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SOFTiiARE FOR APPROXI:!4TIONS

OR

APPROXIMATIONTHEORYAS AN EXPERIMENTALSCIENCE -

L. Wayne Fullerton

Numerical analysis and approximation theory, in particular,
can be an experimental science. This experimental nature is il-
lustrated with several more-or-less new results. In the first
halfof this paper techniques for estimating the accuracy and
significance of approximations are given. In the second half
several generalizations of Chebyshev series that lead to nearly
b~st approximations with respect to almost arbitrary weight func-
tions and basis sets are presented.

1. Introduction

Conversational references to the experimental nature of

numerical analysis usually emphasize the trial-and-error aspects

of research. Certainly I do not dispute the trial-and-error

nature of numerical analysis research, but I am most anxious to

avoid illustrating the errors I have made. I call numerical anal-

ysis an experimental science in the same way that we all call

physics or chemistry experimental sciences. There arc two essen-

tial facets to an experimental science. First, theory or hypothe-

si~ suggests experiments that should be carried out. And second,

experiments (conducted perhaps with computer programs) suggest

new thcoreticui results. I wish primarily to emphasize this

latter facet. In the next section, it is shown how computational

experience can dictate the kind of numerical analysis that should

be done. And in the third section, it is shown how experiments

conducted with computor software can lead to new theoretical

results,
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2. Numerical Analysis for Software

Anyone who has used an approximation program probably has

been annoyed by its inability to detect user errors. In order to

compute ar, approximation, the user must supply function values

that are somewhat more accurate than the approximation he desires.

The more accurate values are often computed with a convenient

ascending series for some argument values and an asymptotic

series for other argument values. It is not uncommon to estimate

incorrectly the number of terms needed in one of the series, so

that the two series fail to match to the required accuracy. Al-

ternatively, the user may incomectly estimate the stability

against roundoff of one of the series, so that it is inaccurate

even though enough terms are used.

Now when a user requests a very accurate approximation with

inaccurate function values, some approximation programs will do a

great deal of work and possibly fail to derive any approximation.

Even if the user supplies accurate function values, his approxi-

mation fomn may be so unstable that the approximation (if it can

be derived) is not useful. These common experiences with approx-

imation software dictate that the troublesome situations be de-

tected so that perplexed users can be waned.

2.1 Input Function Accuracy

We wish to assess the error of a user-supplied function.

The general methods in this section may be used to derive, for ex-

ample, the relative error but in this case Generalized Chebyshev

Series discussed in Section 3.2must also be used. Let us, there-

fore, restrict consideration to the estimation of absolute errors

and simply note that extension of the results here to arbitrarily

weightc~ errors is straightforward.

Supposcwc compute a high-order Chebyshev series approxima-

tion to the user-supplied function. !%YI though the series may

contain 50 terms, only 10 terms may be significant. In such a

case t:.lc error of the 10-tcnn series would bc nearly the same as



,

the full 50-tem series, and the ❑agnitude of the last 40 terms

would all be nearly the same. We can determine how many terms
th

are significant by observing that an N order series

is not only a

least squares

terns to keep

estimate the

imation (cf.

The sum

series is

N

F(x) ~ z fi Ti(x)

imo

near minimax approximation but also a discrete

approximation over the Chebyshev points

Our strategy, then, is to ●stimate the number of

in the Chcbyshev series in the same way that we

number of texms to keep in any least squares approx-

Ralston [5]).

of the squares of the errors for an L-th order

.thIfwe estimate the value of F(xj) by the N order series and if

we make use of orthogonality relations to eliminate cross prod-

ucts, we obtain

The standard emor of one function value for an Lth order series

is givenby

We now compute these values

sum accurately, we start at

progrcssivc]y dccrcasc 1.

~.~+1

for all 1. In order to evaluate the

Rm~ for~hich the sum {s :cro and

Next KC check in a forward direction
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for some Uk+l ~Uk ● We then have an estimate of the nu~cr of

terns, k, to keep and also an estimate of the error, Uk , of the

user-supplied function.

The scheme wc hfive described can be used to detect both ran-

dom errors and discontinuities. The scheme works because we

know the true function being approximated must have only very

low-amplitude high ~’frequencies” and that it must have no discon-

tinuities. Otherwise, a low-order polynomial approximation would

be inappropriate. lie have found an efficient method for assessing

the accuracy of input functions as WC1l as output Chcbyshcv

series approximations. The requirement for such an accuracy

estimate was dictated by computational expl:rience, and WC1l known

numerical techniques fortunately provided the solution.

