
UC Irvine
ICS Technical Reports

Title
Software estimation from executable specifications

Permalink
https://escholarship.org/uc/item/7vv9h078

Authors
Gong, Jie
Gajski, Daniel D.
Narayan, Sanjiv

Publication Date
1993-03-08

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7vv9h078
https://escholarship.org
http://www.cdlib.org/

Notice: This Material

may be protected
by Copyright Law
(Titie17U.S.G.)

_3oftware Estimation

from Executable Specifications^

Jie

Daniel D. Gajski

Sanjiv Narayan

Technical Report ICS-93-5

March 8, 1993

Dept. of Information and Computer Science

University of California, Irvine
Irvine, CA 92717-3425

(714) 856-8059

Abstract

z.

db

y\o. ^3-s

Previous work in software/hardware codesign has addressed issues in system modeling, partitioning,

and mixed module simulation and integration. Software estimation, which provides software metrics

to assist the software/hardware partitioning, has not been studied. In order to rapidly explore large

design space encountered in software/hardware systems, automatic software estimation is indispensable

in software/hardware partitioning in which designers or portioning tools must trade off a hardware with

a software implementation for the whole or a part of the system under design. In this report we present

a software estimator that provides three software metrics — execution time, program-memory size and

data-memory sizefor a specification executing on a given processor. Experiments have shown that our

estimator has less than 20% estimation errors on different designs spanning from straight line code

to code with branches and loops and even to hierarchical specifications. Experiments also show that

our estimator is fast and can provide rapid feedback to the designers or partitioning tools to quickly

evaluate different design alternatives.

Contents

1 Introduction

2 Model for Estimation

2.1 Estimation Model for Leaf Behaviors

2.2 Estimation Model for Non-leaf Behaviors and Partitions

3 Performance Estimation 8

3.1 Flow Analysis 9

3.1.1 Determining the Branching Probabilities 9

3.1.2 Determining Node Execution Frequencies 10

3.1.3 Determine the Performance of Control Flow Graph 11

3.2 Applying Flow Analysis to Performance Estimation 11

3.2.1 Performance Estimation for Leaf Behavior 12

3.2.2 Performance Estimation for Non-leaf Behavior 15

4 Memory Size Estimation 16

4.1 Program-memory Size Estimation 16

4.2 Data-memory Size Estimation 16

5 Results 17

6 Conclusion 22

7 Acknowledgements

8 References

A Technology Files

List of Figures

A sample system-level specification 4

Two different estimation models 5

Execution time of the generic instruction for different processors 6

A sample specChart and its estimates 8

Obtaining a set of linear equations from the control flow graph model 11

Performance estimation for different entities 12

Building basic blocks from VHDL statements 13

A basic block structure and its corresponding control flow graph 14

Size of the base type 17

Performance estimation 18

Program-memory size estimation 19

Optimization ratio of the compilers 19

Performance estimation of optimized code 20

SpecChart of a medical system 21

Performance estimation 22

1 Introduction

System design is aset of tasks which convert the system-level specification into aset of completely
specified interconnected modules implementing the specification. Each module could be implemented
in hardware or software on a processor. One of the system design tasks is partitioning of specification
into software and hardware parts. Ahardware implementation has better performance whereas a
software implementation has lower cost, shorter development time and allows changes late in the
design cycle. Thus, the most efficient implementation has a minimal amount of costly application-
specific hardware while still meeting the required performance constraints.

Several researchers have described frameworks for modeling, simulation and integration of soft
ware/hardware designs [SB92][KL92][BV921. Software/hardware partitioning techniques have been
addressed in [GM92a][EH92]. Gupta and De MicheU [GM92a] propose apartitioning algorithm that
starts with an initial partition where all operations, except for the unbounded delay operations, are
assigned to hardware. The partition is refined by migrating operations from hardware to software
in the search for a lower cost feasible partition. The approach used by Ernst and Henkel [EH92]
starts with a complete software implementation from which those portions that violate the timing
constraints are extracted for hardware implementation. These two approaches start from different
directions but work towards the same goal of minimizing the amount of application-specific hardware
required. This software/hardware partitioning requires asoftware estimator that will predict the exe
cution time of the software implementation in order to identify which portion in the specification can
be migrated from hardware to software while not violating the constraints or which portion needs to
be implemented in hardware to satisfy the timing constraints. To our knowledge, no previous work
has addressed the issue of software estimation assisting in the software/hardware partitioning. In the
absence of an automatic estimator, the effect of each partitioning can be evaluated only through actual
implementation which prevents a designer from considering other design alternatives.

In this report we present our software estimator which provides three software metrics —execution
time, program-memory size and data-memory size for agiven specification and agiven target processor.
The generic model used in our estimator does not require different estimators for different target
processors. Instead a single estimator and a set of technology files for different target processors
are used. This makes our estimator fast and easy to extend for different target processors. Also,
the probability-based flow analysis technique used for the performance estimation in our estimator
provides further advantages over dynamic simulation [PK90].

The input to our software estimator is asystem-level description specified with the executable spec
ification language SpecChart. ASpecChart consists of hierarchical concurrent/sequential behaviors
with leaf behaviors specified using the VHDL language. Details on the language and its constructs
may be found in [NVG91].

In the next section, we present the underlying model used for software estimation. Performance

and memory size estimation for system-level specifications are discussed in Section 3 and Section 4

respectively. The results of our experiments are presented in Section 5 followed by the conclusion in

Section 6.

2 Model for Estimation

Figure 1: A sample system-level specification

The estimation model we propose is targeted to the system-level specification which consist of hier

archical concurrent/sequential behaviors. A behavior which is a set of actions and a set of conditions

describing when each action is to occur, can in turn contain sequential or concurrent sub-behaviors.

