
10

Software Fault Tolerance in the
Application Layer
YENNUN HUANG and CHANDRA KINTALA

AT&T Bell Laboratories

ABSTRACT

By software fault tolerance in the application layer, we mean a set of application level soft-
ware components to detect and recover from faults that are not handled in the hardware or
operating system layers of a computer system. We consider those faults that cause an appli-
cation process to crash or hang; they include application software faults as well as faults in
the underlying hardware and operating system layers if they are undetected in those layers.
We define four levels of software fault tolerance based on availability and data consistency
of an application in the presence of such faults. We describe three reusable software com-
ponents that provide up to the third level of software fault tolerance. Those components
perform automatic detection and restart of failed processes, periodic checkpointing and re-
covery of critical volatile data, and replication and synchronization of persistent data in an
application software system. These components have been ported to a number of UNIX2

platforms and can be used in any application with minimal programming effort.
Some telecommunications products in AT&T have already been enhanced for fault-

tolerance capability using these three components. Experience with those products to date
indicates that these modules provide efficient and economical means to increase the level
of fault tolerance in a software system. The performance overhead due to these components
depends on the level and varies from 0.1% to 14% based on the amount of critical data
being checkpointed and replicated.

1 This is an expanded version of the paper “Software Implemented Fault Tolerance: Technologies and Experience” in
Proceedings of 23rd Intl. Symposium on Fault Tolerant Computing (FTCS-23), Toulouse, France, pages 2–9, June
1993.

2 UNIX is now a registered trademark of X/Open Co.

Software Fault Tolerance in the Application Layer, by Huang and Kintala
c© 1995 John Wiley & Sons Ltd

232 HUANG and KINTALA

10.1 INTRODUCTION

There are increasing demands to make the application software systems we build today more
tolerant to faults. From a user’s point of view, fault tolerance has two dimensions: availability
and data consistency of the application. For example, users of telephone switching systems
demand continuous availability whereas bank teller machine customers demand the highest
degree of data consistency. Safety critical real-time systems such as nuclear power reactors
and flight control systems need highest levels in both availability and data consistency. Most
other applications have lower degrees of requirements for fault-tolerance in both dimensions;
see Figure 10.1. But, the trend is to increase those degrees as the costs, performance, tech-
nologies and other engineering considerations permit.

Availability

Da
ta

Co
ns

ist
en

cy

Traditional High Continuous

P
er

fe
ct

T
ra

di
tio

na
l

Bank
Teller
Machines

Telephone
Switching
Systems

Most
other
Systems

Figure 10.1 Dimensions of fault tolerance

Availability and data consistency in an application is traditionally provided through fault-
tolerant hardware and operating system used by the application for its execution. New trends
are emerging in the marketplace that are changing this tradition. Standard commercial hard-
ware and operating systems are becoming highly reliable, distributed and inexpensive to the
extent that they are now off-the-shelf commodity items. New application software systems are
increasingly networked and distributed, i.e. mostly client-server systems. Many of those appli-
cations are also built from reusable components whose sources are unknown to the application
developers. Due to this complexity in application software, the proportion of failures due to
faults in the application software is increasing. The End-to-End type of arguments imply that
one needs fault tolerance in the application software itself to handle such failures. Also, as the
society’s dependence on such diverse and distributed applications grows, demands for more
reliable and yet economical fault-tolerant software will grow.

In this paper, we discuss three cost-effective reusable software components, watchd,
libft, and REPL, to raise the degree of fault tolerance in an application’s availability and
data consistency dimensions. We discuss the background concepts of software faults, failures
and fault tolerance in Section 10.2 and then present a model for providing fault tolerance
through software in Section 10.3. The three components are described in Section 10.4 and
the experience with applications in using those technologies are discussed in Section 10.5,
followed by some concluding remarks in Section 10.6.

Software Fault Tolerance in the Application Layer 233

10.2 BACKGROUND

10.2.1 Software Faults and Failures

Following Cristian [Cri91], we consider distributed software applications that provide a “ser-
vice” to clients. The applications in turn use the services provided by the underlying operating
or database systems which in turn use the computing and network communication services
provided by the underlying hardware; see Figure 10.2.

Hardware

duplex, TMR, ...

signals, mirroring, FT-DBMS, ...

Operating/Database System

Fault Tolerance

Technologies

Application Software Layer

Figure 10.2 Layers of fault tolerance

Due to the complex and temporal nature of interleaving of messages and computations in
distributed software systems, no amount of verification, validation and testing can eliminate
all faults in an application and give complete confidence in the availability and data consis-
tency of that application. So, those faults occasionally manifest themselves as failures, causing
application processes to crash or hang. A process is said to be crashed if the working process
image is no longer present in the system. A process is said to be hung if the process image is
alive, its entry is still present in the process table but the process is not making any progress
from a user’s point of view.

