LA-UR -77-633

Pt
\

TITLE:

THEORY AS AN EXPERIMENTAL SCIENCE

AUTHOR(S):

SUBMITTED TO:

L(ouis) Wayne Fullerton

———

SOFTWARE FOR APPROXIMATIONS OR APPROXIMATION

Proceedings of the Rational Approximation

Conference, Academic Press

By acotance of this article fur publication, the
publisher recognizes the Government's (license) rights
in any copyright and the Government and its authorized
representatives have unrestricted right t¢ reproduce in
whole or in part said asrticle under any copyright
secured by the publisher.

The Loz Alamos Belentific Laboratory requests that the

publisher identify this article as work performed under
the auspices of the USERDA.

of the University of California
LOS ALAMOS, NEW MEXICO 37548

An AHirmative Action/Equal Opportunity Employer

Form No. B
St. No, 2629
1775

wancs
This - (1]
T e b

¢t

DSTRIBUTION GF TMTS DOCI MR M OOINITMITED

UNITED STATES

ENYRGY RESEARCH AND
DEVELOPMENT ADMINISTRATION
CONTRACT W-7408-ENG. 34



About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


SOFTWARE FOR APPROXI!'ATIONS
OR
APPROXIMATION THEORY AS AN EXPERIMENTAL SCIENCE

L. Wayne Fullerton

Numerical analysis and approximation theory, in particular,
can be an experimental science. This experimental nature is il-
lustrated with several more-or-less new results. In the first
half of this paper techniques for estimating the accuracy and
significance of approximations are given. In the second half
- several generalizations of Chebyshev series that lead to nearly
best approximations with respect to almost arbitrary weight func-
tions and basis sets are presented.

1. Introduction

Conversational references to the experimental nature of
numerical analysis usually emphasize the trial-and-error aspects
of research. Cértainly I do not dispute the trial-and-error
nature of numerical analysis research, but I am most anxious to
avoid illustrating the errors I have made. I call numerical anal-
ysis an experimental science in the same way that we all call
physics or chemistry experimental sciences. There are two essen-
tial facets to an experimental science. First, theory or hypothe-
sis suggests experiments that should be carried out. And second,
experiments (conducted perhaps with computer programs) suggest
new theoreticuli results. I wish primarily to emphasize this
latter facet. In the next section, it is shown how computational
cxperience can dictate the kind of numerical analysis that should
be done. And in the third section, it is shown how experiments
conducted with computer software can lead to new theoretical
results,



2. Numerical Analysis for Software

Anyone who has used an approximation program probably has
been annoyed by its inability to detect user errors. In order to
compute an approximation, the user must supply function values
that are somewhat more accurate than the approximation he desires.
The more accurate values are often computed with a convenient
ascending series for some argument values and an asymptotic
series for other argument values. It is not uncommon to estimate
incorrectly the number of terms needed in one of the series, so
that the two series fail to match to the required accuracy. Al-
ternatively, the user may incorrectly estimate the stability
against roundoff of one of the series, so that it is inaccurate

“even though enough terms are used.

Now when a user requests a very accurate approximation with
inaccurate function values, some approximation programs will do a
great deal of work and possibly fail to derive any approximation.
Even if the user supplies accurate function values, his approxi-
mation form may be so unstable that the approximation (if it can
be derived) is not useful, These common experierices with approx-
imation software dictate that the troublesome situations be de-
tected so that perplexed users can be warned.

2.1 Input Function Accuracy

We wish to assess the error of a user-supplied function.

The general methods in this section may be used to derive, for ex-
ample, the relative error but in this case Genuralized Chebyshev
Series discussed in Section 3.2 must also be used. Let us, there-
fore, restrict consideration to the estimation of absolute errors
and simply note that extension of the results here to arbitrarily
weighted errors 1is straightforward.

Suppose we compute a high-order Chebyshev series approxima-
tion to the user-supplicd function. FEven though the series may
contain 50 terns, only 10 terms may be significant. In such a
case tue error of the 10-term series would be nearly the same as



the full 50-term scries, and the magnitude of the last 40 terms
would all be nearly the same, We can determine how many terms

are significant by observing that an Nth order series

N
F(x) = Z fi. Ti(x)

i=0

is not only a near minimax approximation but also a discrete

least squares approximation over the Chebyshev points

xj = CoS : . Our strategy, then, is to estimate the number of
terms to keep in the Chebyshev series in the same way that we
estimate the number of terms to keep in any least squares approx-
imation (cf. Ralston [5]).

