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Abstract—In this paper we describe our software-based fault 

tolerance strategies for PowerPC devices embedded within 

Xilinx Virtex 4 FX60 FPGAs. Traditional FPGA fault 

tolerance techniques, such as scrubbing and TMR, cannot be 
applied to the embedded PowerPC.  Our work targets 

scientific applications operating on space-based FPGA 

architectures consisting of an FPGA and a radiation-hardened 

controller. We use heartbeat monitoring, control flow 

assertions, and checkpoint/rollback to achieve high 

performance and low overhead fault tolerance.  Our initial 

results show we are able to add our fault tolerance strategies 

with only 2% application overhead while recovering from 

94% of the faults injected during testing.12 
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1. INTRODUCTION 

Recent generations of Xilinx FPGAs contain embedded 

PowerPC cores allowing domain experts an easy migration 

path for their existing C programs.  This enables a rapid 

application development cycle where core functionality is 

quickly achieved by first porting applications to the PowerPC 

and code migration to the FPGA fabric is performed gradually, 

targeting performance-critical functions.  This development 

cycle is especially attractive to the space community as it 

allows a low-risk spiral development path that yields higher 

performance.  However, applications targeting the PowerPC 
cores are uniquely vulnerable to radiation induced Single 

Event Upsets (SEUs) because existing FPGA-based fault 

mitigation strategies are ineffective when handling upsets 

within the RISC core. Traditional FPGA fault tolerance [17—

20] strategies can detect and correct errors within the FPGA’s 

bitstream; however, the bitstream does not contain the 

complete state of the embedded PowerPC cores, and 
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consequently, renders such strategies ineffective.  Similarly 

traditional fabric-based fault injection tools are ineffective 

when used against the PowerPC [13—16].  Handling these 

upsets is critical for space applications where SEUs are 
common and computational resources are limited. 

In this paper, we target the embedded PowerPC cores at 

scientific applications, which operate on traditional space-

based FPGA subsystems, which utilize several FPGAs for 

processing and a radiation-hardened controller for bitstream 

scrubbing. These applications are more tolerant to data upsets 

and, to a limited extent, may trade reliability for increased 

performance. Rather than leveraging additional PowerPCs for 

redundancy, we utilize the additional cores to increase 

computational throughput first and then apply fault tolerance 

to the parallelized application. To that end, our primary goal is 

to detect and correct control flow and other catastrophic errors 
that would otherwise hang or crash the embedded PowerPCs.  

We ignore small, non-persistent, data errors that can be 

corrected in post-processing on the ground.  The radiation-

hardened controller can be used as a monitoring element for 

the PowerPCs to aid in system scheduling and recovery.  If 

one node goes down, its task is reassigned by the radiation-

hardened controller to one of the other processing elements 

while the impacted node recovers.  In this type of architecture, 

the PowerPCs within the FPGA(s) create a mini-cluster of 

processing elements.  One such space-based architecture is the 

NASA SpaceCube 1.0, which is deployed on the Naval 
Research Laboratory’s Materials International Space Station 

Experiment 7 (NRL MISSE7). 

The SpaceCube is made up of three main components: 2 

Xilinx Virtex 4 FX60 FPGAs and 1 8-bit micro-controller 

implemented in an Aeroflex FPGA. Each Virtex 4 FX60 

FPGA contains two embedded PowerPC 405 cores. With four 

PowerPC 405s and a radiation-hardened controller, the 

SpaceCube contains a mini-cluster of computation elements 

(Figure 1).  For our initial research, the results presented in 

this paper target the simpler Xilinx ML410 development 

board, consisting of a single Virtex 4 FX60 FPGA. 

