
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1977

Software for Numerical Computation Software for Numerical Computation

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
77-214

Rice, John R., "Software for Numerical Computation" (1977). Department of Computer Science Technical
Reports. Paper 154.
https://docs.lib.purdue.edu/cstech/154

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SOFTWARE FOR NUMERICAL COMPUTATION

John R. Rice

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #214
January 1977

SOFTWARE FOR NUMERICAL COMPUTATION

John R. Rice
Mathematical Sciences

Purdue University

CSD-TR 214

January 12, 1977

Article to appear in the book: Research Directions in
Software Technology.

SOFTWARE FOR NUMERICAL COMPUTATION

John R. Rice
Mathematical Sciences

Purdue University

INTRODUCTION AND MOTIVATING PROBLEMS.

The purpose of this article is to examine the research developments

in software for numerical computation. Research and development of numerical

methods is not intended to be discussed for two reasons. First, a reasonable

survey of the research in numerical methods would require a book. The COSERS

report [Rice et al, 1977] on Numerical Computation does such a survey in

about 100 printed pages and even so the discussion of many important fields

(never mind topics) is limited to a few paragraphs. Second, the present book

is focused on software and thus it is natural to attempt to separate software

research from numerical computation research. This, of course, is not easy

as the two are intimately intertwined.

We want to define numerical computation rather precisely so as to

distinguish it from business data processing, symbolic processing (such as

compilers) and general utilities (such as file manipulation systems or

job schedulers). We have the following definition: Numerical computation

involves real numbers with procedures at a mathematical level of trigonometry,

college algebra, linear algebra or higher. Some people use a somewhat

narrower definition which restricts the term to computation in the physical

sciences and a few people even think of numerical computation as research

and development computation (as opposed to production) in science.

There are two principal sources of the problems in numerical computation:

Mathematical models of the physical world and the optimization of models of

the organizational world. The scope and range of the sources and the associated

software is illustrated by the following list:

1. Simulation of the effects of multiple explosions.

The software is a very complex program of perhaps 20,000 Fortran

statements. It is specially tailored to this problem and may have

taken several years to implement. The program requires all the memory

and many hours of time on the largest and fastest computers.

2. Optimization of feed mixtures for a chicken farmer.

This is standard software of modest length (5OO-2OO0 statements)

even with an interface for a naive user. It might take substantial

time to execute on a small computer.

3. Analysis of the structural vibration of a vehicle.

The software is similar to that of example 1. One might also use

NASTRAN (see II.G.3) with only a few months for an implementation. More

computer time and memory would be used by this approach.

4. Simple linear regression on demographic data (e.g. age or income).

This is standard software, but classical algorithms are neither reliable

nor robust. Modern algorithms are short (200-400 statements) and execute

quickly except for exceptionally large data sets.

5. Optimization of the design parameters of a gyroscope.

A mathematical model of a complex physical system is required and

then optimization algorithms are applied. Determination of the gyroscope

performance for a single set of parameters might involve the solution of

a system of partial differential equations. Considerable human interaction

is probably used to avoid astronomical computer costs and yet achieve some

reasonable progress toward the optimum.

6. Calculation of the capacity of the wing tank of a jet liner.

This is a simple problem except for the complex geometry of the wing

tank. Once the wing tank is broken into simple pieces (probably by a person)

IB

then standard algorithms are reliable, short and efficient. The automatic

processing of the complex shape requires much more sophisticated software

of moderate size (perhaps 2000 statements), but still gives a short

calculation.

The creators and users of this software have very diverse backgrounds.

Some are ultra-sophisticated scientists while others are just naive users

of "black boxes" and canned programs. The size of the software ranges from

the short routines for Fortran functions like sine and logarithm to elaborate

systems which require hundreds of man years of programming and strain the

capacity of the largest computers. Much of this software is written by people

outside the computer science community, by people who call themselves engineers

or physicists instead of programmers. The style is a combination of engineering

art, mathematical science and hope. I have observed the following fact:

Many sophisticated scientists produce naive software just as many sophisticated

computer programmers produce naive science. Experts from each group, of course,

are reluctant to acknowledge this state of affairs. This fact must be kept

in mind when considering the totality of numerical computation.

Current folklore in Computer Science has it that numerical computation is

a small, probably negligible, portion of the total computer usage. I have made

a reasonable effort to determine the proportion of computing expenditures from

numerical computation and I can attest to the difficulty of getting reliable

data on just what computers are dong. However, I have concluded that the

folklore is wrong. For example, suppose one divides the Department of Defense

computing into four categories: numerical, non-numerical, dedicated and

non-programmable (e.g. process control) and general support (e.g. compilers

and operating systems). Then view the general support as overhead to be

2

distributed proportionally over the applications areas. My best estimate

is that numerical computation then accounts for about 75% of the Department

of Defense computing expenditures. Similarly, I believe that numerical

computation accounts for about 50% of the computing expenditures in the

United States. I will not reproduce the data upon which I base this

conclusion, but I do want to emphasize the need for more reliable information

in this area.

Finally, I want to note a feature of software for numerical computation

that is growing and of crucial importance. It provides a means for the rapid

dissemination of knowhow through the scientific community. Traditionally,

• research results are disseminated in a three stage process of technical

journal articles, research monographs and surveys and, finally, textbooks.

The scientist studies these publications in order to absorb the knowledge

which he then applies to his particular problems. Now many important kinds

of knowledge (mostly the "knowhow" or techniques variety) can be (and is being)

incorporated into software. Then research results can be used (and quickly too!)

by scientists without needing to absorb the knowledge themselves. This may

one day be the aspect of software that has the most significant impact.

