
(Sreenuch et al, 2012a) 1

Integrated Vehicle Health Management (IVHM) is a major component in a new future

fleet management paradigm where a conscious effort is made to shift aircraft maintenance

from an unscheduled, reactive approach at the time of failure to a more proactive and

predictive approach. Its goal is to maximize fleet operational availability while minimizing

logistics footprint through monitoring deterioration of equipment conditions. A

comprehensive IVHM system will be executed in an environment that includes different

sensor technologies, multiple information systems and different data models. IVHM

implementers have therefore to deal with an integration problem that involves different

specialized algorithms and embedded hardware platforms. IVHM applications will have

common execution logic and many will share the same data processing algorithms, hence

development productivity and quality of IVHM applications can be increased through

reusable software building blocks and algorithm libraries, or in particular by using a

software development framework.

This paper presents an approach to distributed IVHM systems that offers reusable

software architecture for a class of IVHM applications. The focus of this paper deals with

an open software framework for development of IVHM applications stemming from the

Open System Architecture for Condition Based Maintenance (OSA-CBM) specification,

which is an architecture promoting interoperability, and a component framework that

enables reuse, data process partitioning, configuration and rapid prototyping. The

A Software Framework for Prototyping

Embedded IVHM Applications

T. Sreenuch
1
, A. Tsourdos

2
 and I. K. Jennions

1

1
Integrated Vehicle Health Management Centre, Cranfield University, Conway House,

University Way, Cranfield, Bedford MK43 0FQ, UK

2
Department of Engineering Physics, Cranfield University, Cranfield, Bedford MK43 0AL, UK

Email: t.sreenuch, a.tsourdos, i.jennions@cranfield.ac.uk

mailto:i.jennions@cranfield.ac.uk
e101466
Text Box
Journal of Aerospace Information Systems, Volume 11, Number 2 (2014), Pages 82-97. © AIAA 2014

e101466
Text Box

(Sreenuch et al, 2012a) 2

framework is developed using Java and Internet Communications Engine (ICE)

distributed middleware and its application is demonstrated through a gearbox health

monitoring system, where the IVHM software is deployed on the distributed embedded

devices. This approach provides software enabled capability to distribute/re-configure the

IVHM data process (through the OSA-CBM common interface and data model) across the

hardware platforms to meet the given system configuration. The performance evaluation

for the test example shows negligible overhead in CPU, bandwidth and latency when using

the framework.

I. Introduction

Integrated Vehicle Health Management (IVHM) involves data processing which

comprehensively consists of capturing data related to aircraft components, monitoring

parameters, assessing current or future health conditions and providing recommended

maintenance actions. In today‟s globally competitive environment, operators are seeking to

maximize their fleet usage and hence to demand a comprehensive fleet management system.

More reliance is now being placed on IVHM systems to extend functional life of the fleets and to

allow repairs to maximize affordability [1]. From the systems development view point, the major

obstacles in implementing IVHM systems are: the development of software systems for platform

distributed embedded devices and the integration of the existing/new IVHM components. A

software development framework that makes use of open standards and allows software reuse

would provide a great deal of benefit toward ease of proof-of-concept prototyping, development

and integration between IVHM components.

Several related examples of distributed IVHM system are reported in the literature. However,

these examples only address the measurement and control problems, notably those based on the

IEEE 1451 smart transducer interface standards [2]. In the IEEE 1451 based implementation, the

Network Capable Application Processer (NCAP) is used to enable the distribution of the

measurement and control of the systems. Its applications are found in the areas of water

management [3]–[4], industrial automation [5] and environmental air pollution monitoring [6].

Despite IEEE 1451 standard maturity, [3]–[6] were not implemented using any application

(Sreenuch et al, 2012a) 3

frameworks. They were hard-coded, and hence a significant effort would be required if there are

to be changes (or updates) in the system. In fact, there are currently no projects reported in the

literature actively working on the software framework that will allow rapid deployment (or

prototyping) of IEEE 1451 applications.

 In IVHM applications, there are many more data processing steps apart from measurement

and signal conditioning. Interoperability between multiple vendors‟ components is central in a

distributed IVHM system. Moreover, the data generated by the IVHM components should be

able to map into the maintenance database for further maintenance operations or data mining.

Open System Architecture for Condition Based Maintenance (OSA-CBM) is an emerging open

standard which in particular addresses interoperability and enterprise systems integration [7].

[8]–[10] describe concepts in developing an IVHM retated application. In these papers, IVHM

software is systematically modularized based on the standardized abstract data processing

functionalities. However, the papers somewhat fall short as the interoperability and

implementation issues are not addressed. In [7], IVHM applications employ OSA-CBM as a

standard for data exchange. The standard is implemented using C++ and MATLAB/Simulink. In

the paper, in addition to interoperability, rapid deployment and re-configuration are identified to

be the future capabilities that will benefit the IVHM development and integration efforts. Until

now, there is no open software development framework for generic embedded IVHM

applications reported in the literature. Hence, a need exists to create a framework which will

enable IVHM implementers to accelerate or ease the development (or prototyping) process and

configuration of IVHM applications. In addition, such a framework should also make use of

open standards (e.g. OSA-CBM) where appropriate. The framework and its usage example will

be the contribution of this paper.

The outline of this paper is as follows: II describes the OSA-CBM specification and what is

required for development of the framework. III outlines the proposed software development

framework and describes the middleware technology used for implementing the framework. An

example of how the proposed framework is applied to a specific IVHM application, i.e. gearbox,

is described in IV and V. VI evaluates the performance overhead in terms of both CPU and

bandwidth. VII discusses the benefits of the software framework, and then concluding remarks

are made.

(Sreenuch et al, 2012a) 4

II. Background and Motivation

A. OSA-CBM Specification

The OSA-CBM specification [11] is an open standard architecture for moving information in a

condition based maintenance system. Its goal is to address requirements for interoperability

between multiple vendors‟ IVHM components. OSA-CBM is divided into the interface

specification and information specification (or data model). These specifications are defined

using the Unified Modeling Language (UML) and are intended to be platform independent. They

can be mapped into various programming languages and middleware technologies.

Data Model

The OSA-CBM data model is based on the concept of metadata, i.e. OSA-CBM data are

always identifiable and traceable. The aim is to have data that supports the database centric

maintenance information management. In fact, OSA-CBM data can be mapped into any

MIMOSA-compliant relational database maintenance systems with ease. There are 4 primary

OSA-CBM data classes: DataEvent, Configuration, Explanation and Extensible. Configuration

gives information about a IVHM application‟s input sources, a description of algorithms used for

processing input data, a list of outputs and various output specifics such as engineering unit,

thresholds for alerts, etc. Explanation is a reference to the data used by an IVHM application to

produce an output. The Extensible class is still immature and not well defined in the

specification.

