
(Sreenuch et al, 2012a) 1 

 

 

 

Integrated Vehicle Health Management (IVHM) is a major component in a new future 

fleet management paradigm where a conscious effort is made to shift aircraft maintenance 

from an unscheduled, reactive approach at the time of failure to a more proactive and 

predictive approach. Its goal is to maximize fleet operational availability while minimizing 

logistics footprint through monitoring deterioration of equipment conditions. A 

comprehensive IVHM system will be executed in an environment that includes different 

sensor technologies, multiple information systems and different data models. IVHM 

implementers have therefore to deal with an integration problem that involves different 

specialized algorithms and embedded hardware platforms. IVHM applications will have 

common execution logic and many will share the same data processing algorithms, hence 

development productivity and quality of IVHM applications can be increased through 

reusable software building blocks and algorithm libraries, or in particular by using a 

software development framework. 

This paper presents an approach to distributed IVHM systems that offers reusable 

software architecture for a class of IVHM applications. The focus of this paper deals with 

an open software framework for development of IVHM applications stemming from the 

Open System Architecture for Condition Based Maintenance (OSA-CBM) specification, 

which is an architecture promoting interoperability, and a component framework that 

enables reuse, data process partitioning, configuration and rapid prototyping. The 
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framework is developed using Java and Internet Communications Engine (ICE) 

distributed middleware and its application is demonstrated through a gearbox health 

monitoring system, where the IVHM software is deployed on the distributed embedded 

devices. This approach provides software enabled capability to distribute/re-configure the 

IVHM data process (through the OSA-CBM common interface and data model) across the 

hardware platforms to meet the given system configuration. The performance evaluation 

for the test example shows negligible overhead in CPU, bandwidth and latency when using 

the framework. 

 

 

I. Introduction 

Integrated Vehicle Health Management (IVHM) involves data processing which 

comprehensively consists of capturing data related to aircraft components, monitoring 

parameters, assessing current or future health conditions and providing recommended 

maintenance actions. In today‟s globally competitive environment, operators are seeking to 

maximize their fleet usage and hence to demand a comprehensive fleet management system. 

More reliance is now being placed on IVHM systems to extend functional life of the fleets and to 

allow repairs to maximize affordability [1]. From the systems development view point, the major 

obstacles in implementing IVHM systems are: the development of software systems for platform 

distributed embedded devices and the integration of the existing/new IVHM components. A 

software development framework that makes use of open standards and allows software reuse 

would provide a great deal of benefit toward ease of proof-of-concept prototyping, development 

and integration between IVHM components.  

Several related examples of distributed IVHM system are reported in the literature. However, 

these examples only address the measurement and control problems, notably those based on the 

IEEE 1451 smart transducer interface standards [2]. In the IEEE 1451 based implementation, the 

Network Capable Application Processer (NCAP) is used to enable the distribution of the 

measurement and control of the systems. Its applications are found in the areas of water 

management [3]–[4], industrial automation [5] and environmental air pollution monitoring [6]. 

Despite IEEE 1451 standard maturity, [3]–[6] were not implemented using any application 
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frameworks. They were hard-coded, and hence a significant effort would be required if there are 

to be changes (or updates) in the system. In fact, there are currently no projects reported in the 

literature actively working on the software framework that will allow rapid deployment (or 

prototyping) of IEEE 1451 applications.    

 In IVHM applications, there are many more data processing steps apart from measurement 

and signal conditioning. Interoperability between multiple vendors‟ components is central in a 

distributed IVHM system. Moreover, the data generated by the IVHM components should be 

able to map into the maintenance database for further maintenance operations or data mining. 

Open System Architecture for Condition Based Maintenance (OSA-CBM) is an emerging open 

standard which in particular addresses interoperability and enterprise systems integration [7]. 