For example, in Figure 1, behavior TOP consists of two sequential sub-behaviors X and Y. Behav

ior X in turn contains two concurrent sub-behaviors A and B. Behavior Y contains three sequential

sub-behaviors P, Q, R. Concurrency is represented by the dashed line like the one between behavior

A and B whereas sequencing is represented by those transition arcs. The behavior which does not

contain any sub-behaviors is called leaf behavior. In SpecChart, each leaf behavior consists of a set of

VHDL sequential statements. Behavior A, B, P, Q and R in Figure 1 are leaf behaviors. The dots in

the specification indicate the starting or completion of the behaviors. Our estimators are intended t

estimate the software metrics for any given leaf/non-leaf behavior of the specification as well as an\

given partition (a set of behaviors) in the specification. PI in Figure 1 is a partition which contain

two behaviors Q and R.

2.1 Estimation Model for Leaf Behaviors

In order to obtain the estimates for leaf behaviors, we need to compile the code in the leaf behavior

into machine instructions of the target processor. For example, if a leaf behavior will be implemente(

on an Intel 8086 processor, it needs to be compiled into the 8086 instruction set. Using the timin

and size information associated with each type of instruction such as how many clock cycles the 8086

instruction executes and how many bytes it takes, we can obtain the performance and program size of

the behavior. Similarly, if the leaf behavior is going to be implemented on a Motorola 68000 processor,

it needs to be compiled into 68000 machine instructions. Based on the 68000 instruction timing and

size information, the estimator can obtain the software metrics for the behavior. This model, in

which the estimator is targeted to one specific processor, is called processor-specific model (shown in

Figure 2(a)).

(•) PraeMMr-«p«cMc EatlnMlton Mlod*)

(b) QaMrte Esllmtlon MoM

Figure 2: Two different estimation models

; IfMtfuciion

mairteafl*

Instead of using different compilers and estimators for different target processors in the processor-

specific model (Figure 2(a)), we propose a generic estimation model (Figure 2(b)) in which the leaf

behavior specification is converted into a set of generic three-address instructions. After that the

estimator wiU compute the software metrics for the leaf behavior based on the generic instructions

and the technology files for the target processors. For example, if the leaf behavior is going to be

implemented on an Intel 80286 processor, then the technology file for the 80286 processor will be

used during the estimation. The technology file for a target processor supplies information about how

many clock cycles each type of generic instruction needs and how many bytes it takes if the generic

instruction is executed on that target processor. The technology file for a target processor is derived

from the timing and size information of the processor's instruction set.

The generic three-address instructions used in our estimation model have the following formats:

1. Arithmetic/logic/relational operation: des ^ srcl op src2; For unary operations, srcl is empty;

2. Move/load/store operation: des ^ src;

3. Conditional jump operation: if cond goto label;

4. Unconditional jump operation: goto label;

5. Procedure call operation: call label;

Here des, src and cond are either constants, registers or memory locations. Memory locations could be

directly addressed like A, B or addressed with offset like A[I] or B[J]. label refers to procedure names

or instruction labels. The three-address instructions also include RETURN and NULL instructions.

Generic Instruction

dmem1 <-dmem1 +dmem2

8086 instructions

mov ax, word ptr|bp-K)ffset1] (10)
add ax. word ptr[bp+offset2] (9 + EA1)
mov word ptr[bp+offset3], ax (10)

technology file for 8086

generic instruction I execution time I size

dmemS <"dmeni1 -i-dmemZ

68020 instructions

mov a6@(offset1), dO (7)
add a6@(offset2). dO (2 + EA2)
mov do. a6@(offset3) (5)

technology file for 68020

generic instruction I execution time] size

dmemS <"dmem1 +dmem2

Figure 3: Execution time of the generic instruction for different processors

To provide the technology file for a given processor, we need to find out how many clock cycle

each type of generic instruction needs and how many bytes it takes on that processor. Figure 3 show

the computation for the number of clock cycles for the generic instruction with type of dmcm3 ^

dmeml + dmem2. Here, dmem indicates direct memory addressing mode. The generic instructio

is first mapped to a sequence of target processor instructions followed which the total number c

clock cycles of the generic instruction is obtained by summing the clock cycles of each individuti

mstruction in the sequence. EAl and £42 in Figure 3 are the effective address calculation times
used for displacement memory addressing mode, which are 6and 8clock cycles in the 8086 and 68020
respectively. The generic instruction thus will take 35 and 22 clock cycles on the 8086 and 68020
processors respectively. Using asimilar approach we can derive how many bytes each type of generic
instruction wiU take if it is executed on the 8086 or 68000 processor. Presently the technology files
for 8086, 80286, 68000 and 68020 processors are supported in our estimator. The 8086, 80286, 68000
and 68020 technology files are derived from the timing and size information of the their corresponding
instruction sets given in [I8086][I80286][M68000][M68020]. The technology file for Intel 8086 processor
is shown in the Appendix.

Compared with the processor-specific model, our generic model has the following advantages:

1. In the generic model, we do not need to use different compilers and different estimators for
different target processors. Instead, only a single compiler, estimator and a set of technology
files are required for the estimation.

2. The generic model makes it much easier to apply the estimator to other target processors. The
estimation can be carried out as long as the technology file for the target processor is supplied.

3. The peculiarities of each type of processor is reflected in the technology file for the processor. The
generic three-address instructions are free of instruction idiosyncrasies. Thus it is much easier
and faster to compile the specification into the generic instruction set than those associated with
specific processors.