Once an application is implemented on this mini-cluster of 

PowerPCs, our fault tolerance strategies can be applied.  To 

achieve high performance and low overhead fault tolerance to 

the scientific application, we use heartbeat monitoring, control 

flow assertions, and checkpoint/rollback, working in concert to 

detect and correct errors. These fault tolerance strategies can 

be integrated after algorithm development has completed to 

minimize the impact on the application developer.  Some 
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techniques can be applied through pre-compiler directives and 

others by calling a set of methods in a user-level library at 

designated points in the application.  This post-development 

flexibility allows fine-grained control of the methods to apply 

to the application and at which points during execution to 

apply them. 

In this paper, we focus on describing these fault tolerance 

techniques and demonstrating them on a single PowerPC 
running a representative scientific application.  To support this 

demonstration, we have developed a software based fault 

injector, called the Memory Sentinel and Injection System 

(MSIS), to corrupt the PowerPC general purpose registers, 

special purpose registers, and both the instruction and data 

caches. Our initial results show we are able to add these fault 

tolerance strategies with a low application overhead, while 

recovering from the vast majority of the faults that occur. 

This paper is organized as follows.  Section 2 describes some 

of the previous work related to FPGA fault tolerance, and to 

FPGA fault injection.  Section 3 provides details about the 

embedded PowerPC and the bits that can be flipped by an 
SEU.  Section 4 describes our approach to providing a level of 

fault tolerance for the Xilinx PowerPC 405.  Section 5 details 

the MSIS, our method for software fault injection.  Section 6 

presents the data we have gathered from our fault injection 

experiments. Section 7 draws some conclusions and looks 

forward to some future research. 

2. RELATED WORK 

When operating in a space environment, Xilinx SRAM based 

FPGAs, like other SRAM memories, are susceptible to 

radiation induced Single Event Upsets (SEUs). SRAM FPGAs 

are somewhat unique devices as SEUs can affect registers in 

either the configuration memory, which holds the state of the 

circuit, or the functional plane, which holds the user’s 

registers.  If a bit in the configuration memory changes, the 

function of the FPGA could be altered until it is reconfigured.  

Xilinx partial run-time reconfiguration allows for a small 

segment of the bitstream, called a frame, to be updated without 

impacting the remainder of the design.  Using this feature, the 

frame containing the flipped bit can be restored to its intended 

function while leaving the rest of the design unchanged.  

At the functional plane of the device, errors can manifest in 

two ways, directly if a register in the circuit being used is 

flipped, and indirectly, if a configuration memory bit 

associated with a part of the device being used is corrupted. 
Though scrubbing will correct the indirect faults, there is a 

window of opportunity based on the periodicity of the 

scrubbing in which faults may still occur.  To account for the 

presence of functional errors, space-based FPGA systems 

employ triple modular redundancy (TMR) [2] to immediately 

mask faults and configuration errors until scrubbing can 

correct them.  Each logical element in the design is triplicated, 

and a voter is added to decide on the correct result.  A single 

upset may change the output of one of the three modules, but 

the voter ignores that output if the other two modules agree on 

the result. Tools to artificially inject a fault into the 

configuration memory can then be used to test the reliability of 
a design operating in a harsh radiation environment [3]. 

Recent trends in FPGA device architectures have steered away 

from homogenous sea of gates models and towards 

heterogeneous system on a chip architectures, adding features 

such as embedded processors, ethernet cores, and multi-gigabit 

transceivers.  Unlike the other computational elements in the 

FPGA, the PowerPC 405 is not fully observable from the 

configuration memory.  Scrubbing and TMR can be used to 

protect the logic surrounding the PowerPC, but cannot be used 

for the PowerPC internal functions, providing a significant 

hurdle for space-based use.  Limited research has been done in 
this area, with the Simple Portable Fault Injector for the 

Embedded PowerPC (SPFI-ePPC) [4] as a wrapper around 

GDB, to test how the PowerPC responds to a fault, being the 

only known work in the field.  SPFI-ePPC sets a breakpoint 

randomly during an application, changes a value, and resumes 

program execution.  This method of fault injection is attractive 

for testing because it does not involve changing the HDL of a 

design.  However, it can only modify registers and memory 

that are writable through GDB.  The general and special 

purpose registers only account for a small percentage of the 

sensitive bits within the PowerPC, when the instruction and 

data caches are enabled (see Table 1 below).  SPFI-ePPC 
provides a good first level analysis of how an application will 

respond to a bit-flip. 

