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SOFTWARE FOR NUMERICAL COMPUTATION 

John R. Rice 
Mathematical Sciences 

Purdue University 

INTRODUCTION AND MOTIVATING PROBLEMS. 

The purpose of this article is to examine the research developments 

in software for numerical computation. Research and development of numerical 

methods is not intended to be discussed for two reasons. First, a reasonable 

survey of the research in numerical methods would require a book. The COSERS 

report [Rice et al, 1977] on Numerical Computation does such a survey in 

about 100 printed pages and even so the discussion of many important fields 

(never mind topics) is limited to a few paragraphs. Second, the present book 

is focused on software and thus it is natural to attempt to separate software 

research from numerical computation research. This, of course, is not easy 

as the two are intimately intertwined. 

We want to define numerical computation rather precisely so as to 

distinguish it from business data processing, symbolic processing (such as 

compilers) and general utilities (such as file manipulation systems or 

job schedulers). We have the following definition: Numerical computation 

involves real numbers with procedures at a mathematical level of trigonometry, 

college algebra, linear algebra or higher. Some people use a somewhat 

narrower definition which restricts the term to computation in the physical 

sciences and a few people even think of numerical computation as research 

and development computation (as opposed to production) in science. 

There are two principal sources of the problems in numerical computation: 

Mathematical models of the physical world and the optimization of models of 

the organizational world. The scope and range of the sources and the associated 

software is illustrated by the following list: 



1. Simulation of the effects of multiple explosions. 

The software is a very complex program of perhaps 20,000 Fortran 

statements. It is specially tailored to this problem and may have 

taken several years to implement. The program requires all the memory 

and many hours of time on the largest and fastest computers. 

2. Optimization of feed mixtures for a chicken farmer. 

This is standard software of modest length (5OO-2OO0 statements) 

even with an interface for a naive user. It might take substantial 

time to execute on a small computer. 

3. Analysis of the structural vibration of a vehicle. 

The software is similar to that of example 1. One might also use 

NASTRAN (see II.G.3) with only a few months for an implementation. More 

computer time and memory would be used by this approach. 

4. Simple linear regression on demographic data (e.g. age or income). 

This is standard software, but classical algorithms are neither reliable 

nor robust. Modern algorithms are short (200-400 statements) and execute 

quickly except for exceptionally large data sets. 

5. Optimization of the design parameters of a gyroscope. 

A mathematical model of a complex physical system is required and 

then optimization algorithms are applied. Determination of the gyroscope 

performance for a single set of parameters might involve the solution of 

a system of partial differential equations. Considerable human interaction 

is probably used to avoid astronomical computer costs and yet achieve some 

reasonable progress toward the optimum. 

6. Calculation of the capacity of the wing tank of a jet liner. 

This is a simple problem except for the complex geometry of the wing 

tank. Once the wing tank is broken into simple pieces (probably by a person) 
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then standard algorithms are reliable, short and efficient. The automatic 

processing of the complex shape requires much more sophisticated software 

of moderate size (perhaps 2000 statements), but still gives a short 

calculation. 

The creators and users of this software have very diverse backgrounds. 

Some are ultra-sophisticated scientists while others are just naive users 

of "black boxes" and canned programs. The size of the software ranges from 

the short routines for Fortran functions like sine and logarithm to elaborate 

systems which require hundreds of man years of programming and strain the 

capacity of the largest computers. Much of this software is written by people 

outside the computer science community, by people who call themselves engineers 

or physicists instead of programmers. The style is a combination of engineering 

art, mathematical science and hope. I have observed the following fact: 

Many sophisticated scientists produce naive software just as many sophisticated 

computer programmers produce naive science. Experts from each group, of course, 

are reluctant to acknowledge this state of affairs. This fact must be kept 

in mind when considering the totality of numerical computation. 

Current folklore in Computer Science has it that numerical computation is 

a small, probably negligible, portion of the total computer usage. I have made 

a reasonable effort to determine the proportion of computing expenditures from 

numerical computation and I can attest to the difficulty of getting reliable 

data on just what computers are dong. However, I have concluded that the 

folklore is wrong. For example, suppose one divides the Department of Defense 

computing into four categories: numerical, non-numerical, dedicated and 

non-programmable (e.g. process control) and general support (e.g. compilers 

and operating systems). Then view the general support as overhead to be 
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distributed proportionally over the applications areas. My best estimate 

is that numerical computation then accounts for about 75% of the Department 

of Defense computing expenditures. Similarly, I believe that numerical 

computation accounts for about 50% of the computing expenditures in the 

United States. I will not reproduce the data upon which I base this 

conclusion, but I do want to emphasize the need for more reliable information 

in this area. 

Finally, I want to note a feature of software for numerical computation 

that is growing and of crucial importance. It provides a means for the rapid 

dissemination of knowhow through the scientific community. Traditionally, 

• research results are disseminated in a three stage process of technical 

journal articles, research monographs and surveys and, finally, textbooks. 