2.2 Estimation Model for Non-leaf Behaviors and Partitions

Non-leaf behaviors possess hierarchical or concurrent constructs. To evaluate the software implemen
tation of agiven non-leaf behavior or apartition on a specific microprocessor, we must first flatten the
hierarchy and sequentialize/schedule the specification to diminish the concurrency [GM92b] since our
target machine is a uni-processor. In other words, the specification needs to be mapped (flattened/
sequentialized) into a program written in a language which can be directly compiled to the machine
instructions of the given processor. Based on the machine instructions generated, the software metrics
such as performance and memory size for the specification can thus be computed. The software metrics
obtained in such a way are accurate since they are computed from the actual implementation of the
specification on the given processor. However, due to that automatic partitioning tools will evaluate
hundreds or thousands of partitions, this approach is too costly and time consuming since we would
have to actually implement each partition on the given processor through flattening, sequentializing
and compiling process in order to get the software estimates for that partition. To get fast estimates
while not sacrificing too much accuracy, the estimation model we propose combines two different
approaches: an accurate approach for estimating leaf behaviors and a fast approach for estimating
non-leaf behaviors and partitions. Prior to the partitioning process, each leaf behavior is compiled

and estimated using the approach described in the previous section. During the partitioning process,

the software estimates for each partition are constructively computed bottom up from the estimates

of the leaf behaviors. Such a combined approach may be less accurate than the approach based on the

actual implementation of a partition. However it is much faster because it does not involve flattening,

scheduling, compiling for each partition during the design process. It only requires some computation

based on the pre-obtained estimates for the leaf behavior specifications. Therefore this model allows

rapid evaluation of different design alternatives.

PartHtons

A.B, P,QorR

X

Y

PI

P2

P3

func{A, B)

fuiK(P, Q, R)

fune(B)

func{0, R)

func(Y)

Figure 4: A sample specChart and its estimates

Figure 4 illustrates our estimation model with a sample SpecChart. Before partitioning process,

the software metrics for leaf behaviors A, B, P, Q, and R are estimated. During partitioning process,

the software metrics for each partition are computed based on the already known estimates of its

constituent behaviors. For example, the estimates of partition P2 is a function of the estimates o

behavior Q and R.

3 Performance Estimation

There Bse two possible ways to find out how many clock cycles a program takes to execute — dynami

simulation and static estimation. Given a set of input data, dynamic simulation actually execute

the program and records the clock cycles used in each execution. Given different sets of input data,

dynamic simulation may obtain different number of clock cycles for that program due to the data

dependent conditional branches and loops. Static estimation, on the other hand, is insensitive to

input data. It just computes the average number of clock cycles needed to execute the program.

Static estimation can yield good results if the number of loop iterations is known and the conditional

branching probability can be predicated correctly. Besides, static estimation has a number of advan

tages: (1) It takes much less time and space than dynamic simulation. (2) It does not need input data

(test vectors). The probability-based technique and its application to the performance estimation for

system-level specifications are presented in this section.

3.1 Flow Analysis

Flow analysis is a technique used in the static estimation for design with conditional branching (in

cluding loops). Given a control flow graph G = {V, E) representing a portion of the design, where

V is the set of vertices n,-, and E is the set of directed edges Cij connecting vertex Vi to vj and in

dicating sequencing between and Vj, we wish to determine the execution frequencies of each of its

nodes based on the branching probabilities. By determining the execution frequencies of the nodes,

we can obtain useful information about the design by associating with each node in the graph, weight

representing some design parameters. For example, if each node weight represents the execution time

of a basic block derived from the code of a leaf behavior, then we can use the execution frequency of

the nodes and the weights of the nodes to determine the totaJ execution time for the leaf behavior by

taking a weighted sum of these two quantities.

3.1.1 Determining the Branching Probabilities

Branching probabilities are associated with the edges in the control flow graph. They could be deter

mined in the following ways:

1. £qual Probabilities : In case of branching, we assign equal probabilities to all the edges

emerging from the node. Thus, if there are n edges emerging from a node, all of them are

assigned a probability of 1/n.

2. Loop Related Probalilities : When the number of loop iterations is known, say n, the exit

edge has a probability of 1/n while the back edge has a probability of (n —l)/n.

3. User Defined Probabilities : The user may specify the branch probabilities in the SpecChart

description using annotations.

4. Simulation Based Probabilities : For every input data, a record can be kept of the branches

taken during the simulation. From this observed behavior, the probabilities of the branches can

be derived.

Currently the first two approaches have been implemented in our estimator.

3.1.2 Determining Node Execution Frequencies

The execution frequency of a node is defined as the number of times on the average that the node will

be executed in a single execution of the graph. We use the branching probabilities between the nodes

to determine the execution frequencies. This is given in the following procedure.

Determining Node Execution Frequencies:

1. Determine the branch probabilities using one of the methods outlined above.

2. A start node, S, preceding the first node in the graph, is added. Its execution frequency, F(S) is

set to 1 since this node is executed exactly once whenever the control flow graph is executed.

3. The execution frequency F(Nj) for any node Nj depends on the weighted execution frequencies

of ail its immediate predecessor nodes. The execution frequency for each predecessor node Ni is

multiplied by the branch probability of the edge between Ni and Nj, P(ejj). For each node in

the graph, we first formulate the equation for the node execution frequency.

F{Nj) = F{Ni) X Piei,)
all predeceaaoT nodea Ni of Nj

4. We then solve the set of equations formulated in step 3 to obtain the individual execution

frequencies. There are a variety of methods such as Gaussian Elimination, LU decomposition

Chomsky's method which can be used. We have selected the Gaussian Elimination method in

our estimator.

The procedure is illustrated by an example shown in Figure 5. A control flow graph with the branch

probabilities is shown in Figure 5(a). Figure 5(b) shows the same graph with the added dummy node

5. Figure 5(c) shows the equations for the execution frequency of each node. As an example, conside

node N2. It has two predecessor nodes Ni and N3, The probabilities of the edges €12 and €32 are 1.

and 0.8 respectively. Thus the equation for the execution frequency for N2 is :

F(iV2) = 1.0 XF{Ni) + 0.8 X F{N3)

Solving the equations in Figure 5(c) yields the following values for execution frequency :

F(iVi) = l, F(iV2) = 5, F(iV3) = 5, F(iV4)=l

These are the expected execution frequencies returned after probability based analysis of the contrc

flow graph.

(a) Control Flow Graph Model
with probabilities of br«Khlng
so^fied.

(b) Control Flow Graph lyiodel
with dummy start state, S,
added

F(N {i * X F(S)

F(N2) « 10X F(N^) + O^x F(N3)

F(N3) s 1.0 X F(N2)

F(N 4) s 0.2 XF(N 3)

(c) Equations for
Execution Frequencies

Figure 5; Obtaining a set of linear equations from the control now graph model

In situations where the edges are also associated with some weights, we may need to know the

execution frequency of each edge F{eij). It is obvious that the execution frequency of an edge is the

same as that of its target node. Therefore we have F{eij) = F{Nj).

