
1

Software Fault Tolerance Methodology and Testing for the

Embedded PowerPC
Mark Bucciero, John Paul Walters, and Matthew French

University of Southern California
Information Sciences Institute

Arlington, VA 22203
{mbuccier, jwalters, mfrench}@isi.edu

Abstract—In this paper we describe our software-based fault

tolerance strategies for PowerPC devices embedded within

Xilinx Virtex 4 FX60 FPGAs. Traditional FPGA fault

tolerance techniques, such as scrubbing and TMR, cannot be
applied to the embedded PowerPC. Our work targets

scientific applications operating on space-based FPGA

architectures consisting of an FPGA and a radiation-hardened

controller. We use heartbeat monitoring, control flow

assertions, and checkpoint/rollback to achieve high

performance and low overhead fault tolerance. Our initial

results show we are able to add our fault tolerance strategies

with only 2% application overhead while recovering from

94% of the faults injected during testing.12

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. RELATED WORK .. 2

3. POWERPC 405 DETAILS .. 2

4. SOFTWARE FAULT TOLERANCE...................................... 3

5. MEMORY SENTINEL AND INJECTION SYSTEM................ 5

6. APPLICATION AND RESULTS ... 6

7. CONCLUSIONS AND FUTURE WORK................................ 8

REFERENCES.. 8

BIOGRAPHY.. 9

1. INTRODUCTION

Recent generations of Xilinx FPGAs contain embedded

PowerPC cores allowing domain experts an easy migration

path for their existing C programs. This enables a rapid

application development cycle where core functionality is

quickly achieved by first porting applications to the PowerPC

and code migration to the FPGA fabric is performed gradually,

targeting performance-critical functions. This development

cycle is especially attractive to the space community as it

allows a low-risk spiral development path that yields higher

performance. However, applications targeting the PowerPC
cores are uniquely vulnerable to radiation induced Single

Event Upsets (SEUs) because existing FPGA-based fault

mitigation strategies are ineffective when handling upsets

within the RISC core. Traditional FPGA fault tolerance [17—

20] strategies can detect and correct errors within the FPGA’s

bitstream; however, the bitstream does not contain the

complete state of the embedded PowerPC cores, and

1 978-1-4244-7351-9/11/$26.00 ©2011 IEEE
2 IEEEAC paper #1382, Version 2, Updated January 6, 2011

consequently, renders such strategies ineffective. Similarly

traditional fabric-based fault injection tools are ineffective

when used against the PowerPC [13—16]. Handling these

upsets is critical for space applications where SEUs are
common and computational resources are limited.

In this paper, we target the embedded PowerPC cores at

scientific applications, which operate on traditional space-

based FPGA subsystems, which utilize several FPGAs for

processing and a radiation-hardened controller for bitstream

scrubbing. These applications are more tolerant to data upsets

and, to a limited extent, may trade reliability for increased

performance. Rather than leveraging additional PowerPCs for

redundancy, we utilize the additional cores to increase

computational throughput first and then apply fault tolerance

to the parallelized application. To that end, our primary goal is

to detect and correct control flow and other catastrophic errors
that would otherwise hang or crash the embedded PowerPCs.

We ignore small, non-persistent, data errors that can be

corrected in post-processing on the ground. The radiation-

hardened controller can be used as a monitoring element for

the PowerPCs to aid in system scheduling and recovery. If

one node goes down, its task is reassigned by the radiation-

hardened controller to one of the other processing elements

while the impacted node recovers. In this type of architecture,

the PowerPCs within the FPGA(s) create a mini-cluster of

processing elements. One such space-based architecture is the

NASA SpaceCube 1.0, which is deployed on the Naval
Research Laboratory’s Materials International Space Station

Experiment 7 (NRL MISSE7).

The SpaceCube is made up of three main components: 2

Xilinx Virtex 4 FX60 FPGAs and 1 8-bit micro-controller

implemented in an Aeroflex FPGA. Each Virtex 4 FX60

FPGA contains two embedded PowerPC 405 cores. With four

PowerPC 405s and a radiation-hardened controller, the

SpaceCube contains a mini-cluster of computation elements

(Figure 1). For our initial research, the results presented in

this paper target the simpler Xilinx ML410 development

board, consisting of a single Virtex 4 FX60 FPGA.