II. SIGNIFICANT RESULTS AND MILESTONES

11.A. The Program Library Concept. This was an early concept

[Wilkes et al, 1951], but it is still very important. This concept has been

surprisingly difficult to bring to fruition in the same sense as a library

of books. That is to say, widely available and good quality libraries for

basic mathematical procedures did not become available until the 1970's and

even now most computer users lack access to a good library of programs for

numerical computation. This is inspite of expensive efforts by Share, IBM

(the SSP and SL-Math Libraries) and other computer manufacturers.

3

II.B Higher Level Languages: Fortran and Friends. The library concept

is based on the fact that many problems are of a somewhat standard nature

and occur in many different contexts. This is especially true of numerical

computation because scientists and engineers use the language of mathematics

in their analysis. The methods one uses seem to be independent of the

particular computer and thus expressable in some machine independent language.

Fortran, Algol and their descendants have made it possible to attempt to

develope the science, art and body of numerical computation software. These

languages are not perfect as the issues of portability discussed later show,

but their introduction was an essential milestone in computing.

3A

II.C. The Critical Evaluation of Software. Professionals in numerical

computation have always had their favorite methods for various kinds of

problems. Occasional surveys showed that there was no consensus among

the experts as to which methods were best [Krogh, 1972]. Even worse, for

many years, most people did not distinguish between a somewhat vague method

and a computer program implementation of the method. Now people realize that

the implementation (software) is as critical as the method, as there

can be (and have been) terribly poor implementations of good methods.

There are two main variables here: different implementations of the

same method and different methods for the same problem. It was not at all

easy to design frameworks in which meaningful comparisons could be made.

However, in the late 1960's such comparisons were started for ordinary

differential equation software [see, for example, Hull, 1972] and now the

framework for this particular area is well defined[Shampine, 1976]. Since

then there have been significant accomplishments in evaluating software for

numerical integration, special functions, linear algebra and polynomial

root finding. One can now state with confidence what the "state-of-the-art"

is for software in these areas and back these statements with scientific

and quantitative measures of performance.

There has been one rather sobering result from all of these critical

evaluations: the "experts" were very poor at predicting which methods would

be the best. Experts in other areas of computation would do well to take

heed of this experience.

Finally, I would note the lack of the use of "program proof methods"

for software for numerical computation. Some reasons for this are (i) it is

difficult to incorporate the uncertainties of round-off into proofs, (ii) the

software tends to be too long for current proof methods, (iii) most numerical

computation software has parts whose performance cannot be specified in terms

4

of input-output relationships. That is to say, the question is not whether

the program is right or wrong, but rather how well it performs. One can

make the analogy with a program for playing c h e s s , liven though there may

exist a right move in all situations, no one knows what it is and the

program's choices for moves must be judged on how well the program fares

in chess competition.

One can modify the idea of program proof in a useful way in some such

situations. For example, one could prove the following assertion about

a subprogram:

"This code finds a value of x so that ABS(F(x)) < EPS

or it returns a value of 1 for the argument IFAIL"

Such an assertion may be critical information for establishing the reliability

of a program, but it does not give any clue as to when the subprogram might

produce correct results (assuming that F(x) less than EPS is required for

correct results). One might attempt to find a hypothesis on F(x) so as to

ensure that the case of ABS(F(x)) < EPS holds. Such hypotheses tend to

involve mathematical properties of F(x) which cannot be verified in practice

or which restrict the applicability of the proof to a trivial or degenerate

set of input. Only verifiable hypotheses are of value in program correctness

proofs.

II. D. Problem Space Definition. The critical evaluation of software brings

one to the question: what problems (input data) is this program supposed to

process well. The concepts of software robustness, reliability and quality

are meaningless without a careful definition and description of the space

of problems to which the software is to be applied. The preceding discussion

of program proofs indicates the delicate nature of this question for numerical

software. The classical mathematical framework (e.g. the fourth derivative

is continuous, or is bounded by 7.) have proved to be of little use for most

5

software. This is because the hypothesis used are either not verifiable

or apply to an extremely restricted problem space. For some problem

areas the problem spaces being used are somewhat ad hoc, but even these

can be used successfully if one realizes the situation. The problem space

concept is most developed for numerical integration software [Lyness and

Kaganove, 1976] where the idea of performance profile was first introduced.

As an example, consider numerical integration software which is to

compute

/ bf(x)dx
a

It is a well known mathematical fact that this is a computationally un-

solvable problem. The set of functions f(x) (or space of problems) must

be restricted somehow before it is possible- to even consider reliable

software. The standard textbook approach is to restrict attention to

functions which have a certain high derivative bounded by some (unknown)

constant. This is a typical example of a non-verifiable hypothesis. The

current direction is define the problem space that software for this problem

should accept reliably a function which, in intuitive terms,

has only a few oscillations of a gross nature

has only a few singularities

the singularities are like Jx or or or —

has a limited amount of high frequency, regular oscillation

The crux is to make these intuitive concepts precise, then one can quanti-

tatively parameterize the problem space (by features like number of oscil-

lations, number of singularities, strength of singularities, frequency of

regular oscillation, etc.) and measure the performance of software as a

function of these parameters. Robust software would fail gracefully as the

boundaries of the problem space are approached.