The scientist studies these publications in order to absorb the knowledge 

which he then applies to his particular problems. Now many important kinds 

of knowledge (mostly the "knowhow" or techniques variety) can be (and is being) 

incorporated into software. Then research results can be used (and quickly too!) 

by scientists without needing to absorb the knowledge themselves. This may 

one day be the aspect of software that has the most significant impact. 

II. SIGNIFICANT RESULTS AND MILESTONES 

11.A. The Program Library Concept. This was an early concept 

[Wilkes et al, 1951], but it is still very important. This concept has been 

surprisingly difficult to bring to fruition in the same sense as a library 

of books. That is to say, widely available and good quality libraries for 

basic mathematical procedures did not become available until the 1970's and 

even now most computer users lack access to a good library of programs for 

numerical computation. This is inspite of expensive efforts by Share, IBM 

(the SSP and SL-Math Libraries) and other computer manufacturers. 

3 



II.B Higher Level Languages: Fortran and Friends. The library concept 

is based on the fact that many problems are of a somewhat standard nature 

and occur in many different contexts. This is especially true of numerical 

computation because scientists and engineers use the language of mathematics 

in their analysis. The methods one uses seem to be independent of the 

particular computer and thus expressable in some machine independent language. 

Fortran, Algol and their descendants have made it possible to attempt to 

develope the science, art and body of numerical computation software. These 

languages are not perfect as the issues of portability discussed later show, 

but their introduction was an essential milestone in computing. 
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II.C. The Critical Evaluation of Software. Professionals in numerical 

computation have always had their favorite methods for various kinds of 

problems. Occasional surveys showed that there was no consensus among 

the experts as to which methods were best [Krogh, 1972]. Even worse, for 

many years, most people did not distinguish between a somewhat vague method 

and a computer program implementation of the method. Now people realize that 

the implementation (software) is as critical as the method, as there 

can be (and have been) terribly poor implementations of good methods. 

There are two main variables here: different implementations of the 

same method and different methods for the same problem. It was not at all 

easy to design frameworks in which meaningful comparisons could be made. 

However, in the late 1960's such comparisons were started for ordinary 

differential equation software [see, for example, Hull, 1972] and now the 

framework for this particular area is well defined[Shampine, 1976]. Since 

then there have been significant accomplishments in evaluating software for 

numerical integration, special functions, linear algebra and polynomial 

root finding. One can now state with confidence what the "state-of-the-art" 

is for software in these areas and back these statements with scientific 

and quantitative measures of performance. 

There has been one rather sobering result from all of these critical 

evaluations: the "experts" were very poor at predicting which methods would 

be the best. Experts in other areas of computation would do well to take 

heed of this experience. 

Finally, I would note the lack of the use of "program proof methods" 

for software for numerical computation. Some reasons for this are (i) it is 

difficult to incorporate the uncertainties of round-off into proofs, (ii) the 

software tends to be too long for current proof methods, (iii) most numerical 

computation software has parts whose performance cannot be specified in terms 
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of input-output relationships. That is to say, the question is not whether 

the program is right or wrong, but rather how well it performs. One can 

make the analogy with a program for playing c h e s s , liven though there may 

exist a right move in all situations, no one knows what it is and the 

program's choices for moves must be judged on how well the program fares 

in chess competition. 

One can modify the idea of program proof in a useful way in some such 

situations. For example, one could prove the following assertion about 

a subprogram: 

"This code finds a value of x so that ABS(F(x)) < EPS 

or it returns a value of 1 for the argument IFAIL" 

Such an assertion may be critical information for establishing the reliability 

of a program, but it does not give any clue as to when the subprogram might 

produce correct results (assuming that F(x) less than EPS is required for 

correct results). One might attempt to find a hypothesis on F(x) so as to 

ensure that the case of ABS(F(x)) < EPS holds. Such hypotheses tend to 

involve mathematical properties of F(x) which cannot be verified in practice 

or which restrict the applicability of the proof to a trivial or degenerate 

set of input. Only verifiable hypotheses are of value in program correctness 

proofs. 

II. D. Problem Space Definition. The critical evaluation of software brings 

one to the question: what problems (input data) is this program supposed to 

process well. The concepts of software robustness, reliability and quality 

are meaningless without a careful definition and description of the space 

of problems to which the software is to be applied. The preceding discussion 

of program proofs indicates the delicate nature of this question for numerical 

software. The classical mathematical framework (e.g. the fourth derivative 

is continuous, or is bounded by 7.) have proved to be of little use for most 
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software. This is because the hypothesis used are either not verifiable 

or apply to an extremely restricted problem space. For some problem 

areas the problem spaces being used are somewhat ad hoc, but even these 

can be used successfully if one realizes the situation. The problem space 

concept is most developed for numerical integration software [Lyness and 

Kaganove, 1976] where the idea of performance profile was first introduced. 