Once an application is implemented on this mini-cluster of

PowerPCs, our fault tolerance strategies can be applied. To

achieve high performance and low overhead fault tolerance to

the scientific application, we use heartbeat monitoring, control

flow assertions, and checkpoint/rollback, working in concert to

detect and correct errors. These fault tolerance strategies can

be integrated after algorithm development has completed to

minimize the impact on the application developer. Some

2

techniques can be applied through pre-compiler directives and

others by calling a set of methods in a user-level library at

designated points in the application. This post-development

flexibility allows fine-grained control of the methods to apply

to the application and at which points during execution to

apply them.

In this paper, we focus on describing these fault tolerance

techniques and demonstrating them on a single PowerPC
running a representative scientific application. To support this

demonstration, we have developed a software based fault

injector, called the Memory Sentinel and Injection System

(MSIS), to corrupt the PowerPC general purpose registers,

special purpose registers, and both the instruction and data

caches. Our initial results show we are able to add these fault

tolerance strategies with a low application overhead, while

recovering from the vast majority of the faults that occur.

This paper is organized as follows. Section 2 describes some

of the previous work related to FPGA fault tolerance, and to

FPGA fault injection. Section 3 provides details about the

embedded PowerPC and the bits that can be flipped by an
SEU. Section 4 describes our approach to providing a level of

fault tolerance for the Xilinx PowerPC 405. Section 5 details

the MSIS, our method for software fault injection. Section 6

presents the data we have gathered from our fault injection

experiments. Section 7 draws some conclusions and looks

forward to some future research.

2. RELATED WORK

When operating in a space environment, Xilinx SRAM based

FPGAs, like other SRAM memories, are susceptible to

radiation induced Single Event Upsets (SEUs). SRAM FPGAs

are somewhat unique devices as SEUs can affect registers in

either the configuration memory, which holds the state of the

circuit, or the functional plane, which holds the user’s

registers. If a bit in the configuration memory changes, the

function of the FPGA could be altered until it is reconfigured.

Xilinx partial run-time reconfiguration allows for a small

segment of the bitstream, called a frame, to be updated without

impacting the remainder of the design. Using this feature, the

frame containing the flipped bit can be restored to its intended

function while leaving the rest of the design unchanged.

At the functional plane of the device, errors can manifest in

two ways, directly if a register in the circuit being used is

flipped, and indirectly, if a configuration memory bit

associated with a part of the device being used is corrupted.
Though scrubbing will correct the indirect faults, there is a

window of opportunity based on the periodicity of the

scrubbing in which faults may still occur. To account for the

presence of functional errors, space-based FPGA systems

employ triple modular redundancy (TMR) [2] to immediately

mask faults and configuration errors until scrubbing can

correct them. Each logical element in the design is triplicated,

and a voter is added to decide on the correct result. A single

upset may change the output of one of the three modules, but

the voter ignores that output if the other two modules agree on

the result. Tools to artificially inject a fault into the

configuration memory can then be used to test the reliability of
a design operating in a harsh radiation environment [3].

Recent trends in FPGA device architectures have steered away

from homogenous sea of gates models and towards

heterogeneous system on a chip architectures, adding features

such as embedded processors, ethernet cores, and multi-gigabit

transceivers. Unlike the other computational elements in the

FPGA, the PowerPC 405 is not fully observable from the

configuration memory. Scrubbing and TMR can be used to

protect the logic surrounding the PowerPC, but cannot be used

for the PowerPC internal functions, providing a significant

hurdle for space-based use. Limited research has been done in
this area, with the Simple Portable Fault Injector for the

Embedded PowerPC (SPFI-ePPC) [4] as a wrapper around

GDB, to test how the PowerPC responds to a fault, being the

only known work in the field. SPFI-ePPC sets a breakpoint

randomly during an application, changes a value, and resumes

program execution. This method of fault injection is attractive

for testing because it does not involve changing the HDL of a

design. However, it can only modify registers and memory

that are writable through GDB. The general and special

purpose registers only account for a small percentage of the

sensitive bits within the PowerPC, when the instruction and

data caches are enabled (see Table 1 below). SPFI-ePPC
provides a good first level analysis of how an application will

respond to a bit-flip.

3. POWERPC 405 DETAILS

In order to achieve successful fault mitigation strategies and

understand fault injection results, it is first necessary to fully

understand the variant of the PowerPC 405 utilized by Xilinx.
The PowerPC 405 contained as a hard core in Xilinx Virtex 2

Pro and Virtex 4 FX devices is a 32-bit RISC, Harvard

Architecture processor [5]. A block diagram of the PowerPC

is shown below in Figure 2. The caches are each 16KB, 2-

way set associative, with 8 32-bit words per cache line. The

Memory Management Unit (MMU) is software controlled, but

is, generally, only used by an operating system.