The sum of the squares of the errors for an f-th order

[F(x Efi T, (x,) ] .
J=0

i=0

series is

If we estimate the value of F(x,) by the Nth order series and if

j

we make use of orthogonality relations to eliminate cross prod-

ucts, we obtain

:E: }z: f 'T ( Nol }E:

j=0 i=Re] inRel

The standard error of one function value for an 2-th order series

is given by
v N
o2 . . Nel ) fZ
L N-2 2 N-£ E: i °
i=2+]

KWe now computc these values for all £. In order to cvaluate the
sum accuratcly, we start at R=N for which the sum is zero and
progressively decrcase 2. Next we check in a forward direction



for some o, ,, >0, . We then have an cstimate of the number of
terms, k, to keep and also an estimate of the error, °k » of the
user-supplied function.

The scheme we haive described can be used to detect both ran-
dom errors ard discontinuities. The scheme works because we
know the true function being approximated must have only very
low-amplitude high "frequencies" and that it must have no discon-
tinuities. Otherwise, a low-order polynomial approximation would
be inappropriate. We have found an efficient method for assessing
the accuracy of input functions as well as output Chebyshev
series approximations, The requirement for such an accuracy
estimate was dictated by computational exprrience, and well known
numerical techniques fortunately provided the solution.

2.2 Stability of Approximation Form

Knowing only the accuracy of an approximation is insuffi-
cient, because the approximation may be unstable against roundoff.
A ten-digit approximation is of little use if 100-digit accuracy
is needed to evaluate the approximation. A significance loss of
90 digits is, of course, uncommor; howcver, even a 1oss of one
digit of significance may be unacceptable. Anycne who derives an
approximation for use in a full machine-precision special func-
tion routine wil® be most distraught to learn the approximation
is unstable against roundoff error while he is testing the
special function routine. He should be warned about the insta-
bility of the approximation when the approximation is derived.
Once again, expericnce (or experiment) dictates the need for some
numerical analysis rescarch. The results are just as casily
obtained as in the previous subsection.

The significance loss incurred during the evaluation of an
approximation can be easily estimated when the approximation it-
seclf is derived, provided we do not try to do too much. A simple
way of mcasuring the stability of an approximation is to calcu-
late the number of significant digits that should be kept in cach



of the coefficients of the approximation so that the extra error

introduced by rounding the coefficients is no larger than the

weighted error of the approxination. Because every major computer

represents floating point mumbers with a nearly constant relative

error, we nced to calculate only one number, namely the number of

significant digits to keep in c¢ach coefficient. -
Suppose now we are given an approximation

n
Ay - Z £y 0;(0)
i=0
whose weighted error

€ = max |e(x)] = max |w(x) [F(x) - An(x)]l

is nearly minimax. We require the orthogonal functions ¢i to be
normalized so that wz(x) ¢f(x) £ 1.0 as in Section 3.2. In the
special case w(x) £ 1, the @1 are just Chebyshev polynomials.
We have choscen to analyze orthogonal series, because they presum-
ably are the most stable form and, moreovrr, the easiest form to
derive.

Assume the errors introduced by arithmetic operations and by
evaluating the ¢; are ncgligible., Further assume the absolute
error of the rounded cnefficient fi is Gaussian distributed with

standard deviation ¢ Of course, the errors are not really

Gaussian distributed,ibut we need only an estimate of the required
significance. An error of 50 percent in our estimate corresponds

toonly 0.3 significant figures and is berfectly acceptable. The

standard deviation of the absolute error of the approximation

evaluated with rounded coefficients is given by

) n 3A 2
n 2
dw- 3 () o -
i=0

Now let § be the standard deviation of the reiative error of

each rounded cocfficient so that o: = f: 62 « Furthermore,



recall that we want the weighted error introduced by the rounded
coefficients to be less than the weighted error of the approx-

imation, € . Then we find

n
2 2 9
€ = max wz(x) oi(x) = max E f; wz ¢; 62 .

i=0

But the ¢i(x) are normalized so that wz(x) ¢i(x) <1, and so

62 >

e
n
z;f?

1
i=0

Finally, the number of significant figures, S, required to insure

the effect of the rounding errors does not exceed the error of

the approximation is

S = -log10 § .

Stable approximations are those for which &§ is a large
number compared with €, that is, the required number of sig-
nificant figures should be small. Thus, stabie approximations
will have small leading coefficients -- the higher order coeffi-
cients are unimportant if the series converge reasonably quickly,

The extension of the analysis in this subsection to rational
orthogonal series is straightforward, but the resulting expression
for 6 is not as elegantly simple as the result above.

3. Software for Numerical Analysis

In the previous section, the importance of numerical anal-
ysis applications to approximation programs used in a production
mode was emphasized. Naturally, these programs become at the
same time more useful and reliable as research tools. In this
section, we emphasize the use of carcfully designed programs to

conduct numerical cxperiments that may lead to new theorectical



results, Like a true experimental science, these theorctical
results may immediately suggest new numerical experiments. Two
(almost) new theoretical results are used to iliustrate the
utility of computer programs as research tools in the next two
subsections.

