has

SOFTWARE FOR MANAGING MULTICRATE PASTBUS SYSTEMS®

SLILC-PUR--20035

SLAC-PUB-2995

2% QG
083 Q40154 Ottober 1982
™)

$.R. Deiss and D.B. Gustsveon

Stanford Linear Accelerator Center
Stanford Universicty, Stanford, Califorats 94305

PORTIONS OF THIS REPORT ARE ILLEGIBLE. #t

m the best available

©opy to permit the brosdest M8 avail

ability.

The FASTBUS Systea Manager software that was
designed and juplemented on an LSI-11 systen using
PASCAL {s described. Particular attention is given
to the fila seyuctures, file 8ccess mechanisma, and
basie routing algorithas. Portability to other

hi and 1 is d 1bed.

Introdustion
FASTBUS systems can involve multiple processors

operating 1in pacallel on interconcected segments.?

FASTBUS architecture allows the efficient configura-
tion and oparatlon of such latge parsllel systewms.
However, powerful software i8 tequired to assist the
experimenter in configuring, initialising, control~
Itng, and maintaining these systems. For exampla,
Zodules that acre programmed via downloading Sust be
given the addregses of sll those other modules that
they talk to. BPut these addresses themselves change
as the systea svolves. Futrthetwore, each Segmant
Interconnect has a table of address groups for each
directton of tremsfer through it. These tables must
be initfalized properly for the system to allow any
coherent intersegment cosmunlcstion.

The PASTBUS SYSTEM MANAGER is a software system
vrittep in transportable UCSD PASCAL 11.6 for the
purpose of helping_the experiwenter manuge large,
conplex systems,'® It has a data base that
describes the overall configuration and pertinent
details gbout sach smodule. Tt focludes a data base
edivor with an English-1ike command language. It
can generate toule maps that allew all nedules to
talk to a1l others. With improvements it would be
able to inftfalize the syster"s $1°s and downloada=-
ble nodules and provide configuration management
tools fer running experizents.

Although this software has wmany °“big systea”
algorithmg, 4t was designed with small systeams in
nind .20, While {cs mest likely home vould be in a
large aainframe such a5 a VAX the FASTBUS SYSTEM
MANAGER was developed on and currently runs on an
LSI-11 with a mpdest ampunt of zemery aod dual 8"
floppy disks. The softvare would be a vary good
match for such a device a5 the SLAC FASTBUS
COXTROLLER. However, even in the very small envi=
ronzent of an L$I~11 enough code and data can be
stored to support a systea of several dozen FASTBUS
crates.

Managerent Taske
It was recognized early that there are many tasks

involved 1n monftoring and tontrolling a FASTBUS
system.

* Work supported by the Departeent of Emergy, con~
tract DE-ACDI=76SFDO515.

SYSCEN

Therte has to be a DATA BASE which describes all
the segmenta and their contemts. This dats base
could contaln a winizum of Information and A mtnfmum
of structure If one marely sought to tUTM ! * System
on, lat it run a few years. and then tuz It off.
Howevar, since gettiag the systen tutne n aad
adjusted right consumes the bulk of the exp: Jiture
of huzan effort, tt pakes sense ta iInclude in the

data bape any Iinformaticn that would assist 1n the|

turn on process and in the waintenante process

Using thia data, the routing slgorithms desc.ibed
below can generate S1 toute maps and allocate
address space in order to free the experimenter feor
other tasks. However, it is possible that the|
experimenter night desire to cospletely specify the
routes and the BROADCAST TREE and saglgn addrc s
space dy hand. Or, perhaps, there i8 only a need >
specify these things manually ipm one eritical pa:
of the system. The programs that de the sysge
should ba sophisticated enough to allow this direc
apecification. It would serve es a 8¢t of baselin
constreints from which everything else ¢ould them de
computed outomariczlly,

DEADSTART

As the nase inplies, when a FASTBUS system or
subsystem Is deadstarted every modula, SI, and seg-
mant has to be set to a kpown initial stace which s
consistent acrogs a1l components- Another way of
saying this 18 that aeveryshere thare s a bit of
uncertainty in the system, that bit Sust be speci-
fied at derdstart. Considering the number and vari~
ety of modules in » large systec 1t becomes a svb~
stantiel task Just te organize the infurmation
needed to initialize each one while maintsining some
common format that an automatic Initializer cem fol-
low.