3. POWERPC 405 DETAILS 

In order to achieve successful fault mitigation strategies and 

understand fault injection results, it is first necessary to fully 

understand the variant of the PowerPC 405 utilized by Xilinx.   
The PowerPC 405 contained as a hard core in Xilinx Virtex 2 

Pro and Virtex 4 FX devices is a 32-bit RISC, Harvard 

Architecture processor [5].  A block diagram of the PowerPC 

is shown below in Figure 2.  The caches are each 16KB, 2-

way set associative, with 8 32-bit words per cache line.  The 

Memory Management Unit (MMU) is software controlled, but 

is, generally, only used by an operating system. 

Figure 1: Block diagram of radiation-hardened 

controller scheduling task(s) to a set of 

PowerPCs. 
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The PowerPC is an attractive computational element in space-

based systems because of its computing power.  Compared to 

the state of the art radiation hardened processor, the RAD750 

(266 MIPS), the PowerPC 405 can compute nearly 3.5 times 

(900 MIPS) the number of computations per second.  

However, to use the non-radiation tolerant PowerPC 405 in a 
space-based system, it must be capable of identifying and 

recovering from a Single Event Upset (SEU).  Without a 

recovery mechanism, an SEU within the processor could send 

it into an unknown or unrecoverable state. The exact details of 

the architecture used by Xilinx are proprietary, however based 

on a general knowledge of RISC architectures and our own 

experience implementing RISC architectures [12], we have 

derived an estimate of the sensitive bits within the PowerPC, 

shown in Table 1. 

 

As shown, the instruction and data caches account for more 

than 90% of the sensitive bits.  Each PowerPC cache line does 

have a parity circuit.  The parity of a cache line is verified 

whenever that line is accessed.  If an SEU occurred within a 
cache line, the next time the line is accessed, a program 

exception is thrown because of its failed parity.  However, due 

to an error in the PowerPC core [6], when the data cache parity 

circuit is enabled, it will immediately and continuously causes 

a program exception fault.  This hardware error means cache 

parity checking cannot be enabled for use.  Without a 

detection method, the caches become an important element to 

test for application response to an SEU. 

4. SOFTWARE FAULT TOLERANCE 

Now that we have at least a rudimentary understanding of the 

PowerPC 405 architecture, we can create fault detection and 

correction methods to mitigate the impact of SEUs on the 

PowerPC. The techniques described in this section include 

those used for error detection: heartbeat monitoring, control 

flow assertions, and watchdog timers.  To mitigate the 

detected errors, we implement a user-level checkpoint and 

rollback library.  

All of these techniques are designed to complement one 
another and to work in conjunction with a radiation-hardened 

controller.   Heartbeats allow the radiation-hardened controller 

to monitor coarse-grained execution and status messages.  
Control flow assertions and watchdog timers are used by the 

executing PowerPC to ensure that execution continues in a 

predictable manner without skipping or repeating major code 

segments and to ensure that computational progress is being 

made.  Finally, checkpointing and rollback are used by the 

executing PowerPC to periodically capture its state of 

execution.  If a fault is found, the PowerPC may roll back to 

the most recent checkpoint before continuing computation.   

The ability of a PowerPC to restart from its most recent 

checkpoint avoids unnecessary wasted computation. 

Nevertheless, fault tolerance has its trade-offs.  A timer is used 

to send and receive heartbeats.  The timer operates at user-
defined intervals to allow users to balance overhead with finer-

grained monitoring.  Similarly, assertions add instructions to 

the application’s execution path.  The checkpoint and rollback 

library incurs the highest overhead, though as we will show, 

the overhead may be significantly reduced through the use of 

in-memory checkpointing.   