Tolerating faults in such applications involves detecting a failure, gathering knowledge
about the failure and recovering from that failure. Traditionally, these fault tolerance actions
are performed in the hardware, operating or database systems used in the underlying layers of
the application software. Hardware fault tolerance is provided using Duplex, Triple-Module-
Redundancy or other techniques [Pra86]. Fault tolerance in the operating and database lay-
ers is often provided using replicated file systems [Sat90], exception handling [Shr85], disk
shadowing [Bit88], transaction-based checkpointing and recovery [Nan92], and other system
routines. These methods and technologies handle faults occurring in the underlying hardware,
operating and database system layers only.

Increasing number of faults are however occurring in the application software layer causing
application processes to crash or hang [Sie92]. Software, unlike hardware, has no physical
properties. So, the only kind of faults it has are design and coding faults. Due to the permanent
nature of such design faults, it has been generally assumed that the failures caused by software
faults are also permanent. This belief led to the use of design diversity for supporting fault
tolerance. With design diversity, if a module cannot provide its service, then another module
which has a different design is used to provide the required service. The two well known

234 HUANG and KINTALA

methods for design diversity are the recovery block approach (see Chapter 1), and the N -
version programming approach (see Chapter 2).

However, the failures exhibited by those software faults can be transient, i.e. the fail-
ure may not recur if the software is reexecuted on the same input [Gra91, Wan93]; this is
a frequently used technique in hardware to mask transient hardware failures. Sullivan and
Chillarege [Sul92] also showed that a large percentage of software errors are triggered by
peak conditions in workload, exception handling and timing. Such errors are likely to dis-
appear when the software is reexecuted after a certain amount of clean-up and reinitializa-
tion [Ber92]. This is because the behavior of a program, especially a client server application
running on a distributed system, depends not only the input data and message contents but
also on the timing and interleaving of messages, shared variables and other “state” values in
the operating environment of the application [Cri91, Hua94].

10.2.2 Software Fault Tolerance

It is possible to detect a software failure and restart the application at a checkpointed state
through operating system facilities, as in IBM’s MVS [Sie92]. In their chapter on End-to-
End Arguments [Sal84], Saltzer et. al. claim that such hardware and operating system based
methods to detect and recover from software failures are necessarily incomplete. They show
that fault tolerance cannot be complete without the knowledge and help from the endpoints
of an application, i.e., the application software itself has to be engaged to provide complete
end-to-end fault tolerance. We claim that such hardware and operating system based methods,
i.e. services at a lower layer detecting and recovering from failures at a higher layer, may
also be inefficient. For example, file replication on a mirrored disk through a facility in the
operating system is more inefficient in execution time and space usage than replicating only
the “critical” files of the application in the application layer since the operating system has
no internal knowledge of that application. Similarly, generalized checkpointing schemes in
an operating system checkpoint entire in-memory data of an application whereas application-
assisted methods checkpoint only the critical data [Lon92, Bak92].

A common but misleading argument against embedding checkpointing, recovery and other
fault tolerance schemes inside an application is that such schemes are not efficient or reliable
because they are coded by application programmers. We claim that well-tested and efficient
fault tolerance methods can be built as libraries or reusable software components that can be
linked into an application and that they are as efficient as some of the operating system based
methods. They may not be as transparent to the application as the other methods but they are
much more portable across many hardware and operating system platforms since they are in
the application layer. All the three components discussed in this chapter are efficient, reliable
and portable across many platforms.

The above observations lead to our notion of software fault tolerance as:

a set of software components executing in the application layer of a computer system to detect
and recover from faults that are not handled in the underlying hardware or operating system
layers.

We consider all faults that cause an application process to crash or hang which include soft-
ware faults as described earlier as well as faults in the underlying hardware and operating
system layers if they are undetected in those layers. Thus, if the underlying hardware and op-
erating system are not fault-tolerant due to performance/cost trade-offs or other engineering

Software Fault Tolerance in the Application Layer 235

considerations in an application system, then that system’s availability can be increased cost
effectively through software fault tolerance components described in this chapter.

10.3 MODEL

For simplicity in the following discussions, we consider only client-server based applications
running in a network of computers (nodes) in a distributed system3. Such an application has
a server process and several client processes executing in the user level (application layer)
on top of vendor supplied hardware and operating systems. To get services, client processes
send messages to the server process. In each of those message processing steps, the server
process performs the required computation and data processing and sends back a response if
necessary. We sometimes call the server process the application. For fault tolerance purposes,
the nodes in the distributed system are viewed as being in a circular configuration so that
each node is a backup node for its left neighbor in that circular list. As shown in Figure 10.3,
each application is executing primarily on one of the nodes in the network, called the primary

Clients

Application
Process Volatile

Data

Persistent
Data

Operating/Database System

Primary

Backup

(REPL)

(watchd)

(libft)

Backup

Figure 10.3 Model for software fault tolerance in the application layer

node for that application. Each executing application has process text (the compiled code),
volatile data (variables, structures, pointers and all the bytes in the static and dynamic memory
segments of the process image) and persistent data (the application files being referred to and
updated by the executing process).

