
PsychNology Journal, 2004
Volume 2, Number 1, 99 - 122

 99

Software Environments for End-User Development and
Tailoring

Maria Francesca Costabile♥1, Daniela Fogli2,
Giuseppe Fresta3, Piero Mussio4, Antonio Piccinno1

1 Dipartimento di Informatica, Università di Bari, Bari, Italy.

2 Dipartimento di Elettronica per l’Automazione, Università di Brescia, Brescia, Italy

3 ISTI - CNR, Pisa, Italy.

4Dipartimento di Informatica e Comunicazione, Università di Milano, Milano, Italy.

ABSTRACT

In the Information Society, end-users keep increasing very fast in number, as well as in their
demand with respect to the activities they would like to perform with computer environments,
without being obliged to become computer specialists. There is a strong request of providing
end-users with powerful and flexible environments, tailorable to the culture, skills and needs
of very diverse end-user population. In this paper, we discuss a framework for End-User
Development (EUD) and present our methodology to design software environments that
support the activities of a particular class of end-users, called domain-expert users, with the
objective of easing the way these users work with computers. Such environments are called
Software Shaping Workshops in analogy to artisan workshops, since they provide users with
the tools, organized on a bench, that are necessary to accomplish their specific activities by
properly shaping software artifacts. The methodology is discussed, outlining its
implementation through a web-based prototype.

Keywords: End-User Development, Visual Interaction, Tailoring, Customization.

Received 16 January 2004; received in revised form 31 March 2004; accepted 1 April 2004.

1. Introduction

Even if progress has been made in improving the way users can access interactive

software systems, some phenomena affecting the life of interactive products still make

difficult to develop software systems acceptable in a working environment. In Human-

Computer Interaction (HCI), it is often observed that “using the system changes the

users, and as they change they will use the system in new ways” (Nielsen, 1994). In

turn, the system must evolve to adapt to its new usages; we called this phenomenon

♥ Corresponding Author:
Maria Francesca Costabile
Dipartimento di Informatica,
Università di Bari, Bari, Italy
E-mail: costabile@di.uniba.it

Software Environments for Developing

 100

co-evolution of users and systems (Arondi et al., 2002). In (Bourguin et al., 2001), it is

observed that these new uses of the system determine the evolution of the users

culture and of their models and procedures of task evolution, while the requests from

users force the evolution of the whole technology supporting interaction.

Co-evolution stems from two main sources: a) user creativity, i.e. users may devise

novel ways to exploit the system in order to satisfy some needs not considered in the

specification and design phase; and b) user acquired habits, i.e. users may follow

some interaction strategy to which they are (or become) accustomed; this strategy

must be facilitated with respect to the initial design.

Co-evolution implies tailoring that, according to (Mørch and Mehandjiev, 2000), is “the

activity of modifying an existing computer system in the context of its use, rather than in

the development context”. This definition emphasizes that users themselves can tailor

the system to their necessities. Tailoring stems from a continuous adaptation of a

system and is seen as the indirect long-term collaboration between developers and

users. Tailoring should be driven by users to exploit the potential benefits of task-

oriented and skill-based system adaptations that only users themselves can perform.

However, a trade-off to this approach is the variety of developed applications to be

maintained by software engineers. Our proposal is also aimed at coping with this

problem.

One fundamental challenge for the coming years is to develop environments that

allow people without particular background in programming to develop and tailor their

own applications, still maintaining the congruence within the different evolved instances

of the system. Over the next few years, we will be moving from easy-to-use (which has

yet to be completely achieved) to easy-to-develop-and-tailor interactive software

systems.

People who will mainly benefit from this perspective shift are end-users, i.e. those

persons who, according to Cypher, use a computer application as part of daily life or

daily work, but are not interested in computers per se (Cypher, 1993). It is evident that

several categories of end-users can be defined, for instance depending on whether the

computer system is used for work, for personal use, for pleasure, for overcoming

possible disabilities, etc. End-user population is not uniform, but divided in non-

mutually exclusive communities characterized by different goals, tasks and activities.

Even these communities cannot be considered uniform, because they include people

with different cultural, educational, training, and employment background, novice or

experienced in the use of the computer, the very young and the elderly, and with

M. F. Costabile

 101

different types of (dis)abilities. End-users operate in various interaction contexts and

scenarios of use, they want to exploit computer systems to improve their work, but

often complain about the difficulties in the use of such systems. The challenge for

designers is to develop interactive systems customized to a community, without loosing

the generality and the power of computer tools.

Our experience is focused on a particular class of end-users, that we call domain-

expert users (or d-experts for short): this kind of users, such as medical doctors,

mechanical engineers, geologists, etc., are experts in a specific domain, not

necessarily experts in computer science, and use computer environments to perform

their daily tasks. D-experts have the responsibility for possible errors and mistakes,

even those generated by wrong or inappropriate use of the software.

This paper describes a method to overcome the trade-off between customization and

generality in the case of d-experts.