Heartbeat Monitoring 

The radiation-hardened controller is responsible for 

maintaining the state of the system and allocating 

computations to the different processing elements.  In the 
SpaceCube 1.0 architecture, the radiation-hardened controller 

is implemented as a micro-controller in the Aeroflex FPGA.  It 

acts as a computational supervisor to ensure the system is 

functioning as expected.  The controller starts by assigning a 

task to a processor.  Then, it observes the assigned application 

Figure 2: Xilinx PowerPC 405 block diagram. 

Table 1: PowerPC 405 Sensitive Bit Estimates 

Feature Size 

Instruction Cache 16 KB + 64 control 

Data Cache 16 KB + 64 control 

General Purpose Register Set 32 x 32bit 

Special Purpose Register Set 32 x 32bit 

Execution Pipeline 10 x 32bit 

ALU / MAC ~1,200 bits 

Timers 3x 64bit 

MMU 72 x 68bits 

Misc 1024 

Total 271,828 bits 
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for unexpected behavior.  When an application completes, the 

next application is scheduled.  If the application terminates 

unexpectedly, the controller decides the recovery method for 

the impacted processor. 

Each processing element sends a set of informational 

messages, called heartbeats, to the controller, which contain 
data about the current state of the computation.  The 

processing elements generate heartbeats at periodic intervals 

and for any major application event.  A periodic message 

contains general information about the state of the 

computation, including a measure of the computational 

progress of the application. Similarly heartbeat events are sent 

when the computation begins or ends or when a failure mode 

is detected.  Failure modes are detected by either control flow 

assertions or by PowerPC self-monitoring – see the sections 

below. 

As an example, consider the case when the periodic heartbeat 

is no longer being sent from an application to the controller.  
The absence of a periodic heartbeat is an indication of a 

processor fault. When a fault occurs, the controller can decide 

to reassign the computation to another processor or to restart it 

on the same one. 

Control Flow Assertions and Watchdog Timers 

Control flow assertions enable the source code to perform a 

limited self-check at run-time to determine if an SEU has 

corrupted the program counter, a loop counter, etc [7].  Using 

this method, each PowerPC is capable of evaluating if the 

assigned computation is progressing as expected.  If the 

processing element detects a control flow fault, the failure 
status is communicated to the control PowerPC using 

heartbeats. 

Assertions can be implemented at either the compiler level or 

the source code level.  We chose to insert the assertions at the 

source code level as a series of programmer directed pragmas, 

allowing the developer to specify critical code paths with 

minimal overhead. 

The programmer adds assertions by inserting pairs of #pragma 

BEGIN var / #pragma END var statements at various points in 

the source code.  A second utility transforms these pairs of 

statements into standard C code.  Once assertions are added, 
control flow variables are checked at each #pragma END var 

statement for consistency. 

We have implemented two forms of control flow assertions.  

The first ensures that program execution is progressing as 

expected.  An assertion is raised if any of the control flow 

points are skipped or if the same point is crossed 

consecutively.  The second form of assertion monitors the 

program to verify that the application is moving through the 

different control flow points.  For example, if an application 

stops execution, the first assertion method will not be triggered 

since the control flow points have been executed in order.  

However, the second assertion method detects that the 

application is not making forward progress and raises an error. 

The PowerPC built-in watchdog timer is used to ensure the 

application is still executing valid instructions.  Using this 

method, a periodic interrupt clears the watchdog reset.  If this 

interrupt is disabled, or otherwise interfered with, the 
watchdog timer will reset the PowerPC and its associated sub-

systems.  An application event heartbeat notifies the controller 

when the processor is reset, so an error can be logged. 

Checkpoint and Rollback 

Once a fault has been detected, it should be gracefully 

handled.  Checkpoint and rollback allows software to cleanly 

recover to a previous state if an error has been detected.  It has 

been successfully used, particularly, in the high performance 

computing (HPC) domain, to provide rollback recovery for 

long-running applications on failure-prone hardware.   