10.3.1 Modified Primary-Site Approach

We modify the primary-site approach to software fault tolerance [Als76] slightly in our model.
In the primary site approach, the service to be made fault tolerant is replicated at many nodes,

3 These discussions also apply to other kinds of applications. Indeed, the components described in the next section
have been used in compute-intensive non-distributed applications.

236 HUANG and KINTALA

one of which is designated as primary and the others as backups. All the requests for the
service are sent to the primary site. The primary site periodically checkpoints its state on the
backups. If the primary fails, one of the backups takes over as primary. This model for fault
tolerance has been analyzed for frequency of checkpointing, degree of service replication
and the effect on response time by Huang and Jalote [Hua89, Hua92]. This model is slightly
modified, as described below, to build the three technologies described in this chapter.

• Each node has its left (or right) neighbor in the circular configuration designated as a
backup node.

• The application is active only on its primary node; the application is inactive (i.e. process
image is available but not executing) on its backup node.

• A watchdog process (called watchd in our technologies), is running on the primary node
watching for application crashes or hangs.

• Another watchdog process is running on the backup node watching for primary node
crashes.

• A routine (supplied by libft library in our technologies) is periodically checkpointing
the critical volatile data in the application and logging the client messages to the application
between checkpoints.

• A replication mechanism (called REPL in our technologies) is running on the primary and
the backup nodes to duplicate application’s persistent data on the backup node.

• When the application on the primary node crashes or hangs, it is restarted on the primary
node, if possible, or on the backup node, otherwise.

• The application is restored to its latest possible internal state before the failure using the
checkpointed data structures and message log.

• The application is connected to the replicated files on the backup node if the application
restarts on the backup.

Observe that these software fault tolerance tasks can be used in addition to other methods
such as N -version programming[Avi85] or recovery blocks [Ran75] inside an application
program. Observe also that the application process on the backup node need not be running
until it is started by the watchdog process and hence there are no consistency and concurrency
concerns; this is unlike in the process-pair model [Gra91] where the backup process is actively
running even during normal operations.

10.3.2 Levels of Software Fault Tolerance

The degree to which the above software fault tolerance tasks are used in an application de-
termines the availability and data consistency of that application. It is, therefore, useful to
establish a classification of the different levels of software fault tolerance. We define the fol-
lowing 4 levels based on our experience in AT&T. Applications illustrating these levels are
described in Section 10.5.

Level 0: No tolerance to faults in the application software:
In this level, when the executing application process dies or hangs, it has to be manually
restarted from an initial internal state. The application may leave its data in an incorrect or
inconsistent state due to the timing of the crash and may take a long time to restart due to
elaborate initialization procedures.

Level 1: Automatic detection and restart:
When the application dies or hangs, the error is detected and the application is restarted

Software Fault Tolerance in the Application Layer 237

from an initial internal state on the same processor, if possible, or on a backup processor if
available. In this level, the internal state of the application is not saved and, hence, the pro-
cess restarts at the initial internal state. As stated above, restart along with reinitialization is
slow. The restarted internal state may not reflect all the messages that have been processed
in the previous execution, and therefore, may not be consistent with the persistent data. The
difference between Levels 0 and 1 is that the detection and restart are automatic in Level
1, and therefore, the application availability is higher in Level 1 than in Level 0.

Level 2: Level 1 plus periodic checkpointing, logging and recovery of internal state:
In addition to what is available in Level 1, the internal state of the application process is
periodically checkpointed, i.e. the critical volatile data is saved, and the messages to the
application are logged. After a failure is detected, the application is restarted at the most
recent checkpointed internal state and the logged messages are reprocessed to bring the
application close to the state at which it crashed. The application availability and volatile
data consistency are higher in Level 2 than those in Level 1.

Level 3: Level 2 plus persistent data recovery:
In addition to what is available in Level 2, the persistent data of the application is repli-
cated on a backup disk connected to a backup node, and is kept consistent with the data on
the primary node throughout the normal operation of the application. In case of a fault and
resulting recovery of the application on the backup node, the backup disk brings the appli-
cation’s persistent data as close to the state at which the application crashed as possible.
The data consistency of the application in Level 3 is higher than that in Level 2.

Level 4: Continuous operation without any interruption:
This level of fault tolerance in software guarantees the highest degree of availability and
data consistency as required, for example, in safety critical real-time systems. Often, this is
provided by replicated processing of the application on “hot” spares, such as the recovery
block in Chapter 1 or the N -version software in Chapter 2. The technologies we describe
in this chapter do not provide this level of fault tolerance and hence we do not recommend
them to be exclusively used in such applications.

10.4 TECHNOLOGIES

Sometimes, the fault tolerance tasks described in the previous section are individually im-
plemented in an application in an ad hoc manner. We developed three generic and reusable
components (watchd, libft and REPL)4 to embed those tasks in any application with
minimal programming effort.

10.4.1 Watchd

10.4.1.1 PROCESS RECOVERY

Watchd is a watchdog daemon process that runs on a single machine or on a network of
machines. It continually watches the life of a local application process by periodically sending
a null signal to the process and checking the return value to detect whether that process is
alive or dead. It detects whether that process is hung or not by using one of the following two
methods specified by the application. In the first method, watchd sends a null message to

4 watchd, libft and REPL are registered trademarks of AT&T Bell Laboratories.