As an example, consider numerical integration software which is to 

compute 

/ bf(x)dx 
a 

It is a well known mathematical fact that this is a computationally un-

solvable problem. The set of functions f(x) (or space of problems) must 

be restricted somehow before it is possible- to even consider reliable 

software. The standard textbook approach is to restrict attention to 

functions which have a certain high derivative bounded by some (unknown) 

constant. This is a typical example of a non-verifiable hypothesis. The 

current direction is define the problem space that software for this problem 

should accept reliably a function which, in intuitive terms, 

has only a few oscillations of a gross nature 

has only a few singularities 

the singularities are like Jx or or or — 

has a limited amount of high frequency, regular oscillation 

The crux is to make these intuitive concepts precise, then one can quanti-

tatively parameterize the problem space (by features like number of oscil-

lations, number of singularities, strength of singularities, frequency of 

regular oscillation, etc.) and measure the performance of software as a 

function of these parameters. Robust software would fail gracefully as the 

boundaries of the problem space are approached. 
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II. E. The Importance of Human Engineering. Everyone agrees that the human 

engineering of software is important. It's just that so few people do 

anything about it. There have been instances of numerical software that 

was widely used because they had good human engineering even though the results 

computed were unreliable. These and other experiences have convinced many 

(but far from most) developers of numerical software that the human engineering 

(user convenience) aspects are critical. This is, in itself, a milestone; 

unfortunately, there have been few advances in how to do human engineering. 

It still seems to take a lot of hard, patient work. 

II. F. Portability. While everyone recognizes the potential savings from 

distributing good software, it has been hard to achieve even when good, 

usable software is written. The dependency of numerical computation software 

on machine word length as well as the idiosyncracies of compilers and operating 

systems pose formidable barriers to the dissemination of quality software. 

It has been shown [Parlett, 1975] that portability and top efficiency cannot 

be achieved simultaneously in a high level language like Fortran because of 

compiler variations. A 100% loss in efficiency may be an acceptable price 

to pay for portability in some instances, but there are even more severe 

problems with error handling, precision changes and arithmetic unit behavior. 

These difficulties have been isolated and methods found to overcome them in 

an automated system. The solutions involve the use of subsets of standard 

Fortran like PFORT [Ryder, 1974] and systems which tailor programs for a 
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particular target environment (machine, operating system and compiler) 

[Aird, Battiste and Gregory, 1977], [Ford and Sayers, 1976]. It is now 

possible to have a collection of 500 programs and to automatically produce 

versions of them that are reliable and efficient for a wide variety of 

environments. 

II.G. Examples of Significant Software for Numerical Computation. We do not 

try to give a "top 10" of the most important or best software. Rather each 

example illustrates a significant class of numerical software or a step in its 

developments. 

1. Kuki's functions for IBM Fortran. [Kuki, 1967] This was the first really 

good software for the elementary functions of Fortran which was adopted by 

a manufacturer. It was common in the 1960's for such software to be grossly 

inaccurate for several years after a new computer was introduced. Much of 

this software is still unreliable, inefficient and/or inaccurate even though 

it is "well known" how to do it well. 

2. Ordinary Differential Equations Programs. The critical evaluation in 

the late 1960's of programs for initial value problems in ordinary differential 

equations produced several codes which were truly superior to most of their 

contemporaries [Shampine, 1976]. These codes have been steadily improved 

since then and are now an order of magnitude better than the code that even 

a knowledgeable person can write with a reasonable effort. This software 

illustrates the tight interplay between software and methods. This improve-

ment came both from new methods and techniques and from better implementation 

to achieve reliability and robustness. 

3. NASTRAN, a structural engineering package. This is an example of the 

large specialized application package which we can expect to proliferate 

in the future. This system is large (about 200,000 Fortran cards); it is 
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complex (1200 page primer); it uses lots of memory (it can handle matrices 

where one row will not fit in core); it uses lots of time (runs of 5 or 10 

hours on big machines are not unheard of) and it is widely used on a 

variety of computers. Mathematically speaking, it simply solves the 

biharmonic equation; its size comes from the fact that it does this on a 

domain which is a supertanker, an automobile or a jet fighter. Thus the 

mathematical difficulties are only one of several challenges for this soft-

ware . 

4. EISPACK - a systematized collection of programs for eigenvalue problems. 

[Smith et al, 1976]. This was the first project of the NATS (National Activity 

to Test Software) project. It started with some Algol programs of J. H. 

Wilkinson and produced a set of Fortran programs that were exhaustively tested 

and extensively documented. The result is reliable, efficient and robust 

software that runs on a variety of machines. This software is discussed in 

more detail in the next section. 

5. SPSS - Statistical Package for the Social Sciences. This is one of 

several widely used statistical computing systems. It is designed to be 

used by non-programmers, even non-statisticians and provides a wide variety 

of statistical procedures and associated data handling facilities. The 

statistical computations in these packages are now implemented with quality 

software. Thus the naive user gets the right numbers, even if he might not 

know quite what they mean. 