There are several well-known checkpoint implementations.  
Plank et al. describe a well-known user-level checkpointing 

library libckpt [8].  Similarly Litzkow and Solomon describe a 

user-level checkpointing library for the Condor distributed 

processing system [10].   

Perhaps the most common checkpoint library for Linux 

systems is the Berkeley Labs Checkpoint/Restart kernel 

module (BLCR) [9].  BLCR is a kernel module that supports a 

variety of architectures, including PowerPC.  It has also been 

used to checkpoint distributed systems, such as MPI clusters 

[11].  Our embedded system does not currently use an 

operating system, so neither BLCR nor the user-level 

techniques described above, were suitable for our use. 

Instead we developed our own user-level checkpoint and 

rollback solution for embedded PowerPC 405 cores. 

We provide a straightforward API for our checkpointing 

library: 

(1) checkpoint() captures the current state of the running 

application. 

(2) restart() rolls back the application to the most recent 
checkpoint state.  

Checkpointing is essentially a four step process: 

(1) Pause the running application. 

(2) Capture the memory segments and CPU registers. 

(3) Write the captured data to storage. 

(4) Resume the application. 

From the user level, pausing the running application is 

equivalent to making a function call into the checkpointing 

library.  Because the checkpointing library is active, no further 
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computations will occur3.  In the case of parallel applications, 

we require the user to ensure that both PowerPCs are quiesced 

before invoking the checkpointing library.  This ensures a 

consistent distributed state. 

Capturing the memory contents is accomplished by reading 

the memory segment start and endpoints from variables 
assigned by the linker.  Fixed sized memory segments are 

easily captured: the data section, SBSS, BSS, etc. can be read 

from memory directly and written to stable storage.   

The register file may be captured at the C library level, using 

the setjmp() function.  setjmp() captures all of the nonvolatile 

registers, including the stack pointer, and saves them into a 

platform-specific array, known as jmp_buf.    

The stack and heap, however, are more complex.  Recall that 

on most architectures, the PowerPC included, the stack grows 

downward.  This means that, in memory, the address of the top 

of the stack is positioned earlier than the fixed stack bottom.  

We can easily derive the bottom of the stack from the linker 
symbols.  The top of the stack, however, is by convention 

stored in general purpose register 1 on the PowerPC.  Through 

inspection we found that the stack pointer, was being stored as 

the first element of jmp_buf.  Using this value we can compute 

the top of the stack and capture only the used stack memory. 

The heap, like the stack, is also a dynamic memory segment.  

We can easily derive the base of the heap using linker 

variables.  However, finding the heap endpoint (known as the 

program break) must be done at runtime.  To do so we employ 

the C library’s sbrk() function call.  The sbrk() function is 

typically used by malloc() to allocate additional heap space.  It 
returns a pointer to the new program break.  However, when 

called as sbrk(0), it returns the address of the current program 

break.  We can use this to compute the heap boundaries and 

can store the heap to stable storage. 

Once the full checkpoint, including memory, stack, heap, and 

registers have been captured we write the result to storage.  

Our solution supports checkpointing to flash memory, DDR 

memory, and BRAMs depending on the hardware platform 

being used and the application’s requirements.   

In Figure 3 we show the results of checkpointing a parallel 

SAR application to both compact flash and DDR memory.  

We have normalized the results to the non-fault tolerant case.  
Clearly, checkpointing to DDR memory is much more 

efficient than checkpointing to flash memory.  Indeed, we are 

able to maintain 98% efficiency by checkpointing to DRAM, 

while maintaining only 78% efficiency when checkpointing to 

flash. 

While checkpointing to flash certainly incurs a high overhead, 

there are advantages to its use.  Checkpointing to flash will 
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 To ensure consistency, users should temporarily pause any 

interrupts that may change system state. 

survive a power cycle, for example, while checkpoints to 

BRAM or DRAM will not.  Checkpoints to flash do not 

consume limited embedded volatile memoryresources, unlike 

checkpoints to BRAM and DRAM.  Ultimately, the choice 

between high performance in-memory checkpointing and high 

resiliency flash checkpointing must be made on a per-

application basis. 