3.1.3 Determine the Performance of Control Flow Graph

For a control flow graph G = (V, E) with each node 1; € V associated with a weight W{v) and each

edge e € £ associated with a weight W{e), if we know the execution frequency of each node F(v) and

the execution frequency of each edge F(e) in the graph, then the performance P(G) of the graph G

can be calculated as follows.

p(G) = x; ("'(") X^('')) + E (^(«) Xm) (3)
Jor all v€V for all e^E

3.2 Applying Flow Analysis to Performance Estimation

Figure 6. summarizes the performance estimation for different entities such as partition^ behavior

of the speciflcation, basic block of the leaf behavior and generic instruction of the basic block.

The performance of a partition depends on that of its containing behaviors. The performance of a

sequential non-leaf behavior is determined using flow analysis on the performance of its containing

sub-behaviors. The performance of a concurrent non-leaf behavior is the sum of the performance of

Entity to be estimated Components of entity Weights of components Technique to be applied

partition

sequential
non-leaf behavior

behaviors

sub-behaviors

execution times

of behaviors

execution times

of sub-behaviors

sum/flow analysis

flow analysis

concurrent

non-leaf behavior
sub-behaviors

execution times

of sub-behaviors
sum

leaf behavior

basic block

basic blocks

generic Instructions

execution times

of basic blocks

execution times

of generic instructions

flow analysis

sum

generic instruction execution times

specified in the technology file

Figure 6: Performance estimation for different entities

its containing sub-behaviors. The performance of a leaf behavior is determined using flow analysis

on the performance of its containing betsic blocks. The performance of each basic block is computed

by summing the performance of its containing generic instructions. The performance of each generic

instruction is taken from the technology files supplied to the estimator.

3.2.1 Performance Estimation for Leaf Behavior

Constructing Basic Blocks from VHDL statements

We divide the VHDL code segment in each leaf behavior into basic blocks. A basic block [ASU88] is

a sequence of consecutive VHDL statements in which flow of control enters at the beginning and leaves

at the end without halting or the possibility of branching, except at the end. To determine the basic

blocks, we first determine the set of leaders, the first statement of a basic block. The rules we use tc

determine leader statements are: (1) The first statement of the code segment is a leader. (2) All wai

statements and procedure calls are leaders. (3) Any statement which is the target of a conditiona

statement (if, loop, case) is a leader. The target of a conditional statement is any statement to whic

control could possibly be transferred on evaluating the condition. (4) Any statement that immediatel

follows a conditional statement, wait statement, or a procedure call is a leader.

For each leader determined above, its basic block consists of the leader and all statements up t

but not including the next leader (or the end of the given VHDL code segment). A basic block wi

then contain one of the following: (1) a set of assignment statements, or (2) a single wait statemen

or (3) a single procedure call.

Figure 7 shows how the basic blocks can be constructed from a given set of sequential VHDL

statements. In Figure 7(a), the leaders are denoted by horizontal arrows along with the corresponding

rule number used to determine the leader. Figure 7(b) shows the basic block structure of the VHDL

code. The conditions to be evaluated for the conditional branching are associated with the edges

between basic blocks.

r6ad_mem(nsir, pe).

4-> pc:-pc + l;

opcode :• inetrtl doemio 0];

il (opcode • *00*or opcode > *01*)Vten

ap • b +1] ;• (X + y *z) / ap * b):

eW (opcode • *10* or opcode -'11*} twi

aC * M :>(X4-y' 2}/ at2' b +11;

B1 I read_mefn(ir«tr. pc)

02) pc :» pc ♦ T
1 opcode > trstr(l downto 01

Ci: opcode • *00*or opcode > *01*

M a(2*b+1j:-(X4y*2)/ap*bl a(2*bl(x +y'zj/ap *b-* 1] 94

Figure 7: Building basic blocks from VHDL statements

Obtaining Weights for Basic Blocks and Conditions

Once basic blocks have been determined (Figure 7(b)), we need to find the weight (i.e. execution

time) of each basic block and weight of each condition. The VHDL assignment statements in each

basic block and condition are compiled into our generic three-address instructions. Figure 8(a) shows

the basic block structure of Figure 7(b) after the VHDL code is compiled into generic instructions.

The execution time of each generic instruction can be obtained from the technology file based on its

type. For example, the instruction pc pc + 1 has the type of dmem *— dmem + constant (dmem

means directly memory addressing mode). In Figure 8(a), Tl, T2 and TS are temporary variables

which can be considered as type of register or dmem depending on how many genered-purpose registers

the target processor has. Suppose after the compilation, m temporary variables ri,T2,. ..,Tm are

used and the target processor has n general-purpose registers. If n > m, then Tl,r2,...,Tm will

caJI read mem

pc <• pc + 1
opcode <• in6tr{1 dovvnt 0]

T1 <-opcode •"01"
Ci- T2 <- opcode « "00"

' T2 <- T1 or T2
if T2 goto next

T1 <- 2 * b
T1 <-arni
T2 <• y • z
T2 <• X + "R
T3<-T2/T1

T1 <• 2 • b
T1 <- T1 + 1

afTll <• T3

Ti <-opcode-"10"
r®. T2<-opcode •"11"

sT T2<-T1orT2
N. if T2 goto next

TI <• 2 • b

TI <-T1 ♦ 1
T1 <• afTIJ
T2 <• X * y
T2 <• T2 + z

T3<-T2/T1

TI <- a • b

arT1]<-T3

(a) Basic Wocks wtth gerteric instructions

W(B1) (Ml

W(B2) (M2

(b) Control ftow grapfi for (a)

Figure 8: A basic block structure and its corresponding control flow graph

be considered as register type, otherwise, Tl,T2,...,Tn will be considered as register type whereas

Tn + 1,..., Tm will be considered as dmem type. Temporary variable with smaller index (e.g. TI)

will be used more heavily than temporary variable with larger index (e.g. T9) in the compilation.