2.2 Stability of Approximation Form

hewing only the accuracy ofan approximation is insuffi-

cient, because the approximation may be unstable against roundoff.

A ten-digit approximation is of little use if 100-digit accuracy

is needed to evaluate the approximation. A significance loss of

90 digits is, of course, unconmm; hwcver, even a loss of onc

digit of significance maybe unacceptable. Anyenetiho derives an

●pproximation for use in a full machine-precision special func-

tion routine wil! be most distraught to learn the approximation

Is unstable against roundoff ●rror whilehe is testing the

special function routinu. lle shouldbe warned about the insta-

bility of the approximation when the approximation is derived.

Once again, experience (or experiment) dictates the need for some

numerical analysis research. The results are just as easily

obtained as in the previous subsection.

The significance loss incurred during the evaluation of an

●pproximation can be easily estimated when the approximation it-

self is derived, provh.lod we do not try to do too much. A simple

way of measuring the stability of an approximation is to calcuu

late the numllcr of significant digits that should bc kept in each



.

.

I

of the coefficients of the approximation so that the extra error

introduced by rounding the coefficients is no larger than the

weighted error of the approximation. Because every major computer

represents floating point nlnnbers with a nearly constant relative

error, de need to calculate only one number, namely the number of

significant digits to keep in each coefficient.

Suppose now we are given an approximation

n

An =
z

fi l$i(x)

i=o
whose weighted error

~ . max Ie(x)l = max Iw(x) [F(x) - An(x)]l

is nearly minimax. We require the orthogonal functions @i to be

normali:cd so that w*(x) O~(x) : 1.0 as in Section 3.2. In the

special case w(x) E 1, the @i are just Chebyshev polynomials.

We have chosen to analyze orthogonal series, because they presum-

ably are the ❑ost stable form and, moreovrr, the easiest form to

derive.

Assume the errors introduced by arithmetic operations and by

evaluating the 4, aro negligible. Further assume the absolute

error of the roun&d cncfficient fi is Gaussian distributed with

standard deviation u .
i

Of course, the errors are not really

Gaussian distributed, but we need onlj” an estimate of the required

significance. An error of SO percent in our estimate corresponds

to only 0.3 significant figures and is perfectly acceptable. The

standard deviation of the absolute error of the approximation

evaluated with rounded coefficimts is given by

u:(x) =

Now let 6 be tho standard

each rounded coefficient so

deviation of the rciative errorof .
22

that u; = fi 6 . Furthermore,
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recall that we want the weighted error introduced by the rounded

coefficients to be less than the weighted error of the approx-

imation, c . Then we find

2
c = max w2(x) U~(x) = max

l&W[~2*

But the @i(x) are normalized so that w*(x) $:(x) < 1, and so

E*62> n ●

x f2
i

i=O

Finally, the number of significant figures, S, required to insur”

the effect of the rounding errors does not exceed the error of

the approximation is

s= -loglo 6 .

Stable approximations are those for which 6 is a large

number compared with c, that is, the required number of sig-

nificant figures should be small. Thus, stable approximations

will have small leading coefficients -- the higher order coeffi-

cients are unimportant if the series converge reasonably quickly.

The extension of the analysis in this subsection to rational

orthogonal series is straightforward, but the resulting expression

for 6 is not as elegantly simple as the result above.

3. Software for Numerical Analysis

In the previous section, the importance of numerical anal-

ysis applications to approximation programs used in a production

mode was cmphasi:cd. Naturally, these programs become at the

same time more useful and reliable as research tools. In this

section, wc cmphasi:e the usc of carefully designed programs to

—- conduct numcricnl experiments that may lead to new theoretical
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results. Like a true experimental science, these theoretical

results may immediately suggest new numerical experiments. Two

(almost) new theoretical results are used to illustrate the

utility of computer programs as research tools in the next two

subsections. .

3.1. Leveled Truncated Chebyshcv Series

Truncated Chebyshev series are well known to be nearly best

absolute error approximations in the uniform norm. Because

Chebyshev series are near minimax approximations and because they

are quite stable against roundoff errors, it is natural to express

true minimax approximations in terms of Chebyshev polynomials.

It is also natural to wonder what the error of a minimax approx-

imation looks like in terms of Chebyshev polynomials. The

Chebyshev series of the error is almst trivially calc~lated,

especially if one is already expressing minimax approximations in

terms of Chebyshev polynomials.