Rolling an application back to a previous checkpoint is as 

simple as calling restart() within the user’s source code.  At 

restart, the registers, memory segments, stack and heap are all 

restored to their previous values and locations.  Memory is 
restored by reading the contents from a file, DRAM, or 

BRAM.  Once memory is in place, registers are restored using 

setjmp’s counterpart longjmp().   The restart() function never 

returns.  Instead, after invoking longjmp(), application 

execution will appear to resume from the point that setjmp() 

was called during the checkpoint.  From the application’s 

perspective, the only difference between a checkpoint and a 

restart (at the setjmp() time) is that setjmp() returns 0 when 

called directly, and 1 when returned by longjmp(). 

While we can easily capture the state of the PowerPC, we are 

unable to automatically capture the state of external devices, 
UARTs, networks, etc.  To checkpoint these devices, our 

checkpointing library allows users to pass pre- and post-

checkpoint functions to the checkpoint() library function.  

These allow users to provide a custom function that will, for 

example, quiesce the network, close open files, or anything 

else, before the actual checkpoint occurs.  After restarting the 

application, the post-checkpoint function is called immediately 

prior to returning to the user’s application.  This allows the 

user to restart networks, reopen files, etc. 

5. MEMORY SENTINEL AND INJECTION SYSTEM 

The Memory Sentinel and Injection System (MSIS, 

pronounced em-sis) is a software-based fault injector for the 

PowerPC(s) within Xilinx FPGAs.  Its purpose is to emulate 

an SEU by flipping any writable bit within the PowerPC - 

including the general purpose registers, special purpose 

registers, and both the instruction and data caches.   

 

Figure 3: Checkpointing efficiency. 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

Without FT Flash Ckpt Memory Ckpt 

E
ff

ic
ie

n
cy

 (
%

) 

Fault Tolerance Efficiency 



6

In our current implementation, we are able to inject into the 

PowerPC’s general purpose and special purpose register sets.  

We intend to extend this work to the PowerPC’s data and 

instruction caches.   

Being able to test how a bit-flip within the cache will impact 

an application is critical because the cache allows the 

application to run with maximum performance and accounts 

for a large cross-section of the PowerPC.  It is assumed that 

the configurable logic will be protected from SEUs by 

scrubbing and TMR.  A block diagram of the MSIS is shown 
in Figure 4 below.  As shown, the MSIS is split into two main 

components: the SW-MSIS and the HW-MSIS. 

The SW-MSIS runs as an interrupt service routine (ISR) and is 

responsible for performing the necessary steps to introduce an 

SEU (bit-flip) into the PowerPC.  It can modify any software 

writable register and assist the HW-MSIS in modifying a 

cache line. The type of injection is chosen at random by a 

pseudo-random number generator.  A main goal of the SW-

MSIS is to limit how intrusive a fault injection is to the 

running application.  For example, minimizing how much of 

the instruction cache is changed as a result of executing the 
SW-MSIS.  To meet this goal, the SW-MSIS is compiled to a 

non-cacheable section of memory; and when the ISR starts, it 

disables the allocation of new cache lines on loads and stores, 

unless the injection is into cache.  If the SW-MSIS injects a 

fault into the cache, the cache line needs to be reloaded from 

memory with one bit changed by the HW-MSIS. 

The HW-MSIS acts as a timer to periodically inject a fault into 

the PowerPC and as a monitor to validate the bus transactions 

to/from the processor.  This monitor ring is also capable of 

modifying data or bus transactions to/from the PowerPC.  By 

changing the data going into the PowerPC, the HW-MSIS 

creates a difference between the data in the PowerPC cache 

and the application memory.  This difference emulates a fault 

in the cache because the modified data is not stored in memory 

and the processor will use the cache data only for the life of 

the cache line. 