Therefore temporary variable with smaller index should have higher priority to be assigned with a

register. In the example shown in Figure 8(a), suppose the target processor has two general-purpose

registers. So TI and T2 will be considered as register type whereas T3 will be considered as a memory

type. Thus instruction TI *— TI -f 1 has the type of register ^ register constant. Instruction

T3 T1/T2 has the type of dmem *— registerf register. The weight W(5) of a basic block B can b

computed by summing the execution time of each generic instruction in that basic block. The weight

W(C) of a condition C can be obtained in a similar way.

Obtaining Weight of Basic Block With a Wait Statement

The weight of a basic block with a wait statement is decided as follows:

1. Wait : In the absence of a timeout clause, the execution time is set to a very large number lik(

MAXINT, the largest integer supported by the host machine.

2. Wait on 5i, ...5„ until Ci,C2 for T ns : The execution time for a wait statement with onl

a timeout clause (i.e. for clause) is equivalent to the smallest multiple of the clock period highe

than T. The effect of conditions (e.g. Cl) cind an event on signals in the sensitivity list (e.g. Si

are ignored.

3. Wait on 5i,...5n until Ci,....C2 : i.e wait statement without a timeout clause. If the wait

statement has a sensitivity list or condition clause but no timeout clause then the wait statement

requires at least one control step to be executed. The effect of conditions (e.g. Cl) and an event

on signals in the sensitivity list (e.g. SI) are ignored.

Currently the estimation used for the wait statement is very primitive. Further work is needed to

obtain better estimation for the wait statement by considering the input rate of the signals in the

sensitivity list.

Obtaining Weight of Basic Block with a Procedure call

The third type of basic block is one which has a single procedure call. The execution time for the

procedure can be determined by treating the body of the procedure declaration as a leaf state. This

time is then used as the execution time of the basic block which contains the procedure call.

Computing Performance for Leaf Behavior

The basic block structure of a leaf behavior is mapped to an equivalent control flow graph G.

Figure 8(b) shows the corresponding control flow graph of Figure 8(a). Each basic block Bi is mapped

to a node in G. Each edge connecting two basic blocks Bi and Bj is mapped to an edge connecting

node Ni and Nj in the graph. Each node Ni in G has a weight which is the same as W{Bi). Each edge

in G has a weight which is the same as the weight of the condition associated with the corresponding

edge in the basic block structure. Applying the flow analysis and using the weights obtained for the

nodes and edges, the average execution time for the leaf behavior can be computed using equation 3

in section 3.1.3.

3.2.2 Performance Estimation for Non-leaf Behavior

Once execution times have been estimated for each of the leaf behaviors as shown above, we can merge

the performance estimates of the leaf behaviors to yield the the performance estimate of the next

higher behavior in the hierarchy. The approach adopted is similar to that of merging the performance

estimates of basic blocks to obtain performance estimates for the leaf behaviors. At any level of the

hierarchy, we will first determine the performance estimates of the child behaviors and then combine

these estimates to determine the performance estimate of the parent behavior.

To estimate the performance for a non-leaf behavior with sequential sub-behaviors, Bparenti we

create a control flow graph G = (V,E) for its child behaviors whose performance estimates are already

known. For each of the sub-behaviors, Bi, of Bparenti there exists a corresponding vertex Vj in the

graph G. For every transition arc between the two sub-behaviors Bi and Bj^ the set E has a directed

edge €ij from vertex Vi to vertex Vj in G. After the control flow graph model has been constructed

for the sub-behaviors, we can apply the flow analysis (section 3.1.3) to obt«tin the performance of the

parent behavior Bparent-

In case a behavior at any level of the hierarchy has concurrent sub-behaviors, the execution time of

that behavior is computed as the sum of that of its child behaviors. It must be mentioned here that a

non-leaf behavior may have a descendant sub-behavior which does not have a stop dot in SpecChart.

In this case the behavior will never finish executing and consequently the execution time returned for

that behavior is an arbitrarily large number.

4 Memory Size Estimation

Given a behavior, memory size estimation is to determine how much program-memory (i.e. bytes used

to store the compiled program representing the behavior) and how much data-memory (i.e. bytes used

to store the data manipulated by the behavior) are needed.

4.1 Program-memory Size Estimation

The size of each type of generic instruction is specified in the technology file for target processor. For

example, the size of the generic instruction with type of dmem ^ dmem -h dmem is 9 bytes in the

technology file for the 8086 processor and 6 bytes in the technology file for the 68020 processor. Based

on the size of each generic instruction, the program-memory size of eax:h basic block is the sum of that

of all generic instructions in that basic block. The program-memory size of a leaf behavior in turn is

the sum of that of all its basic blocks. Analogously, the program-memory size of a non-leaf behavior

is the sum of that of all its sub-behaviors.

4.2 Data-memory Size Estimation

The data-memory size is determined based on the data declaration parts in the specification. Th

data-memory size DMS{D) of a declaration D is determined by the size of Z?'s base type and th

number of base type elements in D. For example, the base type of the declaration ^variable a: integer

is integer and the number of base type elements is 1. For declaration 'variable b: bit vector [9 downtc

0]', the base type is bitvector and the number of base type elements is 10. The data-memory size o

a declaration D is computed as follows:

DMS{D) = DMS{BT(D)) x N (4

where, BT(D) is the base type of the declaration D. N is the number of base type elements in D.

The data-memory size of each base type is specified in a configuration file. The information cu

rently used in the configuration file is shown in Figure 9.