The ultimate aim is empowering end-users and d-experts to flexibly employ advanced

information and communication technologies within the future environments of ambient

intelligence. To this aim, the European Community has recently funded EUD-Net, a

network of Excellence on End-User Development (EUD).

This paper provides the following contributions to the research on EUD:

1) an analysis of the need of developing software that domain-expert users

have;

2) a design methodology to build

a. software environments tailored to the needs of the considered user

community,

b. tools allowing d-experts to design and develop software environments in

collaboration with software engineers and HCI experts.

The proposed design methodology is the evolution of the design strategy described in

(Carrara et al., 2002a, Costabile et al. 2002), and allows both end-users and d-experts

to perform EUD activities, including tailoring of existing software environments and

creation of new software artifacts.

The paper is organized as follows: Section 2 provides insights to the concept of EUD.

In Section 3, an analysis of needs of EUD, that domain-expert users have, is reported.

Section 4 illustrates the Software Shaping Workshop methodology. Section 5

discusses the Interaction Visual Language used in the design methodology. Section 6

Software Environments for Developing

 102

presents an example of the application of the SSW methodology to a real case. Section

7 concludes the paper.

2. End-User Development

New technologies have created the potential to overcome the traditional separation

between end-users and software developers. New environments able to seamlessly

move from using software to programming (or tailoring) can be designed. Advanced

techniques for developing applications can be used by individuals as well as by groups

or social communities or organizations.

Some studies say that by 2005, there will be in USA 55 millions of end-users

compared to 2.75 millions of professional users (Boehm et al., 2000). End-users

population is not uniform, but it includes people with different cultural, educational,

training, and employment background, novice and experienced computer users, the

very young and the elderly, people with different types of (dis)abilities. Moreover, these

users operate in various interaction contexts and scenarios of use and they want to

exploit computer systems to improve their work, but often complain about the

difficulties in the use of such systems.

Based on the activity performed so far within the EUD-Net network of excellence, the

following definition of EUD has been proposed: “End-User Development is a set of

activities or techniques that allow people, who are non-professional software

developers, at some point to create or modify a software artifact”. EUD means the

active participation of end-users in the software development process. In this

perspective, tasks that are traditionally performed by professional software developers

are transferred to the users, who need to be specifically supported in performing these

tasks. The range of active user participation in the software development process can

range from providing information about requirements, use cases and tasks, including

participatory design, to end-user programming. Some EUD-oriented techniques have

already been adopted by software for the mass market such as the adaptive menus in

MS Word or some programming-by-example techniques in MS Excel. However, we

are still quite far from their systematic adoption.

EUD is based on the differences among end-users, professional programmers and

software engineers. There are differences in training, culture, skill and technical

abilities, in the scale of problems to be solved, in the processes, etc.

M. F. Costabile

 103

Within the EUD-Net activity, the following research directions have been identified as

fertile for allowing end-users to craft software: 1. theoretical and empirical studies of

what problems addressed by software engineering transpose to EUD, why and how; 2.

studies to identify possibly existing problems that are specific to EUD and are thus not

addressed by software engineering; 3. research on methods and tools that would

address the previously identified problems in ways that are adequate for end-users:

"lightweight methods", tools to support them, and offering appropriate user interfaces

taking into account end-users tasks and activities.

Our proposal of designing Visual Interactive Systems organized as environments

called Software Shaping Workshops, which will be illustrated in Section 4, is in the

direction of point 3 above.

3. User needs of EUD

We often work with end-users that are experts in their field, that need to use computer

systems for performing their work tasks, but that are not and do not want to become

computer scientists. This has motivated our definition of domain-expert users.

In our work, we primarily address the needs of communities of d-experts in scientific

and technological disciplines. These communities are characterized by different

technical methods, languages, goals, tasks, ways of thinking, and documentation styles

(Varela, 1979). The members of a community communicate among them through

documents, expressed in some notations, which represent (materialize) abstract or

concrete concepts, prescriptions, and results of activities. Often, dialects arise in a

community, because the notation is applied in different practical situations and

environments. For example, technical mechanical drawings are organized according to

standard rules which are different in Europe and in USA (ISO 5456). Explicative

annotations are written in different national languages. Often the whole document

(drawing and text) is organized according to guidelines developed in each single

company. The correct and complete understanding of a technical drawing depends on

the recognition of the original standard as well as on the understanding of the national

(and also company developed) dialects.

Recognizing users as d-experts means recognizing the importance of their notations

and dialects as reasoning and communication tools. It also suggests to develop tools

customized to a single community. Supporting co-evolution requires in turn that the

tools developed for a community can be tailored by its members to the newly emerging

Software Environments for Developing

 104

requirements (Mørch and Mehandjiev, 2000). Tailoring can be performed only after the

system has been released and therefore when it is used in the working context. In fact,

a contrast often emerges between the user working activity, which is situated,

collaborative and changing, and the formal theories and models that underlie and

constitute the software system. This contrast can be overcome by allowing users to

adapt themselves the system they are using.