By monitoring the PowerPC bus transaction, the HW-MSIS is 
also capable of providing a level of protection to the running 

system.  If an SEU occurs within the PowerPC that creates a 

write to a read-only section of application memory, the HW-

MSIS will prevent the operation from occurring.  In this way, 

the HW-MSIS acts as a mini-Memory Management Unit 

(MMU).  Unlike the MMU within the PowerPC, the HW-

MSIS is implemented within the configurable fabric of the 

FPGA, where both scrubbing and TMR prevent an SEU from 

impacting the system.  Because of this added level of 

protection, the MSIS should remain in a system it is used to 

test because it provides, with the fault injection disabled, 

additional fault detection to the system. 

6. APPLICATION AND RESULTS 

Our applications of interest are primarily Synthetic Aperture 

Radar (SAR) and Hyperspectral Imaging applications that 

have previously been provided by NASA.  We have created a 

synthetic test application that is composed of the major 

elements of SAR and Hyperspectral Imaging.  From SAR we 
have implemented a single precision FFT and complex 

multiply, and we have added a thresholding stage to the 

application to mimic the Hyperspectral application.  The 

smaller test application was necessary in order to meet with 

the size limitations of our upcoming MISSE7 flight 

experiment, which does not provide us with any access to 

DRAM or other peripherals.  Our ultimate goal is to correlate 

any faults observed on our MISSE7 experiment with injection 

tests performed using the MSIS.  This required a common 

application. 

The MSIS was used in a mode which only injected faults into 

the PowerPC register set.  Neither the cache injection nor the 
memory guard features were used during this testing.  We 

performed two trials: the first on a baseline flight application, 

and the second on the same flight application with fault 

tolerance enabled.  We enabled heartbeats on the baseline test 

in order to allow unattended testing.  In each trial we 

performed exactly 3060 injections. This number of injections 

is not exhaustive, as we are injecting randomly over both 

space (register location) and time (program counter value), but 

is statistically large enough to give us an estimation of trends 

within a reasonable amount of wall clock testing time  

(1 day ~ = 1,000 injections). 

For baseline testing we broadly classify the results of each 

injection into one of three categories: good data, data error, or 

reset.  A result of good data implies that after the injection, no 

difference in output was observed.  A result of data error 

implies that after injecting the bit error, the output data had at 

least once difference from the known good result.  Finally, a 

Figure 4: The MSIS can inject an SEU into the 

vast majority of the PowerPC sensitive bits 

and protect the read-only application memory. 



7

reset implies an error that would crash or otherwise hang the 

PowerPC.   

When injecting into our fault tolerant design, we expanded the 

classification to track the number of rollbacks that resulted in 

good data as well as data error.  

In Table 2 and Table 3 we present a summary of our fault 

injection results.  As expected, the number of “good data (no 

action)” results remains consistent between our two trials.  As 

we explain below, the data errors also remain largely 

consistent.  Where our fault tolerance techniques have the 

most impact is in reducing the number of PowerPC 

hangs/resets. 

Since our fault injector is an emulator running on actual 

hardware, a minimal heartbeat watchdog and reset was used to 

ensure the test was still active. This greatly facilitated batch 

testing of large numbers of injections. Therefore resets in the 
baseline case should be interpreted as an unrecoverable 

processor hang.  In our fault tolerant experiment we enabled 

heartbeats, control flow assertions, watchdog timers, and 

checkpointing.  Checkpoints were taken in the first iteration of 

the experiment. In this testing, reset indicates that the 

radiation-hardened controller will need to reboot the PowerPC 

and did not have a checkpoint to roll back to, while rollback 

indicates that a checkpoint was found and used. 

In Figure 5 and Figure 7 we can compare the histograms of 

data errors with respect to injection site observed between our 
fault tolerant and baseline results.  In general we find that the 

number of data errors remains relatively constant regardless of 

the use of fault tolerance. This is to be expected as we target 

only upsets that cause PowerPC failures and application 

control flow errors.  We leave data errors for post-processing 

on the ground. 