[8]–[10] describe concepts in developing an IVHM retated application. In these papers, IVHM 

software is systematically modularized based on the standardized abstract data processing 

functionalities. However, the papers somewhat fall short as the interoperability and 

implementation issues are not addressed. In [7], IVHM applications employ OSA-CBM as a 

standard for data exchange. The standard is implemented using C++ and MATLAB/Simulink. In 

the paper, in addition to interoperability, rapid deployment and re-configuration are identified to 

be the future capabilities that will benefit the IVHM development and integration efforts. Until 

now, there is no open software development framework for generic embedded IVHM 

applications reported in the literature. Hence, a need exists to create a framework which will 

enable IVHM implementers to accelerate or ease the development (or prototyping) process and 

configuration of IVHM applications. In addition, such a framework should also make use of 

open standards (e.g. OSA-CBM) where appropriate. The framework and its usage example will 

be the contribution of this paper. 

The outline of this paper is as follows: II describes the OSA-CBM specification and what is 

required for development of the framework. III outlines the proposed software development 

framework and describes the middleware technology used for implementing the framework. An 

example of how the proposed framework is applied to a specific IVHM application, i.e. gearbox, 

is described in IV and V. VI evaluates the performance overhead in terms of both CPU and 

bandwidth. VII discusses the benefits of the software framework, and then concluding remarks 

are made. 
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II. Background and Motivation 

A. OSA-CBM Specification 

The OSA-CBM specification [11] is an open standard architecture for moving information in a 

condition based maintenance system. Its goal is to address requirements for interoperability 

between multiple vendors‟ IVHM components. OSA-CBM is divided into the interface 

specification and information specification (or data model). These specifications are defined 

using the Unified Modeling Language (UML) and are intended to be platform independent. They 

can be mapped into various programming languages and middleware technologies. 

 

Data Model 

The OSA-CBM data model is based on the concept of metadata, i.e. OSA-CBM data are 

always identifiable and traceable. The aim is to have data that supports the database centric 

maintenance information management. In fact, OSA-CBM data can be mapped into any 

MIMOSA-compliant relational database maintenance systems with ease. There are 4 primary 

OSA-CBM data classes: DataEvent, Configuration, Explanation and Extensible. Configuration 

gives information about a IVHM application‟s input sources, a description of algorithms used for 

processing input data, a list of outputs and various output specifics such as engineering unit, 

thresholds for alerts, etc. Explanation is a reference to the data used by an IVHM application to 

produce an output. The Extensible class is still immature and not well defined in the 

specification. 

DataEvent is the dynamic data related to IVHM events generated by an IVHM application 

such as measurements, manipulated or processed data, etc (see Fig. 1). Its metadata (e.g. id, site, 

confid, time, sequenceNum and alertStatus attributes) are used to identify and inform status of 

the data event. The DataEvent inheritance hierarchy is associated with particular abstract IVHM 

data processing functionalities defined in the ISO 13374 Condition Monitoring and Diagnostics 

of Machines – Data Processing, Communication and Presentation [12]. Those classes have 

inherited classes below them describing particular types of data (see Fig. 2 for examples of 

DADataEvent). The functional definitions can be viewed as abstractions of data into knowledge 

with higher and higher abstraction level of information. The DA data type is an acquired sensor  
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Fig. 1.  Examples of OSA-CBM Data Model 

 

 

Fig. 2.  Data Acquisition – DADataEvent 
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data which is formatted into a consistent form. The DA data is then transformed into one or more 

meaningful features, which are in the DM-type data format. The features are compared against 

expected values, and the resulting enumerated condition indicators are stored in the 

SDDataEvent class. The data in the HA, PA and AG formats are the data related to current health 

of the machine, predicted future failures and recommended action steps, respectively. 