Figure 1: Block diagram of radiation-hardened

controller scheduling task(s) to a set of

PowerPCs.

3

The PowerPC is an attractive computational element in space-

based systems because of its computing power. Compared to

the state of the art radiation hardened processor, the RAD750

(266 MIPS), the PowerPC 405 can compute nearly 3.5 times

(900 MIPS) the number of computations per second.

However, to use the non-radiation tolerant PowerPC 405 in a
space-based system, it must be capable of identifying and

recovering from a Single Event Upset (SEU). Without a

recovery mechanism, an SEU within the processor could send

it into an unknown or unrecoverable state. The exact details of

the architecture used by Xilinx are proprietary, however based

on a general knowledge of RISC architectures and our own

experience implementing RISC architectures [12], we have

derived an estimate of the sensitive bits within the PowerPC,

shown in Table 1.

As shown, the instruction and data caches account for more

than 90% of the sensitive bits. Each PowerPC cache line does

have a parity circuit. The parity of a cache line is verified

whenever that line is accessed. If an SEU occurred within a
cache line, the next time the line is accessed, a program

exception is thrown because of its failed parity. However, due

to an error in the PowerPC core [6], when the data cache parity

circuit is enabled, it will immediately and continuously causes

a program exception fault. This hardware error means cache

parity checking cannot be enabled for use. Without a

detection method, the caches become an important element to

test for application response to an SEU.

4. SOFTWARE FAULT TOLERANCE

Now that we have at least a rudimentary understanding of the

PowerPC 405 architecture, we can create fault detection and

correction methods to mitigate the impact of SEUs on the

PowerPC. The techniques described in this section include

those used for error detection: heartbeat monitoring, control

flow assertions, and watchdog timers. To mitigate the

detected errors, we implement a user-level checkpoint and

rollback library.

All of these techniques are designed to complement one
another and to work in conjunction with a radiation-hardened

controller. Heartbeats allow the radiation-hardened controller

to monitor coarse-grained execution and status messages.
Control flow assertions and watchdog timers are used by the

executing PowerPC to ensure that execution continues in a

predictable manner without skipping or repeating major code

segments and to ensure that computational progress is being

made. Finally, checkpointing and rollback are used by the

executing PowerPC to periodically capture its state of

execution. If a fault is found, the PowerPC may roll back to

the most recent checkpoint before continuing computation.

The ability of a PowerPC to restart from its most recent

checkpoint avoids unnecessary wasted computation.

Nevertheless, fault tolerance has its trade-offs. A timer is used

to send and receive heartbeats. The timer operates at user-
defined intervals to allow users to balance overhead with finer-

grained monitoring. Similarly, assertions add instructions to

the application’s execution path. The checkpoint and rollback

library incurs the highest overhead, though as we will show,

the overhead may be significantly reduced through the use of

in-memory checkpointing.

Heartbeat Monitoring

The radiation-hardened controller is responsible for

maintaining the state of the system and allocating

computations to the different processing elements. In the
SpaceCube 1.0 architecture, the radiation-hardened controller

is implemented as a micro-controller in the Aeroflex FPGA. It

acts as a computational supervisor to ensure the system is

functioning as expected. The controller starts by assigning a

task to a processor. Then, it observes the assigned application

Figure 2: Xilinx PowerPC 405 block diagram.

Table 1: PowerPC 405 Sensitive Bit Estimates

Feature Size

Instruction Cache 16 KB + 64 control

Data Cache 16 KB + 64 control

General Purpose Register Set 32 x 32bit

Special Purpose Register Set 32 x 32bit

Execution Pipeline 10 x 32bit

ALU / MAC ~1,200 bits

Timers 3x 64bit

MMU 72 x 68bits

Misc 1024

Total 271,828 bits

4

for unexpected behavior. When an application completes, the

next application is scheduled. If the application terminates

unexpectedly, the controller decides the recovery method for

the impacted processor.

Each processing element sends a set of informational

messages, called heartbeats, to the controller, which contain
data about the current state of the computation. The

processing elements generate heartbeats at periodic intervals

and for any major application event. A periodic message

contains general information about the state of the

computation, including a measure of the computational

progress of the application. Similarly heartbeat events are sent

when the computation begins or ends or when a failure mode

is detected. Failure modes are detected by either control flow

assertions or by PowerPC self-monitoring – see the sections

below.

As an example, consider the case when the periodic heartbeat

is no longer being sent from an application to the controller.
The absence of a periodic heartbeat is an indication of a

processor fault. When a fault occurs, the controller can decide

to reassign the computation to another processor or to restart it

on the same one.