6. PDEONE - a program for partial differential equations. [Sincovec and Madsen, 

1975] This is a short program (less than 100 lines of Fortran) that provides 

a surprisingly versatile tool for solving time dependent partial differential 

equations. Its approach is to build directly on the quality ordinary differen-

tial equations software (see 2. above) via the method of lines. While good 
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programs have been incorporated into libraries or large software packages, 

this is one of the first instances of a program that explicitly builds on 

/ 
existing, independently produced software. 

7. Jenkins-Traub Polynomial Root Finder. [Jenkins and Traub, 1975] , 

[Jenkins, 1975] Computing the roots of polynomials is one of the oldest 

problems in numerical computation and literally dozens of methods have been 

proposed. A few of these methods form the basis for quality software, but 

still most software for this problem available in the 1960's was unreliable 

or inefficient or both. This particular algorithm incorporates a new method 

( really a synthesis of older methods) into software where care has been 

taken about those factors which determi ne quality. This program has made 

literally hundreds of programs obsolete. 

8. Good Numerical Libraries. Two organizations have produced large, portable, 

good quality and inexpensive libraries. They are IMSL (Inter. Mathematical 

and Statistical Libraries, Houston, Texas) and NAG(Numerical Algorithms Group, 

Oxford, England). Both organizations are discussed in more detail in the 

next section. 

9. Software for Roundoff Analysis [Miller, 1975] This software provides 

automated support to locate numerical instabilities in various numerical 

processes. When these instabilities are triggered (usually by roundoff), 

they cause unreliable results. Thus it is essential to locate them and, 

unfortunately, formal analytical methods are very tedious and often impossible 

to carry out. Thus a software tool to help discover them is very valuable. 

II.G. Numerical Computation Research Achievements. The emphasis in this paper 

is not on numerical methods, but they are intimately associated with software. 

A panel [Rice et al, 1977] has chosen the most significant accomplishments in 

numerical computation research and it seems appropriate to list their choices 
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here without elaboration. 

1. Simplex Method in Linear Programming 

2. Analysis of Iterative Methods for Partial Differential Equations 

3. Fast Fourier Transform 

4. Splines and Piecewise Polynomial Methods for Curves and Surfaces 

5. Finite Element Method for Partial Differential Equations 

6. Stability Analysis for Time Dependent Partial Differential Equations 

7. Backward Error Analysis 

8. QR-Algorithm for Eigenvalue Problems 

9. Variable Metric and Quasi-Newton Methods in Optimization 

10. Adaptive Numerical Integration 

11. Techniques and Software for Ordinary Differential Equations 

12. Sparse Matrix Techniques 

Note that only one of these involves software directly. 

III. FOUR NUMERICAL SOFTWARE PROJECTS. 

In this section we discuss four long term, substantial projects to 

develop numerical software. They are, in alphabetical order, the IMSL 

library of International Mathematical and Statistical Libraries, Inc., the 

NAG library of the Numerical Algorithms Group, NATS (National Activity to 

Test Software) and the PORT library of the Bell Telephone Laboratories. 

For each of these we describe the objectives, make some comments on the 

history and size of the organization and describe the current status of the 

software. Further, we discuss the approaches used to achieve portability and 

quality and, possibly, roughly assess the costs of the software. 

III.A The IMSL Library. IMSL was organized in 1970 to produce a high quality 

library of mathematical and statistical subroutines. The aim was to have a 

low cost and resultant high volume in order to achieve a commercial success. 
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IMSL has a few experienced senior people supported by some programmers and 

other staff for a total size of 20-25 people. They ;«I so iiave an advisory 

board of 12-15 experts who give them both general and specific advice. 

The initial IMSL library had about 200 subroutines and was available 

in IBM, CDC and UNIVAC versions. The library now has over 400 subroutines 

and is available for seven computers: Burroughs, CDC, DEC, Honeywell, IBM, 

UNIVAC and Xerox. The library is leased at a cost of about $100/month and 

is updated every 12-18 months. The library subscription includes consulting 

service for any problems that may arise. Note that the annual cost of this 

rather complete library is substantially less than the cost of developing 

one typical program for such a library. 

IMSL uses a variety of sources for programs (including writing their 

own from scratch) and all programs are rewritten with a uniform style. 

Quality control is exercised by (a) choosing good sources (the advisors assi 

in this regard) (b) using knowledgeable programmers with good supervision 

(some of the senior IMSL people work regularly on the library programs) 

(c) testing (reasonably exhaustive for new programs, check point testing for 

maintenance or new machine versions) and (d) continual upgrading. There is, 

of course, no way to produce 200 programs with a few people in a year or two 

without some inefficiencies, poor design, etc. Even so, the IMSL library 

was initially a substantial improvement over libraries available from manu-

facturers or those existing in a typical good computing installation. The 

current library is both substantially larger and better than the initial one 

and has about 480 installations in over 20 countries. 

IMSL originally maintained separate, but closely related, versions for 

each program in the different machine versions of the library. They are now 

moving to a "Fortran converter" system where a master deck contains all the 

information needed for each machine version [Aird et al, 1977]. 