 

 Interface Specification 

The interface specification describes how information will be moved. There are 4 primary 

types of interface to accommodate different purposes and technological capabilities: 

Synchronous, Asynchronous, Data Service and DataEvent Server. The Synchronous interface 

returns data with the call. It models the Web XML over HTTP fetch technology. The 

Asynchronous interface allows any number of IVHM applications to establish and maintain a 

two-way connection for the duration they need. The data is returned either on request, on alert or 

by push all. The latter of these pushes data to the connected IVHM applications every time it 

collects data without the need for a request beforehand. The Service interface is for a one-way 

data input device. Two possible uses would be data storage utility and maintenance advisory 

receiver service. The DataEvent Server interface is similar to the return on alert or the push all 

modes of communication in the Asynchronous interface (see Fig. 3). A given implementation 

will likely not implement every interface types. In this paper, the DataEvent Server interface is 

selected for simplicity in implementation and also to naturally capture the event-driven 

characteristic in the IVHM applications. 

 

 

B. Configurable IVHM Software 

In a distributed IVHM system, available computational power and bandwidth are the major 

constraints. A system integrator must be able to partition or distribute an IVHM data process 

according to how resources are allocated. In addition, an approach that facilitates faster 

development of IVHM applications and updates would be very desirable. 

A development framework capable of rapid deployment has to be based on a generic/common 

software structure for constructing an IVHM application (or data process) which is in itself an 
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Fig. 3.  OSA-CBM DataEvent Server Interface 

 

integration of multiple discrete generic/specialized algorithms. A software wrapper can be 

created to make an IVHM algorithm configurable. The main executable will not change, and the 

application dataflow interchange need not change. Only a data process descriptor for the 

application needs to change. This way, an IVHM application can be constructed via processing a 

configuration file. A configuration file will give information about an application‟s inputs, 

algorithms used for processing input data and a list of outputs. To partition or distribute a IVHM 

data process, it only needs to create different configuration files for each distributed IVHM 

applications. The framework can allow very rapid deployment (or configuration change) of a 

distributed IVHM system. [7] 

 

 

C. Programming Language – Java 

Embedded IVHM applications are complex with different parts of the IVHM data process 

being distributed across different processing units to perform the data processing in a cooperative 

way. However, the embedded space is rapidly changing in two ways: 1) faster processors that 

consume less power and 2) low cost memory. This means a greater choice of development 
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platforms and code from a broader software community can be used. Hence, with the available 

CPU and memory resources, an operating system (OS) and Java technology are chosen to make 

the implementation process of the application framework much more productive. The OS and 

drivers are used to handle low-level device and network communication tasks. Virtual Machine 

(VM) is a key concept in Java technology. Source code is written and then compiled to a Java 

bytecode. The compiled bytecode is verified and interpreted under the Java Runtime 

Environment (JRE). The same bytecode is able to execute on various JRE platforms and still 

producing the same result. Therefore, a IVHM application written in Java is compiled once and 

can run across different Java-enabled embedded platforms (CPU: x86, PowerPC, ARM and OS: 

Linux, Windows Embedded). The task of porting IVHM code to different embedded devices is 

simplified. Moreover, until this end, our aims are to create a research software framework for 

prototyping IVHM applications and effectively to ease the task of building IVHM technology 

proof-of-concept demonstrations. This process is very experimental and highly iterative. It is 

more productive to code in Java than to code in C++. The task of implementing the IVHM 

algorithms is also reduced by using many well-developed open numerical or scientific libraries 

(without a need for code re-compilation). Productivity (i.e. time and ease of development) 

offered by Java outweighs performance offered by C++ in our case, where activities are mainly 

on research and proof-of-concept prototyping. 

 

 

III. Application Framework 

A. Distributed Middleware – Enabling Technology 

In distributed IVHM systems, low-level interoperability requires IVHM messages and access 

methods (i.e. API) to be in a binary protocol that can be recognized by different distributed 

components. Middleware consists of pieces of software that handle data communication between 

distributed components. It sits between a low-level transport protocol (e.g. TCP, UDP) and an 

application. It abstracts out low-level communication processes and allows applications to be 

developed at a higher level. Data and API that are in a middleware-specific format will be 

recognizable by the distributed components using that particular type of middleware.  

The degree of interoperability depends on which middleware technologies are employed. It is 
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desirable to have a middleware that can provide a multi-language, cross-platform environment. 