Control Flow Assertions and Watchdog Timers

Control flow assertions enable the source code to perform a

limited self-check at run-time to determine if an SEU has

corrupted the program counter, a loop counter, etc [7]. Using

this method, each PowerPC is capable of evaluating if the

assigned computation is progressing as expected. If the

processing element detects a control flow fault, the failure
status is communicated to the control PowerPC using

heartbeats.

Assertions can be implemented at either the compiler level or

the source code level. We chose to insert the assertions at the

source code level as a series of programmer directed pragmas,

allowing the developer to specify critical code paths with

minimal overhead.

The programmer adds assertions by inserting pairs of #pragma

BEGIN var / #pragma END var statements at various points in

the source code. A second utility transforms these pairs of

statements into standard C code. Once assertions are added,
control flow variables are checked at each #pragma END var

statement for consistency.

We have implemented two forms of control flow assertions.

The first ensures that program execution is progressing as

expected. An assertion is raised if any of the control flow

points are skipped or if the same point is crossed

consecutively. The second form of assertion monitors the

program to verify that the application is moving through the

different control flow points. For example, if an application

stops execution, the first assertion method will not be triggered

since the control flow points have been executed in order.

However, the second assertion method detects that the

application is not making forward progress and raises an error.

The PowerPC built-in watchdog timer is used to ensure the

application is still executing valid instructions. Using this

method, a periodic interrupt clears the watchdog reset. If this

interrupt is disabled, or otherwise interfered with, the
watchdog timer will reset the PowerPC and its associated sub-

systems. An application event heartbeat notifies the controller

when the processor is reset, so an error can be logged.

Checkpoint and Rollback

Once a fault has been detected, it should be gracefully

handled. Checkpoint and rollback allows software to cleanly

recover to a previous state if an error has been detected. It has

been successfully used, particularly, in the high performance

computing (HPC) domain, to provide rollback recovery for

long-running applications on failure-prone hardware.

There are several well-known checkpoint implementations.
Plank et al. describe a well-known user-level checkpointing

library libckpt [8]. Similarly Litzkow and Solomon describe a

user-level checkpointing library for the Condor distributed

processing system [10].

Perhaps the most common checkpoint library for Linux

systems is the Berkeley Labs Checkpoint/Restart kernel

module (BLCR) [9]. BLCR is a kernel module that supports a

variety of architectures, including PowerPC. It has also been

used to checkpoint distributed systems, such as MPI clusters

[11]. Our embedded system does not currently use an

operating system, so neither BLCR nor the user-level

techniques described above, were suitable for our use.

Instead we developed our own user-level checkpoint and

rollback solution for embedded PowerPC 405 cores.

We provide a straightforward API for our checkpointing

library:

(1) checkpoint() captures the current state of the running

application.

(2) restart() rolls back the application to the most recent
checkpoint state.

Checkpointing is essentially a four step process:

(1) Pause the running application.

(2) Capture the memory segments and CPU registers.

(3) Write the captured data to storage.

(4) Resume the application.

From the user level, pausing the running application is

equivalent to making a function call into the checkpointing

library. Because the checkpointing library is active, no further

5

computations will occur3. In the case of parallel applications,

we require the user to ensure that both PowerPCs are quiesced

before invoking the checkpointing library. This ensures a

consistent distributed state.

Capturing the memory contents is accomplished by reading

the memory segment start and endpoints from variables
assigned by the linker. Fixed sized memory segments are

easily captured: the data section, SBSS, BSS, etc. can be read

from memory directly and written to stable storage.

The register file may be captured at the C library level, using

the setjmp() function. setjmp() captures all of the nonvolatile

registers, including the stack pointer, and saves them into a

platform-specific array, known as jmp_buf.

The stack and heap, however, are more complex. Recall that

on most architectures, the PowerPC included, the stack grows

downward. This means that, in memory, the address of the top

of the stack is positioned earlier than the fixed stack bottom.

We can easily derive the bottom of the stack from the linker
symbols. The top of the stack, however, is by convention

stored in general purpose register 1 on the PowerPC. Through

inspection we found that the stack pointer, was being stored as

the first element of jmp_buf. Using this value we can compute

the top of the stack and capture only the used stack memory.

The heap, like the stack, is also a dynamic memory segment.

We can easily derive the base of the heap using linker

variables. However, finding the heap endpoint (known as the

program break) must be done at runtime. To do so we employ

the C library’s sbrk() function call. The sbrk() function is

typically used by malloc() to allocate additional heap space. It
returns a pointer to the new program break. However, when

called as sbrk(0), it returns the address of the current program

break. We can use this to compute the heap boundaries and

can store the heap to stable storage.