5A

II. E. The Importance of Human Engineering. Everyone agrees that the human

engineering of software is important. It's just that so few people do

anything about it. There have been instances of numerical software that

was widely used because they had good human engineering even though the results

computed were unreliable. These and other experiences have convinced many

(but far from most) developers of numerical software that the human engineering

(user convenience) aspects are critical. This is, in itself, a milestone;

unfortunately, there have been few advances in how to do human engineering.

It still seems to take a lot of hard, patient work.

II. F. Portability. While everyone recognizes the potential savings from

distributing good software, it has been hard to achieve even when good,

usable software is written. The dependency of numerical computation software

on machine word length as well as the idiosyncracies of compilers and operating

systems pose formidable barriers to the dissemination of quality software.

It has been shown [Parlett, 1975] that portability and top efficiency cannot

be achieved simultaneously in a high level language like Fortran because of

compiler variations. A 100% loss in efficiency may be an acceptable price

to pay for portability in some instances, but there are even more severe

problems with error handling, precision changes and arithmetic unit behavior.

These difficulties have been isolated and methods found to overcome them in

an automated system. The solutions involve the use of subsets of standard

Fortran like PFORT [Ryder, 1974] and systems which tailor programs for a

6

particular target environment (machine, operating system and compiler)

[Aird, Battiste and Gregory, 1977], [Ford and Sayers, 1976]. It is now

possible to have a collection of 500 programs and to automatically produce

versions of them that are reliable and efficient for a wide variety of

environments.

II.G. Examples of Significant Software for Numerical Computation. We do not

try to give a "top 10" of the most important or best software. Rather each

example illustrates a significant class of numerical software or a step in its

developments.

1. Kuki's functions for IBM Fortran. [Kuki, 1967] This was the first really

good software for the elementary functions of Fortran which was adopted by

a manufacturer. It was common in the 1960's for such software to be grossly

inaccurate for several years after a new computer was introduced. Much of

this software is still unreliable, inefficient and/or inaccurate even though

it is "well known" how to do it well.

2. Ordinary Differential Equations Programs. The critical evaluation in

the late 1960's of programs for initial value problems in ordinary differential

equations produced several codes which were truly superior to most of their

contemporaries [Shampine, 1976]. These codes have been steadily improved

since then and are now an order of magnitude better than the code that even

a knowledgeable person can write with a reasonable effort. This software

illustrates the tight interplay between software and methods. This improve-

ment came both from new methods and techniques and from better implementation

to achieve reliability and robustness.

3. NASTRAN, a structural engineering package. This is an example of the

large specialized application package which we can expect to proliferate

in the future. This system is large (about 200,000 Fortran cards); it is

7

complex (1200 page primer); it uses lots of memory (it can handle matrices

where one row will not fit in core); it uses lots of time (runs of 5 or 10

hours on big machines are not unheard of) and it is widely used on a

variety of computers. Mathematically speaking, it simply solves the

biharmonic equation; its size comes from the fact that it does this on a

domain which is a supertanker, an automobile or a jet fighter. Thus the

mathematical difficulties are only one of several challenges for this soft-

ware .

4. EISPACK - a systematized collection of programs for eigenvalue problems.

[Smith et al, 1976]. This was the first project of the NATS (National Activity

to Test Software) project. It started with some Algol programs of J. H.

Wilkinson and produced a set of Fortran programs that were exhaustively tested

and extensively documented. The result is reliable, efficient and robust

software that runs on a variety of machines. This software is discussed in

more detail in the next section.

5. SPSS - Statistical Package for the Social Sciences. This is one of

several widely used statistical computing systems. It is designed to be

used by non-programmers, even non-statisticians and provides a wide variety

of statistical procedures and associated data handling facilities. The

statistical computations in these packages are now implemented with quality

software. Thus the naive user gets the right numbers, even if he might not

know quite what they mean.

6. PDEONE - a program for partial differential equations. [Sincovec and Madsen,

1975] This is a short program (less than 100 lines of Fortran) that provides

a surprisingly versatile tool for solving time dependent partial differential

equations. Its approach is to build directly on the quality ordinary differen-

tial equations software (see 2. above) via the method of lines. While good

8

programs have been incorporated into libraries or large software packages,

this is one of the first instances of a program that explicitly builds on

/
existing, independently produced software.

7. Jenkins-Traub Polynomial Root Finder. [Jenkins and Traub, 1975] ,

[Jenkins, 1975] Computing the roots of polynomials is one of the oldest

problems in numerical computation and literally dozens of methods have been

proposed. A few of these methods form the basis for quality software, but

still most software for this problem available in the 1960's was unreliable

or inefficient or both. This particular algorithm incorporates a new method

(really a synthesis of older methods) into software where care has been

taken about those factors which determi ne quality. This program has made

literally hundreds of programs obsolete.

8. Good Numerical Libraries. Two organizations have produced large, portable,

good quality and inexpensive libraries. They are IMSL (Inter. Mathematical

and Statistical Libraries, Houston, Texas) and NAG(Numerical Algorithms Group,

Oxford, England). Both organizations are discussed in more detail in the

next section.

9. Software for Roundoff Analysis [Miller, 1975] This software provides

automated support to locate numerical instabilities in various numerical

processes. When these instabilities are triggered (usually by roundoff),

they cause unreliable results. Thus it is essential to locate them and,

unfortunately, formal analytical methods are very tedious and often impossible

to carry out. Thus a software tool to help discover them is very valuable.

II.G. Numerical Computation Research Achievements. The emphasis in this paper

is not on numerical methods, but they are intimately associated with software.

