

This is the ability of a study to be undertaken by another 

researcher to reproduce closely related results. The mapping 

procedure is specifically documented and reported 

systematically to ensure that the study can be reproduced 

with similar results based on studied research papers reported 

in this paper. Furthermore, this will ensure that the other 

researchers can reproduce this mapping study under similar 

conditions: search string, and dates of the study period. 

However, due to issues with the abstracts of few studies and 

ambiguous use of terms, the repeatability with the same 

classification may vary marginally. 

VII. CONCLUSION AND FUTURE WORK 

A. CONCLUSION 

This work is motivated by consolidating and integrating the 

fragmented findings in empirical literature of software 

process on SSCs. The paper makes two distinct contributions 

in the form of constructs that are induced from the existing 

empirical work, the main construct is based on the 

relationship between the three areas studied in the research 

questions related to software development practice for SSCs, 

and the other construct is attributed to the challenges of 

quality and rigor of research in software engineering.  

Overall, as SSCs undertake ambitious projects of quality 

software, practice in the SSCs need to be given the required 

attention [1], [11]. A situation where process tools are 

available to have things done and not have the things done 

right cannot transform software practice. Calls for the 

transformation of  software processes have led to a new 

dilemma of researchers developing lots of prospective 

process tools that are not utilisable by the SSCs [12], [40].  

Due to the complexity that arises out of the efforts to solve 

the challenges of lack of utilization of the process tools by 

the SSCs, we find the justification of a new theoretical 

framework highlighting the relationship between the process 

tools and quality software products moderated by the 

adaptation mechanism. The theory also helps us explain the 

reasons for SSCs failure to utilise the process tools which is 

an issue of concern as observed in [1], [11], [12], [101], 

[154].      

The framework is evaluated conceptually against 6 

evaluation criteria and compared with two process 

frameworks; the sensemaking–coevolution–implementation 

theory [138] and the function behavior-structure framework 

[40]. Although both are process theories none of them tackles 

the challenges of adoptability of the process tools. Unlike our 

novel adoption theoretical framework, these are more of 

design process theory and do not look at the entire 

development process but rather the design process. 

There is need to explore a mechanism of proper classification 

of the SSCs, especially by undertaking more empirical 

studies on the characteristics of the SSCs. This should build 

meaningful consensus on the understanding of the different 

context of SSCs. Similarly, researchers need to pay attention 

to tools like process frameworks, standards, and methods 

especially those that tend towards flexibility and are 

comprehensive for the different contexts of SSCs. 

Generally, the extent to which research on SSCs is 

transforming practice is still lacking. However, this 

transformation is possible through research, especially when 

the specific effort is put on the quality of the research to 

simplify and improve the research results' ability to be 

generalisable and transferrable to practitioners in industry.   

B. FUTURE WORK 

The future work, will use the overview attained through this 

study to have a detailed review of software practice in SSCs 

in a multi-vocal literature review in which grey literature will 

make a meaningful contribution to understanding software 

practice and particularly the gap that exists in practice as seen 

by industry and academia. This is intentioned to capture grey 

literature that is not recorded in academic literature.  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

We are currently investigating the experiences of software 

practitioners in using the different process tools by SSCs 

collaborating with software companies in 6 different 

countries to appreciate the difference in contexts and the 

challenges of adoption of the tools due to context. The results 

from these ongoing studies combined with software process 

adoption theoretical framework to design and construct 

classification taxonomy and an adoption framework that the 

current process tools can use to ensure that the tools are used 

for software development by the SSCs. 

REFERENCES 
[1] M. Tuape and Y. Ayalew, “Factors affecting development 

process in small software companies,” in 2019 IEEE/ACM 

Symposium on Software Engineering in Africa (SEiA), 2019, pp. 
16–23. 

[2] V. Berg, J. Birkeland, A. Nguyen-Duc, I. O. Pappas, and L. 
Jaccheri, “Software startup engineering: A systematic mapping 
study,” J. Syst. Softw., vol. 144, pp. 255–274, Oct. 2018, doi: 
10.1016/j.jss.2018.06.043. 

[3] A. Majchrowski, C. Ponsard, S. Saadaoui, J. Flamand, and J. 
Deprez, “Software development practices in small entities: an 
ISO29110‐based survey,” J. Softw. Evol. Process, vol. 28, no. 
11, pp. 990–999, 2016. 

[4] N. Tripathi, E. Annanperä, M. Oivo, and K. Liukkunen, 
“Exploring Processes in Small Software Companies: {A} 
Systematic Review,” in Software Process Improvement and 

Capability Determination - 16th International Conference, 

{SPICE} 2016, Dublin, Ireland, June 9-10, 2016, Proceedings, 
2016, vol. 609, pp. 150–165, doi: 10.1007/978-3-319-38980-
6_12. 

[5] E. Commission, “User guide to the SME Definition,” 
Publications Office of the European Union, 2020. https://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:124:00
36:0041:en:PDF (accessed May 30, 2021). 

[6] N. G. Lester, F. G. Wilkie, D. McFall, and M. P. Ware, 
“Investigating the role of CMMI with expanding company size 
for small‐to medium‐sized enterprises,” J. Softw. Maint. Evol. 

Res. Pract., vol. 22, no. 1, pp. 17–31, 2010. 
[7] N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, 

and P. Abrahamsson, “Software development in startup 
companies: A systematic mapping study,” Inf. Softw. Technol., 
vol. 56, no. 10, pp. 1200–1218, Oct. 2014, doi: 
10.1016/j.infsof.2014.04.014. 

[8] R. V. O’Connor, “Developing software and systems engineering 
standards,” in ACM International Conference Proceeding Series, 
2015, vol. 1008, pp. 13–21, doi: 10.1145/2812428.2812430. 

[9] E. Mnkandla, “About software engineering frameworks and 
methodologies,” in AFRICON 2009, 2009, pp. 1–5. 

[10] A. M. AL-Ashmori, B. B. Rad, and I. Suhaimi, “Software 
process improvement frameworks as alternative of CMMI for 
SMEs: a literature review,” J. SE, vol. 11, no. 2, pp. 123–133. 