DataEvent is the dynamic data related to IVHM events generated by an IVHM application

such as measurements, manipulated or processed data, etc (see Fig. 1). Its metadata (e.g. id, site,

confid, time, sequenceNum and alertStatus attributes) are used to identify and inform status of

the data event. The DataEvent inheritance hierarchy is associated with particular abstract IVHM

data processing functionalities defined in the ISO 13374 Condition Monitoring and Diagnostics

of Machines – Data Processing, Communication and Presentation [12]. Those classes have

inherited classes below them describing particular types of data (see Fig. 2 for examples of

DADataEvent). The functional definitions can be viewed as abstractions of data into knowledge

with higher and higher abstraction level of information. The DA data type is an acquired sensor

(Sreenuch et al, 2012a) 5

Fig. 1. Examples of OSA-CBM Data Model

Fig. 2. Data Acquisition – DADataEvent

+id : unsigned int

-site : Site

-confid : float

-time : OsacbmTime

-sequenceNum : unsigned int

-alertStatus : bool

DataEvent

DADataEvent

DMDataEvent

PADataEvent

SDDataEvent

HADataEvent

AGDataEvent

Data Acquisition (DA)

Data Manipulation (DM)

State Detection (SD)

Health Assessment (HA)

Prognosis Assessment (PA)

Advisory Generation (AG)

-dataStatus : DataStatus

DADataEvent

+xValue : double

+value : double

DAVector

-xAxisStart : double

#xAxisDeltas : double

#values : double

DADataSeq

-xAxisStart : double

+xAxisDelta : double

#values : double

DAWaveform

-mEventBlobType : MIMKey3

DABLOBData

1

+value1

+value : double

DAReal

#data : byte

BLOB

+value : int

DAInt

-OK = 0

-FAILED = 1

-UNKNOWN = 2

-NOT_USED = 3

«enumeration»

DataStatus

+value : string

Mime

1

+contentType1

+value : boolean

DABool

DataEvent

#numAlerts0..*

NumAlert

+value : string

DAString

-xAxisStart : Value

+xAxisDelta : Value

+values : Value

DAValueWaveform

-xAxisStart : Value

+xAxisDeltas : Value

+values : Value

DAValueDataSeq

(Sreenuch et al, 2012a) 6

data which is formatted into a consistent form. The DA data is then transformed into one or more

meaningful features, which are in the DM-type data format. The features are compared against

expected values, and the resulting enumerated condition indicators are stored in the

SDDataEvent class. The data in the HA, PA and AG formats are the data related to current health

of the machine, predicted future failures and recommended action steps, respectively.

 Interface Specification

The interface specification describes how information will be moved. There are 4 primary

types of interface to accommodate different purposes and technological capabilities:

Synchronous, Asynchronous, Data Service and DataEvent Server. The Synchronous interface

returns data with the call. It models the Web XML over HTTP fetch technology. The

Asynchronous interface allows any number of IVHM applications to establish and maintain a

two-way connection for the duration they need. The data is returned either on request, on alert or

by push all. The latter of these pushes data to the connected IVHM applications every time it

collects data without the need for a request beforehand. The Service interface is for a one-way

data input device. Two possible uses would be data storage utility and maintenance advisory

receiver service. The DataEvent Server interface is similar to the return on alert or the push all

modes of communication in the Asynchronous interface (see Fig. 3). A given implementation

will likely not implement every interface types. In this paper, the DataEvent Server interface is

selected for simplicity in implementation and also to naturally capture the event-driven

characteristic in the IVHM applications.

B. Configurable IVHM Software

In a distributed IVHM system, available computational power and bandwidth are the major

constraints. A system integrator must be able to partition or distribute an IVHM data process

according to how resources are allocated. In addition, an approach that facilitates faster

development of IVHM applications and updates would be very desirable.

A development framework capable of rapid deployment has to be based on a generic/common

software structure for constructing an IVHM application (or data process) which is in itself an

(Sreenuch et al, 2012a) 7

Fig. 3. OSA-CBM DataEvent Server Interface

integration of multiple discrete generic/specialized algorithms. A software wrapper can be

created to make an IVHM algorithm configurable. The main executable will not change, and the

application dataflow interchange need not change. Only a data process descriptor for the

application needs to change. This way, an IVHM application can be constructed via processing a

configuration file. A configuration file will give information about an application‟s inputs,

algorithms used for processing input data and a list of outputs. To partition or distribute a IVHM

data process, it only needs to create different configuration files for each distributed IVHM

applications. The framework can allow very rapid deployment (or configuration change) of a

distributed IVHM system. [7]

C. Programming Language – Java

Embedded IVHM applications are complex with different parts of the IVHM data process

being distributed across different processing units to perform the data processing in a cooperative

way. However, the embedded space is rapidly changing in two ways: 1) faster processors that

consume less power and 2) low cost memory. This means a greater choice of development

+addDataEventObserver(in deObserver : DataEventObserver)

+removeDataEventObserver(in deObserver : DataEventObserver)

EntryPoint_DataEventServer

+getSite() : Site

+getId() : int

+notifyDataEvent(in dataEvent : DataEvent)

DataEventObserver

+setNotifyOnAlertOnly()

+setNotifyAll()

DataEventObserver_StdFilter DataEventObserver_UserDefined

+notifyDataEvent(in dataEvent : DataEvent)

EntryPoint_DataEventReciever

EntryPoint_DataEventReciever_UserDefinedEntryPoint_DataEventServer_UserDefined

(Sreenuch et al, 2012a) 8

platforms and code from a broader software community can be used. Hence, with the available

CPU and memory resources, an operating system (OS) and Java technology are chosen to make

the implementation process of the application framework much more productive. The OS and

drivers are used to handle low-level device and network communication tasks. Virtual Machine

(VM) is a key concept in Java technology. Source code is written and then compiled to a Java

bytecode. The compiled bytecode is verified and interpreted under the Java Runtime

Environment (JRE). The same bytecode is able to execute on various JRE platforms and still

producing the same result. Therefore, a IVHM application written in Java is compiled once and

can run across different Java-enabled embedded platforms (CPU: x86, PowerPC, ARM and OS:

Linux, Windows Embedded). The task of porting IVHM code to different embedded devices is

simplified. Moreover, until this end, our aims are to create a research software framework for

prototyping IVHM applications and effectively to ease the task of building IVHM technology

proof-of-concept demonstrations. This process is very experimental and highly iterative. It is

more productive to code in Java than to code in C++. The task of implementing the IVHM

algorithms is also reduced by using many well-developed open numerical or scientific libraries

(without a need for code re-compilation). Productivity (i.e. time and ease of development)

offered by Java outweighs performance offered by C++ in our case, where activities are mainly

on research and proof-of-concept prototyping.

III. Application Framework

A. Distributed Middleware – Enabling Technology

In distributed IVHM systems, low-level interoperability requires IVHM messages and access

methods (i.e. API) to be in a binary protocol that can be recognized by different distributed

components. Middleware consists of pieces of software that handle data communication between

distributed components. It sits between a low-level transport protocol (e.g. TCP, UDP) and an

application. It abstracts out low-level communication processes and allows applications to be

developed at a higher level. Data and API that are in a middleware-specific format will be

recognizable by the distributed components using that particular type of middleware.

The degree of interoperability depends on which middleware technologies are employed. It is

(Sreenuch et al, 2012a) 9

desirable to have a middleware that can provide a multi-language, cross-platform environment.

In this paper, Internet Communications Engine (ICE) is used as an underlying middleware for

implementing the IVHM framework. ICE is a descent version of Common Object Request

Broker Architecture (CORBA). It is open source and CORBA-like in terms of multi-language

and cross-platform. However, ICE is much smaller and less complex than CORBA.