Once the full checkpoint, including memory, stack, heap, and

registers have been captured we write the result to storage.

Our solution supports checkpointing to flash memory, DDR

memory, and BRAMs depending on the hardware platform

being used and the application’s requirements.

In Figure 3 we show the results of checkpointing a parallel

SAR application to both compact flash and DDR memory.

We have normalized the results to the non-fault tolerant case.
Clearly, checkpointing to DDR memory is much more

efficient than checkpointing to flash memory. Indeed, we are

able to maintain 98% efficiency by checkpointing to DRAM,

while maintaining only 78% efficiency when checkpointing to

flash.

While checkpointing to flash certainly incurs a high overhead,

there are advantages to its use. Checkpointing to flash will

3
 To ensure consistency, users should temporarily pause any

interrupts that may change system state.

survive a power cycle, for example, while checkpoints to

BRAM or DRAM will not. Checkpoints to flash do not

consume limited embedded volatile memoryresources, unlike

checkpoints to BRAM and DRAM. Ultimately, the choice

between high performance in-memory checkpointing and high

resiliency flash checkpointing must be made on a per-

application basis.

Rolling an application back to a previous checkpoint is as

simple as calling restart() within the user’s source code. At

restart, the registers, memory segments, stack and heap are all

restored to their previous values and locations. Memory is
restored by reading the contents from a file, DRAM, or

BRAM. Once memory is in place, registers are restored using

setjmp’s counterpart longjmp(). The restart() function never

returns. Instead, after invoking longjmp(), application

execution will appear to resume from the point that setjmp()

was called during the checkpoint. From the application’s

perspective, the only difference between a checkpoint and a

restart (at the setjmp() time) is that setjmp() returns 0 when

called directly, and 1 when returned by longjmp().

While we can easily capture the state of the PowerPC, we are

unable to automatically capture the state of external devices,
UARTs, networks, etc. To checkpoint these devices, our

checkpointing library allows users to pass pre- and post-

checkpoint functions to the checkpoint() library function.

These allow users to provide a custom function that will, for

example, quiesce the network, close open files, or anything

else, before the actual checkpoint occurs. After restarting the

application, the post-checkpoint function is called immediately

prior to returning to the user’s application. This allows the

user to restart networks, reopen files, etc.

5. MEMORY SENTINEL AND INJECTION SYSTEM

The Memory Sentinel and Injection System (MSIS,

pronounced em-sis) is a software-based fault injector for the

PowerPC(s) within Xilinx FPGAs. Its purpose is to emulate

an SEU by flipping any writable bit within the PowerPC -

including the general purpose registers, special purpose

registers, and both the instruction and data caches.

Figure 3: Checkpointing efficiency.

0

0.2

0.4

0.6

0.8

1

1.2

Without FT Flash Ckpt Memory Ckpt

E
ff

ic
ie

n
cy

 (
%

)

Fault Tolerance Efficiency

6

In our current implementation, we are able to inject into the

PowerPC’s general purpose and special purpose register sets.

We intend to extend this work to the PowerPC’s data and

instruction caches.

Being able to test how a bit-flip within the cache will impact

an application is critical because the cache allows the

application to run with maximum performance and accounts

for a large cross-section of the PowerPC. It is assumed that

the configurable logic will be protected from SEUs by

scrubbing and TMR. A block diagram of the MSIS is shown
in Figure 4 below. As shown, the MSIS is split into two main

components: the SW-MSIS and the HW-MSIS.

The SW-MSIS runs as an interrupt service routine (ISR) and is

responsible for performing the necessary steps to introduce an

SEU (bit-flip) into the PowerPC. It can modify any software

writable register and assist the HW-MSIS in modifying a

cache line. The type of injection is chosen at random by a

pseudo-random number generator. A main goal of the SW-

MSIS is to limit how intrusive a fault injection is to the

running application. For example, minimizing how much of

the instruction cache is changed as a result of executing the
SW-MSIS. To meet this goal, the SW-MSIS is compiled to a

non-cacheable section of memory; and when the ISR starts, it

disables the allocation of new cache lines on loads and stores,

unless the injection is into cache. If the SW-MSIS injects a

fault into the cache, the cache line needs to be reloaded from

memory with one bit changed by the HW-MSIS.

The HW-MSIS acts as a timer to periodically inject a fault into

the PowerPC and as a monitor to validate the bus transactions

to/from the processor. This monitor ring is also capable of

modifying data or bus transactions to/from the PowerPC. By

changing the data going into the PowerPC, the HW-MSIS

creates a difference between the data in the PowerPC cache

and the application memory. This difference emulates a fault

in the cache because the modified data is not stored in memory

and the processor will use the cache data only for the life of

the cache line.