[11] S. Alexandre, A. Renault, and N. Habra, “OWPL: A gradual 
approach for software process improvement in SMEs,” in 32nd 

EUROMICRO Conference on Software Engineering and 

Advanced Applications (EUROMICRO’06), 2006, pp. 328–335. 
[12] A. Anacleto, C. G. von Wangenheim, C. F. Salviano, and R. 

Savi, “Experiences gained from applying ISO/IEC 15504 to 
small software companies in Brazil,” in 4th International SPICE 

Conference on Process Assessment and Improvement, Lisbon, 

Portugal, 2004, pp. 33–37. 
[13] V. Claudia, M. Mirna, and M. Jezreel, “Characterization of 

software processes improvement needs in SMEs,” in 2013 

International Conference on Mechatronics, Electronics and 

Automotive Engineering, 2013, pp. 223–228. 
[14] M. Choraś et al., “Measuring and Improving Agile Processes in 

a Small-Size Software Development Company,” IEEE Access, 
vol. 8, pp. 78452–78466, 2020, doi: 

10.1109/ACCESS.2020.2990117. 
[15] B. Komal et al., “The Impact of Scope Creep on Project Success: 

An Empirical Investigation,” IEEE Access, vol. 8, pp. 125755–
125775, 2020, doi: 10.1109/ACCESS.2020.3007098. 

[16] T. Yaghoobi, “Prioritizing key success factors of software 
projects using fuzzy AHP,” J. Softw. Evol. Process, vol. 30, no. 
1, p. e1891, 2018. 

[17] “The Software Engineering Process: Definition and Scope,” 
dl.acm.org, pp. 1–2, 1999, Accessed: Feb. 14, 2020. [Online]. 
Available: https://www.mendeley.com/research-
papers/?query=10.1145/75110.75122. 

[18] B. Komal et al., “The Impact of Scope Creep on Project Success: 
An Empirical Investigation,” IEEE Access, vol. 8, pp. 125755–
125775, 2020, doi: 10.1109/ACCESS.2020.3007098. 

[19] C. Gralha, D. Damian, A. I. (Tony) Wasserman, M. Goulão, and 
J. Araújo, “The evolution of requirements practices in software 
startups,” in Proceedings of the 40th International Conference 

on Software Engineering - ICSE ’18, Jan. 2018, pp. 823–833, 
doi: 10.1145/3180155.3180158. 

[20] N. Tripathi, M. Oivo, K. Liukkunen, and J. Markkula, “Startup 
ecosystem effect on minimum viable product development in 
software startups,” Inf. Softw. Technol., vol. 114, no. June, pp. 
77–91, 2019, doi: 10.1016/j.infsof.2019.06.008. 

[21] R. Anwar, M. Rehman, K. S. Wang, M. A. Hashmani, and A. 
Shamim, “Investigation of Knowledge Sharing Behavior in 
Global Software Development Organizations Using Social 
Cognitive Theory,” IEEE Access, vol. 7, pp. 71286–71298, 
2019, doi: 10.1109/ACCESS.2019.2912657. 

[22] A. I. Wasserman, “Low ceremony processes for short lifecycle 
projects,” in Managing Software Process Evolution, Springer, 
2016, pp. 1–13. 

[23] C. G. von Wangenheim, S. Weber, J. C. R. Hauck, and G. 
Trentin, “Experiences on establishing software processes in 
small companies,” Inf. Softw. Technol., vol. 48, no. 9, pp. 890–
900, 2006. 

[24] C. G. von Wangenheim, A. Anacleto, and C. F. Salviano, 
“Helping Small Companies Assess Software Processes,” {IEEE} 

Softw., vol. 23, no. 1, pp. 91–98, 2006, doi: 
10.1109/MS.2006.13. 

[25] M. E. Fayad, M. Laitinen, and R. P. Ward, “Software 
Engineering in the Small,” Commun. {ACM}, vol. 43, no. 3, pp. 
115–118, 2000, doi: 10.1145/330534.330555. 

[26] Y. Li, K.-C. Chang, H.-G. Chen, and J. J. Jiang, “Software 
development team flexibility antecedents,” J. Syst. Softw., vol. 
83, no. 10, pp. 1726–1734, Oct. 2010, doi: 
10.1016/j.jss.2010.04.077. 

[27] I. F. Da Silva, P. A. Da Mota Silveira Neto, P. O’Leary, E. S. De 
Almeida, and S. R. D. L. Meira, “Software product line scoping 
and requirements engineering in a small and medium-sized 
enterprise: An industrial case study,” J. Syst. Softw., vol. 88, no. 
1, pp. 189–206, 2014, doi: 10.1016/j.jss.2013.10.040. 

[28] X. Larrucea, R. V. O’Connor, R. Colomo-Palacios, and C. Y. 
Laporte, “Software process improvement in very small 
organizations,” IEEE Softw., vol. 33, no. 2, pp. 85–89, 2016, doi: 
10.1109/MS.2016.42. 

[29] N. Tripathi et al., “An anatomy of requirements engineering in 
software startups using multi-vocal literature and case survey,” 
J. Syst. Softw., vol. 146, pp. 130–151, Dec. 2018, doi: 
10.1016/j.jss.2018.08.059. 

[30] E. Klotins et al., “Exploration of technical debt in start-ups,” in 
Proceedings - International Conference on Software 

Engineering, 2018, pp. 75–84, doi: 10.1145/3183519.3183539. 
[31] R. V O’Connor, “Evaluating Management Sentiment towards 

{ISO/IEC} 29110 in Very Small Software Development 
Companies,” in Software Process Improvement and Capability 

Determination - 12th International Conference, {SPICE} 2012, 

Palma, Spain, May 29-31, 2012. Proceedings, 2012, vol. 290, 
pp. 277–281, doi: 10.1007/978-3-642-30439-2_31. 

[32] M. Muñoz, A. Peña, J. Mejia, G. P. Gasca-Hurtado, M. C. 
Gómez-Alvarez, and C. Laporte, “A comparative analysis of the 
implementation of the Software Basic profile of ISO/IEC 29110 
in thirteen teams that used predictive versus adaptive life 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

cycles,” in European Conference on Software Process 

Improvement, 2019, pp. 179–191. 
[33] C. Y. Laporte and J. M. Miranda, “Delivering Software- and 

Systems-Engineering Standards for Small Teams,” Computer 

(Long. Beach. Calif)., vol. 53, no. 8, pp. 79–83, 2020, doi: 
10.1109/MC.2020.2993331. 