In this paper, Internet Communications Engine (ICE) is used as an underlying middleware for 

implementing the IVHM framework. ICE is a descent version of Common Object Request 

Broker Architecture (CORBA). It is open source and CORBA-like in terms of multi-language 

and cross-platform. However, ICE is much smaller and less complex than CORBA. 

In order to use or validate the information content of OSA-CBM messages, a mapping of UML 

specification to specific programming language classes is required, see Fig. 4. The UML model 

is first converted into ICE interface definition language (IDL) files, called slice. These files 

contain OSA-CBM UML equivalent information, see Fig. 5 and 6. Note that slice files are 

language-independent. The ICE compilation tool is then used to generate language-of-choice 

classes. In our case, Java is the programming language of choice. The Java generated interface 

and data classes are the equivalent of the OSA-CBM specification. At the high level, these 

classes form parts of the OSA-CBM compliant framework and are also used in the development 

of specialized Functions (see III.D).  They are the data structure used for storing IVHM 

information. Meanwhile, at the low level, they are used by the ICE components to 

encode/decode binary OSA-CBM messages in the data communication process.  

 

 

Fig. 3. OSA-CBM UML – Programming Language Mapping. 
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Fig. 4.  IDL Example of OSA-CBM DataEvent Server Interface. 

 

 

 

Fig. 5. IDL Example of OSA-CBM Data Model. 

 

Note that different IVHM applications developed using different programming languages are 

able to communicate with each other if the language-specific classes are generated from the same 

OSA-CBM IDL files. Since the OSA-CBM interface and data model are used in the IVHM 

 
interface EntryPointDataEventServer { 

void addDataEventObserver(DataEventObserver deObserver); 
void removeDataEventObserver(DataEventObserver deObserver); 

}; 
 
interface DataEventObserver  { 

:Site getSite(); 
long getId(); 
void notifyDataEvent(DataEvent de); 

}; 
 
interface EntryPointDataEventReciever { 

void notifyDataEvent(DataEvent de); 
}; 
 

... 
class DataEvent { 

 long id; 
  Site siteValue; 
  FloatOpt confid; 
  OsacbmTime time; 
  LongOpt sequenceNum; 
  BoolOpt alertStatus;       
};  
 
class DADataEvent extends DataEvent { 
  DataStatusOpt dataStatusValue; 
  NumAlertSeq numAlerts;  
}; 

 
class DAWaveform extends DADataEvent { 

DoubleOpt xAxisStart; 
 double xAxisDelta; 
 DoubleArray values; 
}; 
... 
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application framework, hence it is OSA-CBM compliant, from now the terms „IVHM 

application‟ and „OSA-CBM module‟ will be used interchangeably. 

 

 

B. Building Blocks 

To allow reuse, configuration and extension, a component framework approach is adopted in 

this paper. The framework aims to simplify development of IVHM applications.  Several key 

features are identified and built into the component model that stresses modularity and 

extensibility. Fig. 6 illustrates a generic OSA-CBM module software structure. Its equivalent 

UML diagram is shown in Fig. 7. The main components are described as follows: 

 

 

 

 

Fig. 6. Generic Component Model. 
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Entry Points 

The OSA-CBM interface specification‟s Subscription defines two interfaces for an OSA-CBM 

module (see Fig. 3): DataEventServer and DataEventReceiver. DataEventServer is the interface 

provided by an OSA-CBM module to other OSA-CBM modules that have an interest in 

receiving data from it. When a module wants data from a server module, the requesting/client 

module uses the server module‟s DataEventServer interface to make a request. During the 

requesting process, the client module will provide a DataEventObserver to the server module. 

The DataEventObserver contains a reference to the DataEventReceiver of the client and has the 

notification method to be called by the server module when a new data is ready. 