Much of the standard information is not explicitly in the deck. A converter 

program then automatically produces the program for a particular target 

machine. The master deck is itself a Fortran program that runs on one of 

the machines. 

IMSL spent about $375,000 to develop their first library and accumu-

lated a total deficit of about $1 million before reaching profitability in 

1976. They estimate that it costs about $15 per Fortran statement to develop, 

test and document a new library routine. It costs them $2-$3 per Fortran 

statement to convert (by hand) a program from one machine to another. The 

Fortran converter is expected to increase slightly the cost of preparing 

the first (master) version of a new library routine and substantially reduce 

the cost of other versions. 

III.2 The NAG Library. The NAG (Numerical Algorithms Group, formerly 

Nottingham Algorithms Group) project was initiated in 1970 by a group of 

English universities to produce a high quality numerical algorithms library 

for general university use on the ICL 1906A. The library was to have 

equivalent Fortran and Algol 60 versions. The NAG project is now run from a 

central office at Oxford University with associated individuals in five other 

universities comprising a full-time staff of 22. The project is a collaborative 

one between the English universities and government research laboratories 

(notably NPL and Harwell) and involves 120 people in part-time and voluntary 

capacities. The original aim has been broadened and emphasis given to 

creating a transportable numerical algorithms library. NAG is now a special 

kind of non-profit corporation with the goal of becoming financially self-

supporting by renting the library to users in industry or outside England. 

The late 1971 NAG library had just under 100 subroutines (in each of 

Fortran and Algol 60) and the current version (Mark 5) has over 300 subroutines. 
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Implementation of un Algol 68 version of the library is underway. Machine 

implementations include Burroughs, CDC 6000/7600, IBM 360/370, ICL 1900/1906/ 

4100/System 4/KDF9, Honeywell, Siemens, Univac, Telefunken, Prime, Varian 

and DEC. All English universities now support the NAG library involving 

about 25,000 users and just prior to the January 1977 announcement of world 

wide availability, there were 40 installations on four continents using a 

preliminary library service. 

Programs are obtained from a contributor (usually an expert, from one 

of the cooperating universities or research establishments) who chooses 

the method and then writes, tests and documents the program, the program 

is then given to a validator who is also an expert in the relevant area. 

He is to critically examine the merit of the algorithm and test the 

usuability of the program and its documentation. Once a program is validated 

for general merit, it is then validated by the NAG central office as regards 

formatting, language standards, etc. Various software aids are used for this 

second stage of validation. See [Ford and Sayers, 1976]. 

NAG uses a master library file system which contains all versions of 

each program along with its complete history. Each target machine for the 

NAG library has a coordinator who is responsible for implementing contributed 

programs on their particular machine. This implementation process could be 

non-trivial, especially for Algol 60 programs. This problem has been elimi-

nated in the latest release by new choices of language subsets (of Fortran, 

Algol 60 and Algol 68) and machine parameterization. New machine implementa-

tions are now essentially automatic. When an implementation is accepted, 

the programs are returned to the NAG central office for inclusion in the 

master library. There are stringent test programs for each library routine 

to assure equivalent performance of the NAG library versions. [See Prentice, 

1974], The history information and test programs in the master file have 



been found useful in developing a more portable library [Hague and Ford, 

1976]. 

The manpower used in the major aspects of the NAG project from its 

inception until 31st May 1976 are shown in Table 1. 

TABLE 1: MANPOWER USED IN THE NAG PROJECT (in man - years) 

Time Period 

Aspect 

1/6/70 to 

31/5/73 

1/6/73 to 

31/5/74 

1/6/74 to 

31/5/75 

1/6/75 to 

31/5/76 

Totals 

Library Contribution 23 7.5 16 13.5 60 

Library Implementation 7 15 10 8 40 

Central Office 4 9 11 17 41 

Algol 68 - - 4 7 11 

Total 34 31.5 41 45.5 152 

The cost of the central office during this period was £238,000 (about 

$500,000). The estimated full economic cost of the project including 

realistic overheads and commercial rates for computing time was <£1,025,000 

(about $2,000,000). Dividing the costs of the central office between library 

contents, implementation and adminis tration, NAG estimates that it cost 

£3.5 (about $6-7) per Fortran statement to develop, test and document a 

library routine during the first four releases of the NAG library and £ 4 

per statement for the Mark 5 release. Implementation of the library for a 

new machine range during the first four releases cost approximately £ 0.50 

to £0.60 ($0.85 - $1) per statement. Experience to date with the Mark 5 

library suggests that it will cost approximately 10 cents per statement for 

a new implementation. When comparing the above figures with those given 

elsewhere in the paper it must be born in mind that all costs in the United 

Kingdom are significantly lower than the comparable ones in the United States. 
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III.3 The NATS Activity. The NATS (National Activity to Test Software) 

activity was initiated in 1970 with the objective of taking the [Wilkinson, 

Reinsh, 1971] Algol procedures for eigensystem calculations and preparing 

software for widespread use in the Fortran computing community. This 

involved a translation into Fortran plus various steps to assure the utmost 

in reliability, robustness and efficiency. The activity was supported by 

the National Science Foundation and the Atomic Energy Commission with coor-

dination by Argonne and other principal investigators at universities. The 

result of this first objective was EISPACK [Smith et al, 1976] and the 

activity later enlarged to take on other projects using the same organiza-

tional structure and some of the same people. The NATS projects are designed 

to produce extremely high quality software (systematized collections) in a 

particular problem area. 