238 HUANG and KINTALA

the local application process using IPC (Inter Process Communication) facilities on the local
node and checks for a response. If watchd cannot make the connection, it waits for some
time (specified by the application) and tries again. If it fails after the second attempt, watchd
interprets the failure to mean that the process is hung. In the second method, the application
process sends a heartbeat message to watchd periodically and watchd periodically checks
the heartbeat. If the heartbeat message from the application is not received by a specified time,
watchd assumes that the application is hung. Libft provides the function hbeat() for
applications to send heartbeats to watchd. The hbeat() function has an argument whose
value specifies the duration for the next heartbeat to arrive.

When it detects that the application process crashed or hung, watchd recovers that appli-
cation at an initial internal state or at the last checkpointed state. The application is recovered
on the primary node if that node has not crashed, otherwise on the backup node for the pri-
mary as specified in a configuration file. If libft is also used, watchd sets the restarted
application to process all the logged messages from the log file generated by libft.

10.4.1.2 PROCESSOR RECOVERY

Watchd also watches one neighboring watchd (left or right) in a circular fashion to detect
node failures; this circular arrangement is similar to the adaptive distributed diagnosis algo-
rithm [Bia91]. When a node failure is detected, watchd can execute user-defined recovery
commands and reconfigure the network. Observe that neighboring watchds cannot fully dif-
ferentiate between node failures and link failures. In general, this is the problem of attaining
common knowledge in the presence of communication failures which is provably unsolv-
able [Hal90]. However, to minimize the problem, watchd can use two communication links
for polling a neighboring node. Only when it can not reach the neighboring node by both
links, watchd reports a node failure; an example is given in Section 10.5, Level 3.

10.4.1.3 SELF RECOVERY

Watchd also watches itself. A self-recovery mechanism is built into watchd in such a way
that it can recover itself from an unexpected software failure. When watchd finishes initial-
ization, it forks a backup watchd. The backup watchd executes a loop and keeps polling
the primary watchd. If the primary watchd fails, the backup watchd breaks the polling
loop and resumes the primary watchd’s task by itself becoming the primary. It also spawns
a new backup watchd for watching itself, the new primary watchd. If the backup watchd
fails, the primary watchd gets a signal from operating system since the backup watchd is
always a child process of the primary watchd.
Watchd also facilitates restarting a failed process, restoring the saved values and reexe-

cuting the logged events and provides facilities for remote execution, remote copy, distributed
election, and status report production.

10.4.2 Libft

Libft is a user-level library of C functions that can be used in application programs to
specify and checkpoint critical data, recover the checkpointed data, log events, locate and
reconnect to a server, do exception handling, do N -version programming (NVP), and use
recovery block techniques.

Software Fault Tolerance in the Application Layer 239

10.4.2.1 FUNCTIONS

Libft provides a set of functions, described below, to specify critical volatile data in an
application. Those critical data items are allocated in a reserved region of the virtual memory
and are periodically checkpointed. The reserved region is saved using a single system call
to the memory copy function (memcpy()); we thus avoid traversing complex, application-
dependent data structures. When an application does a checkpoint, its critical data is saved on
the primary and backup nodes. Unlike other checkpointing methods [Lon92], the overhead in
our checkpointing mechanism is minimized by saving only critical data and avoiding data-
structure traversals. This idea of saving only critical data in an application is analogous to the
Recovery Box concept in Sprite [Bak92].

Data structure checkpointing, recovery, fault-tolerant network communication and file op-
erations are done using the following functions in libft.

• ft start() reserves a block of critical memory. The function takes two arguments —
the size of the critical memory and the file name for checkpoint data. When in recovery,
ft start() restores the data structures from the critical memory in reserved address
space.

• t critical() declares critical global variables along with an id to identify the thread
that made the call; function critical() is similar to t critical()without the iden-
tifier. Both functions take a list of variables and their sizes as input arguments.

• t checkpoint() and checkpoint() save the values of critical variables and the
critical memory onto a file.

• t recover() and recover() restore the values of critical variables and critical mem-
ory.

• ftmalloc(), ftcalloc() and ftrealloc() are used to allocate space from the
critical memory and function ftfree() is used to free space to critical memory.

• getsvrloc(), getsvrport(), ftconnect() and ftbind() are used by clients
to locate server processes and reconnect to servers in a network environment.

• ftfopen(), ftfclose(), ftcommit() and ftabort() help in committing and
aborting file updates. Files updated using ftfopen() can be committed only by calling
ftfclose() or ftcommit(). Therefore, in the case of process rollback recovery, file
updates can be rolled back to the last commit point.