A panel [Rice et al, 1977] has chosen the most significant accomplishments in

numerical computation research and it seems appropriate to list their choices

9

here without elaboration.

1. Simplex Method in Linear Programming

2. Analysis of Iterative Methods for Partial Differential Equations

3. Fast Fourier Transform

4. Splines and Piecewise Polynomial Methods for Curves and Surfaces

5. Finite Element Method for Partial Differential Equations

6. Stability Analysis for Time Dependent Partial Differential Equations

7. Backward Error Analysis

8. QR-Algorithm for Eigenvalue Problems

9. Variable Metric and Quasi-Newton Methods in Optimization

10. Adaptive Numerical Integration

11. Techniques and Software for Ordinary Differential Equations

12. Sparse Matrix Techniques

Note that only one of these involves software directly.

III. FOUR NUMERICAL SOFTWARE PROJECTS.

In this section we discuss four long term, substantial projects to

develop numerical software. They are, in alphabetical order, the IMSL

library of International Mathematical and Statistical Libraries, Inc., the

NAG library of the Numerical Algorithms Group, NATS (National Activity to

Test Software) and the PORT library of the Bell Telephone Laboratories.

For each of these we describe the objectives, make some comments on the

history and size of the organization and describe the current status of the

software. Further, we discuss the approaches used to achieve portability and

quality and, possibly, roughly assess the costs of the software.

III.A The IMSL Library. IMSL was organized in 1970 to produce a high quality

library of mathematical and statistical subroutines. The aim was to have a

low cost and resultant high volume in order to achieve a commercial success.

10

IMSL has a few experienced senior people supported by some programmers and

other staff for a total size of 20-25 people. They ;«I so iiave an advisory

board of 12-15 experts who give them both general and specific advice.

The initial IMSL library had about 200 subroutines and was available

in IBM, CDC and UNIVAC versions. The library now has over 400 subroutines

and is available for seven computers: Burroughs, CDC, DEC, Honeywell, IBM,

UNIVAC and Xerox. The library is leased at a cost of about $100/month and

is updated every 12-18 months. The library subscription includes consulting

service for any problems that may arise. Note that the annual cost of this

rather complete library is substantially less than the cost of developing

one typical program for such a library.

IMSL uses a variety of sources for programs (including writing their

own from scratch) and all programs are rewritten with a uniform style.

Quality control is exercised by (a) choosing good sources (the advisors assi

in this regard) (b) using knowledgeable programmers with good supervision

(some of the senior IMSL people work regularly on the library programs)

(c) testing (reasonably exhaustive for new programs, check point testing for

maintenance or new machine versions) and (d) continual upgrading. There is,

of course, no way to produce 200 programs with a few people in a year or two

without some inefficiencies, poor design, etc. Even so, the IMSL library

was initially a substantial improvement over libraries available from manu-

facturers or those existing in a typical good computing installation. The

current library is both substantially larger and better than the initial one

and has about 480 installations in over 20 countries.

IMSL originally maintained separate, but closely related, versions for

each program in the different machine versions of the library. They are now

moving to a "Fortran converter" system where a master deck contains all the

information needed for each machine version [Aird et al, 1977].

Much of the standard information is not explicitly in the deck. A converter

program then automatically produces the program for a particular target

machine. The master deck is itself a Fortran program that runs on one of

the machines.

IMSL spent about $375,000 to develop their first library and accumu-

lated a total deficit of about $1 million before reaching profitability in

1976. They estimate that it costs about $15 per Fortran statement to develop,

test and document a new library routine. It costs them $2-$3 per Fortran

statement to convert (by hand) a program from one machine to another. The

Fortran converter is expected to increase slightly the cost of preparing

the first (master) version of a new library routine and substantially reduce

the cost of other versions.

III.2 The NAG Library. The NAG (Numerical Algorithms Group, formerly

Nottingham Algorithms Group) project was initiated in 1970 by a group of

English universities to produce a high quality numerical algorithms library

for general university use on the ICL 1906A. The library was to have

equivalent Fortran and Algol 60 versions. The NAG project is now run from a

central office at Oxford University with associated individuals in five other

universities comprising a full-time staff of 22. The project is a collaborative

one between the English universities and government research laboratories

(notably NPL and Harwell) and involves 120 people in part-time and voluntary

capacities. The original aim has been broadened and emphasis given to

creating a transportable numerical algorithms library. NAG is now a special

kind of non-profit corporation with the goal of becoming financially self-

supporting by renting the library to users in industry or outside England.

The late 1971 NAG library had just under 100 subroutines (in each of

Fortran and Algol 60) and the current version (Mark 5) has over 300 subroutines.

12

Implementation of un Algol 68 version of the library is underway. Machine

implementations include Burroughs, CDC 6000/7600, IBM 360/370, ICL 1900/1906/

4100/System 4/KDF9, Honeywell, Siemens, Univac, Telefunken, Prime, Varian

and DEC. All English universities now support the NAG library involving

about 25,000 users and just prior to the January 1977 announcement of world

wide availability, there were 40 installations on four continents using a

preliminary library service.

Programs are obtained from a contributor (usually an expert, from one

of the cooperating universities or research establishments) who chooses

the method and then writes, tests and documents the program, the program

is then given to a validator who is also an expert in the relevant area.

He is to critically examine the merit of the algorithm and test the

usuability of the program and its documentation. Once a program is validated

for general merit, it is then validated by the NAG central office as regards

formatting, language standards, etc. Various software aids are used for this

second stage of validation. See [Ford and Sayers, 1976].