Recognizing the diversity of users calls for the ability to represent a meaning of a

concept with different materialization, e.g. text or image or sound, and to associate to a

same materialization a different meaning according, for example, to the context of

interaction. For instance, a same interface of a distributed system in the automation

field, is interpreted in different ways by a technician and a worker. These two d-experts

are however collaborating to get a common goal. For this, they use a same set of data,

which is however represented according to their specific skills. This is a common case:

often experts work in a team to perform a common task. The team might be composed

by members of different sub-communities, each sub-community with different

expertise. Members of a sub-community should need an appropriate computer

environment, suitable to them to manage their own view of the activity to be performed.

When working with a software application, d-experts feel the need to perform various

activities that may even lead to the creation or modification of software artifacts, in

order to get a better support to their specific tasks, thus being considered activities of

EUD. The need of EUD is a consequence of user diversity and user evolution we have

discussed. Moreover, the interactive capabilities of new devices have created the

potential to overcome the traditional separation between end-users and software

developers. New environments able to seamlessly move between using and

programming (or customizing) can be designed.

Within EUD, we may include various tailoring activities. Indeed, tailoring activities are

defined in different ways in the literature; they include adaptation, customization, end-

user modification, extension, personalization, etc. These definitions partly overlap with

respect to the phenomena they refer to, while often the same concepts are used to

refer to different phenomena. In (Wulf, 1999), tailorability is defined as the possibility of

changing aspects of an application’s functionality during the use of an application, in a

persistent way, by means of tailored artefacts; the changes may be performed by users

that are local experts. Tailorability is very much related to adaptability. Different

meanings are associated to tailorability and adaptability. To avoid ambiguity, two

classes of d-expert activities have been proposed in (Costabile et al., 2003):

M. F. Costabile

 105

Class 1. It includes activities that allow users, by setting some parameters, to choose

among alternative behaviors (or presentations or interaction mechanisms) already

available in the application; such activities are usually called parameterization or

customization or personalization.

Class 2. It includes all activities that imply some programming in any programming

paradigm, thus creating or modifying a software artifact. Since we want to be as close

as possible to the human, we will usually consider novel programming paradigms, such

as programming by demonstration, programming with examples, visual programming,

macro generation.

While many systems exist which support the performance of activities of class 1, our

EUD methodology aims at the development of systems which allow d-experts to

perform activities of class 2, as we will see in the following sections.

4. Software Shaping Workshops

The methodology we have developed to design visual interactive systems considers

the following features: 1) adopting the user notation in the system development; 2)

offering different views of the activity to the various members of the same community;

3) allowing end-users to participate to system tailoring; 4) guaranteeing a gentle slope

of complexity (Myers et al., 2003). The latter means that, in order to be acceptable by

its users, the system should avoid big steps in complexity and keep a reasonable

trade-off between ease-of-use and expressiveness. Systems might offer for example

different levels of complexities, going from simply setting parameters to integrating

existing components, up to extending the system by programming new components.

To feel comfortable, users should work at any time with a system suitable to their

specific needs, knowledge, and task to perform. To keep the system easy to learn and

easy to work with, only a limited number of functionalities should be available at a

certain time to the users, those that they really need and are able to understand and

use. The system should then evolve with the users, thus offering them new

functionalities only when needed.

More precisely, our approach to the design of visual interactive systems for specific

communities of d-experts is to organize a system as composed of various

environments, each one devoted to a specific sub-community. Such environments are

organized in analogy with the artisans workshops, where the artisans find all and only

the tools necessary to carry out their activities. Following the analogy, d-experts using

a virtual workshop find available all and only the tools required to develop their

Software Environments for Developing

 106

activities. These environments are called application workshops, because they allow d-

experts to perform their daily tasks.

Using an application workshop, d-experts of a sub-community can work out data from

a common knowledge base and produce new knowledge, which can be added to the

common knowledge base. All the data available for the community are accessible by

each d-expert using the specialist notation of its sub-community.

The application workshops are designed by a design team composed by various

experts, who participate to the design using workshops tailored to them. These

workshops are called system workshops and are characterized by the fact that they are

used to generate or update other workshops. Using a system workshop, some experts

of the design team defines notations and tools, which are added to the common

knowledge base and made available in the generated workshops.

This approach leads to a workshop hierarchy that tries to bridge the communicational

gap between software engineers and experts of the application domain, since all

cooperate in developing computer systems customized to the needs of the users

communities without requiring them to become skilled programmers.

The system workshop at the top of the hierarchy is the one used by the software

engineers. Each system workshop is exploited to incrementally translate concepts and

tools expressed in computer-oriented languages into tools expressed in notations that

resemble the traditional user notations, and therefore understandable and manageable

by users. More precisely, at each level of the hierarchy but the bottom level, people use

a system workshop and might create a child workshop tailored to a different type of d-

expert.