Libft also provides ftread() and ftwrite() functions to automatically log mes-
sages. When the ftread() function is called by a process in a normal condition, the data
are read from a channel and automatically logged on a file. The logged data then are duplicated
and logged by the watchd daemon on a backup machine. The replication of logged data is
necessary for a process to recover from a primary machine failure. When the ftread()
function is called by a process which is recovering from a failure in a recovery situation,
the input data are read from the logged file before any data can be read from a regular in-
put channel. Similarly, the ftwrite() function logs output data before they are sent out.
The output data is also duplicated and logged by the watchd daemon on a backup ma-
chine. The log files created by the ftread() and ftwrite() functions are truncated af-
ter a checkpoint() function is successfully executed. Using functions checkpoint(),
ftread() and ftwrite(), one can implement either a sender-based or a receiver-based
logging and recovery scheme [Jal89]. There is a slight possibility that some messages during
the automatic restart procedure may get lost. If this is a concern to an application, an ad-

240 HUANG and KINTALA

ditional message synchronization mechanism can be built into the application to check and
retransmit lost messages.

The exception handling, NVP and recovery block facilities are implemented using C macros
and standard C library functions. These facilities can be used by any application without
changing the underlying operating system or adding new C preprocessors.

Speed and portability are primary concerns in implementing libft. The libft check-
point mechanism is not fully transparent to programmers as in the Condor system [Lit88].
However, libft does not require a new language, a new preprocessor or complex decla-
rations and computations to save data structures [Gra91]. The sacrifice of transparency for
speed has been proven to be useful in some projects to adopt libft. The installation of
libft doesn’t require any change to a UNIX-based operating system; it has been ported to
several platforms.
Watchd and libft separate fault detection and volatile data recovery facilities from the

application functions. They provide those facilities as reusable components which can be
combined with any application to make it fault tolerant. Since the messages received at the
server site (active node) are logged and only the server process is recovered in this scheme,
the consistency problems that occur in recovering multiple processes [Jal89] are not issues in
this implementation.

10.4.2.2 EXAMPLE

The following program is an example of a server program using libft library for check-
pointing. The server program reads a number from a client and pushes the number onto the
top of a stack. The stack is implemented using a linked list.

#include <ft.h>
...
struct llist {

int data;
struct llist *link;
...

}
...
main(){

struct llist *pHead=NULL, *ptmp;
int s, indata;
...
ft_start("/tmp/examp1",16384);
critical(&pHead, sizeof(pHead),0);
...
for (;;) {

...
if (in_recovery()) recover(INFILE);
if (application decides to checkpoint due to

a change in its state) checkpoint(INFILE);
...
s=accept(..);

Software Fault Tolerance in the Application Layer 241

read(s,indata,MaxLen);
ptmp=(struct llist *) ftmalloc(sizeof(struct llist));
ptmp->link=pHead;
ptmp->data=indata;
pHead=ptmp;
...

}
}

The critical data in the above program is the stack itself; to save it, the pointer to the top
of the stack, pHead, and the stack size are declared to be critical. To save the contents of
the stack, the stack elements are assigned from the critical memory. A critical memory of
size 16K bytes is created by the ft start() function. The size of the critical memory can
be dynamically increased as needed. in recovery() function returns 1 or 0 indicating
whether the program is in recovery state.

10.4.2.3 OTHER CONSTRUCTS

Libft provides C-style constructs to do N -version programming, recovery block, exception
handling and program retry block. All the constructs are implemented using macros. There-
fore, no new C preprocessor or compiler is needed. The syntax of each construct is listed
below.

Recovery block:

#include <ftmacros.h>
...
ENSURE(accept-test) {

primary block;
} ELSEBY {

secondary block 1;
} ELSEBY {

secondary block 2:
}
...
ENSURE;

In the above program, accept-test is a condition statement which should return 0 if
the condition fails.
N -version programming:

#include <ftmacros.h>
...
NVP
VERSION{

block 1;
SENDVOTE(v-pointer, v-size);

}
VERSION{

242 HUANG and KINTALA

block 2;
SENDVOTE(v-pointer, v-size);

}
...
ENDVERSION(timeout,v-size);
if (!agreeon(v-pointer)) error_handler();
ENDNVP;

The v-pointer is a pointer to a critical variable containing recovery block’s output
data to be voted upon. Function SENDVOTE() sends that data to a voting registrar. The
function agreeon(), the default registrar, returns 1 if a majority of the returned data
agree. In this case, the result of the voting is stored in the function argument. Otherwise,
function agreeon() returns 0.

Exception handling:

#include <ftmacros.h>
...
exception name1, ...;
TRY

statements;
EXCEPT(name1) {

handler routine 1;
}
EXCEPT(name2) {

handler routine 2;
}
...
ENDTRY;

To raise an exception, THROW(name) construct is used.
Retry block:

#include <ftmacros.h>
...
START(max_no) {

statements;
}
FINISHBY(post-condition);

The program stops if the retry block can not satisfy the post-condition after max no
of retries.

10.4.3 REPL

REPL file replication technology provides facilities for on-line replication of user specified
files on a backup node. The implementation of REPL uses a shared library to intercept file
system calls, as in nDFS [Fow93], and is built on top of UNIX file systems. So, it runs entirely
in the application layer and requires no change to the underlying file system or operating
system. Speed, robustness and replication transparency are the overriding goals in the design
and implementation of REPL.