NAG uses a master library file system which contains all versions of

each program along with its complete history. Each target machine for the

NAG library has a coordinator who is responsible for implementing contributed

programs on their particular machine. This implementation process could be

non-trivial, especially for Algol 60 programs. This problem has been elimi-

nated in the latest release by new choices of language subsets (of Fortran,

Algol 60 and Algol 68) and machine parameterization. New machine implementa-

tions are now essentially automatic. When an implementation is accepted,

the programs are returned to the NAG central office for inclusion in the

master library. There are stringent test programs for each library routine

to assure equivalent performance of the NAG library versions. [See Prentice,

1974], The history information and test programs in the master file have

been found useful in developing a more portable library [Hague and Ford,

1976].

The manpower used in the major aspects of the NAG project from its

inception until 31st May 1976 are shown in Table 1.

TABLE 1: MANPOWER USED IN THE NAG PROJECT (in man - years)

Time Period

Aspect

1/6/70 to

31/5/73

1/6/73 to

31/5/74

1/6/74 to

31/5/75

1/6/75 to

31/5/76

Totals

Library Contribution 23 7.5 16 13.5 60

Library Implementation 7 15 10 8 40

Central Office 4 9 11 17 41

Algol 68 - - 4 7 11

Total 34 31.5 41 45.5 152

The cost of the central office during this period was £238,000 (about

$500,000). The estimated full economic cost of the project including

realistic overheads and commercial rates for computing time was <£1,025,000

(about $2,000,000). Dividing the costs of the central office between library

contents, implementation and adminis tration, NAG estimates that it cost

£3.5 (about $6-7) per Fortran statement to develop, test and document a

library routine during the first four releases of the NAG library and £ 4

per statement for the Mark 5 release. Implementation of the library for a

new machine range during the first four releases cost approximately £ 0.50

to £0.60 ($0.85 - $1) per statement. Experience to date with the Mark 5

library suggests that it will cost approximately 10 cents per statement for

a new implementation. When comparing the above figures with those given

elsewhere in the paper it must be born in mind that all costs in the United

Kingdom are significantly lower than the comparable ones in the United States.

14

III.3 The NATS Activity. The NATS (National Activity to Test Software)

activity was initiated in 1970 with the objective of taking the [Wilkinson,

Reinsh, 1971] Algol procedures for eigensystem calculations and preparing

software for widespread use in the Fortran computing community. This

involved a translation into Fortran plus various steps to assure the utmost

in reliability, robustness and efficiency. The activity was supported by

the National Science Foundation and the Atomic Energy Commission with coor-

dination by Argonne and other principal investigators at universities. The

result of this first objective was EISPACK [Smith et al, 1976] and the

activity later enlarged to take on other projects using the same organiza-

tional structure and some of the same people. The NATS projects are designed

to produce extremely high quality software (systematized collections) in a

particular problem area.

EISPACK has had its second release and is currently in use at over 450

installations (it is available from the Argonne Code Center at the Argonne

National Laboratories with the payment of a nominal handling charge). Machine

versions include Burroughs 6700; CDC 6000/7000, DEC PDP-10, Honeywell 6070,

IBM 360/370 and UNIVAC 1110. FUNPACK is a collection of highly machine

dependent, special function subroutines [Cody, 1975]. Thirty-six routines

for exponential integrals, complete elliptic integrals, Dawson's integral

and Bessel functions are available for IBM, CDC and UNIVAC computers. A

third project, LINPACK, is now underway to produce similar programs for

solving linear equations and related problems. Plans have been made for

MINPACK (non-linear optimization) and other projects are in the preliminary

discussion stage.

High quality is achieved in the NATS projects by having leading experts

produce the code and then exhaustively testing and validating the results.

For example, the EISPACK programs were certified only after extensive use

at 15 different computing centers (test sites). This was in addition to

elaborate tests for validation by the NATS principals and the earlier

efforts of Wilkinson and Reinsch to assure the correctness of their Algol

procedures. Similar steps were taken with the FUNPACK programs and are

planned for LINPACK and MINPACK.

The NATS organization has produced a variety of software to support

the creation, validation and dissemination of the numerical software. They

distribute programs tailored for a particular machine. Initially, these

were hand tailored, but now NATS uses a single source program approach.

Their approach is to have a "generalizer" and a "selector" which translate

between,specific Fortran dialects and a somewhat higher level, more abstract

language.

The total cost of the EISPACK project is estimated to be about $900,000

for about 12,000 lines of Fortran code (not counting the 6 machine versions).

This is equivalent to about $40-50 per original Fortran statement if one

assumes a new machine version costs about 15% of the original program cost.

The FUNPACK collection is somewhat smaller and cost less per line of code

as well as in total. Costs for EISPACK were probably unusually high for

several reasons: (a) The testing, validation and documentation were unusually

elaborate, (b) There were substantial "capital investments" in auxiliary

software to support the creation, validation and dissemination of EISPACK,

(c) There were non-trivial costs for travel and conferences because of the

dispersion of the investigators and test sites.

III.D The PORT Library. In 1968 Bell Laboratories initiated a project in

numerical mathematics software [Traub, 1971]. The objective then was to

produce a selected set of high quality portable programs. As Traub para-

phrased Santayana: "The man who doesn't write portable software is condemned

to rewrite it". This software project produced a number of quality

programs over the years and in 1974 a complete library effort was initiated

based on the experience gained from the earlier work. [See Fox, Hall and

Schryer, 1976].