The hierarchy organization depends on the working organization of the user

community to which the hierarchy is dedicated: each hierarchy is therefore organized

into a number of levels. The top level (software engineering level) and the bottom level

(application level) are always present in a hierarchy. The number of intermediate levels

is variable according to the different working organization of the user community to

which the hierarchy is dedicated (Carrara et al., 2002b) and to guarantee a gentle

slope of complexity.

Both application and system workshops are Software Shaping Workshops (SSWs):

interacting with them, users get the feeling of simply manipulating the objects of

interest in a way similar to what they might do in the real world. They are 'shaping'

software, in that: a) by using a system workshop, d-experts actually create a software

artifact, without writing any textual program code, but using high level visual languages

M. F. Costabile

 107

tailored to their needs; b) using an application workshop d-experts adapt the

appearance and behavior of the available tools according to their culture, skills, and

background.

 To make clear the above concepts, in Section 6 we refer to a prototype under study

in the system automation field, designed to support different communities of workers

and technicians.

5. A view on visual interaction

To develop a Visual Interactive System organized as SSW hierarchy, software

engineers and d-experts have first to define the pictorial and semantic aspects of the

Interaction Visual Languages through which users interact with workshops. In our

approach, we capitalize on the theory of visual sentences developed by the Pictorial

Computing Laboratory (PCL) and on the model of WIMP (Windows, Icons, Menus,

Pointers) interaction it entails (Bottoni et al., 1999). From this theory, we derive the

formal tools to obtain the definition of Interaction Visual Languages.

The PCL model recognizes the interaction between users and interactive systems as

a syndetic process in which systems of different nature (the cognitive human - the

‘mechanical’ machine) cooperate to achieve a task (Barnard et al., 2000). The different

systems interact by communicating, interpreting and materializing sequences of

messages at successive instants of time. If we restrict to the case of WIMP interaction

(Dix et al., 1998), the messages exchanged are the whole images which appear on the

screen display of a computer and are formed by text, icons, graphs, pictures, windows.

Two interpretations of each element on the screen and of each action arise during the

interaction: one performed by the user, depending on his/her role in the task, as well as

on his/her culture, experience, and skills, and the second internal to the system,

associating the image with a computational meaning, as determined by the programs

implemented in the system (Mussio, 2003). The user identifies some subsets of pixels

on the screen as functional or perceptual units, called characteristic structures (css).

Examples of css are letters in an alphabet, symbols or icons. Users associate to each

cs a meaning: the association of a cs with a meaning is called characteristic pattern

(cp). Users recognize complex css formed by more simple ones (words formed by

letters, plant maps formed by icons etc.) and attribute them a meaning stemming from

the meaning of the components css. The interactive system itself is interpreted as a

meaningful entity, a complex cp.

Software Environments for Developing

 108

From the machine point of view, a cs is the manifestation of a computational process

that is the result of the computer interpretation a program P. (Note that words in bold

characters denote entities perceived and interpreted by the human user, while those in

courier characters denote processes and events perceived, computed and

materialized by the computer). The computer interpretation of P creates and maintains

active an entity, that we call virtual entity (ve). Actually, P is a set of programs, some of

which - called I (Input) programs - acquire the input events generated by the user

actions, some - called AP (APplication) program - compute the ve reactions to these

events, and some - called O (output) - output the results of this computation.

The program AP (APplication program) must be defined by the ve designer, who

needs to describe the ve dynamics. At each instant, the ve state is defined as a

characteristic pattern cp=<cs, u, <intcs, matcs>>, where intcs (interpretation)

is a function, mapping the current cs of the ve to the computational state u of the

program AP and matcs (materialization) a function mapping u to cs.

On the human side, the user interacts with the ve in state cp, by 1- interpreting the cs

on the screen, 2- manifesting his/her intention by an action ac= <operation, cs>,

operating on the input devices of the machine such as keyboards or mice. The input

program I captures the input event generated by the action ac, relates this event to a

known characteristic structure cs, a subset of the cs on the screen, and translates it

into an input to AP. AP receives these inputs and computes the response to the human

activity evolving u into a new state u'. The results of this computational activity are

sent to O, which materialize them as new css which modify the image maintained

visible on the screen by the system. In this way the ve reaches a new state cp'.

The interaction is adequate if a) the cs recognized by the human on the screen – i.e.

in the current image – matches the cs known by the system, and b) the interpretation

of the human models in a plausible way the computational meaning u - i.e. the reaction

of the interactive system is the one expected by the users and understandable by

them.

A simple example of ve is the “floppy disk” widget to save file in the standard toolbar

of MS Word. This ve has different materializations to indicate different states of the

computational process resulting from the interpretation of P: for example, once it is

clicked by the user the disk shape is highlighted and the associated computational

process saves in a disk file the current version of the document. Once the document is

saved, the disk shape goes back to its usual materialization (not highlighted).