Software Fault Tolerance in the Application Layer 243

10.4.3.1 COMPONENTS

REPL technology contains two parts — a shared library librepl.a and a REPL system of
processes to run on the primary and backup nodes. Applications are linked with librepl.a
library. The library intercepts all the system calls that operate on the specified critical files
of that application, generates file update messages and routes those systems calls to the un-
derlying file system on the primary as in a normal system call. The REPL system on the
primary transports the generated file update messages to the REPL system on the backup host
using the available transport mechanisms such as sockets. The REPL system on the backup
host receives and logs the update messages from the primary and performs the corresponding
updates on the backup files asynchronously. The shared library can be linked with the applica-
tion either dynamically if the underlying UNIX supports dynamic shared libraries (e.g., Sun’s
OS 4.3 and higher, Solaris IRIX 5.1 and higher) or can be linked with the application during
compilation. Thus, REPL has five major components; see Figure 10.4. They are:

Primary Backup

Application

Primary
Files

Backup
Files

cns bcplog bcpproc

lcp

watchd watchd

librepl.a

Figure 10.4 Software architecture of REPL

• librepl.a, the shared library that intercepts file system calls from the application,
• cns, the connection server on the primary; it creates a child process, lcp, maintains a file

descriptor for that connection to lcp and sends that file descriptor to the application,
• lcp, the child process of cns; it opens a connection to bcplog on the backup host,

receives data corresponding to the intercepted file system operations in the application
from librepl.a, sends messages about those update operations to bcplog,

• bcplog, the backup log server that receives update messages from lcp on primary and
logs them onto a log file and

• bcpproc, the backup process server that reads the log file, processes the update messages
and performs those operations on the backup files.

10.4.3.2 PRIMARY FAILURE RECOVERY

watchd and libft together detect and recover failures of any of those components in
REPL. If the primary node fails or the application running on the primary fails, then watchd
and libft recover the application on the backup node as explained in the previous section.

244 HUANG and KINTALA

The recovered application on the backup node gets access to the replicated files. REPL itself
uses watchd and libft for fault detection and recovery from failures in its mechanism.
If one of the components of REPL fails (i.e. a software failure in REPL) or if the backup
file system fails, then REPL recovers itself from such failures as explained below. A crashed
backup file system, after it is repaired, can catch up with the primary file system without ap-
preciably slowing down the applications running on the primary. The failure and the recovery
are transparent to applications and users.

10.4.3.3 BACKUP FAILURE RECOVERY

If the backup node fails, watchd running on the primary detects the failure in about 20 sec-
onds and sends a signal (SIGPIPE) to lcp. Then, lcp creates a local log file, ftopenlog,
and writes all the incoming data to the log file while the backup node is down. After the
backup node is repaired and rebooted, watchd, bcplog and bcpproc are restarted on
the backup. The new bcplog sends a signal to the lcp on the primary node, and forces
the lcp to connect to the new bcplog. Once the connection is established, lcp sends new
file update messages to that bcplog. In addition, the backup bcpproc gets the logged file,
ftopenlog, from the primary node and then processes the update messages on the backup
file system in order to catch up with state of the primary file system. While the backup node
is down, if the size of the ftopenlog file becomes too large, lcp stops logging the opera-
tions and puts a flag at the beginning of the log file. When the backup node is rebooted and
bcpproc is restarted, bcpproc copies all the critical files from the primary node. At the
same time, bcplog logs the updates coming from the primary node. When the file copy is
complete, bcpproc processes the log files created by bcplog to catch up with the primary
file system. Eventually, all the log files are processed and the recovery is complete. We assume
that the relative loads on the primary and backup nodes are such that they can process these
file recovery operations without appreciable degradation of the normal application processing.

10.5 EXPERIENCE

Fault tolerance in some of the telecommunications network management products in AT&T
has been enhanced using watchd, libft and REPL. Experience with those products to
date indicates that these technologies are indeed economical and effective means to increase
the level of fault tolerance in application software. The performance overhead due to these
components depends on the level of fault tolerance, the amount of critical volatile data being
checkpointed, frequency of checkpointing, and the amount of persistent data being replicated.
The overhead varies from 0.1% to 14%. We describe some of those products to illustrate the
availability, flexibility and efficiency in providing software fault tolerance through these 3
components. To protect the proprietary information of those products, we use generic terms
and titles in the descriptions.

10.5.1 Example 1

Level 1 - Failure detection and restart using watchd:
Application C monitors and analyzes data in a special purpose on-line billing system on

AT&T’s network. Application C uses watchd to check the “liveness” of some service dae-

Software Fault Tolerance in the Application Layer 245

mon processes in C at 10 second intervals. When any of those processes fails, i.e. crashes or
hangs, watchd restarts that process at its initial state. It took 2 people 3 hours to embed and
configure watchd for this level of fault tolerance in application C.