For exasple, 1t 18 easily possible for a FASTBUS
crate to contain 25 intelligent nodules eaach of
which has to be told vhat to do and hew te do it.
This introduces a related problem of softwars devel-
opment CEoss products. If each of those 25 wodules
is 8 nfcroprocessor, it is (understateseur) 4 chal-
lange to think of a way that the softwave develop-
oent process could be un{fied arownd A coamon set of
crosa preducts. Howaver, ecven if one Joes not set
their sights that high, it 1is etill a challenge just
to {igute out a cozmon forsat for all load modules
and linkage information so that one program could
load the 25 modules with the happy result that they
can all talk to and understand each other.

VERIFICATION

In large systems during developmental stages, it
would be very helpful if the softvare could interro-
gate the system snd verify thet it satches the
description in the data base. Often twe installa-

2]

NN

(Presented ut the Nuclear Sciance Sympesiuz, Washington, D.C!, Dctober 20~22, 1982,)

5,';?/-.?,)/&// Y 4

TR BF TS PR 6 P

K3IWVII5I0

[

tion tesas wight find theaselves at Efoss purposes
unlegs each can quickly find sut how the other group
left the systen configuted. Likewise shift chamges
during development can create havoc without & way of
finding out cthe configuratien.

Even after the gystem {9 rumming Lt often helps
if one hes = wAy ko tall 1f the replacesent module
plugged in yesterday is really the latesr revision
that 4t was thought to be. This is #specislly true
1f the wodules are gcattered over large distances
that preclude a hands=on chaeck.

SYSTEM PAUSE

1f you have subzystems that require come kind of
synchronization In timwe, 1t may be necessary to
start and otop thenm in unison. Alternatively, a
mal procedure might be required which
invelvas a health hazard unless some part of the
systez is mowentarily “paused.”

RECONFIGURATION

In a very large uyu.- m -l.gl-t vant the flexi-
bility to move 1
without requiring a whole Tnew svssen. The problen
hers is the meaning eof the tern “intarchangeable.”

Tor exagyle, cau a large mewory card be plugged
in ia place of 2 failing 5081 wepery? Does any-
thing it the data bage hava to be ypdated? Do any
of the modules that talk t¢ the megory have to have
their algorithes adjusied? And so on. Agein these
things are not tha sort of prodlems One encounters
in a running expecimant, rather thay Crop up when
the axperiment i{s being installed and brought on
1ine.

ERROR RECOVERY

If & system has many Intelligent @odules, these
night be capable of sozme self-test of pf subsysteo
monitoring and testing. If one of thesa watchdog
=odules gees an ecror or & pending disaster, it

oight infors the system sansgeDan: software In
expectation of some kind of incalligenr diagnostic
action.

All extremes sre iweginsble, tanging Erec +h
raport of a falling wemory &odule detected by tao
agny pacity ercors to o Tequedt that e aystea
dynsaically Asroute 1irgelf afowndl: ¢oe patiicolar
segaent that is sufferiog from a traffic pverload.

Then there 1idialuays - thé ubval’startip mathte-
nance and runuing maintenance tasks that require
test procedures to be run Oh SYSteD components. If
nothing else, one might wish to log wrrors somewhera
for adfnstwant of ¢xperimentsl tesults even when uo
sutomatic recovery zan be perforwed.

These are somp of the najor taske one would hope

to be anticipaced in the design of an on-iine
FASTHUS management gystem.

The FASTEUS SYSTEM MANAGER

1In 1980 the coonirtment was made to develop &
prototype of this kind of scftvare gystem. The pur-
pose of the prototype would be primarily to scrve as
an ex{stents proof for scae of the routiag slgor—
ithhs required by FASTBUS. However, secondary pur=
posee included gaining experience with di{fferent
ways of patrtitfoning and atructuring the data basc
required to serve gll of the abova tacks.