The PORT library is now in the early phase of development. It has

enough programs to be called a library, but it is heavy on utility routines.

A unique feature is the inclusion of dynamic storage allocation and auto-

matic error handling. It is well short of the 400 or so programs that seem

to be required for a reasonably complete library of mathematical and statis-

tical programs. A second, larger edition is due in 1977. The library is

implemented on the IBM 360/370, UNIVAC 1100, Honeywell 6000,Data General Nova

and PDP-11 computers. It is in current use throughout the Bell Telephone

research laboratories and is available to universities for a service charge.

Others may obtain the library for a one-time license fee.

Quality control in the original Bell Labs project was achieved through

a contributor-referee system similar to the contributor-validator, method

independently adopted later by NAG. The early work involved some of the

first efforts to systematically compare and evaluate existing software. This

approach has been continued with the PORT library.

The PORT approach to portability is to use exactly the same Fortran

code for all machines. The library is written in a portable subset of Fortran

called PFORT, [Ryder, 1974] , which is known to operate in a uniform manner

on all major machines and is thought to do so on all reasonably designed

systems. The only machine dependent routines are some basic utilities that

supply machine constants for other programs. Dynamic storage allocation and

automatic error-handling are even implemented in portable routines. The

other projects have also found it beneficial to restrict the programs to

language subsets.

16A

Costs for the PORT library are not known and it is no doubt impossible

to extract the exact amounts from the long history of this project. In

the early stages Bell found that the testing of existing software mutated

into the writing of new software and that an average of six man months was

required for each program contributed. This did not include the referee's

effort or any central administration of the project.

IV CURRENT RESEARCH DIRECTIONS

A considerable portion of the research progress in software for numerical

computation has taken place in conjunction with some specific problem or method

and this situation will probably continue for some time. We divide the current

research activities into four broad categories: Software Development (for

particular applications), Critical Evaluation of Software, System and Machine

Effects, and Software Dissemination.

IV.A Software Development. Most of the research effort in numerical computation

is in the discovery, analysis, development and evaluation of methods. This

effort inevitably requires that the method be implemented and thus much of

the software for numerical computation comes out of the general research effort.

There are, of course, some specific projects to develop software such as

described in the previous section. Many workers in this area are not well

. versed in software methodology and much otherwise good work becomes embedded

in poor software. On the other hand, some of the best software people are

,F in this area and one can continue to expect some primarily software ideas

and results to come out of the larger activity in numerical computation research.

IV.B Critical Evaluation of Software. This activity is evolving toward

determining general principles and methodologies for selecting good software

[Rice, 1976]. Even though a general framework and methodology is essential

to guide one in the evaluation of software in a particular area, most of the

17

difficulty is specific to a particular problem area. Thus the bulk of the

activity is problem oriented. Problem areas where considerable progress has •!

been made are ordinary differential equations, numerical integration, polynomial

root finding and some parts of linear algebra. Problem areas where a signi-

ficant activity has started are statistical computations, some more parts

of linear algebra, optimization and some -kinds of partial differential equations.

The two most difficult aspects of this activity are determining the proper

problem space (allowable input to the software) and the criteria of performance.

The more obvious choices here tend to have the following undesirable conse-

quences: the software is evaluated for problems of little or no interest, all

the software is unreliable because the problem space contains large numbers

of impossible problems, the performance criteria are so narrow that ridiculous

algorithms turn out to be "best" (for example, there is a trade-off between

time and storage), the performance measures are so general that they have no

intuitive or direct significance. Last, but by no means least, reasonable

sets of problem space, software collections and performance criteria can lead

to an impossibly large effort to actually carry out the evaluation;

Note that we emphasize performance evaluation and not program correctness.

In performance evaluation one assumes that the author has made his best effort

to assure that his program is correct - and is otherwise of high quality with

respect to style, documentation, etc. Thus steps to assure the quality of

individual programs are somewhat independent of performance evaluation efforts.

Needless to say, poor quality programs have little chance of showing up well

in a scientific critical evaluation. There are instances of software being

eliminated from consideration without evaluation because the style, coding,

etc. is inadequate.

IV.C System and Machine Effects. This activity breaks down into five

somewhat separate pieces- The first is the computer's arithmetic unit and

what to do about it. The roundoff problem is, of course, inherent in

numerical computation, but that is not the main focus here. Rather the

focus is on CPU's (and systems) that have erratic round-off behavior,

inadequate facilities to prevent over/under flow problems, inadequate double

precision hardware, etc. Top quality software demands that these idiosyncracies

be identified and circumvented in some way. The result is sometimes the

antithesis of good programming "style". Strange constructions are sometimes

required to preserve accuracy and efficiency; these constructions must be

clearly isolated and documented.

The design of computer arithmetic units has, on the average, gone steadily

down hill over the past 15 years. It is now known how to design them so as

to reduce the above difficulties to an absolute minimum. These designs cost

about the same as current ones, but they are very rarely implemented.

Closely related to hardware difficulties are difficulties in the compiler

and operating system software. Optimizing compilers can ruin the efficiency

and/or accuracy of a computation. Different paging algorithms can completely

change the performance of some programs. One goal in higher level languages

(like Algol and Fortran) is to insulate the programmer from these considerations.

Unfortunately, such questions cannot be ignored in some areas of numerical

computation, especially those where the bulk of the computation occurs in a

few statements.