Consider, therefore, the dominant error terms of a second

order polynomial minimax approximation to the exponential func-

tionon the interval [-1, +1]:

C2[X) = . . . + .00013 T - .00SS3 T
1 2

+ .04434 T3

+ .00547T4 + .00054 T5 + . . .

The main error term is, as expected,
‘3 “

Note, though, that the

neighboring error terms are of tii~ same magnitude but opposite

sign. If this happens only once or twice, it must be m accident.

But it happens over and over. It even occurs for rational mini-

max approximation. Consider the Chebyshev series for the abso-

lute error of a second order div~dcd by a second order rational

minimax approximation to the exponential:
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E2,2(x) = . . . + ●000009 T3 - .000038 T4

+ .000067 T5

+ .000037 T6 + .000011 T7 + . . .

As anticipated,
‘s is the dominant error term. And again neighb-

oring error terms are of the same magnitude but opposite sign.

Because the behavior we observe for these two cases occurs very

frequently, we should consider an explanation.

A truncated Chebyshev series is ironically guaranteed to

have a nonuniform error curve. if, for example, we trzmcate a

Chebyshev series at fourth order, then the dominant error term

will ordinarily be T5. The next error term will be T6, and this

error term (if nonzero) will constructively interfere with TS

in some places and destructively interfere in other places. We

truncate a Chebyshev series to obtain a nearly best approximation,

but at the same time we insure the error curve is nonuniform.

From the above numerical results we know what to do about

the interference of higher order error terms with the dominant

error term: we modify the truncated Chebyshev series so that

lower order error terms of the same magnitude but opposite sign

are introduced in the error expansion. This procedure works

because the sum of the high and low order terms have zeroes

exactly where the dominant error term has extremae. To see this

effect, make the transformation x = cos e . The dominant error

term is then Tin(x) = cos m 0 , and furthermore

Tm-fl(x) - Tm+g(x) =cos(m-t)13 -cos(m+l)6

= 2 sin !ttl sin me .

The nonzero low order error term aliases the high order error

tc~m and, therefore, reduces interference effects.

We have, then, derived a technique for leveling truncated

Chebyshev series -- a technique suggested solely by Chebyshcv
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series expansions of true minimax approximation errors. The

leveled Chebyshev series should be regarded only as first o~der

modifications to truncated Chebyshev series, because the ‘intr-

oduction of the lower order error terms simply avoids the addi-

tion of more error at the extremae of the main error term.

Nonetheless, the improvement is obtained at essentially no cost,

and while a truncated Chcbyshev series may deviate from a minimax

approximation by perhaps 20 or 30 percent, the deviation cf a

leveled Chebyshev series is more likely to be only a few percent.

Economization of a power series [2] is a commonly employed

method of obtaining a good approximation from a power series. In

effect, the power series is converted to a Chebyshev series, then

the small amplitude high order terms are dropped. One then ob-

tains an economical approximation with fewer terms, but with

little additional error. The results in this subsection could,

however, be used to obtain a still better approximation with the

same number of te~ms. Rather than truncating the Chebyshev se-

ries, the Chebyshev series should be leveled.

3.2. Generalized Chebyshev Series

Truncated Che’lyshev series are nearly best approximations in

the uniform norm. Unfortunately, they are only nearly best poly-

nomial approximations and only in the sense of absolute error.

It is natural to wonder about generalizations that would be good

for arbitrary weight functions and non-polynomial bases. Origi-

nally this problem was motivated by the need for good starting

values for the rational Remez iteration. However, before the

rational problem is studied, we should soive the polynomial case.

Consider first the problem of finding an approximation

An(x) to the function F(x) on [-1, +1] with weight function

w(x) = 1, such that the error

E (X) = h’(x) [F(x) - An(x)]

is near minimax. lie know, of course, the solution is first to
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define some polynomials -- Chebyshcv polynomials -- from the

orthogonality condition

J
1 Tin(x) Tn(x)

-1 w ‘X=”’ m+n’

with the Tn(x) normalized so that their extreme value is unity.

Next we expa~d F(x) in a series

F(x) =
x

fi Ti(x)

with

J
1

1 F(x) Ti(x)

fi=—
hn

‘1 G– ‘x ‘

where

J
1

hn = Ti2(x)
—dx.

r
-1 ~ X2.