PASCAL had been chosen a8 the unofficial “publi-
cation language” of the FASTBUS Software Working
Group. That plus the svatlability of DCSD PASCAL
For LSI-11"9 and familiaricy with it made it a natu-
ral cholee for a pilet prototypa. It had the added
“"lhtage of betna a transportable system requiring

1 t. Thus, it was thought chat
others wight bc a‘b.l.e to tremeport the software to
other environmenta for further prototype develop~
went.

The FASTBUS SYSTEM MANAGER, or FSM, described
hatein was written during July through October of
1960. It was gubject of discussion at the 1980 NS3
oeeting in Orlando, FL.? Based on that discussion

PASCAL IMPLEMENTION

OO e sk gEri CORRCY wi " FEN -t
AT, 31", JEn, MWL, PSP, 451 32 08) wrm
> R e Ll

R, YU, LISPNL, w7, N,
e, N, U m

(O
vl (LU

vmv lwul '-sm- mnll
"!!!Ivmv y-uun,u

Stebas
150N yhty
Sutmar

|

auan

e um Aaces

BATA past bats past eata eagt
E~j [‘“:-"-"‘] gty

segve

 —— R B e 4 (4

and other cousiderstions a few new fabtures were
added and a live demonstration wes givan at SLAC in
January of 1981.% This demonstretion was further
fine tuned and presented 3s pert of a larger FASTBU
denonsiration at the 1981 NSS in San Franecisca, CA.

Figure 1 provides an overview of tha entire ESM
an it presently exista. The primary gverlay pro-
vidas global procedures and common data structures
for al) the secondary overlays of which there are
four.

The data base EDITOR overlay providas a siaple
meang of msking chenges to the dsta base teet io TTY
compatible. It can pt & tive ds or
input can be dirscted to it frow one or more files
that weres preparsd with some other editor. Like-
wiga, 4ts output cen be gent to the tarwinal or it
can be went to 8 log file so thar the user has &
record of what has been done to the data bage.

The ROUTER overlsy takes the latest data base
fnformation and 1) mskes address space aseigumenta,
2) generstes coapacted route maps, 3) makes & broad-
cast tree, and 4) pgenerates several optional liet-
ings.

The LOADER overlay performs a olmulation of the
deadstart proceas. At the time the code wes written
no S1 herduare was svatlable to maka the actusl
device drivers nesded to do a2 real system initlali~
zation. Alsa additional work ia needed to design &
universal lond acdule format. Thia is desirable so
that one losdet overlay or progran can initialize
any kind of device using s device Indepandent repre~
sentation of the sequence of operations needed to
load or otherwise fnitialize it.

The fourth and final overlay is an optionsl
site=specific utility overlay. At SLAC this overlay
contains wtilities for uploading amd downloading
files to and from WYLBUR, for emalating 2 terminal
on WYLBUR, and for making listings on a scal) local
printer.

Data Base

Not counting l4sting filea and editer Input
files, the data base logically consists of four
major files: 1) The NETWORK file, 2) the NAME fils,
3) the ROUTE MAP file, and 4) the LINKAGE file.

The network file, NET, coatains all the systea
interconnection information and everything nseded by
the routing algorithas (Fig. 2). This file is »
randoa file of fixed 1length records of 5 wvarismt
types. The directory © ant coutains global fufor-
wmation telling which vecord describes the host sag=-
ment, which s for the brosdcast esource segment,
where the first record is in the linked list of seg~
ments, the head of & list of free recorda, and the
head of a 1ist of modules or S1°s which axist, byt
have not been plugged in. The free varisnt is juet
a blank record containing a pofiater te tha next in
that chafun. The segmenc variant incudes: optional
segment address end amount of addresp spage
required, pointer to first SI in the list of seme on
that segment, poipter to a liat of modules for the
segment, pointer to the next segoent fallgwing thie
ane. An $1 variant ln the NET file coataina: the $I
proup field size, a type of transforming or nom~
transforsing, arbitration vectors for bath sides of
the 81, segment slots for both sides, segment num~
bers for both sides, next segment numbers for both

NET FILE STRUCTURE

CTET "N b e e T

P B BN LT

o

el R
LU rar e uAY, yy wry || e
wow . niom
i 0
T W e
- LY .
e -5.f ok

sides (each side of the SI is in a 1ist of S1s for
the seguent it ip plugged iuto), pointirs to the
route asp tables v the MAP file fer the two sides
of the SI, and a polater to the next SI in the chain
of S1°a vhich a)] have the sane size of group fleld.
A module variant contains an optional address (rela~
tive to the segnent address) and address space
allocation, a segment number, a slot, » pointer to
the next module on that seguent, and a code number
tor an fnitfslization voutine.