 

 

Fig. 7. UML Diagram of OSA-CBM Module. 
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The Received Data and Processed Data message queues, which are an instantiation of the 

Queue class (recvData and procData shown Fig. 7), provide asynchronous communication 
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event has been inserted in the received data message queue. The processed data message queue 

acts as a data buffer store before being sent to the subscribed OSA-CBM modules. 
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 Function 

A Function is a self-contained software wrapper for the data processing algorithm so that it can 

be used within an OSA-CBM module. Functions communicate only with the OSA-CBM 

module‟s internal components, reacting to Blackboard data events and publishing results to the 

Blackboard. More details of Function are described in III.D. 

  

Blackboard 

The Blackboard provides the Functions with the ability to specify and interact with data events 

of specific interest to that Function, see also [13]. It acts as an OSA-CBM module‟s shared data 

space. The Blackboard tracks all changes in the data event and distributes the updates to all 

interested/subscribed Functions. It allows the instantiated Function objects to be uncoupled. 

These few generic software components (Entry Points, Message Queues, Blackboard and 

Functions) act as building blocks of an OSA-CBM module. The components are dynamically 

loaded and connected together at application start time using given configuration information. In 

terms of OSA-CBM application developments, developments would only have to focus on 

specialized algorithms and data flow, rather than being concerned about the details of software 

implementation and module communication. 

 

 

C. Communication Model 

In a distributed IVHM system, both intra- and inter-module communications are required to 

process different IVHM data events. In this paper, design patterns are extensively used to 

facilitate software component interaction. The patterns are suggested solutions, and their use 

leads to robust and maintainable software code. Three distribution and concurrency patterns are 

used in the framework; these are Publish/Subscribe, Observer and Producer/Consumer patterns.  

The model of communication between Blackboard and Functions (intra module) is data-driven 

via the Publish/Subscribe mechanism [14] (see Fig. 8) and is used to facilitate the intra-module 

IVHM data processing. The Blackboard manages data flow between Functions inside an OSA-

CBM module. It tracks changes in the data events and distributes the updates to all interested 

Functions. In this framework, the id of a data event is used as a subscribed topic. The Blackboard 

allows the instantiated Function objects to be uncoupled. There is only one object that the 
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Functions need to known – the module Blackboard. The Blackboard minimizes the work 

required to configure a complex dependency relationship between Functions. The 

Publish/Subscribe pattern enables software reuse and configurability of IVHM data processing 

algorithms.  

 

 

 

Fig. 8.  Publish/Subscribe Pattern. 
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DataEventServer can have any number of dependent DataEventObservers. DataEventServer 
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list of interested topics.   

 

 

Fig. 9.  Observer Pattern. 
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The intra-module IVHM data processing depends on the data received from other OSA-CBM 

module. The inter-module data communication likewise depends on the data generated by the 

IVHM data process within the module. Despite these dependencies, the tasks in receiving, 

processing and sending data can (and should) be executed in parallel. In this framework, the 

Producer/Consumer pattern [15] is used to solve call blocking issues (see Fig. 10). Queues are 

used as buffers for the received and processed data. The message queues decouple the intra-

module data processing from the inter-module data communication. The module‟s 

DataEventReceiver can receive new incoming data while the IVHM algorithms (i.e. Blackboard 

and Functions) are still processing previously received data. Similarly, the algorithms can keep 

generating new processed data while the DataEventServer is still trying to send completed 

processed data. Hence, the CPU can be fully utilized for both tasks.  

 

 

 

Fig. 10.  Producer/Consumer Pattern. 

 

Fig. 11 shows an example scenario of intra- and inter-module data communication. In this 

scenario, function #1 and #2 are wrappers for two IVHM data processing algorithms. The input 

and output of function #1 are data events of id 0 and 3, respectively. function #2 processes two 

input data events of id 1 and 2. Its output is a data event of id 4. The sequence diagram illustrates 

the working mechanism of the combined Publish/Subscribe, Observer and Producer/Consumer 

design patterns. Notice the parallelism among receiving, processing and sending tasks. For 

example, while the data event of id 0 is being processed, the incoming data event of id 1 is 

received and buffered in the recvData queue. It is similar for the data processing and sending 

tasks. How an algorithm handles multiple inputs is also illustrated in the sequence diagram. 
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Observe how function #2 buffers and synchronizes the input data (i.e. ids 1 and 2) before being 

processed. Various user-specific techniques can be used to synchronize multiple input data 

events. To this end, the Rendezvous pattern [16] is used to synchronize data for Functions. It is 

simple and sufficient for most of our case studies, where all the inputs of an algorithm have 

single data rate (SDR) and there is no significant latency related to the input data events (i.e. the 

inputs are kept relatively synchronized). 