The third category of these effects is memory hierarchies. Some numerical

computations require a huge amount of storage and techniques to exploit the

available memory configuration are under steady investigation. There are

substantial trade-offs between memory use and computation time. Thus a sparse

array can be placed in much smaller memory space at the expense of much more

computation to retrieve an array element. Considerations along these lines

sometimes lead to completely new methods as -well as reorganizations of old

ones.

The fourth category is the proliferation of small machines such as

hand calculators and mini/micro-computers. These machines are so numerous

that it is not possible to do a careful job on the numerical software (which

may be permanently implemented as micro-code). The manufacturers of such

machines are frequently unaware of quality software, principles for numerical

computation. The result has been numerous instances of inadequate algorithms -

both in the hardware and in manufacturer supplied libraries and systems

(e.g. the Fortran built-in functions).

The final category is novel architecture such as pipeline processors,

parallel processors and associative memories. These architectures are primarily

motivated by numerical computation problems and naturally a great deal of

research has gone into techniques to exploit them. These studies involve both

new methods and new software approaches. It has been more difficult than anti-

cipated to exploit these devices, but the ideas behind them have a natural

suitability for many important applications.

IV.D Software Dissemination. Perhaps more than other areas in computing,

numerical computation workers are keenly aware that their problems should be

independent of the computers used. Nevertheless there has been a tremendous

duplication of effort even for the most basic problems. The establishment

of large, good and portable libraries took more time and effort than anyone

would have suspected. Even so , there is a real human engineering problem

with library subroutines. The instructions for use are usually puzzling at

first and many people end up spending a week writing their own routine instead

of spending a half-day learning how to use the library routine. Furthermore,

the library routine is likely to be better than one written by a typical

programmer, even though he can tailor it to his particular specifications.

The key question is: How do you make it irresistible for the typical user

to use existing good software rather than write his own, perhaps inferior,

software?

V. PROJECTIONS AND NEEDS FOR THE FUTURE

We all know that many things do not occur even though they should.

I will avoid the task of trying to distinguish between what should be done

and what probably will be done by taking the optimistic position that those

things needed will actually arrive. Some of the projections indicated require

more than just advances in software, some of them also require new methods

in numerical computation, others require the application of methods now known

but not yet put into practice.

V.A Software Development Tools and Techniques. Numerical computation software

benefits from the use of better tools just as much as other software. These

include things like better languages and compilers, programming standards

checkers, program manipulation software, debugging and verification software,

structured and modularized programming, etc. A particularly useful tool for

numerical software is one that gives a detailed breakdown of the timing of

a program. Some more specialized tools should be useful also, such as the

software for roundoff analysis mentioned earlier. Numerical computation occurs

at all "levels" between very machine dependent and very high level. One

tool of real utility is a language and system that is at a significantly

higher mathematical level than current languages (this tool is discussed

next as a separate topic).

V.B A Mathematical System. Fortran, Algol and their descendants are all at

the same mathematical level: algebra and trigonometry. A large part of the

numerical software should operate at a significantly higher mathematical level.

21

The mathematical language should have arrays, functions, formulas and'"

equations as honest data types and with some subtypes. The operations of i

integration, differentiation, infinite, summation should be part of the

language. There should be both numerical and symbolic facilities in the

language. Such a language is very susceptible to becomming so complex'and

large that it cannot be implemented or used. It is true that it reqqijfes

substantially more resources than a typical Fortran or PL/1 system* However,

a careful design (i.e. reigning in one's greed) can be implemented .with

resources that are reasonable with today's computers. See [Rice, 197.3"] u

for an analysis of why efforts in this direction failed in the 1960's.

V.C Problem and Discipline Oriented Systems (and Hardware). We have already

seen the start of large systems tailored for a particular class of users or

problems. NASTRAN is an example of a structural engineering system and such

systems will proliferate in the future. The vehicles of their implementation

will vary; some will use specialized hardware, some will use dedicated mini-

computers and others will be part of a large computer system. The driviTng

motivation for these systems is human engineering; by restricting their'; Scope

of use, they can communicate with users much better. Of course, software will

be only one facit of the task of developing these systems; new methods

substantial financing, professional support and careful attention to human

engineering are all required for a really successful system. .'V

V.D Software to Automate Model Construction. Recall that the source of

numerical computation is physical and organizational models. As these

models become more complex, the task of constructing them becomes a large,

even dominant, part of the effort in problem solving. Some of the problem

oriented systems can be viewed as highly parameterized models of certain '

phenomena. Little software currently exists for model construction and thus

22

its nature is not yet clear. However, it is clear that this is one of the

key problems to be faced. One might view it as part of the human engineering,

but it goes deeper than that. After all, we might view the elimination of

arithmetic by computers as "only" human engineering, but we know that this

actually changes the nature of problem solving.

V.E Software Parts Technology. The problem and discipline oriented systems

mentioned above are in fact another approach to disseminating software: one

packages good programs in a reasonable language system and users find it

irresistible. Whether or not users of such systems are still programming is

open to discussion, but the real objective of getting them to use other people's

programs has been met. Actually, the significance of these systems goes much

deeper than that; they are knowledge transfer mechan isms that will eventually

entirely change the way the scientific world operates (see Rice [1976a]).

Even though many will be spared the trouble and expense of programming

by the^e systems, there will still be a large amount of computing outside the

scope o£ specialized systems. This programming is now done on a hand crafted,

tailor tfiade basis. Industry already knows that the solution to the high costs

of a hand;crafted technology is to introduce standardized, interchangeable

parts. This.seems to be the best hope for eventually controlling (even reducing)

the highcpst of program development. A software parts technology will not

arise overnight, but it is time to give serious consideration to how it will

work and how it can be facilitated.