[34] A. Aldaeej, “Towards Effective Technical Debt Decision 
Making in Software Startups,” SIGSOFT Softw. Eng. Notes, vol. 
44, no. 3, p. 22, 2019, doi: 10.1145/3356773.3356793. 

[35] J. Melegati, A. Goldman, F. Kon, and X. Wang, “A model of 
requirements engineering in software startups,” Inf. Softw. 

Technol., vol. 109, pp. 92–107, 2019. 
[36] U. Rafiq, S. S. Bajwa, X. Wang, and I. Lunesu, “Requirements 

elicitation techniques applied in software startups,” in 2017 43rd 

Euromicro Conference on Software Engineering and Advanced 

Applications (SEAA), 2017, pp. 141–144. 
[37] A. Mishra and D. Mishra, “Software Project Management Tools: 

A Brief Comparative View,” SIGSOFT Softw. Eng. Notes, vol. 
38, no. 3, pp. 1–4, 2013, doi: 10.1145/2464526.2464537. 

[38] G. Marks, R. O’Connor, M. Yilmaz, and P. Clarke, “An 
ISO/IEC 12207 perspective on software development process 
adaptation,” Softw. Qual. Prof., vol. 20, no. 2, pp. 48–58, 2018. 

[39] R. V O’Connor and G. Coleman, “Ignoring’best practice’: Why 
Irish software SMEs are rejecting CMMI and ISO 9000,” 2009. 

[40] D. Truex, R. Baskerville, and J. Travis, “Amethodical systems 
development: the deferred meaning of systems development 
methods,” Accounting, Manag. Inf. Technol., vol. 10, no. 1, pp. 
53–79, 2000. 

[41] E. Klotins, M. Unterkalmsteiner, and T. Gorschek, “Software 
Engineering Knowledge Areas in Startup Companies: {A} 
Mapping Study,” in Software Business - 6th International 

Conference, {ICSOB} 2015, Braga, Portugal, June 10-12, 2015, 

Proceedings, 2015, vol. 210, pp. 245–257, doi: 10.1007/978-3-
319-19593-3_22. 

[42] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic 
mapping studies in software engineering,” in 12th International 

Conference on Evaluation and Assessment in Software 

Engineering (EASE) 12, 2008, pp. 1–10. 
[43] J. Bailey, D. Budgen, M. Turner, B. Kitchenham, P. Brereton, 

and S. Linkman, “Evidence relating to Object-Oriented software 
design: A survey,” in First International Symposium on 

Empirical Software Engineering and Measurement (ESEM 

2007), 2007, pp. 482–484. 
[44] D. H. Lee and M. H. Kim, “Accommodating subjective 

vagueness through a fuzzy extension to the relational data 
model,” Inf. Syst., vol. 18, no. 6, pp. 363–374, 1993. 

[45] S. Ali, H. Li, S. U. Khan, Y. Zhao, and L. Li, “Fuzzy Multi 
Attribute Assessment Model for Software Outsourcing 
Partnership Formation,” IEEE Access, vol. 6, pp. 55431–55461, 
2018, doi: 10.1109/ACCESS.2018.2871710. 

[46] S. Ali, N. Ullah, M. F. Abrar, Z. Yang, and J. Huang, “Fuzzy 
Multicriteria Decision-Making Approach for Measuring the 
Possibility of Cloud Adoption for Software Testing,” Sci. 

Program., vol. 2020, p. 6597316, 2020, doi: 
10.1155/2020/6597316. 

[47] B. Kitchenham and S. Charters, “Guidelines for performing 
systematic literature reviews in software engineering,” 2007. 

[48] V. Berg, J. Birkeland, A. Nguyen-Duc, I. O. Pappas, and L. 
Jaccheri, “Software startup engineering: A systematic mapping 
study,” J. Syst. Softw., vol. 144, no. January 2019, pp. 255–274, 
2018, doi: 10.1016/j.jss.2018.06.043. 

[49] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. 
McGregor, E. S. de Almeida, and S. R. de Lemos Meira, “A 
systematic mapping study of software product lines testing,” Inf. 

Softw. Technol., vol. 53, no. 5, pp. 407–423, 2011. 
[50] V. Gupta, J. M. Fernandez-Crehuet, T. Hanne, and R. Telesko, 

“Requirements Engineering in Software Startups: A Systematic 
Mapping Study,” Appl. Sci., vol. 10, no. 17, p. 6125, 2020. 

[51] M. Ivarsson and T. Gorschek, “A method for evaluating rigor 
and industrial relevance of technology evaluations,” Empir. 

Softw. Eng., vol. 16, no. 3, pp. 365–395, 2011. 
[52] M. Shaw, “Writing good software engineering research papers,” 

in 25th International Conference on Software Engineering, 

2003. Proceedings., 2003, pp. 726–736. 
[53] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, 

“Requirements engineering paper classification and evaluation 
criteria: a proposal and a discussion,” Requir. Eng., vol. 11, no. 
1, pp. 102–107, 2006. 

[54] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, 
“Requirements engineering paper classification and evaluation 
criteria: a proposal and a discussion,” Requir. Eng., vol. 11, no. 
1, pp. 102–107, 2006. 

[55] K. C. Dangle, P. Larsen, M. Shaw, and M. V Zelkowitz, 
“Software Process Improvement in Small Organizations: {A} 
Case Study,” {IEEE} Softw., vol. 22, no. 6, pp. 68–75, 2005, doi: 
10.1109/MS.2005.162. 

[56] M. A. Almomani, S. Basri, A. K. B. Mahmood, and Y. M. 
Baashar, “An empirical analysis of software practices in 
Malaysian Small and Medium Enterprises,” in 2016 3rd 

International Conference on Computer and Information Sciences 

(ICCOINS), 2016, pp. 442–447. 
[57] M. A. Alanezi, “The Adoption of Software Process 

Improvement in Saudi Arabian Small and Medium Size 
Software Organizations: An Exploratory Study,” Int. J. Adv. 

Comput. Sci. Appl., vol. 9, no. 3, pp. 195–201, 2018. 
[58] F. McCaffery, P. S. Taylor, and G. Coleman, “Adept: A unified 

assessment method for small software companies,” IEEE Softw., 
vol. 24, no. 1, pp. 24–31, 2007, doi: 10.1109/MS.2007.3. 