Another example is a cross-connection system which consists of several processes using
shared memory for interprocess communication. One of these processes is a writer process
which may modify some data structures in the shared memory and the others are reader pro-
cesses which only read the data structures. Because of a hideous software bug, there is a slight
chance that a reader may be reading a data structure while the writer is modifying it (e.g., ma-
nipulating the pointers for inserting a new data node). Consequently, the reader may receive a
segmentation violation fault if the reader happens to read the pointer (a byte) while the writer
is modifying it. In such a case, the reader will be rolled back and restarted by watchd. Once
the reader is restarted, it will access the same pointer again. This time, however, the read
operation will succeed because the writer has finished the modification.

Other potential uses of this kind of fault tolerance are in in general purpose local area
computing environments for state-less network services such as lpr, fingerd or inetd
daemons. Providing higher levels of fault tolerance in those services would be unnecessary.

10.5.2 Example 2

Level 2 - Failure detection, checkpointing, restart and recovery using watchd and libft:
Application N maintains a certain segment of the 800 number call routing information on

a Sun server; maintenance operators use workstations running N’s client processes communi-
cating with N’s server process using sockets. The server process in N was crashing or hanging
for unknown reasons. During such failures, the system administrators had to manually bring
back the server process, but they could not do so immediately because of the UNIX delay
in cleaning up the socket table. Moreover, the maintenance operators had to restart client in-
teractions from an initial state. Replacing the server node with fault tolerant hardware would
have increased their capital and development costs by a factor of 4. Even then, all their prob-
lems would not have been solved; for example, saving the client states of interactions. Using
watchd and libft, system N is now able to tolerate such failures. Watchd also detects pri-
mary server failures and restarts it on the backup server. Location transparency is obtained us-
ing getsvrloc() and getsvrport() calls in client programs and ftbind() in server
program. Libft’s checkpoint and recovery mechanisms are used to save and recover all crit-
ical data. Checkpointing and recovery overheads are below 2%. Installing and integrating the
two components into the application took 2 people 3 days. This application is running on 5
maintenance centers across the country.

10.5.3 Example 3

Level 3 - Failure detection, checkpointing, replication, restart and recovery using watchd,
libft and REPL:

Application U is a real-time telecommunication network element which collects data from
a switch, filters that data and stores them on a disk for several days. Other off-line operations
systems access the stored data for billing and various other purposes. In addition to the pre-
vious requirements for fault tolerance, this product needed to get its persistent files on-line
immediately after recovery of the failed application on a backup node. During normal opera-
tions on the primary server, REPL replicates all the critical persistent files on a backup server

246 HUANG and KINTALA

with an expected overhead of less than 14%. When the primary server fails, watchd starts the
application U on the backup node and automatically connects it to the backup disk on which
the persistent files were replicated. To distinguish a node failure from a link failure, watchd
was configured to use an ethernet and a datakit connection for polling; see Figure 10.5. A fail-

Active

Stand-by

Application U

Datakit

Datakit

Ethernet

Ethernet

X.25

Off-the=shelf
hardware, disks and OS

Data Source

X.25

Data Consumer

Figure 10.5 Architecture of application U

over takes place only when watchd on the backup site can not poll the primary site using
both ethernet and datakit connections. The fail-over takes about 30 seconds to complete.

10.5.4 Other Possible Uses

The three software components, watchd, libft and REPL, can be used not only to in-
crease the level of fault-tolerance in an application, as described above, but also to aid in other
operations unrelated to fault-tolerance as described below.

• On-line upgrading of software: One can install a new version of software for an application
without interrupting the service provided by the older version. This can be done by first
loading the new version on the backup node, simulating a fault on the primary and then
letting watchd dynamically move the service location to the backup node. This method
assumes that the two versions are compatible at the application level client-server protocol.

• Using checkpoint states and message logs to aid in debugging distributed applications: In
libft, all the checkpointed states, i.e. values in the critical data, and message logs can
optionally be saved in a journal file. This journal can be used to aid in analyzing failures in
distributed applications.

10.6 CONCLUSIONS

We defined a role, a taxonomy and tasks for software fault tolerance in the application layer
based on availability and data consistency requirements of an application. We then described
three software components, watchd, libft, and REPL to perform these tasks. These three
components are flexible, portable and reusable; they can be embedded in any UNIX-based

Software Fault Tolerance in the Application Layer 247

application software to provide different levels of fault tolerance with minimal programming
effort. 5

Experience in using these three components in some telecommunication products has
shown that these components indeed increase the level of fault tolerance with acceptable in-
creases in performance overhead.

ACKNOWLEDGMENTS

Many thanks to Lawrence Bernstein who suggested defining levels for fault tolerance, pro-
vided leadership to transfer this technology rapidly and encouraged using these components
in a wide range of AT&T products and services. The authors have benefited from discussions,
contributions and comments from several colleagues, particularly, Rao Arimilli, David Be-
langer, Marilyn Chiang, Glenn Fowler, Kent Fuchs, Pankaj Jalote, Robin Knight, David Korn,
Herman Rao and Yi-Min Wang.