In order to use or validate the information content of OSA-CBM messages, a mapping of UML

specification to specific programming language classes is required, see Fig. 4. The UML model

is first converted into ICE interface definition language (IDL) files, called slice. These files

contain OSA-CBM UML equivalent information, see Fig. 5 and 6. Note that slice files are

language-independent. The ICE compilation tool is then used to generate language-of-choice

classes. In our case, Java is the programming language of choice. The Java generated interface

and data classes are the equivalent of the OSA-CBM specification. At the high level, these

classes form parts of the OSA-CBM compliant framework and are also used in the development

of specialized Functions (see III.D). They are the data structure used for storing IVHM

information. Meanwhile, at the low level, they are used by the ICE components to

encode/decode binary OSA-CBM messages in the data communication process.

Fig. 3. OSA-CBM UML – Programming Language Mapping.

ICE

Compilation Tool

class OsacbmTime {

["protected"] LocalTime localTimeValue;

["protected"] OsacbmTimeType timeType;

["protected"] string time;

["protected"] LongValue timeBinary;

};

["java:getset"]

class DataEvent {

["protected"] LongValue id;

["protected"] Site siteValue;

["protected"] FloatValue confid;

["protected"] OsacbmTime time;

…

class OsacbmTime {

["protected"] LocalTime localTimeValue;

["protected"] OsacbmTimeType timeType;

["protected"] string time;

["protected"] LongValue timeBinary;

};

["java:getset"]

class DataEvent {

["protected"] LongValue id;

["protected"] Site siteValue;

["protected"] FloatValue confid;

["protected"] OsacbmTime time;

…

class OsacbmTime {

["protected"] LocalTime localTimeValue;

["protected"] OsacbmTimeType timeType;

["protected"] string time;

["protected"] LongValue timeBinary;

};

["java:getset"]

class DataEvent {

["protected"] LongValue id;

["protected"] Site siteValue;

["protected"] FloatValue confid;

["protected"] OsacbmTime time;

…

IDL

Interface and Data

Model

OSA-CBM

UML Specification

public class DataEvent {

protected Boolean alertStatus;

protected Float confid;

@XmlSchemaType(name = "unsignedInt")

protected Long id;

@XmlSchemaType(name = "unsignedInt")

protected Long sequenceNum;

protected Site site;

protected OsacbmTime time;

public Boolean isAlertStatus() {

return alertStatus;

}

…

public class DataEvent {

protected Boolean alertStatus;

protected Float confid;

@XmlSchemaType(name = "unsignedInt")

protected Long id;

@XmlSchemaType(name = "unsignedInt")

protected Long sequenceNum;

protected Site site;

protected OsacbmTime time;

public Boolean isAlertStatus() {

return alertStatus;

}

…

public class DataEvent {

protected Boolean alertStatus;

protected Float confid;

@XmlSchemaType(name = "unsignedInt")

protected Long id;

@XmlSchemaType(name = "unsignedInt")

protected Long sequenceNum;

protected Site site;

protected OsacbmTime time;

public Boolean isAlertStatus() {

return alertStatus;

}

…

Interface and

Data Classes

(Sreenuch et al, 2012a) 10

Fig. 4. IDL Example of OSA-CBM DataEvent Server Interface.

Fig. 5. IDL Example of OSA-CBM Data Model.

Note that different IVHM applications developed using different programming languages are

able to communicate with each other if the language-specific classes are generated from the same

OSA-CBM IDL files. Since the OSA-CBM interface and data model are used in the IVHM

interface EntryPointDataEventServer {

void addDataEventObserver(DataEventObserver deObserver);
void removeDataEventObserver(DataEventObserver deObserver);

};

interface DataEventObserver {

:Site getSite();
long getId();
void notifyDataEvent(DataEvent de);

};

interface EntryPointDataEventReciever {

void notifyDataEvent(DataEvent de);
};

...
class DataEvent {

 long id;
 Site siteValue;
 FloatOpt confid;
 OsacbmTime time;
 LongOpt sequenceNum;
 BoolOpt alertStatus;
};

class DADataEvent extends DataEvent {
 DataStatusOpt dataStatusValue;
 NumAlertSeq numAlerts;
};

class DAWaveform extends DADataEvent {

DoubleOpt xAxisStart;
 double xAxisDelta;
 DoubleArray values;
};
...

(Sreenuch et al, 2012a) 11

application framework, hence it is OSA-CBM compliant, from now the terms „IVHM

application‟ and „OSA-CBM module‟ will be used interchangeably.

B. Building Blocks

To allow reuse, configuration and extension, a component framework approach is adopted in

this paper. The framework aims to simplify development of IVHM applications. Several key

features are identified and built into the component model that stresses modularity and

extensibility. Fig. 6 illustrates a generic OSA-CBM module software structure. Its equivalent

UML diagram is shown in Fig. 7. The main components are described as follows:

Fig. 6. Generic Component Model.

XML configuration file

OSA-CBM Module

Processed

Data

Received

Data

DataEvent

Receiver

DataEvent

Server

DataEvent

ObserverDataEvent

ObserverDataEvent

Observer

Blackboard

Receive

FunctionFunction
Send

Function

(Sreenuch et al, 2012a) 12

Entry Points

The OSA-CBM interface specification‟s Subscription defines two interfaces for an OSA-CBM

module (see Fig. 3): DataEventServer and DataEventReceiver. DataEventServer is the interface

provided by an OSA-CBM module to other OSA-CBM modules that have an interest in

receiving data from it. When a module wants data from a server module, the requesting/client

module uses the server module‟s DataEventServer interface to make a request. During the

requesting process, the client module will provide a DataEventObserver to the server module.

The DataEventObserver contains a reference to the DataEventReceiver of the client and has the

notification method to be called by the server module when a new data is ready.

Fig. 7. UML Diagram of OSA-CBM Module.

Message Queues

The Received Data and Processed Data message queues, which are an instantiation of the

Queue class (recvData and procData shown Fig. 7), provide asynchronous communication

between OSA-CBM modules. A function call to update data returns immediately after the data

event has been inserted in the received data message queue. The processed data message queue

acts as a data buffer store before being sent to the subscribed OSA-CBM modules.

OsacbmModule

DataEventServerDataEventReceiver

Blackboard Function

DataEventObserverQueue

1
-dataEventServer1

1

-dataEventReceiver1 1

-deObservers0..*

1

-recvData, procData1..*

1

-blackboard1

1

-functions1..*

«interface»

EntryPoint_DataEventReceiver
«interface»

EntryPoint_DataEventServer

(Sreenuch et al, 2012a) 13

 Function

A Function is a self-contained software wrapper for the data processing algorithm so that it can

be used within an OSA-CBM module. Functions communicate only with the OSA-CBM

module‟s internal components, reacting to Blackboard data events and publishing results to the

Blackboard. More details of Function are described in III.D.

Blackboard

The Blackboard provides the Functions with the ability to specify and interact with data events

of specific interest to that Function, see also [13]. It acts as an OSA-CBM module‟s shared data

space. The Blackboard tracks all changes in the data event and distributes the updates to all

interested/subscribed Functions. It allows the instantiated Function objects to be uncoupled.

These few generic software components (Entry Points, Message Queues, Blackboard and

Functions) act as building blocks of an OSA-CBM module. The components are dynamically

loaded and connected together at application start time using given configuration information. In

terms of OSA-CBM application developments, developments would only have to focus on

specialized algorithms and data flow, rather than being concerned about the details of software

implementation and module communication.