VI. ACKNOWLEDGEMENTS

I thank E. L. Battiste, W. S. Brown, S. D. Conte, W. R. Cowell,

C. W. de Boor, B. Ford, L. D. Fosdick, A. Ralston and J. F. Traub for

useful comments and suggestions on an earlier version of this article.

23

VII. REFERENCES

T. J. Aird, E. L. Battiste and W. C. Gregory [1977], Portability of
Mathematical Software Coded in Fortran, ACM Trans. Math. Software,
3, to appear.

W. J. Cody [1975], The FUNPACK Package of Special Function Subroutines,
ACM Trans. Math. Software, 1, pp. 13-25.

F. Ford and D. K. Sayers [1976], Developing a Single Numerical Algorithms
Library for Different Machine Ranges, ACM Trans. Math. Software, 2
pp. 115-131.

P. A. Fox, A. D. Hall and N. Lv Schryer [1976], The PORT Mathematical
Subroutine Library, Bell Laboratories.

S. J. Hague, and B. Ford [1975], Portability-Prediction and Correction,
Software Practice and Experiences, 6̂ , pp. 61-64.

T. E. Hull, W. H. Enright, B. M. Fellen and A. E. Sedgwick [1972],
Comparing Numerical Methods for Ordinary Differential Equations,
SIAM J. Numer. Anal., 9, pp. 603-637.

M. A. Jenkins [1975], Algorithm 493 - Zeros of a Real Polynomial, ACM
Trans. Math. Software, 1, pp. 178-189.

M. A. Jenkins and J. F. Traub [1975], Principles for Testing Polynomial
Zerofinding Programs, ACM Trans. Math. Software, 1, pp. 26-34.

F. Krogh [1972], Opinions on Matters Connected with the.-'Evaluation of

Programs and Methods for Integrating Ordinary Differential Equations,
SIGNUM Newsletter, 7, pp. 27-48.

H. Kuki [1971], Mathematical Junction Subprograms for "Basic System Libraries
Objectives, Constraints and Trade-Off, in Mathematical Software
(J. R. Rice, ed.), Academic Press, New York, pp. 187-199.

J. N. Lyness and J. J. Kaganove [1976], Comments on the;Nature of
Automatic Quadrature Routines, ACM Trans. Math. Software, 2, pp. 65-81.

W. Miller [1975], Software for Roundoff Analysis, ACM Trans. Math. Software,
1, pp. 108-128.

B. N. Parlett and Y. Wang [1975], The Influence of the Compiler on the
Cost of Mathematical Software, ACM Trans. Matfi. Software, 1, pp. 35-46.

J. A. Prentice [1974], The Development and Maintenance of Multi-Machine
Software in the NAG Project, in Software for Numerical Mathematics
(D.J. Evans, ed.), Academic Press, London, pp. 383-392.

J. R. Rice [1971], Mathematical Software, Academic Press, New York.

24

REFERENCES CONTINUED

J. R. Rice [1973], NAPSS-1ike Systems: Problems and Prospects, Proc.
Natl. Comp. Conf., pp. 43-47.

J. "-R. Rice [1976] , The Algorithm Selection Problem, in Advances in
Computers, Vol. 15, (Yovits and Rubinoff, eds.) Academic Press,
New York, pp. 65-118.

J. R. Rice [1976a], Statistical Computing: the Vanguard of the Revolution
in Education, Proc. Computer Science and Statistics - Ninth
Symposium on the Interface', H'arvard University, pp. 1-3'.

J. R. Rice, C. W. Gear, J. M. Ortega, B. N. Parlett, M. Schultz,
L. F. Shampine and P. Wolfe [1977], Numerical Computation, Panel
Report for the COSERS project.

J. R. Rice [1977a], Mathematical Software - Madison, 1977, Academic
Press, New York.

B. G. Ryder [1974], The PFORT verifier, Software Practice and Experience,
4, pp. 359-377.

L. F. Shampine, H. A. Watts and S. M. Davenport [1976], Solving Nonstiff
Ordinary Differential Equations - The State of the Art, SIAM Review,
18, pp. 376-411.

R. F. Sincovec and N. K. Madsen [1975], Algorithm 494 - PDEONE, Solution
.. of Systems of Partial Differential Equations, ACM Trans. Math.

. * Software, 1, pp. 261-263.

B. T. Smith, J. M. Boyle and W. J. Cody [1974], The NATS Approach to
Quality Software, in Software for Numerical Mathematics (D.J. Evans,
ed.), Academic Press, London;, pp. 393-405.

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C.
Klema and C. B. Moler [1976], Matrix Eigensystem Routines - EISPACK
Guide,.2nd Edition, Springer Verlag, New York.

J. F.. Traub [1971], High Quality, Portable Numerical Mathematics
Software, in Mathematical Software (J. R. Rice, ed.) Academic Press,
New York, pp. 131-139.

M. V..-Wilkes, D.' J. Wheeler and S. Gill [1951], The Preparation of
~ "Programs for an Electronic Digital Computer, Addison Wesley,

Reading, Mass.

J.-H. "Wilkinson and C. Reinsch [1971], Handbook for Automatic Computation,
Vol. II, Linear Algebra, Part 2, Springer-Verlag, Berlin.

25

	Software for Numerical Computation
	Report Number:
	

	tmp.1307986960.pdf.Zti0V