M. F. Costabile

 109

Virtual entities extend the concept of widgets (as the case of disk widget before) and

virtual devices (Preece, 1994), being more independent from the interface style and

including interface components possibly defined by users at run time. Interactive

systems implemented following our approach permit new forms of tailoring, which

distinguish them from traditional ones, such as Visual Basic scripted buttons in MS

Word. For example, users can add at run-time new widgets to the repertoire made

available by the system. These widgets have a computational meaning defined

according to the context and the task being performed. In (Costabile et al., 2002) the

creation of such a ve in a medical domain is discussed: the user (a radiologist)

surrounds a set of pixels tracing a closed curve defining a new cs, and associates an

annotation to the identified area. The system recognizes the surrounded area as a cs,

assigns to it a computational meaning, so defining a new ve.

An interactive system is an environment constituted by virtual entities interacting one

another and with the user through the I/O devices.

The user sees the system as a whole ve, whose computational state u is materialized

at each instant as an image i on the screen. The designer describes this association

as a triple vs=<i, u, <int, mat>>, where i is the array of pixels constituting the

current image, u is a suitable description of the current state of the process determining

the reaction of the whole system to user activities, int and mat are two functions

relating elements of i with components of u. This triple is called visual sentence (vs),

and it specifies the state of the whole virtual entity (i.e. the whole system).

The designer specifies the dynamics of the system by specifying the initial visual

sentence vs0, the one that is instantiated when the user first accesses the system, and

a set of transformation rules that specify how a vs evolves into a different one in

reaction to user activities (Carrara et al., 2002b, Fogli et al., 2002).

6. Building SSWs in a real case

In this Section, we provide an example of applying the SSW methodology to a real

case we have developed with ETA Consulting, a company producing systems for

factory automation. ETA is also responsible of producing the operating software (and

related user interface) for the systems that it sells.

Software Environments for Developing

 110

6.1 Analysis

ETA Consulting has the following needs: 1) creating systems for factory automation

that are usable, i.e. easy to learn and easy to use for its clients; 2) having software

tools which support ETA personnel (d-experts) in the development, testing, and

maintenance of such systems. As we will describe in the following, ETA personnel is

composed of different categories of people with different skills, who need to perform

various tasks with the software tools. In accordance with our approach, specific

software environments (SSWs) must be developed for each category of users.

Similarly, ETA clients need different environments specific for their tasks when

operating the automation systems. The analysis we have performed with ETA d-

experts and clients of ETA automation systems has lead us to foresee a SSW

hierarchy structured in four levels (Figure 1):

1) A system workshop for software engineers. This is a basic workshop always at the

top of the hierarchy since it is the one used by the team of software engineers, in which

they find all tools, programming languages, etc. they need for generating the SSWs for

specific applications. Using this workshop, the team defines the libraries of methods for

css creation, the window system (Myers, 1995), the templates for linking css and

elements of the window system, and the Interaction Visual Language, which allows

also the ETA technicians (d-experts) to manage all this stuff at level 2.

2) A system workshop for virtual entity generation. The software engineers have

created this workshop to be used together with ETA d-experts in a kind of participatory

design, for generating all ves necessary to the ETA d-experts to develop the systems

they sell to their clients. A deep analysis of user requirements has been performed.

More specifically, we have analyzed the company and the people working in the

company, the kind of applications they develop, their usual clients, the notations and

tools they traditionally use to develop their applications, in order to identify the

interaction visual languages for this SSW. The ves created in this workshop represent

the tools necessary to ETA d-experts for their activities. We identified two main

activities of ETA d-experts: the first one related to the software mechanical design and

testing of the automation system; the second one referring to the automation system

operating in the client factory (see Figure 1). Consequently, once all ves are created,

two child workshops are generated: the first used by ETA d-experts for creating

M. F. Costabile

 111

environments suitable for the first activity; the other for creating the applications for the

clients.

3) One or more system workshops for application workshop creation. Given the ves

made available by the system workshop at level 2, the ETA d-experts (technicians) use

the workshop at this level to generate the application workshops for the other d-experts

or for the end-users. They compose various prototypes of the application workshop by

selecting the ves prepared at level 2. In accordance with a user-centred approach,

such prototypes are evaluated together with the other d-experts and end-users in order

to choose the most appropriate for them.

4) One or more application workshops devoted to the different professionals working at

ETA, as testers (d-experts), or in the client factory, as operators of the developed

application. More in detail, in ETA there are mechanical designers and testers,

software designers and testers. Therefore, we identified for them three different

application workshops: the first for mechanical testing, the second for software testing,

and the last for mechanical programming of the automation systems. Besides, among

ETA clients, who use the automation systems produced by ETA, we found other two

kinds of users: assembly-line operators and production managers. In this case other

three application workshops have been identified: one for operators and the other two

for managers.