By monitoring the PowerPC bus transaction, the HW-MSIS is
also capable of providing a level of protection to the running

system. If an SEU occurs within the PowerPC that creates a

write to a read-only section of application memory, the HW-

MSIS will prevent the operation from occurring. In this way,

the HW-MSIS acts as a mini-Memory Management Unit

(MMU). Unlike the MMU within the PowerPC, the HW-

MSIS is implemented within the configurable fabric of the

FPGA, where both scrubbing and TMR prevent an SEU from

impacting the system. Because of this added level of

protection, the MSIS should remain in a system it is used to

test because it provides, with the fault injection disabled,

additional fault detection to the system.

6. APPLICATION AND RESULTS

Our applications of interest are primarily Synthetic Aperture

Radar (SAR) and Hyperspectral Imaging applications that

have previously been provided by NASA. We have created a

synthetic test application that is composed of the major

elements of SAR and Hyperspectral Imaging. From SAR we
have implemented a single precision FFT and complex

multiply, and we have added a thresholding stage to the

application to mimic the Hyperspectral application. The

smaller test application was necessary in order to meet with

the size limitations of our upcoming MISSE7 flight

experiment, which does not provide us with any access to

DRAM or other peripherals. Our ultimate goal is to correlate

any faults observed on our MISSE7 experiment with injection

tests performed using the MSIS. This required a common

application.

The MSIS was used in a mode which only injected faults into

the PowerPC register set. Neither the cache injection nor the
memory guard features were used during this testing. We

performed two trials: the first on a baseline flight application,

and the second on the same flight application with fault

tolerance enabled. We enabled heartbeats on the baseline test

in order to allow unattended testing. In each trial we

performed exactly 3060 injections. This number of injections

is not exhaustive, as we are injecting randomly over both

space (register location) and time (program counter value), but

is statistically large enough to give us an estimation of trends

within a reasonable amount of wall clock testing time

(1 day ~ = 1,000 injections).

For baseline testing we broadly classify the results of each

injection into one of three categories: good data, data error, or

reset. A result of good data implies that after the injection, no

difference in output was observed. A result of data error

implies that after injecting the bit error, the output data had at

least once difference from the known good result. Finally, a

Figure 4: The MSIS can inject an SEU into the

vast majority of the PowerPC sensitive bits

and protect the read-only application memory.

7

reset implies an error that would crash or otherwise hang the

PowerPC.

When injecting into our fault tolerant design, we expanded the

classification to track the number of rollbacks that resulted in

good data as well as data error.

In Table 2 and Table 3 we present a summary of our fault

injection results. As expected, the number of “good data (no

action)” results remains consistent between our two trials. As

we explain below, the data errors also remain largely

consistent. Where our fault tolerance techniques have the

most impact is in reducing the number of PowerPC

hangs/resets.

Since our fault injector is an emulator running on actual

hardware, a minimal heartbeat watchdog and reset was used to

ensure the test was still active. This greatly facilitated batch

testing of large numbers of injections. Therefore resets in the
baseline case should be interpreted as an unrecoverable

processor hang. In our fault tolerant experiment we enabled

heartbeats, control flow assertions, watchdog timers, and

checkpointing. Checkpoints were taken in the first iteration of

the experiment. In this testing, reset indicates that the

radiation-hardened controller will need to reboot the PowerPC

and did not have a checkpoint to roll back to, while rollback

indicates that a checkpoint was found and used.

In Figure 5 and Figure 7 we can compare the histograms of

data errors with respect to injection site observed between our
fault tolerant and baseline results. In general we find that the

number of data errors remains relatively constant regardless of

the use of fault tolerance. This is to be expected as we target

only upsets that cause PowerPC failures and application

control flow errors. We leave data errors for post-processing

on the ground.

Further, the top 5 most vulnerable registers are quite similar in

both Figure 5 and Figure 7. Not only is general purpose

register 14 the single most vulnerable register, but all of the

top 5 most vulnerable registers are considered non-volatile

registers by the PowerPC EABI (embedded application binary

interface). The non-volatile registers are those that must be
preserved through function calls. They are not used to pass

function arguments or return values. It is therefore

unsurprising that these registers are uniquely vulnerable in

both the fault tolerant and baseline injection tests.