C. Communication Model

In a distributed IVHM system, both intra- and inter-module communications are required to

process different IVHM data events. In this paper, design patterns are extensively used to

facilitate software component interaction. The patterns are suggested solutions, and their use

leads to robust and maintainable software code. Three distribution and concurrency patterns are

used in the framework; these are Publish/Subscribe, Observer and Producer/Consumer patterns.

The model of communication between Blackboard and Functions (intra module) is data-driven

via the Publish/Subscribe mechanism [14] (see Fig. 8) and is used to facilitate the intra-module

IVHM data processing. The Blackboard manages data flow between Functions inside an OSA-

CBM module. It tracks changes in the data events and distributes the updates to all interested

Functions. In this framework, the id of a data event is used as a subscribed topic. The Blackboard

allows the instantiated Function objects to be uncoupled. There is only one object that the

(Sreenuch et al, 2012a) 14

Functions need to known – the module Blackboard. The Blackboard minimizes the work

required to configure a complex dependency relationship between Functions. The

Publish/Subscribe pattern enables software reuse and configurability of IVHM data processing

algorithms.

Fig. 8. Publish/Subscribe Pattern.

In this framework, inter-module communications are carried out through the OSA-CBM

DataEvent Server interface. This interface implements the Observer Pattern [14] (see Fig. 9).

DataEventServer provides an interface for adding and removing observer objects. A

DataEventServer can have any number of dependent DataEventObservers. DataEventServer

notifies its observers whenever new data is ready. After being informed of an updated data event,

a DataEventObserver then notifies its associated DataEventReceiver if the data event id is in the

list of interested topics.

Fig. 9. Observer Pattern.

+setBlackboard(in bb : Blackboard)

+notify(in dataEvent : DataEvent)

Function

+update(in dataEvent : DataEvent)

Function

+addSubscriber(in topic : long, in func : Function)

+removeSubscriber(in topic : long, in func : Function)

+notify(in dataEvent : DataEvent)

Blackboard

1

-subscribers

**

-blackboard

1

blackboard.notify(dataEvent)
for all func in subscribers of topic id

 func.update(dataEvent)

Subject Change Manager
Observer

+addDataEventObserver(in deObserver : DataEventObserver)

+removeDataEventObserver(in deObserver : DataEventObserver)

+update(in dataEvent : DataEvent)

DataEventServer

+notifyDataEvent(in dataEvent : DataEvent)

+deReceiver : DataEventReceiver

DataEventObserver

Subject
Observer

1

-deObservers

*

for all deObserver in deObservers

 deObserver.notifyDataEvent(dataEvent)

if data id = subscribed topic

 deReceiver.notifyDataEvent(dataEvent)

(Sreenuch et al, 2012a) 15

The intra-module IVHM data processing depends on the data received from other OSA-CBM

module. The inter-module data communication likewise depends on the data generated by the

IVHM data process within the module. Despite these dependencies, the tasks in receiving,

processing and sending data can (and should) be executed in parallel. In this framework, the

Producer/Consumer pattern [15] is used to solve call blocking issues (see Fig. 10). Queues are

used as buffers for the received and processed data. The message queues decouple the intra-

module data processing from the inter-module data communication. The module‟s

DataEventReceiver can receive new incoming data while the IVHM algorithms (i.e. Blackboard

and Functions) are still processing previously received data. Similarly, the algorithms can keep

generating new processed data while the DataEventServer is still trying to send completed

processed data. Hence, the CPU can be fully utilized for both tasks.

Fig. 10. Producer/Consumer Pattern.

Fig. 11 shows an example scenario of intra- and inter-module data communication. In this

scenario, function #1 and #2 are wrappers for two IVHM data processing algorithms. The input

and output of function #1 are data events of id 0 and 3, respectively. function #2 processes two

input data events of id 1 and 2. Its output is a data event of id 4. The sequence diagram illustrates

the working mechanism of the combined Publish/Subscribe, Observer and Producer/Consumer

design patterns. Notice the parallelism among receiving, processing and sending tasks. For

example, while the data event of id 0 is being processed, the incoming data event of id 1 is

received and buffered in the recvData queue. It is similar for the data processing and sending

tasks. How an algorithm handles multiple inputs is also illustrated in the sequence diagram.

+notifyDataEvent(in dataEvent : DataEvent)

DataEventReceiver

Producer Consumer

1

-recvData

1

recvData.add(dataEvent) dataEvent = recvData.take()

+add(in dataEvent : DataEvent)

+take() : DataEvent

Queue

+perform()

ReceiveFunction1

-recvData

1

Received Data

(Sreenuch et al, 2012a) 16

Observe how function #2 buffers and synchronizes the input data (i.e. ids 1 and 2) before being

processed. Various user-specific techniques can be used to synchronize multiple input data

events. To this end, the Rendezvous pattern [16] is used to synchronize data for Functions. It is

simple and sufficient for most of our case studies, where all the inputs of an algorithm have

single data rate (SDR) and there is no significant latency related to the input data events (i.e. the

inputs are kept relatively synchronized).

Fig. 11. Data Communication and Processing Sequence Diagram.

D. Function Development

To allow rapid development and software reuse, an OSA-CBM module‟s functionality is based

around an object-oriented concept (see Fig. 12). The base classes of Function,

TransducerFunction, DataProcessingFunction, ReceiveFunction and SendFunction provide

common attributes and methods needed for basic functionalities and communications between

software components within an OSA-CBM module. A specialized Function class is constructed

by extending/inheriting from one of the base Functions, e.g. NiDAQmxFunction, FilterFunction,

DcOffsetFunction, TsaFunction, KurtosisFunction, ResidualFunction, FftFunction,

Ena4Function and BayesFunction in Fig. 12. The class colors highlight the OSA-CBM abstract

functionalities described in II.A. Its algorithm-specific behaviors are implemented by overriding

the pre-defined methods of the inherited Function.

dataEventReceiver recvData receiveFunctionblackboard sendFunction dataEventServer

add(dataEvent)
dataEvent = take()

deObserverfunction #1 procDatafunction #2

perform()

dataEvent = take()

dataEvent = take()

dataEvent = take()

perform()

dataEvent = take()

add(dataEvent)
notifyDataEvent(dataEvent)

notifyDataEvent(dataEvent)

notifyDataEvent(dataEvent)

add(dataEvent)

notify(dataEvent)

update(dataEvent)

notify(dataEvent)

update(dataEvent)
add(dataEvent)

notify(dataEvent)

update(dataEvent)

update(dataEvent)

notify(dataEvent)

update(dataEvent)
add(dataEvent)

notifyDataEvent(dataEvent)

notifyDataEvent(dataEvent)

notifyDataEvent(dataEvent)

notifyDataEvent(dataEvent)

notify(dataEvent)

id = 0

id = 1

id = 2

id = 3

id = 4

update(dataEvent)

update(dataEvent)

(Sreenuch et al, 2012a) 17

Fig. 12. Base and Gearbox-Related Specialized Functions.