The intermediate levels in the hierarchy are developed to cope with the need to

gradually adapt the systems to the complexity of the tasks (gentle slope of complexity).

Software Environments for Developing

 112

Fig. 1: The workshops hierarchy in the case of ETA Consulting.

6.2 The workshops developed for the ETA case study

At the moment, we have developed two prototype workshops for the ETA case study

(Fogli et al., 2003). They are the application workshop devoted to the operator and the

system workshop permitting the mechanical engineers to create the application

workshop. In Figure 1, the rectangles corresponding to such workshops are

highlighted.

The application workshop is devoted to the control of a pick-and-place robot. The

required functionalities of this system were: different modalities of using the robot

(automatic, manual, diagnostic, setting, etc.), the possibility to choose among various

tools to be associated to the robot to modify its behavior and the task to perform, and

finally a number of options to put annotations, to require an automatic help, to save the

work, etc.

M. F. Costabile

 113

Fig. 2: The application workshop developed for ETA Consulting (the numbers have
been added on the screenshot for the sake of explanation in the text).

A prototype of such software environment has been then developed, and its initial

state is shown in Figure 2. The robot operation modality may be chosen by clicking on

one of the button in the button panel indicated by the number 1 in the figure; the tools

to be associated to the robot may be selected from the archives of pieces, engines,

trajectories and grippers shown on the right part of the interface (2); the behavior of the

machine is then shown in the working area indicated by the number 3 in the figure;

finally, at the bottom, a message area (4) presents messages orienting the user during

his/her interaction with the system and the button panel (5) offers the options of

annotation, help, saving, logging, exit.

In the case at hand, an example of ve is the button “Automatico”: this ve has different

materializations to indicate different states (characteristic patterns) of the computational

process generating the ve: for example, once it is clicked by the user both the text and

the background changes color to give a feedback to the user; moreover, the associated

computational process runs the machine in the automatic modality. If the user

successively clicks on another button to request a different operation modality, the

colors of button “Automatico” go back to their default values (red text and gray

background), the other selected button changes its colors, and the machine stops

running in the automatic modality.

Software Environments for Developing

 114

To create the application workshop described above, we have developed a prototypal

system workshop for mechanical engineers which supports them in the creation of the

application workshop through simple drag-and-drop activities. Figures 3 and 4 illustrate

two different snapshots of the system workshop. The snapshots are generated during

the interaction of the domain-expert with the system workshop for creating the

application workshop shown in Figure 2. In Figure 3, the virtual entity “canvas” has

been already selected from the menu area on the right side (1) and positioned on the

working area (2) to become the background of the system that is being created. The

mechanical engineer is now dragging and dropping the virtual entity “bottoniera

operativa” (operative button panel). This button panel has also been selected from the

menu area and can be positioned on the top of the canvas to become the area where

the buttons “Automatico”, “Manuale”, etc. can be successively positioned (see Figure

2). In Figure 3, it can also be seen a message area (3), suggesting the user the

operation to do in his own language, and a button panel (4) containing the tools that

support the mechanical engineer in the saving or loading process, in the simulation of

the system being created, in annotating the environment, and so on. Finally, a virtual

entity playing the role of title (5) is also present at the top of the environment, being a

cornerstone for the domain-expert.

Fig. 3: The virtual entity “bottoniera operativa” (operative button panel) is dragged
and dropped on the canvas representing the background of the workshop being
created (the numbers have been added on the screenshot for the sake of
explanation in the text).

M. F. Costabile

 115

Figure 4 shows the application workshop presented in Figure 2 partially composed.

The d-expert is now positioning a new button on the operative button panel. Note that

the virtual entity corresponding to the operative button panel is present in both

snapshots shown in figures 3 and 4. However, the virtual entity is in two different

states, represented by two different cps: the cp in Figure 3 has an associated

characteristic structure corresponding to the white bar with a text inside; while, in

Figure 4, the characteristic structure is the gray bar over which three buttons have

already been positioned.

Fig. 4: A part of the application workshop has been created. The button
“diagnostica” (diagnostic) is being located on the operative button panel.

6.3 Implementation

The implementation is based on the techniques and tools made available within the

W3C framework. A workshop is implemented as an IM2L program. IM2L (Interaction

Multimodal Markup Language) is an XML-based language that provides the rules for

the definition of virtual entities: its markup tags encode a description of the possible

ves to be used in the application at hand (Salvi, 2003). An IM2L program is composed

Software Environments for Developing

 116

by a set of XML-based documents and a library of javascript functions. It runs under a

common web browser, enriched by the Adobe SVG Viewer plugin. SVG is the XML

specification for vector graphics (W3C, 2001) and is exploited to specify the ves

materialization.

An IM2L program implementing a system workshop can be steered by its users to

self-transform into a new IM2L program, which can results into a further system

workshop or into an application workshop. This self-transformation property is used to

generate a SSW hierarchy. On the whole, a SSW hierarchy is generated from the

system workshop of the software engineer by an incremental process determined by

the activities of the experts of the design team. More details can be found in (Fogli et

al., 2003).