[59] F. X. Bru et al., “Building an observatory of course-of-action in 
software engineering: Towards a link between ISO/IEC software 
engineering standards and a reflective practice,” Commun. 

Comput. Inf. Sci., vol. 42, pp. 185–200, 2009, doi: 10.1007/978-
3-642-04133-4_16. 

[60] T. Nonoyama, L. Wen, and T. Rout, “Current challenges and 
proposed software improvement process for VSEs in developing 
countries,” in International Conference on Software Process 

Improvement and Capability Determination, 2016, pp. 437–444. 
[61] K. Suteeca and S. Ramingwong, “A framework to apply 

ISO/IEC29110 on SCRUM,” in 2016 International Computer 

Science and Engineering Conference (ICSEC), 2016, pp. 1–5. 
[62] M.-L. Sanchez-Gordon, R. V O’Connor, and R. Colomo-

Palacios, “Evaluating VSEs viewpoint and sentiment towards the 
ISO/IEC 29110 standard: a two country grounded theory study,” 
in International Conference on Software Process Improvement 

and Capability Determination, 2015, pp. 114–127. 
[63] L. Rivas, M. A. Pérez, L. E. Mendoza, and A. Grimán, “Towards 

a Selection Model for Software Engineering Tools in Small and 
Medium Enterprises (SMEs),” in Proceedings of the Third 

International Conference on Software Engineering Advances, 

{ICSEA} 2008, October 26-31, 2008, Sliema, Malta, 2008, pp. 
264–269, doi: 10.1109/ICSEA.2008.51. 

[64] V. Ribaud, P. Saliou, R. O’Connor, and C. Y. Laporte, 
“Software Engineering Support Activities for Very Small 
Entities,” in Systems, Software and Services Process 

Improvement - 17th European Conference, EuroSPI 2010, 

Grenoble, France, September 1-3, 2010. Proceedings, 2010, vol. 
99, pp. 165–176, doi: 10.1007/978-3-642-15666-3_15. 

[65] F. J. Pino, O. Pedreira, F. García, M. R. Luaces, and M. Piattini, 
“Using Scrum to guide the execution of software process 
improvement in small organizations,” J. Syst. Softw., vol. 83, no. 
10, pp. 1662–1677, 2010, doi: 10.1016/j.jss.2010.03.077. 

[66] R. V O’Connor, “Exploring the role of usability in the software 
process: A study of irish software smes,” in European 

Conference on Software Process Improvement, 2009, pp. 161–
172. 

[67] S. F. Ochoa, R. Robbes, M. Marques, L. Silvestre, and A. 
Quispe, “What differentiates Chilean niche software companies: 
Business knowledge and reputation,” IEEE Softw., vol. 34, no. 3, 
pp. 96–103, 2017. 

[68] L. M. A. Nascimento and G. H. Travassos, “Software knowledge 
registration practices at software innovation startups: results of 
an exploratory study,” in Proceedings of the 31st Brazilian 

Symposium on Software Engineering, 2017, pp. 234–243. 
[69] M. Muñoz, A. Peña, J. Mej\’\ia, G. P. G. Hurtado, M. C. Gómez-



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

Alvarez, and C. Y. Laporte, “Analysis of 13 implementations of 
the software engineering management and engineering basic 
profile guide of {ISO/IEC} 29110 in very small entities using 
different life cycles,” J. Softw. Evol. Process., vol. 32, no. 11, 
2020, doi: 10.1002/smr.2300. 

[70] M. E. Morales-Trujillo and G. A. García-Mireles, “Evolving 
with patterns: a 31-month startup experience report,” in 
Proceedings of the 2019 27th ACM Joint Meeting on European 

Software Engineering Conference and Symposium on the 

Foundations of Software Engineering, 2019, pp. 1037–1047. 
[71] S. Lucho, K. Melendez, and A. Dávila, “Analysis of 

environmental factors in the adoption of ISO/IEC 29110. 
Multiple case study,” in International Conference on Software 

Process Improvement, 2017, pp. 82–93. 
[72] M. Muñoz, J. Mejia, and C. Y. Laporte, “Reinforcing very small 

entities using agile methodologies with the ISO/IEC 29110,” in 
International Conference on Software Process Improvement, 
2018, pp. 88–98. 

[73] G. A. García-Mireles, “Addressing product quality 
characteristics using the ISO/IEC 29110,” in Trends and 

Applications in Software Engineering, Springer, 2016, pp. 25–
34. 

[74] R. Souza, K. Malta, and E. S. De Almeida, “Software 
Engineering in Startups: {A} Single Embedded Case Study,” in 
1st {IEEE/ACM} International Workshop on Software 

Engineeting for Startups, SoftStart@ICSE 2017, Buenos Aires, 

Argentina, May 21, 2017, 2017, pp. 17–23, doi: 
10.1109/SoftStart.2017.2. 

[75] P. Borges, P. Monteiro, and R. J. Machado, “Tailoring RUP to 
small software development teams,” in 2011 37th EUROMICRO 

Conference on Software Engineering and Advanced 

Applications, 2011, pp. 306–309. 
[76] M. A. T. Almomani, S. Basri, and A. R. Gilal, “Empirical study 

of software process improvement in Malaysian small and 
medium enterprises: The human aspects,” J. Softw. Evol. 

Process., vol. 30, no. 10, 2018, doi: 10.1002/smr.1953. 
[77] C. Y. Laporte, M. Munoz, J. M. Miranda, and R. V O’Connor, 

“Applying software engineering standards in very small entities: 
from startups to grownups,” IEEE Softw., vol. 35, no. 1, pp. 99–
103, 2017. 

[78] G. C. L. Leal, R. Prikladnicki, C. Ebert, R. Balancieri, and L. B. 
Pompermaier, “Practices and tools for software start-ups,” IEEE 

Softw., vol. 37, no. 1, pp. 72–77, 2019. 
[79] E. Klotins, M. Unterkalmsteiner, and T. Gorschek, “Software 

engineering antipatterns in start-ups,” IEEE Softw., vol. 36, no. 
2, pp. 118–126, 2019, doi: 10.1109/MS.2018.227105530. 