When this series is truncated at n-th order, we obtain the de-

sired approximation A .n
In generalizing to arbitrary weights, it is reasonable to

suppose a simple function of the weight must be included in the

orthogonality condition. I incorrectly conjectured that the

rweight in the orthogonality condition might be h’(x)/ 1-x2

or perhaps h~ / A7 The problem of finding the

appropriate orthogonal polynomials and expansion coefficients

can be posed essentially as a Gauss-Christoffel quadrature prob-

1em. Bcca~we a good Gauss-Christoffel quadrature program was

availakle to me, I quickly learned that these conjectures did not

lead to nearly

thc,quadraturc

best approximations. I did observe, however, that

weight containirig ~ was the worse, so I tried

I I
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/-IP(x)/ 1.X2 .

that the correct

ingly easy -- to

That choice I found to be the correct one. ?:OW

generalization is known, it is easy -- embarrass-

cxplain why.

We will be expanding F(x) in a series of some orthogonal

polynomials

F(x) =
x

fi (?)i(x) ,

and when we truncate the series at n-th order, the weighted error

will be roughly h’(x) $JO. Ne want this error to be an equal

ripple curve, just like T~+l(X) wouldbc. Thus, the analoguc

of the Chcbyshev polynomial Ti is W ~.. And when \ic substitute
1

this result in the orthogonality condition, we find the $i are

given by

/

1
l?(x) din(x) 4)(X)

dx=O ,m+n.
-1

r 1-X2

See Gautschi [4] for a discussion of the derivation of orthogonal

polynomials. We choose to normalize these polynomials so that

the extremum of h’(x) @i(x) is unity. Such a nomali:ation al-

lows one to assess readily the accurac;” of a truncated series in

these pol}momials. The weighted error bound is simply the sum of

the absolute values of all the coefficients dropped from the se-

ries, and this bound is usually close to the true weighted error.

Truncated generalized Chebyshev series often are within 20

or 30 percent of the corresponding true !ieighted minimax approxi-

mations. Because each approximation will usually have a unique

weight function, the use of a general Gauss-Christoffel quadra-

ture routine is not the best way to cbtain the orthogonal poly-

nomials and expansion coefficients. The integrals needed can be

done efficiently by an automated Gauss-Chebyshcv scheme, and the

expansion coefficients can be derived at the same time as the

recurrence coefficients for the orthogonal polynomials.
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Generalization to non-polynomial bases is now straightfor-

ward, in principle. Instead of constructing the orthogonal func-.
tions @i from the basis X1, it is necessary to orthogonalize

the desired basis functions, In practice, the integrxls are not

so easily evaluated, and one must be certain that the basis

functions form a Chebyshev set. For a brief discussion of the

applications of these approximations see Fullerton [3].

Further generalization to orthogonal-Pad6 approximations,

where we require .,

i=O
n x ‘i $i(x)

i=O

s

with q. = 1, are now easily obtained. We first discretize at

the zeroes of $m+n+l (x), and solve the resulting linear equa-

tions for the pi and qi. As with Chebyshev-Fad6 approxima-

tions [1], wc obtain either a degenerate approximation or a good

one. If it is degenerate, we are not interested in the approxima-

tion because the next lowest order rational approximation Wiil be

nearly as good as the one we are trying to derive. If the discre-

tizecl approximation is good, we can then use it as a starting

value for findinfl differential corrections to the rational coeffi-

cients in the above nonlinear equation. The discretizcd solution

usually is so C1OSC to the orthogonal-Pad6 solution, that only

one or two iterations of the linearized version of the above equa-

tion arc neccss:~ry. The ortho~onal-Pnd6 approximations always

secm to be more accurate than the corresponding discretized ap-

proximations. itlthough the solution for orthogonal-Pad6 approxi-

mations outlined here is not nearly its elegant as the solution

for Chol)~sh~~-1’ild~ approximations givcnby Clcnshaw and Lord [1],

tlt lCilSt Wc Il;l\’c obtained a solution.
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4.

The need for

type of numerical

Conclusions and Acknowlcdgcrncnts

quality software dictates to some extent the

analysis that should be done, and several exam-

ples were given in Section 2. The results there led to programs

that were not only much more useful production tools, but also

much more useful research tools. Employing computer programs to

conduct numerical experiments was shown in Section 3 to be an ef-

fective means of testing conjectures and deriving new theoretical

results. I am confident that I would never have obtained the

results in Section 3 unless I had had quality software tools

available. Approximation theory and numerical analysis can be an

experimental science.

Dr. D. D. Warier suggested the solution to the input function

accuracy problem given in Section 2.1, and I am grateful to him

for the suggestion. I am also grateful to Warner for numerous,
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