REFERENCES

[Als76] P. A. Alsberg and J. D. Day. A principle for resilient sharing of distributed services. In Proc.
of 2nd International Conference on Software Engineering, pages 562–570, October 1976.

[Avi85] A. Avižienis. The n-version approach to fault-tolerant software. IEEE Transactions on
Software Engineering, 11(12):1491–1501, 1985.

[Bak92] M. Baker and M. Sullivan. The recovery box: using fast recovery to provide high availability
in the UNIX environment. In Proc. of Summer USENIX, pages 31–43, June 1992.

[Ber92] L. Bernstein. On software discipline and the war of 1812. ACM Software Engineering Notes,
18, October 1992.

[Bia91] R. Bianchini, Jr. and R. Buskens. An adaptive distributed system-level diagnosis algorithm
and its implementation. In Proc. of 21st International Symposium on Fault-Tolerant Com-
puting (FTCS-21), pages 222–229, July 1991.

[Bit88] D. Bitton and J. Gray. Disk shadowing. In Proc. of 14th Conference on Very Large Data
Bases, pages 331–338, September 1988.

[Cri91] H. Cristian. Understanding fault-tolerant distributed systems. Communications of the ACM,
34(2):56–78, 1991.

[Fow93] G. S. Fowler, Y. Huang, D. G. Korn and H. Rao. A user-level replicated file system. In Proc.
of Summer USENIX, pages 279–290, June, 1993.

[Gra91] J. Gray and D. P. Siewiorek. High-availability computer systems. IEEE Computer, 24(9):39–
48, 1991.

[Hal90] J. Y. Halpern and Y. Moses. Knowledge and Common Knowledge in a Distributed Environ-
ment. Journal of the ACM, 37(3):549–587, 1990.

[Hua89] Y. Huang and P. Jalote. Analytic models for the primary site approach to fault-tolerance.
Acta Informatica, 26:543–557, 1989.

[Hua92] Y. Huang and P. Jalote. Effect of fault tolerance on response time — analysis of the primary
site approach. IEEE Transactions on Computers, 41(4):420–428, 1992.

[Hua94] Y. Huang, P. Jalote and C. M. R. Kintala, Two techniques for transient software error Recov-
ery. In M. Banâtre and P. A. Lee (Eds.), Hardware and Software Architectures for Fault Tol-
erance: Experience and Perspectives, Lecture Notes in Computer Science, No. 774, Springer
Verlag, pages 159–170, 1994.

[Jal89] P. Jalote. Fault tolerant processes. Distributed Computing, 3:187–195, 1989.

5 As of this writing (October 1994), these three components have been used within AT&T and are also available from
Tandem Computers Incorporated as a product named HATS (High-Availability Transforming Software). Interested
readers should contact the authors ([cmk,yen]@research.att.com) or Tandem Computers for further information.

248 HUANG and KINTALA

[Lit88] M. Litxkow, M. Livny, and M Mutka. Condor — a hunter of idle workstations. In Proc.
of 8th International Conference on Distributed Computing Systems, IEEE Computer Society
Press, June 1988.

[Lon92] J. Long, W. K. Fuchs and J. A. Abraham. Compiler-assisted static checkpoint insertion.
In Proc. of 22nd International Symposium on Fault-Tolerant Computing (FTCS-22), pages
58–65, July 1992.

[Nan92] A. Nangia and D. Finker. Transaction-based fault-tolerant computing in distributed systems.
In Proc. of 1992 IEEE Workshop on Fault-tolerant Parallel and Distributed Systems, pages
92–97, July 1992.

[Pra86] D. K. Pradhan (ed.). Fault-Tolerant Computing: Theory and Techniques, volumes 1 and 2,
Prentice-Hall, 1986.

[Ran75] B. Randell. System structure for software fault tolerance. IEEE Transactions on Software
Engineering, SE-1(2):220–232, 1975.

[Sal84] J. H. Saltzer, D. P. Reed and D. D. Clark. End-to-end arguments in system design. ACM
Transactions on Computer Systems, 2(4):277–288, 1984.

[Sat90] M. Satyanarayanan. Coda: a highly available file system for a distributed workstation envi-
ronment. IEEE Transactions on Computers, C-39:447–459, 1990.

[Shr85] S. K. Shrivastava (ed.). Reliable Computer Systems, Chapter 3, Springer-Verlag, 1985.
[Sie92] D. P. Siewiorek and R. S. Swarz. Reliable Computer Systems Design and Implementation,

Chapter 7, Digital Press, 1992.
[Sul92] M. Sullivan and R. Chillarege. A comparison of software defects in database management

systems and operating systems. In Proc. of 22nd International Symposium on Fault-Tolerant
Computing (FTCS-22), pages 475–484, June 1992.

[Wan93] Y. M. Wang, Y. Huang and W. K. Fuchs. Progressive retry for software error recovery in
distributed systems. In Proc. of 23rd International Symposium on Fault-Tolerant Computing
(FTCS-23), pages 138–144, June 1993.