EISPACK has had its second release and is currently in use at over 450 

installations (it is available from the Argonne Code Center at the Argonne 

National Laboratories with the payment of a nominal handling charge). Machine 

versions include Burroughs 6700; CDC 6000/7000, DEC PDP-10, Honeywell 6070, 

IBM 360/370 and UNIVAC 1110. FUNPACK is a collection of highly machine 

dependent, special function subroutines [Cody, 1975]. Thirty-six routines 

for exponential integrals, complete elliptic integrals, Dawson's integral 

and Bessel functions are available for IBM, CDC and UNIVAC computers. A 

third project, LINPACK, is now underway to produce similar programs for 

solving linear equations and related problems. Plans have been made for 

MINPACK (non-linear optimization) and other projects are in the preliminary 

discussion stage. 

High quality is achieved in the NATS projects by having leading experts 

produce the code and then exhaustively testing and validating the results. 

For example, the EISPACK programs were certified only after extensive use 



at 15 different computing centers (test sites). This was in addition to 

elaborate tests for validation by the NATS principals and the earlier 

efforts of Wilkinson and Reinsch to assure the correctness of their Algol 

procedures. Similar steps were taken with the FUNPACK programs and are 

planned for LINPACK and MINPACK. 

The NATS organization has produced a variety of software to support 

the creation, validation and dissemination of the numerical software. They 

distribute programs tailored for a particular machine. Initially, these 

were hand tailored, but now NATS uses a single source program approach. 

Their approach is to have a "generalizer" and a "selector" which translate 

between,specific Fortran dialects and a somewhat higher level, more abstract 

language. 

The total cost of the EISPACK project is estimated to be about $900,000 

for about 12,000 lines of Fortran code (not counting the 6 machine versions). 

This is equivalent to about $40-50 per original Fortran statement if one 

assumes a new machine version costs about 15% of the original program cost. 

The FUNPACK collection is somewhat smaller and cost less per line of code 

as well as in total. Costs for EISPACK were probably unusually high for 

several reasons: (a) The testing, validation and documentation were unusually 

elaborate, (b) There were substantial "capital investments" in auxiliary 

software to support the creation, validation and dissemination of EISPACK, 

(c) There were non-trivial costs for travel and conferences because of the 

dispersion of the investigators and test sites. 

III.D The PORT Library. In 1968 Bell Laboratories initiated a project in 

numerical mathematics software [Traub, 1971]. The objective then was to 

produce a selected set of high quality portable programs. As Traub para-

phrased Santayana: "The man who doesn't write portable software is condemned 



to rewrite it". This software project produced a number of quality 

programs over the years and in 1974 a complete library effort was initiated 

based on the experience gained from the earlier work. [See Fox, Hall and 

Schryer, 1976]. 

The PORT library is now in the early phase of development. It has 

enough programs to be called a library, but it is heavy on utility routines. 

A unique feature is the inclusion of dynamic storage allocation and auto-

matic error handling. It is well short of the 400 or so programs that seem 

to be required for a reasonably complete library of mathematical and statis-

tical programs. A second, larger edition is due in 1977. The library is 

implemented on the IBM 360/370, UNIVAC 1100, Honeywell 6000,Data General Nova 

and PDP-11 computers. It is in current use throughout the Bell Telephone 

research laboratories and is available to universities for a service charge. 

Others may obtain the library for a one-time license fee. 

Quality control in the original Bell Labs project was achieved through 

a contributor-referee system similar to the contributor-validator, method 

independently adopted later by NAG. The early work involved some of the 

first efforts to systematically compare and evaluate existing software. This 

approach has been continued with the PORT library. 

The PORT approach to portability is to use exactly the same Fortran 

code for all machines. The library is written in a portable subset of Fortran 

called PFORT, [Ryder, 1974] , which is known to operate in a uniform manner 

on all major machines and is thought to do so on all reasonably designed 

systems. The only machine dependent routines are some basic utilities that 

supply machine constants for other programs. Dynamic storage allocation and 

automatic error-handling are even implemented in portable routines. The 

other projects have also found it beneficial to restrict the programs to 

language subsets. 
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Costs for the PORT library are not known and it is no doubt impossible 

to extract the exact amounts from the long history of this project. In 

the early stages Bell found that the testing of existing software mutated 

into the writing of new software and that an average of six man months was 

required for each program contributed. This did not include the referee's 

effort or any central administration of the project. 