Bas*Type Data Memory Size (bytes)

Btfvector rn/S ^ where nts the number of bits in tl)e vector

Boolean

Integer

Natural

Positive

Figure 9: Size of the base type

After obtaining the data-memory size of each declaration, The data-memory size of a leaf behavior

can be computed by summing that of each declaration in its declaration part. The data-memory size

DMS{B) of a non-leaf behavior B is given as follows:

DMS{B)= Y, DMS{B,) + DMS(D,) (5)
all aub—behaviors Bi of B all declaration Di m Decl{B)

5 Results

Given a SpecChart description and a leaf behavior name in the SpecChart, our estimator will output

the estimates for each basic block in the leaf behavior and the execution frequency of each basic

block as well as the total estimates for the leaf behavior. In this way, designers who are not only

interested in the estimates of the whole behavior but also interested in the estimates of a loop body

or some basic blocks can easily find out estimates of any part of the specification. Similarly, given

a SpecChart description and a non-leaf behavior name, our estimator will output the estimates and

execution frequency for each sub-behavior in the non-leaf behavior as well as the total estimates of

the non-leaf behavior.

We have compared the estimation results for different target processors including 8086, 80286,

68000, 68020 with those results obtained by flattening (this step is not needed in the first two designs)

and compiling the designs directly into the instruction set of the target processors. Since there is no

VHDL compiler available for those target processors, we first manually convert the VHDL code to its

equivadent C code. Following that we compiled the 0 code into the instruction set of 8086, 80286,

68000 and 68020 processors. Based on the machine instructions generated from the C compilers and

the instruction timing and size information provided in [I8086][I80286][M68000][M68020], we have

manually computed the actual performance and program-memory size for the designs. Those actual
results were then compared with the estimates based on the generic three-address instruction compiler
supplemented by corresponding technology files for the target processors.

The first two descriptions we choose were the fifth order elliptical filter and the differential equation

example adopted from [DR92]. The behavior of the elliptical filter consists of an infinite loop. We

estimated only the loop body. In the differential equation example, there are three basic blocks and

one of them is a loop. The loop body can be executed any number of times depending on the external

parameters. In our experiments, we have assumed that the loop body would be executed 10 times.

The performance results are shown in Figure 10 while program-memory sizes are shown in Figure 11.

The data-memory size estimated for the elliptical filter example is 90 bytes. The data-memory size

estimated for the differential equation example is 21 bytes.

Application

Elliptic filter

ElKplic filter

Elliptic filter

Elliptic filter

Differential
equation

Differential
equation

Differerrtial

equation

Differemial

equation

Target
Macnirte

Actual Eatlmatad
Performance Performance

(In clock cyclea) (In clock cycles)

Figure 10: Performance estimation

Estimation
Error

Generally, compilers optimize the object code by using different optimization techniques such ai

global optimization, loop optimization, register allocation, optimization for speed or space. Userj

can invoke those optimizations by passing special flags to the compiler. In previous experiments

we have disabled those optimizations during the C compilation since our generic compiler does no

use optimization heuristics. Therefore our estimates are for those non-optimized code. In order t(

estimate for the optimized code, we need to know the optimization ratio of the compiler to be used b;

the designer to generate the machine instructions. The performance-optimization ratio a is definec

as performance of the optimized code over the performance of the non-optimized code. The siz

optimization ratio, /?, is defined similarly. To obtain the optimization ratio for each compiler, we hav

performed several experiments and obtained average optimization ratios for the four compilers use

in our experiments (Figure 12).

A
p

p
H

c
«

tf
o

n

E
li

p
ti

c
fi

lt
e
r

E
lK

p
fi

C
fi

lt
er

E
ll

ip
ti

c
fi

lt
er

E
lf

ip
ti

c
fi

lt
er

D
if

fe
r«

n
ti

a
l

e
q

u
a
ti

o
n

D
if

fe
re

n
ti

a
l

e
q

u
a
ti

o
n

D
rf

fe
re

n
ti

a
J

e
q

u
a
ti

o
n

D
if

f
e
r
e
r
n

ia
i

e
q

u
a
ti

o
n

T
a
rg

a
t

M
a
c
n

in
a

A
c
t
u

a
l

i
n

s
t
r
u

c
t
i
o

n
m

a
m

o
r
y

s
iz

a
(I

n
b

y
te

s
)

E
s
t
i
m

a
t
e
d

I
n

s
t
r
u

c
t
i
o

n
m

e
m

o
r
y

s
is

s
(I

n
b

y
te

s
)

3
3

6
3

1
9

3
3

6
3

1
9

2
3

0
2

1
4

2
2

9
2

1
3

1
5

1
1

4
3

1
4

7
1

4
1

1
0

6
9

8

1
0

5
9

7

F
ig

u
re

1
1

:
P

ro
g

ra
m

-m
e
m

o
ry

si
ze

e
st

im
a
ti

o
n

C
o

m
p

il
e
r

O
p

ti
m

iz
a
ti

o
n

r
a
ti

o
f
o

r
p

e
rf

o
rm

a
n

c
e

O
p

ti
m

iz
a
ti

o
n

r
a
ti

o
f
o

r
s
iz

e

C
to

8
0

8
6

C
to

8
0

2
8

6

C
to

6
8

0
0

0

C
to

6
8

0
2

0

F
ig

u
re

1
2

:
O

p
ti

m
iz

at
io

n
ra

ti
o

o
f

th
e

co
m

p
il

er
s

E
s
ti

m
a
ti

o
n

E
r
r
o

r

After knowing the performance and size optimization ratio a and the estimates for the optimized

code can be obtained by multiplying the estimates of the non-optimized code (obtained from our

estimator) with a or (3. Figure 13 compares our estimates with the actual performance of the optimized

code compiled from the designs.

Application

EIRplic filtar

EINplic filter

Elliptic filter

EINplic filter

DrffererrtiaJ
equation

Dtflerential

equation

Differential
equation

Dtfferentiai
equation

Target
Machine

Actual Estimated
Performance Performance

(In clock cycles) On clock cycles)
Estimation

Error

Figure 13: Performance estimation of optimized code

The next design we experiment is the real-time medical system used to measure a patient's bladder

volume described in [Wu85]. The SpecChart description of this medical system is shown in Figure 14.