[80] J. Kasurinen and K. Smolander, “Defining an Iterative ISO/IEC 
29110 Deployment Package for Game Developers,” 
International Journal of Information Technologies and Systems 

Approach (IJITSA), vol. 10, no. 1. pp. 107–125, 2017. 
[81] J. Melegati, R. Chanin, A. Sales, R. Prikladnicki, and X. Wang, 

“MVP and experimentation in software startups: a qualitative 
survey,” in 2020 46th Euromicro Conference on Software 

Engineering and Advanced Applications (SEAA), 2020, pp. 322–
325. 

[82] S. Galván-Cruz, M. Muñoz, J. Mejía, C. Y. Laporte, and M. 
Negrete, “Building a guideline to reinforce agile software 
development with the basic profile of ISO/IEC 29110 in very 
small entities,” in International Conference on Software Process 

Improvement, 2020, pp. 20–37. 
[83] E. Carmel and S. Becker, “A process model for packaged 

software development,” IEEE Trans. Eng. Manag., vol. 42, no. 
1, pp. 50–61, 1995. 

[84] T. Clark and P. A. Muller, “Exploiting model driven technology: 
A tale of two startups,” Softw. Syst. Model., vol. 11, no. 4, pp. 
481–493, 2012, doi: 10.1007/s10270-012-0260-1. 

[85] A. M. Sharif and S. Basri, “Risk assessment factors for SME 
software development companies in Malaysia,” in 2014 

International Conference on Computer and Information Sciences 

(ICCOINS), 2014, pp. 1–5. 
[86] Y.-M. Garc\’\ia, M. Muñoz, J. Mejia, G. P. G. Hurtado, and A. 

M. Medina, “Application of a Risk Management Tool Focused 

on Helping to Small and Medium Enterprises Implementing the 
Best Practices in Software Development Projects,” in Trends 

and Advances in Information Systems and Technologies - 

Volume 2 [WorldCIST’18, Naples, Italy, March 27-29, 2018], 
2018, vol. 746, pp. 429–440, doi: 10.1007/978-3-319-77712-
2_41. 

[87] S. Basri and R. V. Oconnor, “Software development team 
dynamics in SPI: A VSE context,” Proc. - Asia-Pacific Softw. 

Eng. Conf. APSEC, vol. 2, pp. 1–8, 2012, doi: 
10.1109/APSEC.2012.26. 

[88] F. J. López-Lira Hinojo, “Agile, CMMI®, RUP®, ISO/IEC 
12207...: Is There a Method in This Madness?,” SIGSOFT Softw. 

Eng. Notes, vol. 39, no. 2, pp. 1–5, 2014, doi: 
10.1145/2579281.2579299. 

[89] X. Larrucea, I. Santamaria, and B. Fernandez‐Gauna, “Managing 
security debt across PLC phases in a VSE context,” J. Softw. 

Evol. Process, vol. 32, no. 3, p. e2214, 2020. 
[90] R. V. O’Connor and C. Y. Laporte, “Software project 

management in very small entities with ISO/IEC 29110,” 
Commun. Comput. Inf. Sci., vol. 301 CCIS, pp. 330–341, 2012, 
doi: 10.1007/978-3-642-31199-4_29. 

[91] T. Nonoyama, L. Wen, T. Rout, and D. Tuffley, “Cultural Issues 
and Impacts of Software Process in Very Small Entities 
(VSEs),” in Software Process Improvement and Capability 

Determination - 17th International Conference, {SPICE} 2017, 

Palma de Mallorca, Spain, October 4-5, 2017, Proceedings, 
2017, vol. 770, pp. 70–81, doi: 10.1007/978-3-319-67383-7_6. 

[92] A. Mesquida and A. Mas, “A project management improvement 
program according to ISO/IEC 29110 and PMBOK®,” J. Softw. 

Evol. Process, vol. 26, no. 9, pp. 846–854, 2014. 
[93] A. Boden, G. Avram, L. Bannon, and V. Wulf, “Knowledge 

sharing practices and the impact of cultural factors: reflections 
on two case studies of offshoring in SME,” J. Softw. Evol. 

Process, vol. 24, no. 2, pp. 139–152, 2012. 
[94] S. M. Neves, C. E. S. Da Silva, V. A. P. Salomon, and A. L. A. 

Santos, “Knowledge-Based Risk Management: survey on 
brazilian software development enterprises,” in Advances in 

Information Systems and Technologies, Springer, 2013, pp. 55–
65. 

[95] M. Yilmaz, R. V O’Connor, and P. Clarke, “Software 
Development Roles: A Multi-Project Empirical Investigation,” 
SIGSOFT Softw. Eng. Notes, vol. 40, no. 1, pp. 1–5, 2015, doi: 
10.1145/2693208.2693239. 

[96] M. Verlage and T. Kiesgen, “Five years of product line 
engineering in a small company,” in Proceedings. 27th 

International Conference on Software Engineering, 2005. ICSE 

2005., 2005, pp. 534–543. 
[97] I. Garcia, C. Pacheco, M. Arcilla, and N. Sanchez, “Project 

Management in Small-Sized Software Enterprises: A 
Metamodeling-Based Approach,” in Trends and Applications in 

Software Engineering, Springer, 2016, pp. 3–13. 
[98] K.-K. Kemell et al., “Business Model Canvas Should Pay More 

Attention to the Software Startup Team,” in 2020 46th 

Euromicro Conference on Software Engineering and Advanced 

Applications (SEAA), 2020, pp. 342–345. 
[99] A. Tereso, C. P. Leão, and T. Ribeiro, “Project Management 

Practices at Portuguese Startups,” in World Conference on 

Information Systems and Technologies, 2019, pp. 39–49. 
[100] S. S. Bajwa, X. Wang, A. Nguyen Duc, and P. Abrahamsson, 

“‘Failures’ to be celebrated: an analysis of major pivots of 
software startups,” Empir. Softw. Eng., vol. 22, no. 5, pp. 2373–
2408, 2017, doi: 10.1007/s10664-016-9458-0. 

[101] M. Tuape, P. Ntebane, and P. Majoo, “Does Context Matter? 
Assessing the Current State of Quality Practice During Software 
Development in Small Software Companies,” in Proceedings of 

the Future Technologies Conference, 2020, pp. 341–356. 
[102] M. Muñoz, J. Mejia, and C. Y. Laporte, “Implementing ISO/IEC 

29110 to reinforce four very small entities of Mexico under an 
agile approach,” IET Softw., vol. 14, no. 2, pp. 75–81, 2019. 