3.1. Leveled Truncated Chebyshev Series

Truncated Chebyshev series are well known to be nearly best
absolute error approximations in the uniform norm. Because
Chebyshev series are near minimax approximations and because they
are quite stable against roundoff errors, it is natural to express
true minimax approximations in terms of Chebyshev polynomials.

It is also natural to wonder what the error of a minimax approx-
imation looks like in terms of Chebyshev polynomials. The
Chebyshev series of the error is almost trivially calculated,
especially if one is already expressing minimax approximations in
terms of Chebyshev polynomials.

Consider, therefore, the dominant error terms of a second
order polynomial minimax approximation to the exponential funec-
tion on the interval [-1, +1]:

ez(x) = .., + .00013 T, - .00553 T

1 2
+ ,04434 T3
+ ,00547 T4 + 00054 T5 + ...

The main error term is, as expected, T Note, though, that the

neighboring error terms are of tie samesmagnitude but opposite
sign. If this happens only once or twice, it must be an accident.
But it happens over and over, It even occurs for rational mini-
max approximations. Consider the Chebyshev series for the abso-
lute error of a sccond order divided by a second order rational

minimax approximation to the exponential:



ez'z(x) = ,.. + .000009 T3 - .000038 T4

+ .000067 T5

+ ,000037 T6 + .000011 T7 + ..

As anticipated, TS is the dominant error term. And again neigh-
boring error terms are of the same magnitude but opposite sign.
Because the behavior we observe for these two cases occurs very
frequently, we should consider an explanation,

A truncated Chebyshev series is ironically guaranteed to
have a nonuniform error curve. If, for example, we truncate a
Chebyshev series at fourth order, then the dominant error term
will ordinarily be Ts. The next error term will be T6’ and this
error term (if nonzero) will constructively interfere with T5
in some places and destructively interferc in other places. We
truncate a Chebyshev series to obtain a nearly best approximation,
but at the same time we insure the error curve is nonuniform.

From the above numerical results we know what to do about
the interference of higher order error terms with the dominant
error term: we modify the truncated Chebyshev series so that
lower order error terms of the same magnitude but opposite sign
are introduced in the error expansion. This procedure works
because the sum of the high and low order terms have zeroes
exactly where the dominant error term has extremae. To see this
effect, make the transformation x = cos 6 . The dominant error
term is then Tm(x) = cos m O , and furthermore ’

Tm_g(x) - Tm+2(x) cos(m~2)6 - cos(m+2)8

2 sin 26 sin m@ .

The nonzero low order error term aliases the high order error
term and, therefore, reduces interference effects.

We have, then, derived a technique for leveling truncated
Chebyshev series -~ a technique suggested solely by Chebyshev



series c¢xpansions of true minimax approximation errors. The
leveled Chebyshev series should be regarded only as first order
modifications to truncated Chebyshev series, because the “ntro-
duction of the lower order error terms simply avoids the addi-
tion of more error at the extremae of the main error term.
Nonethcless, the improvement is obtained at essentially no coﬁt,
and while a truncated Chebyshev series may deviate from a minimax
approximation by perhaps 20 or 30 percent, the deviation cf a
leveled Chebyshev serics is more likely to be only a few percent.
Economization of a power series [2] is a commonly employed
method of obtaining a good approximation from a power series. In
effect, the power series is converted to a Chebyshev series, then
the small amplitude high order terms are dropped. One then ob-
tains an econcmical approximation with fewer terms, but with
little additional error. The results in this subsectiocn could,
however, be used to obtain a still better approximation with the
same numter of tevms. Rather than truncating the Chebyshev se-

ries, the Chebyshev series should be leveled.

3;2. Generalized Chebyshev Series

Truncated Cheyshev series are nearly best approximations in
the uniform norm. Unfortunately, they are only nearly best poly-
nomial approximations and only in the sense of absolute error.

It is natural to wonder about generalizations that would be good
for arbitrary weight functions and non-polynomial bases. Origi-
nally this problem was motivated by the need for good starting
values for the rational Remez iteration. However, before the
rational problem is studied, we should soive the polynomiai case.