Note that it initially appears that the sensitivity of register 14

increases in our fault tolerant solution. In fact, this is an

artifact of our randomized injection process. We actually

injected nearly twice as many bit errors into register 14 in our

fault tolerant solution. Yet, the number of data errors

increased only slightly, from 18 errors in the baseline case to

25 in our fault tolerant design.

In Figure 6 and Figure 8 we present our reset sensitivity

results. At the outset we can see that our fault tolerance

solutions are reducing the number of PowerPC resets from 9%

of the overall injections to 2%. This represents a substantial

overall reduction in the number of PowerPC hangs crashes.

The causes of these crashes are not surprising. For example,

Table 2: Summary Baseline Injection Results

Result Percent

Good Data (no action) 86%

Good Data (Rollback) 0%

Data Error (no action) 5%

Data Error (rollback) 0%

Reset 9%

Table 3: Summary Fault Tolerant

Injection Results

Result Percent

Good Data (no action) 85%

Good Data (Rollback) 9%

Data Error (no action) 4%

Data Error (rollback) 0%

Reset 2%

Figure 5: Baseline data errors.

Figure 6: Baseline resets.

0

5

10

15

20

#
 o

f
d

a
ta

 e
rr

o
r

re
su

lt
s

Register

Data Error Sensitivity

0
5

10
15
20
25
30
35

#
 o

f
R

es
et

s

Register

Reset Sensitivity

8

in the baseline results, we see that the SP is the single most

vulnerable register, followed by the PC. Injections into these

registers commonly result in program exceptions due to the

sensitivity of the program to these registers.

In the case of the fault tolerant results (Figure 8), we notice

that we have introduced a sensitivity to the non-critical
interrupts. This is because we rely on the non-critical

interrupts to trigger heartbeat events, clear the watchdog, etc.

If the non-critical interrupts are disabled a reset or rollback

will occur either due to a series of missed heartbeats or an

expired watchdog timer.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have described fault tolerance strategies for
embedded PowerPCs within the Xilinx V4FX60 FPGA. To

detect failures we have developed heartbeat monitors, self

monitors, and control flow assertions. To mitigate the

detected failures we have developed a user-level

checkpointing library that allows an application to capture its

state and to later roll back to the captured state.

We also described our fault injector named MSIS that we used

in an injection campaign on a synthetic SAR and

Hyperspectral-like application. We showed that our fault

tolerance strategies improve the reliability of the embedded

PowerPC cores by reducing the frequency of PowerPC resets
by 7% while only adding about 2% overhead. This provides an

interesting option for scientific applications that can correct

small data errors in post processing in that with traditional

TMR-based approaches, the overhead is on the order of

~200%, greatly reducing the amount of real-time science that

can be achieved.

In the future, we will continue evaluating these fault

mitigation strategies by improving our software-based fault

injection (MSIS) and by testing at a radiation beam. The

MSIS is currently used to inject faults into the PowerPC

register set and is under test flipping bits with the instruction

and data caches. We are also in the process of preparing for a
radiation beam experiment. The beam is most representative

way to emulate a real space environment while still on the

ground. Since we are targeting sun synchronous Low-Earth

Orbits, we are planning to test at a proton beam. By

comparing the test results from the MSIS to the beam test, we

endeavor to show that using the MSIS to inject bit flips is a

representative way to test application response to the majority

of SEUs within the PowerPC.

REFERENCES

[1] Xilinx Application Note Web site

http://www.xilinx.com/support/documentation/application

_notes/xapp1088.pdf.

[2] Xilinx Application Note Web site,

http://www.xilinx.com/support/documentation/applicatio
n_notes/xapp197.pdf.

[3] M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, and P.

Graham, “The reliability of FPGA circuit designs in the

presence of radiation induced configuration upsets,” in

Proc. IEEE Symp. FPGAs for Custom Com- puting

Machines (FCCM ’03), Napa, CA, Apr. 2003.

[4] CHREC Web site

http://www.chrec.org/pubs/SMCIT09_F6all.pdf

[5] Xilinx Web site

http://www.xilinx.com/support/documentation/user_guide

s/ug011.pdf

[6] Xilinx Web site

http://www.xilinx.com/support/answers/20658.htm

Figure 7: Fault tolerance data error sensitivity.

Figure 8: Fault tolerant reset sensitivity.

0

5

10

15

20

25

30

#
 o

f
d

a
ta

 e
rr

o
r

re
su

lt
s

Register

Data Error Sensitivity

0

5

10

15

#
 o

f
R

es
et

s

Register

Reset Sensitivity

9

[7] R.Vemu, J. A. Abraham, "CEDA: Control-flow Error

Detection through Assertions," iolts, pp.151-158, 12th

IEEE International On-Line Testing Symposium

(IOLTS'06), 2006.