[103] J. Mejia, E. Muñoz, and M. Muñoz, “Reinforcing the 
applicability of multi-model environments for software process 
improvement using knowledge management,” Sci. Comput. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

Program., vol. 121, pp. 3–15, 2016. 
[104] S. Basri, M. A. T. Almomani, A. A. Imam, T. Murugan, A. R. 

Gilal, and A. O. Balogun, “The Organisational Factors of 
Software Process Improvement in Small Software Industry: 
Comparative Study,” in Emerging Trends in Intelligent 

Computing and Informatics - Data Science, Intelligent 

Information Systems and Smart Computing, International 

Conference of Reliable Information and Communication 

Technology, {IRICT} 2019, Johor, Malaysia, 22-23 September, 

20, 2019, vol. 1073, pp. 1132–1143, doi: 10.1007/978-3-030-
33582-3_106. 

[105] A. Tosun, A. B. Bener, and B. Turhan, “Implementation of a 
Software Quality Improvement Project in an {SME:} {A} 
Before and After Comparison,” in 35th Euromicro Conference 

on Software Engineering and Advanced Applications, {SEAA} 

2009, Patras, Greece, August 27-29, 2009, Proceedings, 2009, 
pp. 203–209, doi: 10.1109/SEAA.2009.52. 

[106] I. Garcia, C. Pacheco, J. A. Calvo-Manzano, and H. Hernández-
Moreno, “Implementing the Ki Wo Tsukau® model to 
strengthen the commitment of small-sized software enterprises 
in software process improvement initiatives,” in International 

Conference on Software Process Improvement, 2016, pp. 3–12. 
[107] M. Muñoz and J. Mejia, “Letting Organizations to Find the 

Correct Way to Start in the Implementation of Software Process 
Improvements,” in New Contributions in Information Systems 

and Technologies, Springer, 2015, pp. 503–512. 
[108] A. Singh and S. S. Gill, “Measuring the maturity of Indian small 

and medium enterprises for unofficial readiness for capability 
maturity model integration-based software process 
improvement,” J. Softw. Evol. Process., vol. 32, no. 9, 2020, doi: 
10.1002/smr.2261. 

[109] A. Nguyen-Duc, S. M. A. Shah, and P. Ambrahamsson, 
“Towards an early stage software startups evolution model,” in 
2016 42th Euromicro Conference on Software Engineering and 

Advanced Applications (SEAA), 2016, pp. 120–127. 
[110] X. Larrucea and I. Santamaria, “Comparing SPI survival studies 

in small settings,” in International Conference on Software 

Process Improvement and Capability Determination, 2017, pp. 
45–54. 

[111] T. Varkoi, “Process Assessment In Very Small Entities,” 2010 

Seventh Int. Conf. Qual. Inf. Commun. Technol. Process, pp. 
436–440, 2010. 

[112] Q. Boucher, G. Perrouin, J.-C. Deprez, and P. Heymans, 
“Towards Configurable {ISO/IEC} 29110-Compliant Software 
Development Processes for Very Small Entities,” in Systems, 

Software and Services Process Improvement - 19th European 

Conference, EuroSPI 2012, Vienna, Austria, June 25-27, 2012. 

Proceedings, 2012, vol. 301, pp. 169–180, doi: 10.1007/978-3-
642-31199-4_15. 

[113] M. Sivashankar, A. M. Kalpana, and A. E. Jeyakumar, “A 
framework approach using CMMI for SPI to Indian SME’S,” in 
2010 International Conference on Innovative Computing 

Technologies (ICICT), 2010, pp. 1–5. 
[114] R. Eito-Brun and M.-A. Sicilia, “Innovation-Driven Software 

Development Leveraging Small Companies’ Product-
Development Capabilities,” IEEE Softw., vol. 33, no. 5, pp. 38–
46, 2016, doi: 10.1109/MS.2016.63. 

[115] S. Galván-Cruz, M. Mora, and R. O’Connor, “A Means-Ends 
Design of SCRUM+: an agile-disciplined balanced SCRUM 
enhanced with the ISO/IEC 29110 Standard,” in International 

Conference on Software Process Improvement, 2017, pp. 13–23. 
[116] M. Negrete, U. Infante, and M. Muñoz, “A Case Study of 

Improving a Very Small Entity with an Agile Software 
Development Based on the Basic Profile of the ISO/IEC 29110,” 
in International Conference on Software Process Improvement, 
2020, pp. 3–19. 

[117] C. Y. Laporte and R. V O’Connor, “A multi-case study analysis 
of software process improvement in very small companies using 
ISO/IEC 29110,” in European Conference on Software Process 

Improvement, 2016, pp. 30–44. 
[118] P. Knauber, D. Muthig, K. Schmid, and T. Widen, “Applying 

product line concepts in small and medium-sized companies,” 

IEEE Softw., vol. 17, no. 5, pp. 88–95, 2000, doi: 
10.1109/52.877873. 

[119] T. Besker, A. Martini, R. Edirisooriya Lokuge, K. Blincoe, and 
J. Bosch, “Embracing technical debt, from a startup company 
perspective,” Proc. - 2018 IEEE Int. Conf. Softw. Maint. Evol. 

ICSME 2018, pp. 415–425, 2018, doi: 
10.1109/ICSME.2018.00051. 

[120] M. Chicote, “Startups and Technical Debt: Managing Technical 
Debt with Visual Thinking,” in 2017 IEEE/ACM 1st 

International Workshop on Software Engineering for Startups 

(SoftStart), 2017, pp. 10–11, doi: 10.1109/SoftStart.2017.6. 
[121] F. Silva, R. Souza, and I. Machado, “Taming and Unveiling 

Software Reuse opportunities through White Label Software in 
Startups,” in 2020 46th Euromicro Conference on Software 

Engineering and Advanced Applications (SEAA), 2020, pp. 302–
305. 

[122] L. Riungu-Kalliosaari, O. Taipale, and K. Smolander, “Testing 
in the cloud: Exploring the practice,” IEEE Softw., vol. 29, no. 2, 
pp. 46–51, 2011. 