Fig. 13 gives an example of how an Infinite Impulse Response (IIR) filtering functionality is

implemented in this OSA-CBM framework. FilterFunction is constructed by inheriting the

DataProcessingFunction. Filter characteristics are determined by coefficients of a filter‟s

numerator and denominator [17]. The configure() method reads a given configuration (i.e.

algorithm) which is encoded in the OSA-CBM Algorithm-type data format [11] and then

appropriately set the filter parameters order, num and den to the required specific values. The

perform() method reads an input data event, executes the filtering process VibUtils.filter(…) and

packages its output data into the OSA-CBM format. In this example, a generic VibUtils.filter(…)

algorithm is wrapped to create a configurable FilterFunction component.

+configure() : void
+perform() : void

+subTopics : Map

+inputData : Map

+pubTopics : Map

+outputData : Map

+blackboard : Blackboard

-algorithm : Algorithm

Function

+trigger : Timer

TransducerFunction

+update(in de : DataEvent) : void

DataProcessingFunction

+recvData : Queue

ReceiveFunction

+update(in de : DataEvent) : void

SendFunction

+nPoints : int

FftFunction

+ratio : double

TsaFunction
+name : string

+nChans : int

+rate : double

+nSamps : int

#calib : double

NiDAQmxFunction
+order : int

#num : double

#den : double

FilterFunction

#mean : Vector

#cov : Matrix

#prob : Vector

BayesFunction

DcOffsetFunction

+meshFrq : int

ResidualFunction

KurtosisFunction

+var : double

Ena4Function

Data Acquisition (DA)

Data Manipulation (DM)

State Detection (SD)

Health Assessment (HA)

Prognosis Assessment (PA)

Advisory Generation (AG)

(Sreenuch et al, 2012a) 18

Fig. 13. Implementation Example of Specialized Function.

In this way, Functions bring data processing functionality to an OSA-CBM module; they

together are the essential compute engine of an OSA-CBM module. This approach allows a data

processing flow or a complex algorithm to be built using a combination of simple specialized

Functions. This flexibility allows the developer to easily reuse pre-developed Functions in OSA-

CBM module construction or customize a IVHM application to meet a required IVHM

functionality.

Import ivhm.VibUitls;

class FilterFunction extends DataProcessingFunction {

private int order;
private double num[]; // Numerators
private double den[]; // Denominators

// filter-specific configuration, i.e. order, numerators and denominators
// are the algorithm parameters
@override public void configure() {
order = algorithm.inputInts.get(0).value; // setting filter order

// setting filter coefficients - numerators
num = new double[order+1];
for (int i=0; i<(order+1); i++) {

num[i] = algorithm.inputReals.get(i).value;
}
...
}

// filter-specific data process, i.e. IIR filtering
@override public void perform() {
...
// filter input waveform, num and den are the filter coefficients
wf = VibUtils.filter(num, den, ((DAWaveform)de).values);
...
// package output waveform into an OSA-CBM data format
((RealWaveform)filteredDE).values = wf;
...
}
...

}

(Sreenuch et al, 2012a) 19

IV. Example

A. Gearbox Health Monitoring

A gearbox vibration monitoring example is chosen to demonstrate the adequacy and

effectiveness of the distributed IVHM software development framework. The purpose of the

IVHM system is to monitor the vibration signals produced by the gearbox and determine the

level of damage (or fault) of its pinion gear. Fig. 14 shows the experimental platform and the

related IVHM data processing chain. In this setup, an accelerometer is mounted on top of the

gearbox to measure the vibration in the axial dimension, and an optical sensor is used to provide

a one pulse per revolution signal used for measuring the speed of the gear shaft. A data

acquisition board is used to continuously collect 20 s batch data for the vibration analysis at the

rate of 25 kHz.

Fig. 14. Screenshot of Gearbox Health Monitoring Technical Display.

(Sreenuch et al, 2012a) 20

The data processing algorithms used in this paper range from data manipulation to state

detection. Based on collected data and an extensive analysis, a combination of Kurtosis and

NA4* (or ENA4) of the axial vibration is sufficient for accurate fault detections in this particular

system. Note that we only outline one possible example of data processing flow in this paper, an

extensive discussion of the gearbox vibration analysis can be found in [18]–[20]. To determine

the condition of the gearbox, the raw tacho and acceleration signals are first conditioned by

passing through the low-pass filters and the DC offset remover. The random vibrations and

external disturbances are further removed by averaging multiple data segments, each segment

equals to one revolution of the gear shaft. This technique is known as Time Synchronous

Averaging (TSA). In addition, the shaft rotation speed can also be obtained during the TSA

computation. The Kurtosis and NA4* features are then extracted from the TSA and residual

signals, respectively. The residual is computed by removing the shaft frequency and gear mesh

harmonics from the TSA signal. The aim is to have an analytic signal (i.e. the residual signal)

which is less dependent on the speed and load of the gearbox. The Bayesian classifier processes

the Kurtosis and NA4* input features and determines the gearbox condition based on the

statistical properties of the training data.

B. Applying the Framework

The development framework described in III is employed in building the OSA-CBM based

embedded IVHM system. The first step of the implementation is to categorize the underlying

algorithms according to the ISO 13374 abstract functionalities shown in Fig. 1, i.e. DA – NI

DAQmx, DM – Filter, DC Offset, TSA, Kurtosis, Residual, NA4*, FFT and SD – Bayesian

Classifier. In this paper, the NI DAQmx C library and Java Native Interface (JNI) are used for

low-level communication with the NI data acquisition board, and the vibration processing

algorithms are implemented based on the Java Apache Commons Mathematics Library. These

generic vibration algorithms are then wrapped to form an OSA-CBM algorithms library by

extending/inheriting either the TransducerFunction or DataProcessingFunction, and the resulting

gearbox vibration analysis specific Functions are shown in Fig. 12. Note that the implemented

algorithm wrappers (i.e. Functions) are generic and configurable (see Fig. 13). The configuration

parameters can be the number of inputs and outputs, expected input data type and algorithm

(Sreenuch et al, 2012a) 21

parameters.

Fig. 15 gives a concrete example of how a Function can be implemented to have non pre-

defined number of inputs and parameters‟ dimension. Bayesian classifier is a classification

algorithm which is generalized for n-dimensional space [21]. The classifier parameters (i.e. mean

vectors, co-variance matrices and prior probability vectors) can be any dimensions depending on

the dimension of input vector (or feature vector) and the number of enumerated classes. In

BayesFunction, the classifier characteristics are determined by nFeatures, nClasses, mean,

covariance and priorProb parameters. The configure() method reads a given configuration and

then appropriated set the parameters to the required specific sizes, dimensions and values. In

configure() method, the mean vectors are initialized to the required number. Each vector is then

configured to have a required dimension and finally its vector components are one-by-one set to

the specific values. The configuration steps are similar for covariance and priorProb which the

details are omitted to simplify the figure. The perform() method unpacks input OSA-CBM data

events and re-packages the data into the format required by the classification algorithm. The

number of input data events is determined by the configurable nFeatures parameter.

VibUtils.bayesClassify(...) is then called to execute the classification process, and its return output

is finally packaged into the OSA-CBM data format. In this example, a generic algorithm (i.e.

VibUtils.bayesClassify(...)) is wrapped to create a highly generic configurable BayesFunction

component which can be reused in different IVHM data processes.