Further, the top 5 most vulnerable registers are quite similar in 

both Figure 5 and Figure 7.  Not only is general purpose 

register 14 the single most vulnerable register, but all of the 

top 5 most vulnerable registers are considered non-volatile 

registers by the PowerPC EABI (embedded application binary 

interface). The non-volatile registers are those that must be 
preserved through function calls.  They are not used to pass 

function arguments or return values.  It is therefore 

unsurprising that these registers are uniquely vulnerable in 

both the fault tolerant and baseline injection tests. 

Note that it initially appears that the sensitivity of register 14 

increases in our fault tolerant solution.  In fact, this is an 

artifact of our randomized injection process.  We actually 

injected nearly twice as many bit errors into register 14 in our 

fault tolerant solution.  Yet, the number of data errors 

increased only slightly, from 18 errors in the baseline case to 

25 in our fault tolerant design. 

In Figure 6 and Figure 8 we present our reset sensitivity 

results.  At the outset we can see that our fault tolerance 

solutions are reducing the number of PowerPC resets from 9% 

of the overall injections to 2%.  This represents a substantial 

overall reduction in the number of PowerPC hangs crashes.  

The causes of these crashes are not surprising.  For example, 

Table 2: Summary Baseline Injection Results 

Result Percent 

Good Data (no action) 86% 

Good Data (Rollback) 0% 

Data Error (no action) 5% 

Data Error (rollback) 0% 

Reset 9% 

 

Table 3: Summary Fault Tolerant 

Injection Results 

Result Percent 

Good Data (no action) 85% 

Good Data (Rollback) 9% 

Data Error (no action) 4% 

Data Error (rollback) 0% 

Reset 2% 

 

Figure 5: Baseline data errors. 

 

Figure 6: Baseline resets. 
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in the baseline results, we see that the SP is the single most 

vulnerable register, followed by the PC.  Injections into these 

registers commonly result in program exceptions due to the 

sensitivity of the program to these registers. 

In the case of the fault tolerant results (Figure 8), we notice 

that we have introduced a sensitivity to the non-critical 
interrupts.  This is because we rely on the non-critical 

interrupts to trigger heartbeat events, clear the watchdog, etc.  

If the non-critical interrupts are disabled a reset or rollback 

will occur either due to a series of missed heartbeats or an 

expired watchdog timer.  

7. CONCLUSIONS AND FUTURE WORK 

In this paper we have described fault tolerance strategies for 
embedded PowerPCs within the Xilinx V4FX60 FPGA.  To 

detect failures we have developed heartbeat monitors, self 

monitors, and control flow assertions.  To mitigate the 

detected failures we have developed a user-level 

checkpointing library that allows an application to capture its 

state and to later roll back to the captured state. 

We also described our fault injector named MSIS that we used 

in an injection campaign on a synthetic SAR and 

Hyperspectral-like application.  We showed that our fault 

tolerance strategies improve the reliability of the embedded 

PowerPC cores by reducing the frequency of PowerPC resets 
by 7% while only adding about 2% overhead. This provides an 

interesting option for scientific applications that can correct 

small data errors in post processing in that with traditional 

TMR-based approaches, the overhead is on the order of 

~200%, greatly reducing the amount of real-time science that 

can be achieved. 

In the future, we will continue evaluating these fault 

mitigation strategies by improving our software-based fault 

injection (MSIS) and by testing at a radiation beam.  The 

MSIS is currently used to inject faults into the PowerPC 

register set and is under test flipping bits with the instruction 

and data caches.  We are also in the process of preparing for a 
radiation beam experiment.  The beam is most representative 

way to emulate a real space environment while still on the 

ground.  Since we are targeting sun synchronous Low-Earth 

Orbits, we are planning to test at a proton beam.  By 

comparing the test results from the MSIS to the beam test, we 

endeavor to show that using the MSIS to inject bit flips is a 

representative way to test application response to the majority 

of SEUs within the PowerPC. 
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