There are two timing constraints imposed on this medical system. One is associated with the

behavior DATA_ACQUISITION, which requires that acquisition and conversion of 1000 data point

take place in less than 1 ms. The other is associated with behavior ONE_SCAN, which require

that the maximum time between two scans, i.e. the time used to execute M0T0R_C0NTR0L2

DATA-ACQUISITION, VOLUME-COMPUTATION and DATA-STORAGE, is 1 second. We hav

estimated behavior DATA-ACQUISITION and behavior ONE_SCAN using our estimator. The es

timates are compared with the actual results obtained from the (non-optimized) target machine in

structions (Figure 15).

Since ONE-SCAN is a non-leaf behavior, we need to flatten it into a leaf behavior first. FoUowin

that the VHDL code is manually translated into C and compiled into the target machine instruction!

For DATA-ACQUISITION, the flattening step is not needed since it is a leaf behavior by itself. Durin;

the translation from VHDL to C, wait statements were substituted with dummy procedure calls. Whe

we computed the actual performance from the machine instructions, we substituted the performanc

of those dummy procedure call portions with the performance of the corresponding wait statement

obtained from our estimator.

SYSTEM Declarations:

port x.step, y_step: in integen port start: in btt;

NUL BEHAVKDR

¥<¥_SIBP

MOTOR.CONTROLI VOLUME OUTPUT

NULL BEHAVIOR

X< x_St«p

ONE SCAN

MOTOR CONTROL2

DATA ACOUISinON

VOLUME COMPUTATKm

DATA STORAGE

Figure 14: SpecChart of a medical system

In this experiment, equal branching probability are assumed for all the branches in the behaviors.

The number of loop iteration in DATA-ACQUISITION were 1000 which is the number of data needed

to be sampled in each scan. The loop iteration numbers in the VOLUME-COMPUTATION were set

to 200 for computing the fiat level of the bladder, 400 each for computing the anterior wall and the

posterior wall of the bladder. The number of loop iteration in DATA-STORAGE were the same as

number of data fetched, which is 1000.

If the behavior DATA-ACQUISITION is going to run on an 8086 microprocessor with 12 MHZ clock

rate, the estimator predicated 71004 clock cycles which is equivalent to 5.9 ms in this case. Therefore

the timing constraint (1 ms) imposed on DATA-ACQUISITION were violated. And thus custom hard

ware must be designed for this behavior. The timing constraint of 1 second imposed on the behavior of

ONE-SCAN has not been violated since it only requires 12.8 ms (153641 clock cycles) to execute all be

haviors in ONE-SCAN on the chosen microprocessor. If behavior DATA-ACQUISITION is extracted

out 2ind implemented by some faster design, the execution time for behavior ONE-SCAN can be ex

pected to be less than 12.8 ms. Therefore all behaviors in ONE-SCAN except DATA-ACQUISITION

can be implemented using the code running on the microprocessor.

Application

DATA
ACQUISITION

DATA

acquisition

DATA

acquisition

DATA
acquisition

ONE_SCAN

ONE_SCAN

ONE SCAN

ONE SCAN

6 Conclusion

Actual Esttmated - ..
Parlormanca Parformanca

(in clock cyclaa) (In ciocK cyclas) Error

Figure 15: Performance estimation

In this report we have presented techniques for estimating from executable specification the perform

mance and memory size of software code running on a given processor. The experiments has show

that our estimator has an average error of 7.4% and has a maximum error of 19.1% on designs span

ning from straight line code (elliptic filter) to code with branches and loops (differential equation an

DATAjVCQUISITION module) and even to hierarchical specification (ONE_SCAN module).

Since the generic three-address instructions and the technology files can only characterize the targe

machine instructions to some extend, there is always difference between the estimation obtained fro

our estimator and the results obtained directly by compiling to target machine instructions. Currentl

our technology files are primitive. We expect smaller estimation errors with more accurate technolog

files.

Another thing is that our generic instruction set has limited formats, especially in terms of memor

addressing modes. If we can incorporate more memory addressing modes in our compiler to do

the gap between the generic instructions and the target machine instructions, we can expect bett

estimation results. However this may increase the complexity of the generic instructions. Increasin

complexity of the generic instructions may increase the compiling time and hence increase the who

estimation time. Therefore more studies are needed to investigate what makes a suitable gener

instruction set.

In conclusion, our software estimator provides rapid feedback to the designers or partitioning to

and enable them to evaluate different design alternatives quickly. It takes 0.64, 0.33, 1.97 and 7.09

seconds on a Sun4 system to estimate the performance of the elliptic filter, differential equation,

DATA-ACQUISITION and ONE_SCAN modules respectively for the 8086 technology file. On the

contrary, it takes several days to manually compute the same information. Such instant feedback

enables the designers or partitioning tools to rapidly explore larger design space, which may lead to

faster and/or cheaper designs.

7 Acknowledgements

This work was supported by the National Science Foundation (grant ^MIP-8922851) and the Serai-

conductor Research Corporation (grant #91-DJ-146). We are grateful for their support. The authors

would like to thank Frank Vahid for for his helpful suggestions.

8 References

[ASU88] A. Aho, R. Sethi, and J. Ullman, "Compilers Principles,Techniques, and Tools", Addison
Wesley, 1988.

[BV92] K. Buchenrieder, C. Veith, " CODES: A practical concurrent design environment", the
International Workshop on Hardware/Software Codesign, Sept. 1992, Estes Park, Col

orado, USA.

[DR92] N. Dutt and C. Ramachandran, "Benchmarks for the 1992 high level synthesis workshop",
UC Irvine, Dept. of ICS, Technical Report 92-107, 1992.

[EH92] R. Ernst, J. Henkel, "Hardware-software codesign of embedded controllers based on hard
ware extraction", the International Workshop on Hardware/Software Codesign, Sept.
1992, Estes Park, Colorado, USA.

[GM92a] R.K. Gupta, G. De Micheli, "System-level synthesis using re-programmable components",

EDAC'92, Sept. 1992.

[GM92b] R.K. Gupta, G. De Micheli, "Program implementation schemes for hardware-software
systems", the International Workshop on Hardware/Software Codesign, Sept. 1992, Estes

Park, Colorado, USA.