(Sreenuch et al, 2012a) 22

Fig. 15. Implementation Example of Algorithm Wrapper – BayesFunction.

import ivhm.VibUitls;
import org.apache.commons.math.linear.*;

class BayesFunction extends DataProcessingFunction {

private int nFeatures; // dimension of input vector
private int nClasses; // number of classes
private RealVector[] mean; // mean vectors
private RealMatrix[] covariance; // covariance matrices
private RealVector[] priorProb; // prior probabilities

// Bayes-specific configuration, i.e. dimension, number of classes, mean,
// covariance and prior probabilities are the algorithm parameters
@override public void configure() {
 nClasses = algorithm.inputInts.get(0).value; // setting vector dimension
 nFeatures = algorithm.inputInts.get(0).value; // setting number of classes

// setting mean of each classes
mean = new RealVector[nClasses];
for (int i=0; i<nClasses; i++) {
 mean[i] = new ArrayRealVector(nFeatures);
 For (int j=0; j<nFeatures; j++) {
 int idx = i*nFeatures + j;
 mean[i].setEntry(j, algorithm.inputReals.get(idx).value);
 }
}

 ...
}

// Bayes-specific data process, i.e. classification based on probabilities
@override public void perform() {
 ...
 // unpackage OSA-CBM input data into a feature vector
 RealVector features = new ArrayRealVector(nFeatures);
 for (int i=0; i<nFeatures; i++) {
 features.setEntry(i, ((DMReal)dataEvents[i]).value);

}
 ...
 // determine which class based on given features and statistical properties

// of the based data.
int damageLevel = VibUtils.bayesClassify(features, mean, covariance, priorPob);

 ...
 // package output state into an OSA-CBM data format
 ((SDInt)levelDEfilteredDE).value = damageLevel;
 ...
}
...

}

(Sreenuch et al, 2012a) 23

Fig. 16 shows the network setup of the distributed IVHM system. The objective of this system

is to partition the IVHM data processing chain described in IV.A and to distribute the algorithms

to form a hierarchical IVHM system. In this setup, the OSA-CBM module #1 hosts the

ReceiveFunction, NiDAQmxFunction, FilterFunctions, DcOffsetFunction, TsaFunction and

SendFunction. It runs on the sensor node which is an Intel Atom D510 single-board computer

attached to NI data acquisition board and has Windows XP Embedded, Java SE 6 and NI

DAQmx C library installed. This OSA-CBM sensor node is for acquiring the tacho and vibration

signals and to perform low-level data processing from filtering up until TSA. In this phase of

data processing, for each 20 s batch data, the vibration information is compressed from 500,000

samples of tacho signal and 500,000 samples of acceleration signal to a TSA signal of 4,096

double data points.

Fig. 16. Distributed Gearbox Health Monitoring System.

The OSA-CBM module #2 hosts the ReceiveFunction, KurtosisFunction, ResidualFunction,

Ena4Function, FftFunction, BayesFunction and SendFunction. It runs in the health reasoner

which is a Freescale MPC8641D flight- worthy single-board computer and has a pre-compiled

(Sreenuch et al, 2012a) 24

Linux file system from the Embedded Linux Development Kit (ELDK) version 4.2 and

OpenJDK 6 installed. The health reasoner extracts the Kurtosis and NA4* features from the TSA

data generated by the sensor node and determine the current health state of the gearbox.

At each OSA-CBM module start time, the module specific binary configuration file is loaded

and the module is created by means of runtime instantiation and configuration of the pre-

compiled Functions. The configuration file contains the module description, a description of

algorithms (incl. parameters) used for data processing and lists of individual algorithms‟ inputs

and outputs.

Note that the current experimental setup can be extended by having a high-level IVHM system

take more pre-processed data from other local sensor nodes (e.g. another current sensor and

processing node attached to the motor). The high-level module can then fuse all the data

available and perform a more thorough system-level condition monitoring, for example, an

overall drive-train system condition monitoring.

V. Demonstration

To display the output data from the OSA-CBM embedded nodes, we create a small MATLAB

GUI displays shown in Fig. 14. The m-files are compiled into deployable Java classes using

MATLAB Builder JA (for Java language). The Java display module integrates the deployable

Java classes (i.e. compiled MATLAB GUI components) for the graph plotting and text updating

functionalities and also implements the standardized OSA-CBM DataEventReceiver interface for

interoperability with the OSA-CBM modules.

In this setup, a static executive module (a small Java console program) is used to manage the

data subscription or un-subscription between the OSA-CBM module #1, OSA-CBM module #2

and display program. The subscription and data updating mechanisms follow the design pattern

shown in Fig. 9.

The CM data process operates at the fixed rate schedule of 20 s timeframe. The mean elapsed

time between the point when the raw tacho and acceleration data are acquired and the condition

level of the gearbox is computed is <1 s, which is specifically less than the timeframe required

(Sreenuch et al, 2012a) 25

for real-time operation. Note that this level of computational power is typical for the embedded

single-board computers used in aerospace vehicles.

The data subscription or un-subscription between the OSA-CBM module #1 and #2 can be

established dynamically at any time during the operation, through the addDataEventObserver(...)

and removeDataEventObserver(...) APIs. Once a connection is established, the module #1

pushes the updated data to the module #2, and the module #2 responses to the arriving data

events generated by the module #1. On the other hand, once the un-subscription is requested, the

module #1 stops sending the updated data to the module #2. The module #2 effectively becomes

idle, waiting for the incoming data events.

VI. Performance Overhead

In this framework, the requirements of interoperability, rapid prototyping and data processing

reconfiguration are met through the use of common software structure, configurable software

components and OSA-CBM interface. However, despite the benefits of the framework, what is

the performance overhead added by using such a framework? This question is often asked by

IVHM implementers when considering alternative approaches to developing IVHM applications.

One fundamental measure of the computation platform is speed. In this paper, speed means the

elapse time to perform an IVHM data processing task. The IVHM data process shown in Fig. 14

is used in the test. Three configurations are considered (see Table 1): 1. The IVHM data process

is implemented as a Java program. 2. The whole IVHM data process is wrapped in one Function

and then packaged in an OSA-CBM module. The ComboFunction used in the configuration #2

cannot be reused and configured. 3. Wrappers are created for the individual algorithms and then

packaged in an OSA-CBM module. This configuration gives maximum reusability and

configurability.

(Sreenuch et al, 2012a) 26

Table 1

CPU Overhead

 Note: Trapezoidal – an instantiation of Function class shown in Fig. 12. <Elapse Time> are results from

 averaging over 1,000 data processing cycles. <Overhead> are results from averaging over 1,000,000

 iterations of (un-)packaging between raw and OSA-CBM data formats.

The speed test results shown in Table 1 are obtained using the Intel Atom D510 single-board

computer running Windows XP, but this result is found to be counter intuitive. The elapse time

for configuration #1 should be the lowest followed by configuration #2. Nevertheless, the

differences are very small, i.e. ~2.5% of each configuration. This indicates a very small overhead

added by the framework. In this case, the fluctuation caused by the JVM garbage collection and

XP OS have more effect on the computation than the framework.

To determine precisely the size of the overhead, a program to package and un-package data

and metadata between their raw and OSA-CBM formats was created. For the configuration #2,

only the gear health level (an integer) is packaged into an SDInt data. For configuration #3, data

are packaged when the Functions output the data and unpackaged when the Functions receive the

data. The overhead are 0.003 and 0.199 ms for configurations #2 and #3, respectively. It only

costs 0.05% of the total CPU time to obtain maximum reusability and configurability, i.e.