All of the above varjancs contain & cgommon area
that holde a ssareh heuriptic. This consists of the
firat, uiddle, snd laat chavracters of the objest s
full neme and the length of the ovame. When an
objece 1s veforved to hy neme during ¢diring, it is
this template that is used to match againpr. Onee a
match 18 found the object”s full name 1s retrieved
from the NAME file te confirm the watch. This was
done so chat little paging wuld Dde required for
HAME file records which are large. Hoce will be
sald abaut paging below.

AS can be sean the NET file contains multiple
1inked 1lfsts. The routing algorf{thms sre linra=d
list oriented, and a specisl list processing subsys—
tea vas vritten to provide wunifora linked list pro—
cessing, no zatter whar the lisc. The list process—
ing funetions are 1) get the head of the list, 2)
get the next record In the lisc, 3) 1insszt a record
ia the middle of ¢ list, 4) vesove & record from a
11at, and 5) find s record fn & list. The Llist rou-
rinea all requive the llst type as a peraseter in
order to kaow wnere to look in the record for the
l1iat polntera.

The NAME file, NAM, contains for each object the
information whiech is used infrequently oF wor at all
during routing. Thies file ls referenced most heav-
ily by the EDITOR (Figure 1). As bafore, there ia a
directory variant and a free variant. The direttory
only contains pbinters ko the heads of lists of free
records end used records. The free record is blank
other then the chaining poiater. Tha rTest of the
reeords in the nase file are of one variant that is
uged for segmants, modules aed 51°s. This record
vaciant coatatne: § chaln peiater ¢o0 the next, s
pointet to the cotresponding record for it in the
NET file, & pointer to a diagnostic (unumed), a

pointer to an initializer (unused), a pointer to an
error recovery routine {unused), a 32 byte nace
string, and 4 l2-character strings for manufactur-
er’s part number, serial number, inventoty nuaber,
and requisirion nuober.

NAME FILE STRUCTURE

FILE AT OINDS, ¢ vab:

P S
e

LU

l e tay
o oz

"EOWEL SLSIL T, AW P
ARSI CYEUL T o an00n3

Figure 3

The thinking behind the three unused pointers fs
that someday the data base could be extended to
include additional files of {nitlalization, dlagnos-
tic, and error recovery procedures, The only
assunpticn made about these filea is that the Lufor
mation I{n them could be readily accegged with s 16
bit pointer. For example 1f each of those files was
organised as random with fixed length records, the
pointer cight tell where the desired record sequence
starts. Much additional space ie reserved in these
records for future additions such &5 pointers to
maintenance manuasls, user notes, and other things
not yet thought aof.

The ROUTE MAP file, MAP, contafns condensed rep~
resentations of all the route maps. In a large sys-—
tem the NET and NAM files quickly expand to many
hundred K bytes of data. If the raw route maps were
stored, they could waste a lot of space. Conslder
12 bit SI"s. One hundred of them requires 200 X
4096 X 3 bits at least. Cleaxrly compaction is nec-
e55ary.

Maps are astored as a boolean array with one boo-
lean for each segment in the system. For =sach seg-
ment the boolean value tells whether or not that
segmment”s addresses are passed through this SIT.
This way 10D S1”s now requires 200 X K bite where N
15 the nuober of segments. This §8 roughly a 120
fold space savings in a 100 segment systen, The
cost is that the system inicializer has to expand
these maps at load time veing the LINKAGE informa-
tion that tells wiere things were put in addresc
space.

Finally, the LINKAGE File !s output by the router
along with the route wmaps. This file telle the
addrees space allocatfion for each segment, and
within each segment, for the modules. Thie file 1=
written to disk in a peculiar order that directly
corresponds to the order 1in which system components
would be initialized. Tue route waps are likewise
ordered. As a result these two files can be read

efficiently at inicialization time in order to
expedite a fast load of the system even with floppy
disks.