IV CURRENT RESEARCH DIRECTIONS 

A considerable portion of the research progress in software for numerical 

computation has taken place in conjunction with some specific problem or method 

and this situation will probably continue for some time. We divide the current 

research activities into four broad categories: Software Development (for 

particular applications), Critical Evaluation of Software, System and Machine 

Effects, and Software Dissemination. 

IV.A Software Development. Most of the research effort in numerical computation 

is in the discovery, analysis, development and evaluation of methods. This 

effort inevitably requires that the method be implemented and thus much of 

the software for numerical computation comes out of the general research effort. 

There are, of course, some specific projects to develop software such as 

described in the previous section. Many workers in this area are not well 

. versed in software methodology and much otherwise good work becomes embedded 

in poor software. On the other hand, some of the best software people are 

,F in this area and one can continue to expect some primarily software ideas 

and results to come out of the larger activity in numerical computation research. 

IV.B Critical Evaluation of Software. This activity is evolving toward 

determining general principles and methodologies for selecting good software 

[Rice, 1976]. Even though a general framework and methodology is essential 

to guide one in the evaluation of software in a particular area, most of the 
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difficulty is specific to a particular problem area. Thus the bulk of the 

activity is problem oriented. Problem areas where considerable progress has •! 

been made are ordinary differential equations, numerical integration, polynomial 

root finding and some parts of linear algebra. Problem areas where a signi-

ficant activity has started are statistical computations, some more parts 

of linear algebra, optimization and some -kinds of partial differential equations. 

The two most difficult aspects of this activity are determining the proper 

problem space (allowable input to the software) and the criteria of performance. 

The more obvious choices here tend to have the following undesirable conse-

quences: the software is evaluated for problems of little or no interest, all 

the software is unreliable because the problem space contains large numbers 

of impossible problems, the performance criteria are so narrow that ridiculous 

algorithms turn out to be "best" (for example, there is a trade-off between 

time and storage), the performance measures are so general that they have no 

intuitive or direct significance. Last, but by no means least, reasonable 

sets of problem space, software collections and performance criteria can lead 

to an impossibly large effort to actually carry out the evaluation; 

Note that we emphasize performance evaluation and not program correctness. 

In performance evaluation one assumes that the author has made his best effort 

to assure that his program is correct - and is otherwise of high quality with 

respect to style, documentation, etc. Thus steps to assure the quality of 

individual programs are somewhat independent of performance evaluation efforts. 

Needless to say, poor quality programs have little chance of showing up well 

in a scientific critical evaluation. There are instances of software being 

eliminated from consideration without evaluation because the style, coding, 

etc. is inadequate. 



IV.C System and Machine Effects. This activity breaks down into five 

somewhat separate pieces- The first is the computer's arithmetic unit and 

what to do about it. The roundoff problem is, of course, inherent in 

numerical computation, but that is not the main focus here. Rather the 

focus is on CPU's (and systems) that have erratic round-off behavior, 

inadequate facilities to prevent over/under flow problems, inadequate double 

precision hardware, etc. Top quality software demands that these idiosyncracies 

be identified and circumvented in some way. The result is sometimes the 

antithesis of good programming "style". Strange constructions are sometimes 

required to preserve accuracy and efficiency; these constructions must be 

clearly isolated and documented. 

The design of computer arithmetic units has, on the average, gone steadily 

down hill over the past 15 years. It is now known how to design them so as 

to reduce the above difficulties to an absolute minimum. These designs cost 

about the same as current ones, but they are very rarely implemented. 

Closely related to hardware difficulties are difficulties in the compiler 

and operating system software. Optimizing compilers can ruin the efficiency 

and/or accuracy of a computation. Different paging algorithms can completely 

change the performance of some programs. One goal in higher level languages 

(like Algol and Fortran) is to insulate the programmer from these considerations. 

Unfortunately, such questions cannot be ignored in some areas of numerical 

computation, especially those where the bulk of the computation occurs in a 

few statements. 

The third category of these effects is memory hierarchies. Some numerical 

computations require a huge amount of storage and techniques to exploit the 

available memory configuration are under steady investigation. There are 

substantial trade-offs between memory use and computation time. Thus a sparse 

array can be placed in much smaller memory space at the expense of much more 



computation to retrieve an array element. Considerations along these lines 

sometimes lead to completely new methods as -well as reorganizations of old 

ones. 

The fourth category is the proliferation of small machines such as 

hand calculators and mini/micro-computers. These machines are so numerous 

that it is not possible to do a careful job on the numerical software (which 

may be permanently implemented as micro-code). The manufacturers of such 

machines are frequently unaware of quality software, principles for numerical 

computation. The result has been numerous instances of inadequate algorithms -

both in the hardware and in manufacturer supplied libraries and systems 

(e.g. the Fortran built-in functions). 

The final category is novel architecture such as pipeline processors, 

parallel processors and associative memories. These architectures are primarily 

motivated by numerical computation problems and naturally a great deal of 

research has gone into techniques to exploit them. These studies involve both 

new methods and new software approaches. It has been more difficult than anti-

cipated to exploit these devices, but the ideas behind them have a natural 

suitability for many important applications. 