Configuration <Elapse Time> <Overhead>

1. 427.075 ms N/A

2. 418.136 ms 0.003 ms

3. 416.817 ms 0.199 ms

(Sreenuch et al, 2012a) 27

configuration #3. The CPU overhead added by the framework is negligible in this case.

Note that the effort to package/un-package between raw data and metadata and OSA-CBM

data format will depend on the data structures used to store the information. For example,

RealWaveform uses an array of double data type to store waveform data. If an algorithm also

produces a double array as an output, then we can expect a very small overhead. For a contrary

example, CmplxFrqSpect uses two double arrays to store a spectrum data. If an FFT algorithm

generates an array of Complex (a data structure for complex numbers used in Apache Commons

Mathematics Library), then we have to un-wrap the real and imaginary double values from each

Complex value in the array and then store them in two arrays of double data. We then expect a

higher overhead (but not excessive) for this example.

Other important measures of performance are bandwidth and latency. In this paper, latency

means the amount of time it takes for a client to invoke a data notification method in a server.

The sending of TSA data events from the OSA-CBM module #1 to the OSA-CBM module #2 is

considered. Three data notification settings are used in this test (see Table 2): 1. Only TSA

waveform information, which is an array of 4096 double data points, is being sent. 2. TSA

waveform and metadata are being sent. 3. RealWaveform data containing both TSA and

metadata is being sent, i.e. data communication between OSA-CBM modules. This setting gives

interoperability to the data.

The bandwidth and latency test results shown in Table 2 are obtained using the Intel Atom

D510 and Freescale 8641 PowerPC single-board computers. The client-server configuration is as

shown in Fig. 16. For the setting #1 and #2, a client and server programs is created to perform

the task. For the setting #1 and #3, the average bandwidth and latency are similar. The OSA-

CBM overhead is 0.086 kbits/s for the bandwidth and 0.003 ms for the latency, which are

equivalent to 0.66% and 2.59% respectively. However, the overhead is significant higher if the

metadata to be sent separately. The setting #2 has the overhead of 0.215 kbits/s bandwidth and

0.084 ms latency, which are 1.64% and 72.41% respectively. In each distributed method

invocation, there is a header added to the data packet and a connection to establish. Hence, a

significant overhead is incurred for the second setting. It can be seen that the bandwidth and

latency overhead of data interoperability is very small. In fact, the OSA-CBM data model used in

our framework helps to reduce bandwidth and latency if having to send both data and its

metadata.

(Sreenuch et al, 2012a) 28

Table 2

Bandwidth Overhead

 Note: The experiments were carried out on a Gigabit Ethernet link. <Latency> are results from

 averaging over 1,000 iterations. <Bandwidth> are captured using WireShark. The results are

 average bandwidth of continuing runs of 20s data notification cycle.

In addition to latency and bandwidth, how responsive of an OSA-CBM module is to an

incoming data event is another performance related metric. However, this is not an OSA-CBM

performance overhead but it is worth discussing for completeness. The responsiveness will

depend on computational load of the OSA-CBM module. In this example, ~0.417 s is the time

that takes to compute a 20s batch data event. The data process can be completed ~19.5 s before a

new data event arrives, and hence ~0 s waiting time is expected. In our case, the available CPU

resource could allow other 40 more of similar IVHM data processes to be packaged in the OSA-

CBM module. In this framework, data events are processed in a sequential manner. While a data

event is being processed, other incoming data events will be buffered in the message queue. For

simplicity, let consider an OSA-CBM module with 40 data processes, each of which takes 0.417

s to complete. In this framework, data events are processed on a first come, first serve (FCFS)

basis, therefore on average it will take

Data <Bandwidth> <Latency>

1. 13.032 kbits/s 0.116 ms

2. 13.247 kbits/s 0.200 ms

3. 13.118 kbits/s 0.119 ms

+id : unsigned int

-time : OsacbmTime

-xAxisStart : double

+xAxisDelta : double

#realValues : double

RealWaveform

+id : unsigned int

-time : OsacbmTime

+xAxisDelta : double

#realValues : double

RealWaveform

#realValues : double

-time : OsacbmTime

+xAxisDelta : double

+id : unsigned int

#realValues : double

(Sreenuch et al, 2012a) 29

s 132.8
402

40)140(417.0

2

)1(
Time Waiting

N

NNT
 [22]

for an incoming data event to be processed. The maximum waiting time however will simply be

(40-1)×0.417 = 16.263 s. In this simple example, it can be seen that how responsive a module is

will depend on a number of data processing tasks and their required CPU loads. However, for

non-identical data processes, scheduling and how to configure an OSA-CBM module in a limited

resource environment will require substantial further research which can be an area of expansion

in the future.

VII. Conclusion and Discussion

A standard like OSA-CBM benefits in easing integration of multiple vendors‟ IVHM software

components. The interoperability issue is addressed through the common standardized interface

and data model. To the IVHM application developers, OSA-CBM saves considerable time and

effort required to develop an architecture and related data classes. The developer can make use of

the already well designed API and data model.

To enable reuse, data process partitioning with configurable and rapid deployment, a

development framework like the one described in III is required. The proposed component model

eases the IVHM implementation process as the common/generic IVHM tasks are handled by the

framework and the developed OSA-CBM algorithm wrappers can be reused in a new

application. Developers can concentrate on the application logic, i.e. IVHM data processing and

resource allocation, rather than being concerned about the details of software implementation

and data communication. With pre-existing OSA-CBM algorithm libraries, the task of creating a

new IVHM application could be simplified to a matter of writing the OSA-CBM module

configuration files.

Interoperability and rapid prototyping are key requirements in this paper. The framework

addresses the interoperability requirement through its underlying OSA-CBM data model and

OSA-CBM remote interface. In this framework, algorithms are formatted into standardized

configurable Functions, which form a reusable OSA-CBM algorithm library. Moreover, OSA-

CBM modules developed using this framework share a common software structure. Since the

(Sreenuch et al, 2012a) 30

software structure is known in advance and its components are standardized, hence a rapid

prototyping is possible. Based on a given configuration information, a configuration software can

be used to dynamically configure/instantiate an OSA-CBM module (as used in this paper) or

auto-generate static code to be further compiled into an executable OSA-CBM module. In the

gearbox example, the interoperability and rapid prototyping are demonstrated. For this particular

test example, the empirical evaluation shows small performance overhead in terms of CPU,

bandwidth and latency. In particular, bandwidth and latency are actually improved if the data and

metadata are packaged and sent in the OSA-CBM data format.

In this paper, the framework is demonstrated through a gearbox example. However, this is only

one example, and hence the question that follows would then be “How generic can the

framework be?”. In generic sense, most (if not all) IVHM data processes can be constructed

using multiple discrete generic/specialized algorithms. These algorithms are connected forming a

data processing flow which will probably be similar to the diagram shown in Fig. 14. In this way,

specialized Functions can be created (or reused) for the algorithms in the data process as

similarly shown in Fig. 12. These Functions are then packaged into an OSA-CBM module and

configured according to the specified input/output and parameter information. Therefore, if an

IVHM data processing flow is transparent in terms of algorithms and relationships between

them, then it is likely that the proposed framework will be applicable.