[123] M. Felderer and R. Ramler, “Risk orientation in software testing 
processes of small and medium enterprises: an exploratory and 
comparative study,” Softw. Qual. J., vol. 24, no. 3, pp. 519–548, 
Sep. 2016, doi: 10.1007/s11219-015-9289-z. 

[124] R. Kaushik, C. J. M. Tauro, V. D. Souza, and K. Bhowmick, “A 
novel approach for collaborative last-mile performance testing 
implementation using an object-oriented approach.,” ACM 

SIGSOFT Softw. Eng. Notes, vol. 39, no. 2, pp. 1–4, 2014. 
[125] L. Mathiassen and A. M. Vainio, “Dynamic Capabilities in 

Small Software Firms: {A} Sense-and-Respond Approach,” 
{IEEE} Trans. Eng. Manag., vol. 54, no. 3, pp. 522–538, 2007, 
doi: 10.1109/TEM.2007.900782. 

[126] U. Rafiq et al., “Maintenance and Evolution of Software 
Products,” J. Syst. Softw., vol. 53, no. 1, pp. 50–61, Sep. 2017, 
doi: https://doi.org/10.1016/S0065-2458(08)60232-6. 

[127] C. Y. Laporte and R. V O’Connor, “Implementing process 
improvement in very small enterprises with ISO/IEC 29110: A 
multiple case study analysis,” in 2016 10th International 

Conference on the Quality of Information and Communications 

Technology (QUATIC), 2016, pp. 125–130. 
[128] M.-L. Sanchez-Gordon and R. V O’Connor, “Understanding the 

gap between software process practices and actual practice in 
very small companies,” Softw. Qual. J., vol. 24, no. 3, pp. 549–
570, Sep. 2016, doi: 10.1007/s11219-015-9282-6. 

[129] V. Vukovic, J. Djurkovic, M. Sakal, and L. Rakovic, “An 
Empirical Investigation of Software Testing Methods and 
Techniques in the Province of Vojvodina,” Teh. Vjesn., vol. 27, 
no. 3, pp. 687–696, 2020. 

[130] A. L’Erario, H. C. S. Thomazinho, and J. A. Fabri, “An 
approach to software maintenance: A case study in small and 
medium-sized businesses it organizations,” Int. J. Softw. Eng. 

Knowl. Eng., vol. 30, no. 05, pp. 603–630, 2020. 
[131] J. K. Balikuddembe and M. Tuape, “An Ambiguity 

Minimization Technique during Requirements Elicitation 
Phase,” Proc. - 2017 Int. Conf. Comput. Sci. Comput. Intell. 

CSCI 2017, pp. 945–950, 2018, doi: 10.1109/CSCI.2017.164. 
[132] V. Kettunen, J. Kasurinen, O. Taipale, and K. Smolander, “A 

Study on Agility and Testing Processes in Software 
Organizations,” in Proceedings of the 19th International 

Symposium on Software Testing and Analysis, 2010, pp. 231–
240, doi: 10.1145/1831708.1831737. 

[133] C. Wohlin, D. Šmite, and N. B. Moe, “A general theory of 
software engineering: Balancing human, social and 
organizational capitals,” J. Syst. Softw., vol. 109, pp. 229–242, 
2015. 

[134] S. M. Sutton, “The role of process in software start-up,” IEEE 

Softw., vol. 17, no. 4, pp. 33–39, 2000. 
[135] R. Xue, C. Baron, and P. Esteban, “Optimising product 

development in industry by alignment of the ISO/IEC 15288 
systems engineering standard and the PMBoK guide,” Int. J. 

Prod. Dev., vol. 22, no. 1, pp. 65–80, 2017. 
[136] C. Y. Laporte and R. V O’Connor, “Systems and software 

engineering standards for very small entities: accomplishments 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

and overview,” Computer (Long. Beach. Calif)., vol. 49, no. 8, 
pp. 84–87, 2016. 

[137] P. Clarke, R. V O’Connor, and B. Leavy, “A complexity theory 
viewpoint on the software development process and situational 
context,” in Proceedings of the International Conference on 

Software and Systems Process, 2016, pp. 86–90. 
[138] P. Ralph, “The Sensemaking-coevolution-implementation theory 

of software design,” Sci. Comput. Program., vol. 101, pp. 21–41, 
2015. 

[139] R. V. O’Connor and C. Y. Laporte, “The evolution of the 
ISO/IEC 29110 set of standards and guides,” Int. J. Inf. Technol. 

Syst. Approach, vol. 10, no. 1, pp. 1–21, 2017, doi: 
10.4018/IJITSA.2017010101. 

[140] E. Klotins, M. Unterkalmsteiner, and T. Gorschek, “Software 
engineering antipatterns in start-ups,” IEEE Softw., vol. 36, no. 
2, pp. 118–126, 2018. 

[141] C. Giardino, S. S. Bajwa, X. Wang, and P. Abrahamsson, “Key 
challenges in early-stage software startups,” in International 

Conference on Agile Software Development, 2015, pp. 52–63. 
[142] C. Y. Laporte, R. V O’Connor, and L. H. G. Paucar, “Software 

Engineering Standards and Guides for Very Small Entities - 
Implementation in Two Start-ups,” in {ENASE} 2015 - 

Proceedings of the 10th International Conference on Evaluation 

of Novel Approaches to Software Engineering, Barcelona, Spain, 

29-30 April, 2015, 2015, pp. 5–15, doi: 
10.5220/0005368500050015. 

[143] J. Melegati, “What influences software startups to use lean 
startup?,” in Proceedings of the 19th International Conference 

on Agile Software Development: Companion, 2018, pp. 1–3. 
[144] K.-K. Kemell, V. Ravaska, A. Nguyen-Duc, and P. 

Abrahamsson, “Software Startup Practices - Software 
Development in Startups Through the Lens of the Essence 
Theory of Software Engineering,” in Product-Focused Software 

Process Improvement - 21st International Conference, 

{PROFES} 2020, Turin, Italy, November 25-27, 2020, 

Proceedings, 2020, vol. 12562, pp. 402–418, doi: 10.1007/978-
3-030-64148-1_25. 

[145] C. G. von Wangeheim, A. Anacleto, and C. F. Salviano, 
“Helping small companies assess software processes,” IEEE 

Softw., vol. 23, no. 1, pp. 91–98, 2006, doi: 
10.1109/MS.2006.13. 