In order to illustrate the creation and specialization of ves necessary to the ETA

environments, we describe the definition and creation of the ve “button” at the different

levels of the hierarchy, by adopting the above mentioned implementation techniques.

Level 1. Using the SSW at level 1, the software engineer provides the IM2L definition

of the type “button”, as shown in Figure 5. This is an XML-based description of the

logical structure of a button. Most of the attributes (e.g. ‘id’, ‘shape’, ‘oncl’, ‘onover’,

etc.) contain a value that will be instantiated at the next steps of the button creation

(levels 2 and 3). Then, the software engineer defines a library CSj of possible button

shapes as a set of SVG prototypes. A javascript function must also be defined by the

software engineer to transform the IM2L description of the button into an instance of the

SVG prototype. Figure 6 shows an example of a library of css and the SVG prototype

for a button having a rectangular shape and a textual label (the characteristic structure

located at the top-right of the square). Moreover, the software engineer creates a

library Uj of javascript functions defining the computations to be associated to a

button, including standard computations typical of a WIMP system (for example open a

window when clicking on button), and application-oriented computations, i.e. related to

the automation system operation in the ETA case study. Finally, the IM2L definition, the

SVG prototypes and the javascript functions are made available to the next level in the

hierarchy (level 2).

M. F. Costabile

 117

Fig. 5: An example of IM
2
L definition for a ve of type “button”.

Fig. 6: The library CSj of button shapes and an example of SVG prototype

for the rectangular one.

Software Environments for Developing

 118

Level 2. At this level, the ETA d-expert associates a button shape (a characteristic

structure) csj with a computation uj, by defining the pair <intj, matj> obtaining the

characteristic pattern cpj=<csj, uj, <intj, matj>> that specifies the initial state of

the ve “button”. This association, i.e. the definition of the pair <intj, matj>, is done

by specifying the attributes in the IM2L description. Some parameters are set at this

level while other remain variable, to be set at the next level. As shown in Figure 7, the

d-expert sets the following parameters: the button identifier, the shape of the button,

the names of the computations associated with the activities performed with the

mouse, and a link to a textual description of the button functionalities. All the other

attributes assume default values which can be modified at level 3. Note that in the left

part of Figure 7, a schematize picture of the characteristic pattern is provided, including

the characteristic structure of the button "Automatico" in its initial state, the associated

computations "DoAutomatico(...)", "Description(...)", "Restore(...)" (for the sake of

simplicity, we do not show here the complete signatures of the functions), and the links

between the characteristic structure and the computations, i.e. intj and matj.

The created characteristic patterns specifying buttons are then organized in a button

library to be made available to the workshop at level 3.

Fig. 7: cpj definition at level 2: values highlighted in bold are definitively

assigned to the attributes.

Level 3. At this level, the d-expert, while composing a specific interface, instantiates

the characteristic patterns made available by level 2. The interface composition is

M. F. Costabile

 119

visually performed: for example, the values of the attributes “position” and “dimension”

are set automatically as a consequence of the positioning activity and the run-time

adjustment of the button dimension (see also the example previously discussed with

Figures 3 and 4). Other parameters, e.g. button color, can be set by the d-expert

through a parameter setting facility accessible by clicking on the button. Figure 8 shows

the final definition of the button: the values, which are specified at this level of the

hierarchy, are in bold.

Level 4. At this level, the end-user uses the application workshop generated by the

system workshop at level 3 to carry out his/her task. In the example case (see Figure

2), s/he may interact with the button “Automatico” to start the machine in the automatic

modality. In summary, the ve button “Automatico” is incrementally defined in shape,

content, and behavior throughout levels 1-3 to be used at level 4.

Fig. 8: cpj instantiation at level 3: the values in bold are definitively specified.

7. Conclusions

Most users require environments in which they can make some ad hoc programming

activity related to their tasks and adapt the environments to their emerging new needs.

Moreover, user-system interaction is currently difficult for several reasons, including the

user diversity and the co-evolution of systems and users. The methodology discussed

in this paper is a step toward the development of powerful and flexible environments,

Software Environments for Developing

 120

with the objective of easing the way users interact with computer systems to perform

their daily work. The methodology can be exploited to generate User Interface

Development Environments (UIDEs) to be used by different user communities. Such

environments are specialized to the community culture, background, skills and needs.

It is a participatory approach, in that people belonging to a particular user community

may participate to the development of the software environments devoted to the

community itself. More precisely, a system workshop is a UIDE specialized to a given

user community, which allows a designer to develop, generate and test SSWs devoted

to other users. Whenever the developed SSW is devoted to an end-user, it is an

application workshop, and it allows the user to perform an application task. If the

workshop is devoted to a designer (a software engineer, an HCI expert or a domain

expert), it is in turn a system workshop.