If an IVHM network is relatively fixed, then connections between OSA-CBM modules are

usually pre-configured and run-time data (un-)subscriptions are then redundant. However, IVHM

is still a relatively immature area, and hence insertion of IVHM technologies is likely to be

incremental based on availability of resources or technologies. Moreover, proof-of-concept

activities are expected to be integrated and carried out with an existing IVHM system. In a

dynamic changing IVHM network, if a need of rework for affected OSA-CBM modules is to be

minimized, then dynamic data subscriptions will become a necessary feature. The remote

interface like OSA-CBM facilitates proof-of-concept activities and dynamic connections of a

new OSA-CBM module or other IVHM-related devices (e.g. Portable Maintenance Aid). Note

that IVHM systems gear towards maintenance purposes. The requirements can be less stringent

than what is required in the safety critical systems (SCSs). Hence, dynamic data subscriptions,

which do not exist in SCSs, could be a possible attribute in the IVHM systems.

In this paper, Java is used to implement the proposed framework primary due to its

(Sreenuch et al, 2012a) 31

productivity. However, C++ is a widely used programming language in the development of

embedded applications. Hence, “Can this framework be implemented using C++?” is worth

discussing. Within OSA-CBM module, data events (or references) are passed between Entry

Points, Message Queues, Blackboard and Functions. There is no centralized component that will

keep track the usage of data events. This will in general create a memory leak in C++ unless a

garbage collection is used. However, in order to utilize the garbage collection, additional related

smart pointer classes must be implemented either by coding manually or auto-generated

depending on the employed middleware. If ICE is the underlying middleware technology, then

the associated smart pointer classes are auto-generated together with the OSA-CBM C++ classes.

Hence, in terms of memory, it will be straightforward to implement this framework in C++.

In addition, reflection is not supported in C++. In Java, reflection enables Class information of

an object to be easily identified. Now, let consider the remote method notifyDataEvent(in

dataEvent : DataEvent) in Fig. 3. “How do we make correct type-casting of a DataEvent?” is

another issue if C++ is to be used. Port is a class within OSA-CBM‟s Configuration data classes

for storing module (or algorithm)‟s input/output information (e.g. id, OsacbmDataType) [11]. An

OSA-CBM module (or a Function object) can appropriately typecast a receiving DataEvent

object using the pre-supplied input/output configuration information. This way, a highly generic

Function class can be developed to allow multiple input/output data event types.

Acknowledgment

This work was funded by Integrated Vehicle Health Management Centre, Cranfield University,

UK. The authors would like to thank the IVHM Centre‟s industrial partners (BAE Systems,

Boeing, Meggitt, Rolls-Royce and Thales) for giving numerous feedbacks and suggestions

throughout the development of this work and also for helping in many other ways. The authors

would also like to thank the reviewers and associated editor for their comments which essentially

help to improve the manuscript.

(Sreenuch et al, 2012a) 32

References

[1] K. Swearingen and K. Keller, “Health ready systems,” in Proceedings of the IEEE

AUTOESTCON, Baltimore, MD, 2007, pp. 625–631.

[2] IEEE, IEEE 1451.1 Standard for a Smart Transducer Interface for Sensors and Actuators –

Network Capable Application Processor (NCAP) Information Model. The Institute of

Electrical and Electronics Engineers, Inc., 1999.

[3] K. B. Lee and R. D. Schneeman, “Distributed measurement and control based on the IEEE

1451 smart transducer interface standards,” IEEE Transactions on Instrumentation and

Measurement, vol. 49, no. 3, Jun. 2000, pp. 621–627.

[4] K. B. Lee and R. D. Schneeman, “Internet-based distributed measurement and control

applications,” in IEEE Instrumentation & Measurement Magazine, Jun, 1999, pp. 23–27.

[5] E. A. Batista, L. Gonda, A. C. R. da Silva, S. R. Rossi, M. C. Pereira, A. A. de Carvalho and

C. E. Cugnasca, “HW/SW for an intelligent transducer network based on IEEE 1451

standard,” Computer Standards & Interfaces, vol. 34, no. 1, 2012, pp. 1–13.

[6] N. Kularatna and B. H. Sudantha, “An environmental air pollution monitoring system based

on the IEEE 1451 standard for low cost requirements,” IEEE Sensors Journal, vol. 8, no. 4,

Apr. 2008, pp. 415–422.

[7] K. Swearingen, W. Majkowski, B. Bruggeman, D. Gilbertson, J. Dunsdon and B. Sykes, “An

open system architecture for condition based maintenance overview,” in Proceedings of the

IEEE Aerospace Conference, Big Sky, MT, 2007, pp. 3717–3724.

[8] D. Espindola, L. Fumagalli, M. Garetti, S. Botelho and C. Pereira, “An adaptation of OSA-

CBM architecture for human-computer interface through mixed interface,” in 9th IEEE

International Conference on Industrial Informatics, Lisbon, 2011.

[9] L. H. Xia, L. Q. Rong, M. Zhao, L. X. Wang and Q. Man, “Research on open system

architecture for equipment health management based on OSA-CBM,” in IEEE International

Conference on Intelligent Computing and Intelligent Systems, Xiamen, 2010.

[10] L. Li, Y. L. Qian, K. Du and Y. M. Yang, “A fast development framework for condition-

based maintenance systems,” in the 2
nd

 International Conference on Mechanical and

Electronics Engineering, Kyoto, 2010.

[11] MIMOSA, OSA-CBM UML Specification 3.3.1 Release. Machine Information Management

Open Systems Alliance, 2010.

(Sreenuch et al, 2012a) 33

[12] ISO, 13374-2 Condition Monitoring and Diagnostics of Machines – Data Processing,

Communication and Presentation – Part 2: Data Processing. International Organization for

Standardization, 2007.

[13] A. Helsinger and T. Wright, “Cougaar: a robust configurable multi-agent platform,” in

Proceedings of the IEEE Aerospace Conference, Big Sky, MT, 2005.

[14] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley. 1995.

[15] M. Grand, Patterns in Java: A Catalog of Reusable Design Patterns Illustrated with UML.

Wiley. 1998.

[16] B. Douglass, Real-Time Design Patterns: Robust Scalable Architecture for Real-Time

Systems. Addison-Wesley. 2003.

[17] S. Stearns and D. Hush, Digital Signal Processing in MATLAB, second edition. CRC Press.

2011.

[18] M. Lebold, K. McClintic, R. Campbell, C. Byington and E. Song, “Review of vibration

analysis methods for gearbox diagnostics and prognostics,” in the 54
th

 Meeting of the Society

for Machinery Failure Prevention Technology, Virginia Beach, VA, 2000, pp. 623–634.

[19] P. Vecer, M. Kreidl and R. Smid, “Condition Indicators for Gearbox Condition Monitoring

Systems,” Acta Polytechnica,vol. 45, no. 65, 2005, pp. 35–43.

[20] L. Gelman, I. K. Jennions nad I. Petrunin, “Detection of chipped tooth in gears by the novel

vibration residual technology,” International Journal of the PHM Society, vol. 2, no.2, 2011.

[21] F. van der Heijden, R. Duin, D. de Ridder and D. Tax, Classification, Parameter Estimation

and State Estimation: An Engineering Approach using MATLAB. John wiley & Sons. 2004.

[22] J. Saltzer and M Frans Kaashoek, Principle of Computer System Design: An Introduction.

Morgan Kaufmann. 2009.