[146] Y. S. Lincoln and N. K. Denzin, The Sage handbook of 

qualitative research. Sage Publications, 2011. 
[147] S. J. Taylor, R. Bogdan, and M. DeVault, Introduction to 

qualitative research methods: A guidebook and resource. John 
Wiley & Sons, 2015. 

[148] R. Whittemore, S. K. Chase, and C. L. Mandle, “Validity in 
qualitative research,” Qual. Health Res., vol. 11, no. 4, pp. 522–
537, 2001. 

[149] B. Kitchenham et al., “Evaluating guidelines for reporting 
empirical software engineering studies,” Empir. Softw. Eng., vol. 
13, no. 1, pp. 97–121, 2008. 

[150] T. Dybå, R. Prikladnicki, K. Rönkkö, C. Seaman, and J. Sillito, 
“Qualitative research in software engineering,” Empir. Softw. 

Eng., vol. 16, no. 4, pp. 425–429, 2011, doi: 10.1007/s10664-
011-9163-y. 

[151] P. Runeson and M. Höst, “Guidelines for conducting and 
reporting case study research in software engineering,” Empir. 

Softw. Eng., vol. 14, no. 2, pp. 131–164, 2009. 
[152] B. C. O’Brien, I. B. Harris, T. J. Beckman, D. A. Reed, and D. 

A. Cook, “Standards for reporting qualitative research: a 
synthesis of recommendations.,” Acad. Med., vol. 89, no. 9, pp. 
1245–1251, Sep. 2014, doi: 10.1097/ACM.0000000000000388. 

[153] J. S. Molléri, K. Petersen, and E. Mendes, “Cerse-catalog for 
empirical research in software engineering: A systematic 
mapping study,” Inf. Softw. Technol., vol. 105, pp. 117–149, 
2019. 

[154] M. Tuape and Y. Ayalew, “A roadmap for a comparison 
framework for an adaptable software process improvement 
framework in small software companies,” Ann. Comput. Sci. Inf. 

Syst., vol. 20, pp. 133–141, 2019. 
 

 
MICHEAL TUAPE (M’19) Born in Pakwach 
Uganda, 21 March 1979). received Bachelor of 
Science in Information Technology with honors 
Uganda Christian University Mukono Uganda, 
Master’s of Science degree in Software 
Engineering Makerere University Kampala 
Uganda and currently pursuing Doctor of Science 
in Technology degree Software Engineering at 
Lappeenranta-Lahti University of Technology 
Lappeenranta Finland  

He is currently a junior researcher at Lappeenranta-Lahti University of 
Technology since 2020, he has also been an research associate in the UIG 
project at the University of Botswana Gaborone Botswana 2018-2020, a 
research associate at the Software Systems Center Makerere University 
Kampala 2015-2018   His research interest are in software engineering, 
requirements engineering, software development process small software 
companies and open science. 
Mr. Tuape is also a member of ACM and the PMI 
 
 
 
 

 
VICTORIA T HASHEELA-MUFETI has 
obtained a Bachelor of Science in Computer 
Science and Economics from the University of 
Namibia in 2005. She further received a Bachelor 
of Science Honors degree in Computer Science 
from Stellenbosch University, South Africa in 
2007, and a Master’s of Science degree in 
Informatics from Mannheim University, 
Germany in 2010. She has also received a Doctor 
of Science in Technology from Lappeenranta 

University of Technology, Finland in 2018. She was a Fulbright Scholar at 
University of New Mexico, USA in 2018.  
She is currently a Senior Lecturer at the University of Namibia. Her 
research interests include Digital preservation of African indigenous 
knowledge and languages, Software development for SMEs and Data 
Analytics. 
 
 
 
 
 
 
 

 
 ANNA KAYANDA received the Bachelor of 
Science in Computer Science from University of 
Dar es Salaam, Tanzania, in 2009 and the 
Master’s of Science degree in Computer Science 
from University of Mysore, India, in 2013. She is 
currently pursuing the Ph.D. degree in Science, 
Technology and Computing at University of 
Eastern Finland, Finland. 
    She currently working as an Assistant Lecturer 
at the College of Business Education. Her 

research interest includes information systems development for decision 
support. 
 
 
 
 
 
 
 
 
 
 
 
 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3113328, IEEE Access

 

VOLUME XX, 20XX 9 

JARI PORRAS is a Professor of Software 
Engineering (especially Distributed Systems) at 
the Lappeenranta-Lahti University of Technology 
LUT. Prof. Porras received the DSc. (Tech.) 
degree from the Lappeenranta University of 
Technology, Finland in 1998 about modeling and 
simulation of communication networks in 
distributed computing environment. 
He has supervised approx. 500 Master’s Thesis 
works and 22 Dissertations as well as acted as 

external evaluator for 21 doctoral thesis works since the start of his 
professorship. He has conducted research on parallel and distributed 
computing, wireless and mobile systems and services as well as 
sustainable ICT. In last years he has focused his research on human and 
sustainability aspects of software engineering. He is actively working in 
international networks and organizations 
 
 
 
 
 
 
 
 

 
JUSSI KASURINEN (born in Savonlinna, 
Finland) is a Doctor of Science in technology, 
specializing in software engineering and software 
testing, and an adjunct professor of entertainment 
software engineering. Dr. Kasurinen received his 
adjunct professorship in 2017 from LUT 
University, and doctoral degree in 2011 from 
Lappeenranta University of Technology (LUT, 
Lappeenranta, Finland), in area of software 
engineering. Dr. Kasurinen also has a Master’s 

degree (2007) from Lappeenranta University of Technology from 
information technology. His current research interests include but are not 
limited to smart systems for software engineering, games from the 
viewpoint of software, software testing practices, and software process 
quality.  
Currently he works as an associate professor and head of degree programs 
in Software Engineering in LUT School of Engineering Sciences. During 
his career, he has authored over 50 scientific publications in various topics 
of software engineering, and four non-fiction books discussing 
programming languages and software testing.  
Assoc. Prof. Kasurinen is also the current LUT university representative of 
the Finnish Software Measurement Association (FiSMA), Computer 
Science Association of Finland, and Academic Engineers and Architects in 
Finland (TEK). 