All the SSWs have the same structure. When a system workshop is used to create a

new workshop, a portion of the system workshop is replicated as the kernel of the new

workshop (Fogli et al., 2003).

8. Acknowledgements

We are grateful to Denise Salvi who developed the prototype, and to Silvano Biazzi of

ETA Consulting (silvano.biazzi@cjb.it) for providing the case study.

The support of EUD-Net Thematic Network (IST-2001-37470) is acknowledged.

9. References

Arondi, S., Baroni, P., Fogli, D., Mussio, P. (2002). Supporting co-evolution of users

and systems by the recognition of Interaction Patterns, Proc. of the International

Conference on Advanced Visual Interfaces (AVI 2002), Trento, Italy, pp. 177-189.

Barnard, P., May, J., Duke, D., Duce, D. (2000). Systems, Interactions, and

Macrotheory. ACM Trans. on Human-Computer Interaction, 7(2), pp. 222-262.

Boehm, B. W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy,

R., Reifer, D.J. and Steece, B. (2000). Software Cost Estimation with COCOMO

II. Prentice Hall, Upper Saddle River, NJ.

Bottoni P., Costabile M.F, Mussio P. (1999). Specification and Dialog Control of Visual

Interaction. ACM Transactions on Programming Languages and Systems, 21(6),

1077-1136.

M. F. Costabile

 121

Bourguin, G., Derycke, A., Tarby, J.C. (2001). Beyond the Interface: Co-evolution

inside Interactive Systems. Proc. IHM-HCI 2001, Lille, France.

Carrara, P., Fogli, D., Fresta, G., Mussio, P. (2002a). Making Abstract Specifications

Concrete to End-Users: the Visual Workshop Hierarchy Strategy. Proc. 2002

IEEE Symposia on Human Centric Computing (HCC'02), Arlington (VA), USA, pp.

43-45.

Carrara, P., Fogli, D., Fresta, G., Mussio, P. (2002b). Toward overcoming culture, skill

and situation hurdles in human-computer interaction. Int. Journal Universal

Access in the Information Society, 1(4), pp. 288-304.

Costabile, M.F., Fogli, D., Fresta, G., Mussio, P., Piccinno, A. (2002). Computer

Environments for Improving End-User Accessibility. Proc. of 7th ERCIM

Workshop "User Interfaces For All", Paris, France, pp. 187-198.

Costabile, M.F., Fogli, D., Letondal, C., Mussio, P., Piccinno, A. (2003). Domain-Expert

Users and their Needs of Software Development. Proc. Special Session on EUD,

UAHCI Conference, Crete, Greece, pp. 532-536.

Cypher, A. (1993). Watch What I Do: Programming by Demonstration, The MIT Press,

Cambridge.

Dix, A., Finlay, J., Abowd, G., Beale, R. (1998). Human Computer Interaction, Prentice

Hall, London.

Fogli, D., Mussio, P., Celentano, A., Pittarello, F. (2002). Toward a Model-Based

Approach to the Specification of Virtual Reality Environments. Proc. IEEE

International Symposium on Multimedia Software Engineering (MSE'2002),

Newport Beach (CA), USA, pp. 148-155.

Fogli, D., Piccinno, A., Salvi, D. (2003). What Users See Is What Users Need, Proc.

Distributed Multimedia Systems (DMS'03), Miami (FL), USA, 335-340.

ISO 5456: ISO Standard Technical Drawing Projection Methods.

Mørch, A. I., Mehandjiev, N. D. (2000). Tailoring as Collaboration: The Mediating Role

of Multiple Representations and Application Units, Computer Supported

Cooperative Work, 9, pp. 75-100.

Myers, B. A. (1995). User Interface Software Tools, ACM Transactions on Computer-

Human Interaction, Vol. 2, No. 1, pp. 64-103.

Myers, B., Hudson, S. E., Randy, P. (2003). Past, Present, and Future of User

Interface Software Tools, Human-Computer Interaction in the New Millennium,

Carroll (ed.), Addison-Wesley.

Software Environments for Developing

 122

Mussio, P. (2003). E-Documents as tools for the humanized management of

community knowledge. Keynote Address, Proc. ISD 2003, Melbourne, AUS.

Nielsen, J. (1994). Usability Engineering, Academic Press, San Diego.

Preece, J. (1994). Human-Computer Interaction, Addison-Wesley.

Salvi, D. (2003). Progettazione di ambienti integrati per la produzione di ambienti

interattivi, Laurea Thesis, Università di Brescia, Italy.

Varela, F. J. (1979). Principles of Biological Autonomy, GSR Amsterdam, North

Holland, 1979.

W3C: Scalable Vector Graphics (SVG), [Online] 2001

<http: //www.w3c.org/Graphics/SVG/>.

Wulf, V. (1999). Let's see your Search-Tool! - Collaborative use of Tailored Artifacts in

Groupware. Proc. of GROUP '99, Phoenix, USA, pp. 50-60.