 

 

 

Fig. 11.  Data Communication and Processing Sequence Diagram. 

 

 

D. Function Development 

To allow rapid development and software reuse, an OSA-CBM module‟s functionality is based 
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Ena4Function and BayesFunction in Fig. 12. The class colors highlight the OSA-CBM abstract 

functionalities described in II.A. Its algorithm-specific behaviors are implemented by overriding 

the pre-defined methods of the inherited Function. 

dataEventReceiver recvData receiveFunctionblackboard sendFunction dataEventServer
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Fig. 12. Base and Gearbox-Related Specialized Functions. 

 

 

Fig. 13 gives an example of how an Infinite Impulse Response (IIR) filtering functionality is 

implemented in this OSA-CBM framework. FilterFunction is constructed by inheriting the 

DataProcessingFunction. Filter characteristics are determined by coefficients of a filter‟s 

numerator and denominator [17]. The configure() method reads a given configuration (i.e. 

algorithm) which is encoded in the OSA-CBM Algorithm-type data format [11] and then 

appropriately set the filter parameters order, num and den to the required specific values. The 

perform() method reads an input data event, executes the filtering process VibUtils.filter(…) and 

packages its output data into the OSA-CBM format. In this example, a generic VibUtils.filter(…) 

algorithm is wrapped to create a configurable FilterFunction component. 

 

 

 

+configure() : void
+perform() : void

+subTopics : Map

+inputData : Map

+pubTopics : Map

+outputData : Map

+blackboard : Blackboard

-algorithm : Algorithm

Function

+trigger : Timer

TransducerFunction

+update(in de : DataEvent) : void

DataProcessingFunction

+recvData : Queue

ReceiveFunction

+update(in de : DataEvent) : void

SendFunction

+nPoints : int

FftFunction

+ratio : double

TsaFunction
+name : string

+nChans : int

+rate : double

+nSamps : int

#calib : double

NiDAQmxFunction
+order : int

#num : double

#den : double

FilterFunction

#mean : Vector

#cov : Matrix

#prob : Vector

BayesFunction

DcOffsetFunction

+meshFrq : int

ResidualFunction

KurtosisFunction

+var : double

Ena4Function

Data Acquisition (DA)

Data Manipulation (DM)

State Detection (SD)

Health Assessment (HA)

Prognosis Assessment (PA)

Advisory Generation (AG)
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Fig. 13. Implementation Example of Specialized Function. 

 

 

In this way, Functions bring data processing functionality to an OSA-CBM module; they 

together are the essential compute engine of an OSA-CBM module. This approach allows a data 

processing flow or a complex algorithm to be built using a combination of simple specialized 

Functions. This flexibility allows the developer to easily reuse pre-developed Functions in OSA-

CBM module construction or customize a IVHM application to meet a required IVHM 

functionality. 

 

 

Import ivhm.VibUitls; 
 
class FilterFunction extends DataProcessingFunction { 

private int order; 
private double num[]; // Numerators 
private double den[]; // Denominators 
 
// filter-specific configuration, i.e. order, numerators and denominators  
// are the algorithm parameters 
@override public void configure() { 
order = algorithm.inputInts.get(0).value; // setting filter order 
 
// setting filter coefficients - numerators 
num = new double[order+1]; 
for (int i=0; i<(order+1); i++) { 

num[i] = algorithm.inputReals.get(i).value; 
} 
... 
} 
 
// filter-specific data process, i.e. IIR filtering 
@override public void perform() { 
... 
// filter input waveform, num and den are the filter coefficients 
wf = VibUtils.filter(num, den, ((DAWaveform)de).values); 
... 
// package output waveform into an OSA-CBM data format 
((RealWaveform)filteredDE).values = wf; 
... 
} 
... 