[I80286] L. Scanlon, "8086/8088/80286 Assembly Languages", Simon & Schuster, 1988.

[18086] G. GorsUne, "16-Bit Modern Microcomputers: the INTEL 18086 Family", Prentice-Hall,
1985.

[KL92] A. Kalavade, E.A. Lee, " Hardware/software co-design using ptolemy - a case study",
the International Workshop on Hardware/Software Codesign, Sept. 1992, Estes Park,

Colorado, USA.

J. Bennett, "68000 Assembly Language Programming: A Structured Approach",
Prentice-Hall, 1987.

MOTOROLA, "MC68020: 32-Bit Microprocessor User's Manual (Second Edition)",
Prentice-Hall, 1987.

S. Narayan, F. Vahid, and D. Gajski, "System specification and synthesis with the Spec-
Charts Language", ICCAD, Nov. 1991.

R. Puschner, C. Koza, "Calculating the maximum execution time of real-time programs",
Journal of Real-time Systems, Kluwer Academics, 1989, P159-176.

M.B. Srivastava, R. W. Brodersen, "Rapid-prototyping of hardware and software in a
unified framework", ICCAD, Nov. 1991.

A. Wu, "A Microprocessor-based ultrasonic system for measuring bladder volumes", Mas
ter Thesis in Electrical and Computer Engineering at University of Arizona, Tucson, 1985.

A Technology Files

*i Anything after *#' are comments.
This is the technology file for 8086 processor.

#* DirectHem means direct memory addressing,

it IndirectNem means indirect memory addressing.

« OP

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

DESTINATION

Register

Register

Register Register Constant

Register Register Register

Register DirectNem Constant

Register Constant DirectHem

Register DirectHem Register

Register Register DirectHem

Register DirectHem DirectHem

Register IndirectHem Constant

Register Constant IndirectHem
Register IndirectHem Register
Register Register IndirectHem

Register IndirectHem DirectHem

Register DirectHem IndirectHem

Register IndirectHem IndirectHem
DirectHem

DirectHem

DirectHem

DirectHem

DirectHem

DirectHem

DirectHem

DirectHem

DirectHem

Register

Register

Register

Register

DirectHem

DirectHem

DirectHem

DirectHem

SOURCEl

Constant

Constant

Empty

Empty

Empty

S0URCE2

Constant

Register

Constant

Register

Constant

DirectHem

Register

DirectHem

DirectHem

Constant

DirectHem Constant Constant

DirectHem Constant Register

DirectHem Register Constant

DirectHem Register Register

DirectHem DirectHem Constant

DirectHem Constant DirectHem

DirectHem DirectHem Register

DirectHem Register DirectHem

DirectHem DirectHem DirectHem

DirectHem IndirectHem Constant

DirectHem Consteint IndirectHem

DirectHem IndirectHem Register

DirectNem Register IndirectHem

DirectHem IndirectHem DirectHem

DirectHem DirectHem IndirectHem

DirectHem IndirectHem IndirectHem

Constant

Register

DirectHem

Empty IndirectHem

Empty

Empty

Empty

Constant

Register

DirectHem

Empty IndirectHem

timeCcloch size(bytes)
3

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Constant

Constant

Register

Register

DirectMem

Constant

DirectMem

Register

DirectMem

IndirectMem

Constant

IndirectMem

Register

IndirectMem

DirectMem

IndirectMem

Constant

Constant

Register

Register

DirectMem

Constant

DirectMem

Register

DirectMem

IndirectMem

Constant

IndirectMem

Register

IndirectMem

DirectMem

IndirectMem

Constsint

Constant

Register

Register

DirectMem

Constant

DirectMem

Register

DirectMem

IndirectMem

Constant

IndirectMem

Register

IndirectMem

DirectMem

IndirectMem

Constant

Register

Constant

Register

Constant

DirectMem

Register

DirectMem

DirectMem

Constant

IndirectMem

Register

IndirectMem

DirectMem

IndirectMem

IndirectMem

Constant

Register

Constant

Register

Constant

DirectMem

Register

DirectMem

DirectMem

Constant

IndirectMem

Register

IndirectMem

DirectMem

IndirectMem

IndirectMem

Constant

Register

Constant

Register

Constant

DirectMem

Register

DirectMem

DirectMem

Constant

IndirectMem

Register

IndirectMem

DirectMem

IndirectMem

IndirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

DirectMem

Constant

Constant

Register

Register

DirectMem

Constant

DirectMem

Register

DirectMem

IndirectMem

Constant

IndirectMem

Register

IndirectMem

DirectMem

IndirectMem

Constant

Constant

Register

Register

DirectMem

Constant

DirectMem

Register

DirectMem

IndirectMem

Constant

IndirectMem

Register

IndirectMem

DirectMem

IndirectMem

Constant

Register

Register

DirectMem

Consteint

DirectMem

Register

DirectMem

IndirectMem

Constant

IndirectMem

Register

IndirectMem

DirectMem

IndirectMem

Constant

Register

Constant

Register

Constant

DirectMem

Register

DirectMem

DirectMem

Constant

IndirectMem

Register

IndirectMem

DirectMem

IndirectMem

IndirectMem

Constant

Register

Constant

Register

Constant

DirectMem

Register

DirectMem

DirectMem

Constant

IndirectMem

Register

IndirectMem

DirectMem

IndirectMem

IndirectMem

Constant

Register

Constant

Register

Constant

DirectMem

Register

DirectMem

DirectMem

Constant

IndirectMem

Register

IndirectMem

DirectMem

IndirectMem

IndirectMem

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

HOP

CJUMP

JUMP

RET

CALL

Register

Register

Register

Register

DirectNem

DirectMem

DirectMem

DirectMem

IndirectMem

IndirectMem

IndirectMem

IndirectMem

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Constant

Register

DirectMem

IndirectMem

Register

DirectMem

IndirectMem

Register

DirectMem

IndirectMem

Empty

Empty

Empty

Empty

Empty