[8] J. S. Plank, M. Beck, G. Kingsley and K. Li, “Libckpt:

Transparent Checkpointing under Unix”, Conference
Proceedings, Usenix Winter 1995 Technical Conference,

New Orleans, LA, January, 1995, pp. 213--223.

[9] J. Duell, P. Hargrove, and E. Roman.,“The Design and

Implementation of Berkeley Lab's Linux

Checkpoint/Restart.” Berkeley Lab Technical Report

(publication LBNL-54941), December 2002.

[10] M.Litzkow and M. Solomon, “SupportingCheckpointing

and Process Migration Outside the UNIX Kernel”,

Usenix Conference Proceedings, San Francisco, CA,

January 1992, pages 283-290.

[11] S.Sankaran, J. M. Squyres, B. Barrett, A.Lumsdaine,

Jason Duell, Paul Hargrove, and Eric Roman. The
LAM/MPI Checkpoint/Restart Framework: System-

Initiated Checkpointing. In LACSI Symposium, October

2003.

[12] J. Granacki, “MONARCH: Next Generation SoC

(Supercomputer on a Chip)”, HPEC 2004, Lexington,

MA.

[13] E. Johnson, M. Caffrey, P. Graham, N. Rollins,

M.Wirthlin,“Accelerator validation of an FPGA SEU

simulator”, IEEE Trans. onNuclearScience, vol.50,

no.6, pp. 2147-2157, Dec. 2003.

[14] M. French, P. Graham, M. Wirthlin, L. Wang, and G.
Larchev,“Radiation Mitigation and Power Optimization

Design Tools forReconfigurable Hardware in Orbit”,

Proc. Earth-Sun System TechnologyConference,

Hyattsville, MD, 28-30 Jun. 2005.

[15] L. Sterpone, M. Violante, "A New Partial

Reconfiguration-Based Fault-Injection System to

Evaluate SEU Effects in SRAM-Based FPGAs”, IEEE

Trans. on Nuclear Science, vol.54, no.4, pp.965-970,

Aug. 2007.

[16] G. G. Cieslewski, A. D. George, A. M. Jacobs,

“Acceleration of FPGA Fault Injectionthrough Multi-

Bit Testing”, ERSA 2010.

[17] Xilinx XTMR tool Web site,

http://www.xilinx.com/ise/optional_prod/tmrtool.htm.

[18] B. Pratt, M.Caffrey, P. Graham, K.Morgan, M. J.

Wirthlin, “Improving FPGA Design Robustness with

Partial TMR”, IEEE International Reliability Physics

Symposium (IRPS), pp. 226-232, April 2006.

[19] M. French, P. Graham, M.Wirthlin, and L. Wang, “Cross

Functional Design Tools for Radiation Mitigation and

Power Optimization of FPGA Circuits”, Earth Science

Technology Conference, June 2006, Washington, D.C.

[20] C. Carmichael, M. Caffrey, A. Salaza, “Correcting

single-event upsets through Virtex partial configuration”,

Xilinx Application Notes, XAPP216 (v1. 0), 2000.

BIOGRAPHY

Mark Bucciero is an FPGA system architect with experience

in embedded systems software and FPGA development. At

USC/ISI, he is the lead FPGA architect for researching and

developing novel radiation hardening by software techniques

for embedded PowerPC processors within Xilinx devices. He

pushed the state of the art in FPGA based systems utilizing the

embedded PowerPC 405. He led the system development and

hardware integration of 12 out of 16 FPGAs utilizing

completely new hardware at ArgonST. He has a BS and MS in

Computer Engineering from Virginia Tech.

John Paul Walters is a computer scientist at the University of

Southern California’s Information Sciences Institute, located

in Arlington, VA. He received his PhD in computer science

from Wayne State University in 2007, and his BA in computer

science from Albion College in 2002.His research interests

include fault tolerance, high performance computing, cloud

computing, parallel processing, and many-core architectures.

Matthew French is a Project Leader at USC/ISI where he

leads the Fine-grained Computing Group in research

pertaining to FPGA fault tolerance, trust, and cognitive

applications. He was Principal Investigator of the highly

successful, NASA funded Reconfigurable Hardware in Orbit

(RHinO) project, which first looked at many of the radiation

and power issues of homogeneous SRAM-based FPGAs. He

has over 20 papers and 3 patents in the areas of embedded

processing and signal processing. He is a Senior Member of

IEEE. He has a BS and ME in Electrical Engineering from

Cornell University.