Data Structures

At execution time several additional data struc-
tures come into play. Epace does not permit mentlon
of all of them, but a couple of them stand out as
uvnique and powerful.

In this dwplementation the compromise took the
form of a simulation of virtual memory built I{nte
the file access mechanisms for the NET file and the
NAlM file. Whencver a record Erom elther of these
files is accesned, the record nuaber 1s first passed
through a funcrion which Teturns a revised nunber -
not the record number in the file ~ but the number
of the record iIn a HEAP resident cache array of
records. In other worda the funtion has deliberate
and predictable side effects. The function scans
the cache for the record. 1f not there, 1t loaks
for a free cache slot to put it inco. 1f none, 1t
pages out the oldest record in the cache uaing a LRU
algorithm (assuzing the oldest recotd (s flagged as
having been dirtied). Then the record being refer-
enced {5 peged 1nto that free cache alot, and the
slot number 1s returned. The code making the refer-
ence has to be writter to indirectly reference file
records through the cache array using record numbers
that are converted by the cache management funtions.
The other requirement is that the referencing code
must flag the pages that It will dirty when it ref-
erences theam by using a negative record number.

The result of this approach is to make record
access expreasions slightly more cumberseme to read
while eliminating the need for the program code to
optinize {ts disk accesses with some kind of buffer-
ing. Kithout this simplification the code could
never have been written in such a short time frame.

ROUTER

The task of the router 1is to find che shortest
reversible unique route between every possible palr
of seguents. This is done so that every segment can
send messages to every other and vice versa. When
two routes are available that are of equal length,
the router chooses the omne which has the largest
minimum size SI along the path, le., the smallest
window. The reason for using the smallest window is
that when systems contain more than one size of ST,
they naturally partition themgelves into <lumps
which have to be allocated address apace in quanta
that correspond to the size of next smaller SI that
forzs the parci{tion boundary. By always choesing
the pathe that avold coarser (smaller) SI”g where
possible, one avelds address space fragoentation
later. Further algorithz work remalns te find a way
te use the clump partitioning Iinformatlon Ln the
allocation of address space.

The toute nap generator overlay uses three square
matrices sllocated from rhe HEAP. The 3 matrices
Lnelude & PATH matrix which shows at each row/column
intersection which segment to go through First on
the route connecting the segments represented by the
row and the coluon. When initialized PATH shows
vhich segments sre directly connected by an SI.
Path also shows what size the smallest SI 1is on the
route. During each iteration the router spreads out
one further level using the new segments that f{t

found after the last {teration, Cach tioe 1t
updates a NEWS oatrix that tells it what now paths
were found if any. It then checks a ruaning total
watrfix, RTM, that tells {t 1if any aagments remain
unconnected: Tha routing is successful when RTM is
all filled in. There fs a fallure if an iteration
results in no news and RTY still has blanks.

The routing algoritho serves twoe Mmote putposes.
It can optionally generate a broadcast tree afrer
the routes are generated. This 1p» done by using a
backtrack algerithm which works back from all seg-
ments toward the brordcast source segmrnt until
either it {8 reached or some other segdent already a
part of the tree is crossed.

The other purpose of the router I» to assign
aodress space to sagnente and to the sodules vithin
segments. This algoritho works for syscems In which
all S1°s are the same 8ize (all systems Lo date),
but it needs refinement to work in the general case
of systems with mony SI sizes. The algorithe uses
the same bagi¢ schemwe to assign space for seguments
and for modules. The same subroutfne {s used for
both. As the data base 1s scanned to initiglize the
data structures needed in routing, a tempovary file
is written out that has &address spaecd silocated for
the ooduies within a segoent. At the sowe time a
dynazic array is built that contalns 2 linked lists
of segmwents: a list of those fixed at sddresses by
user regquest, and a list of segments ¢froe to move
about. As soon a&s all the data has been read in the
mobile cegaents are merged in with the (ixed ones
takiag the largest zobila segments first. When this
process {s cospleate the temporary filc {3 read back
in and updated with ths segnent address space alle-

cattons, This new file is then wrfitten out as the
linkage flle. 1t ia wused later to expand route
maps. It 1is the basis of the deadstart (LOADER)
routines. 1t alsc is the acurce of the load map

«+hich 15 produced for both the user, and for use by
any cross software developwent packages that need
cexternal references resolved.