Consider first the problem of finding an approximation
An(x) to the function F(x) on [-1, +1] with weight function
W(x) = 1, such that the crror

e(x) = W(x) [F(x) - A (0]

is near minimax. We know, of course, the solution is first to



10

define some polynomials -- Chebyshev polynomials -- from the

orthogonality condition

! T (x) T_(x)

-1 Ql-xz

with the Tn(x) normalized sc that their extreme value is unity.

dx =0 , m#n,

Next we expaid F(x) in a series

F(x) = E fi Ti(x)
with
1
1 F(x) Ti(x)
fi = — —_— dx ,
hn -1 l-xz
where
1
2
T. (x)
hn .[. 1 dx
-1 l-xz

When this series is truncated at n-th order, we obtain the de-
sired approximation An'

In generalizing to arbitrary weights, it is reasonable to
suppose a simple function of the weight must be included in the

orthogonality condition. I incorrectly conjectured that the
. : : e [ 2
weight in the orthogonality condition might be W(x)/v/1-x

or perhaps /@(x) / /1-*2. The problem of finding the
appropriate orthogonal polynomials and expansion coefficients
can be posed essentially as a Gauss-Christoffel quadrature prob-
lem. Because a good Gauss-Christoffel quadrature program was
available to me, I quickly learned that these conjectures did not
lead to nearly best approximations. I did observe, however, that

the quadraturc weight containing W (x) was the worse, so I tried



11

\2 [ 2 .

Werx) / ¥Y1-x" . That choice I found to be the correct one. Now
that the correct generalization ic known, it is easy -- embarrass-
ingly easy -- to explain why.

We will be expanding F(x) in a series of some orthogonal

F(x) Z £6,(x)

and when we truncate the series at n-th order, the weighted error

polynomials

will be roughly W(x) ¢ (x). We want this error to be an equal

n+l
ripple curve, just like Tn+l(x) would be. Thus, the analogue

of the Chebyshev polynomial Ti is W ¢i. And when we substitute

this result in the orthogonality condition, we find the ¢i are
given by
1

f wz(x) 6, (x) on(x)

-1 1-x2

dx =0 , m¢# n.

See Gautschi [4] for a discussion of the derivation of orthogonal
polynomials. We choose to normalize these polynomials so that
the extremum of W(x) ¢i(x) is unity. Such a normalization al-
lows one to assess readily the accuracy of a truncated series in
these polynomials. The weighted error bound is simply the sum of
the absolute values of all the coefficients dropped from the se-
ries, and this bound is usually close to the true weighted crror.
Truncated generalized Chebyshev series often are within 20
or 30 percent of the corresponding true weighted minimax approxi-
mations. Because each approximation will usuaily have a unique
weight function, the use of a general Gauss-Christoffel quadra-
ture routine is not the best way to cbtain the orthogonal poly-
nomials and expansion coefficients. The integrals needed can be
done nfficiently by an automated Gauss-Chebyshev scheme, and the
expansion coefficients can be derived at the same time as the

recurrcnce coefficients for the orthogonal polynomials.



Generalization to non-polynomial bases is now straightfor-
ward, in principle. Instcad.of constructing the orthegonal func-
tions ¢i from the basis xl, it is necessary to orthogonalize
the desired basis functions. In practice, the integrals are not
so easily evaluated, and one must be certain that the basis
functions form a Chebyshev set. For a brief discussion »f tﬁe
applications of these approximations see Fullerton [3].

Further generalization to orthogonal-Padé approximations,

where we require

m
Pi ¢i m+n
B0 . Yo,
i=0
i=0

with a9 = 1, are now casily obtained, We first discretize at

the zeroes of ¢ (x), and solve the resulting linear equa-

+
tions for the p? n;;d q; - As with Chebyshev-Padé approxima-
tions [1], we obtain either a degencrate approximation or a good
one. If it is degenerate, we are not interested in the approxima-
tion because the next lowest order rational approximation wiil be
nearly as good as the one we are trying to derive. If the discre-
tized approximation is good, we can then use it as a starting
value for finding differential corrections to the rational coeffi-
cients in the above nonlincar equation. The discretized solution
usually is so close to the orthogonal-Padé solution, that only
one or two iterations of the linearized version of the above equa-
tion are neccssary. The orthogonal-Pade approximations always
seem to be more accurate than the corresponding discretized ap-
proximations, Although the solution for orthogonal-Padé approxi-
mations outlined here is not nearly as elegant as the solution
for Chebyshev-Padé approximations given by Clenshaw and Lord [1],

at least we have obtained a solution,



4. Conclusions and Acknowledpements

The necd for quality software dictates to some extent the
type of numerical analysis that should be done, and several exam-
ples were given in Section 2, The results there led to programs
that were not only much more useful production tools, but also
much more uscful resecarch tools., Employing computer programs to
conduct numerical experiments was shown in Section 3 to be an ef-
fective means of testing conjectures and deriving new theoretical
results. I am confident that I would never have obtained the
results in Section 3 unless I had had quality software tools
available., Approximation theory and numerical analysis can be an
_ experimental science,

Dr. D. D. Warrer suggested the solution to the input function
accuracy probiem given in Section 2.1, and I am grateful to him
for the suggestion. I am also grateful to Warner for numerous,
long conversations that certainly led to some of the other re-
sults presented in this paper.
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