IV.D Software Dissemination. Perhaps more than other areas in computing, 

numerical computation workers are keenly aware that their problems should be 

independent of the computers used. Nevertheless there has been a tremendous 

duplication of effort even for the most basic problems. The establishment 

of large, good and portable libraries took more time and effort than anyone 

would have suspected. Even so , there is a real human engineering problem 

with library subroutines. The instructions for use are usually puzzling at 

first and many people end up spending a week writing their own routine instead 

of spending a half-day learning how to use the library routine. Furthermore, 

the library routine is likely to be better than one written by a typical 



programmer, even though he can tailor it to his particular specifications. 

The key question is: How do you make it irresistible for the typical user 

to use existing good software rather than write his own, perhaps inferior, 

software? 

V. PROJECTIONS AND NEEDS FOR THE FUTURE 

We all know that many things do not occur even though they should. 

I will avoid the task of trying to distinguish between what should be done 

and what probably will be done by taking the optimistic position that those 

things needed will actually arrive. Some of the projections indicated require 

more than just advances in software, some of them also require new methods 

in numerical computation, others require the application of methods now known 

but not yet put into practice. 

V.A Software Development Tools and Techniques. Numerical computation software 

benefits from the use of better tools just as much as other software. These 

include things like better languages and compilers, programming standards 

checkers, program manipulation software, debugging and verification software, 

structured and modularized programming, etc. A particularly useful tool for 

numerical software is one that gives a detailed breakdown of the timing of 

a program. Some more specialized tools should be useful also, such as the 

software for roundoff analysis mentioned earlier. Numerical computation occurs 

at all "levels" between very machine dependent and very high level. One 

tool of real utility is a language and system that is at a significantly 

higher mathematical level than current languages (this tool is discussed 

next as a separate topic). 

V.B A Mathematical System. Fortran, Algol and their descendants are all at 

the same mathematical level: algebra and trigonometry. A large part of the 

numerical software should operate at a significantly higher mathematical level. 
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The mathematical language should have arrays, functions, formulas and'" 

equations as honest data types and with some subtypes. The operations of i 

integration, differentiation, infinite, summation should be part of the 

language. There should be both numerical and symbolic facilities in the 

language. Such a language is very susceptible to becomming so complex'and 

large that it cannot be implemented or used. It is true that it reqqijfes 

substantially more resources than a typical Fortran or PL/1 system* However, 

a careful design (i.e. reigning in one's greed) can be implemented .with 

resources that are reasonable with today's computers. See [Rice, 197.3"] u 

for an analysis of why efforts in this direction failed in the 1960's. 

V.C Problem and Discipline Oriented Systems (and Hardware). We have already 

seen the start of large systems tailored for a particular class of users or 

problems. NASTRAN is an example of a structural engineering system and such 

systems will proliferate in the future. The vehicles of their implementation 

will vary; some will use specialized hardware, some will use dedicated mini-

computers and others will be part of a large computer system. The driviTng 

motivation for these systems is human engineering; by restricting their'; Scope 

of use, they can communicate with users much better. Of course, software will 

be only one facit of the task of developing these systems; new methods 

substantial financing, professional support and careful attention to human 

engineering are all required for a really successful system. .'V 

V.D Software to Automate Model Construction. Recall that the source of 

numerical computation is physical and organizational models. As these 

models become more complex, the task of constructing them becomes a large, 

even dominant, part of the effort in problem solving. Some of the problem 

oriented systems can be viewed as highly parameterized models of certain ' 

phenomena. Little software currently exists for model construction and thus 
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its nature is not yet clear. However, it is clear that this is one of the 

key problems to be faced. One might view it as part of the human engineering, 

but it goes deeper than that. After all, we might view the elimination of 

arithmetic by computers as "only" human engineering, but we know that this 

actually changes the nature of problem solving. 

V.E Software Parts Technology. The problem and discipline oriented systems 

mentioned above are in fact another approach to disseminating software: one 

packages good programs in a reasonable language system and users find it 

irresistible. Whether or not users of such systems are still programming is 

open to discussion, but the real objective of getting them to use other people's 

programs has been met. Actually, the significance of these systems goes much 

deeper than that; they are knowledge transfer mechan isms that will eventually 

entirely change the way the scientific world operates (see Rice [1976a]). 

Even though many will be spared the trouble and expense of programming 

by the^e systems, there will still be a large amount of computing outside the 

scope o£ specialized systems. This programming is now done on a hand crafted, 

tailor tfiade basis. Industry already knows that the solution to the high costs 

of a hand;crafted technology is to introduce standardized, interchangeable 

parts. This.seems to be the best hope for eventually controlling (even reducing) 

the highcpst of program development. A software parts technology will not 

arise overnight, but it is time to give serious consideration to how it will 

work and how it can be facilitated. 
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