The load map tells for
address and thair high address. For wodules 1t
gives thetr logical address and thelr geographical
address. For SI1”s the load map only specifies a
geographical addreas for each side of the §I.

segments their base

Tha EDITOR

The data bagse editor allows the user to perfors
several funciions: creste segments, wuodules, and
S17s, edit thair descriptions later, delete thew
when necessaty, plug madules and S17s in, and unplug
them, specify s HOST segaent and a BROADCAST source
segoent, =zake kistlags of selecced data base iteas,
and duzp out data base conteats in a ready oade for—
zat that can be used to recreace it later 1f some-
thing goes wrong.

The editor command parser is a siople state tran-
sition systen driven by the first) letters of coz—
mand keyvorda., A list of noise words is recognized
and ignored. A list of ignorable characters is also
dropped froo the input. There {5 also a 1list of
context words which are used as seareh heurirtics.
For exauple when the user says “PRINT SEGMENT A”,
the systen seis & context variable te indicate that
thr referent is & segment. When the data base is
scanned for the informsticn to priat, anly segments
will be checked to save search time. Even then the
previously mentioned heuristic 1s used to speed up
the search further.

The LOADER

The loader is
LINKAGE files vere
order conducive (o system initializatien.
the route maps aand module refarences are stored in
exactly the order needed at 1load time. This order
cansists of & depth first algorithm starting from
the HOST.

simplified because the HAF and
previously written out i an
That 1s,

Yhen a segment 15 first sncountaered, it is reset.
Then all of ity modules are loaded using the ini-
tialization c¢ode In the NET file. Then the loader
loops through the S1°s on the segment. For each it
loads the owtgolng map snd Yooks at the far side
segment to sae Aif it has been initialized. 1If it
has not and if the reverse map contains the HOST,
the loader then recursively starte loading rthe far
side seguent. When the above test fails, the loader
uill continue to the next 5I in the list on the sep-
ment until all are finished. Then it com back up to
the segment it wes working on when It was sent on to
this one. The recursive approach requires two 16
bit wardd to be pushed down for each level of recur-
sion.

Curcent Hork

FRAL wac supplled with coples of source code and
docuneatation for assistance in applying FSM technl-
ques to the CDF FASTBLS softwara:. As & rvesult rour=
ing and address space allocation algorithos are
being revised and the structure of the data base is
being carefully examined. In this system it f{s
proposad to integrate the System Management data
base with the experimental data base in a unified
systea, perhaps using a cocmercial product.

Summar:

The FASTHUS SVYSTEM MANACER software has been
described up to its current stete. While it only
begine to tackle the Jarger tasks of system manage~
meat, Lt has demonstrated thet they fall within
reach of even medest coaputational envircnments.

Acknovledgzecents

The anthors wish Lo thank oembers of the FASTBUS
Software Working Croup for many useful suggestlions,
particnlarly, Connle Logg for her idess om Rouring.

References

1. “FASTEUS SYSTEW MANAGER SOURCE CODE”,
S. Detss, SLAC, 1/1/8i.

2. TFASTABUS SYSTEM SOFTWARE®, S. ODelss, SLAC,
/2B/BO.

3. “FASTBUS SYSTEM MANAGER DEMONSTRATION”,
S. Deiss, SLAC, 11/1/80.

4. "FASTBUS DEMONSTRATION SYSTEMS”, Paffrach
et. al., SLAC-PUB~2835, Oct. 81.

5. Comments from H. Pordes, $§. Gannon, and

D. Hansgen at FNAL, 1982.

6. “A PASTAUS Controller Module Using a MULTIRLS
MPU®, §. Deieu, NS5, 1982,

7. °UCSD Pascal User”s Monual®, SOFTECH Microsys~
tems, San Diego, CA, 1980,

B. “FASTAUS...Tentative Spacification”, U.S.
Commiteee, §/7/82.

HEM