} 
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IV. Example 

A. Gearbox Health Monitoring 

A gearbox vibration monitoring example is chosen to demonstrate the adequacy and 

effectiveness of the distributed IVHM software development framework. The purpose of the 

IVHM system is to monitor the vibration signals produced by the gearbox and determine the 

level of damage (or fault) of its pinion gear. Fig. 14 shows the experimental platform and the 

related IVHM data processing chain. In this setup, an accelerometer is mounted on top of the 

gearbox to measure the vibration in the axial dimension, and an optical sensor is used to provide 

a one pulse per revolution signal used for measuring the speed of the gear shaft. A data 

acquisition board is used to continuously collect 20 s batch data for the vibration analysis at the 

rate of 25 kHz. 

 

 

Fig. 14. Screenshot of Gearbox Health Monitoring Technical Display. 
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The data processing algorithms used in this paper range from data manipulation to state 

detection. Based on collected data and an extensive analysis, a combination of Kurtosis and 

NA4* (or ENA4) of the axial vibration is sufficient for accurate fault detections in this particular 

system. Note that we only outline one possible example of data processing flow in this paper, an 

extensive discussion of the gearbox vibration analysis can be found in [18]–[20]. To determine 

the condition of the gearbox, the raw tacho and acceleration signals are first conditioned by 

passing through the low-pass filters and the DC offset remover.  The random vibrations and 

external disturbances are further removed by averaging multiple data segments, each segment 

equals to one revolution of the gear shaft. This technique is known as Time Synchronous 

Averaging (TSA). In addition, the shaft rotation speed can also be obtained during the TSA 

computation. The Kurtosis and NA4* features are then extracted from the TSA and residual 

signals, respectively. The residual is computed by removing the shaft frequency and gear mesh 

harmonics from the TSA signal. The aim is to have an analytic signal (i.e. the residual signal) 

which is less dependent on the speed and load of the gearbox. The Bayesian classifier processes 

the Kurtosis and NA4* input features and determines the gearbox condition based on the 

statistical properties of the training data. 

 

 

B. Applying the Framework 

The development framework described in III is employed in building the OSA-CBM based 

embedded IVHM system. The first step of the implementation is to categorize the underlying 

algorithms according to the ISO 13374 abstract functionalities shown in Fig. 1, i.e. DA – NI 

DAQmx, DM – Filter, DC Offset, TSA, Kurtosis, Residual, NA4*, FFT and SD – Bayesian 

Classifier. In this paper, the NI DAQmx C library and Java Native Interface (JNI) are used for 

low-level communication with the NI data acquisition board, and the vibration processing 

algorithms are implemented based on the Java Apache Commons Mathematics Library. These 

generic vibration algorithms are then wrapped to form an OSA-CBM algorithms library by 

extending/inheriting either the TransducerFunction or DataProcessingFunction, and the resulting 

gearbox vibration analysis specific Functions are shown in Fig. 12. Note that the implemented 

algorithm wrappers (i.e. Functions) are generic and configurable (see Fig. 13). The configuration 

parameters can be the number of inputs and outputs, expected input data type and algorithm 
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parameters.  

Fig. 15 gives a concrete example of how a Function can be implemented to have non pre-

defined number of inputs and parameters‟ dimension. Bayesian classifier is a classification 

algorithm which is generalized for n-dimensional space [21]. The classifier parameters (i.e. mean 

vectors, co-variance matrices and prior probability vectors) can be any dimensions depending on 

the dimension of input vector (or feature vector) and the number of enumerated classes. In 

BayesFunction, the classifier characteristics are determined by nFeatures, nClasses, mean, 

covariance and priorProb parameters. The configure() method reads a given configuration and 

then appropriated set the parameters to the required specific sizes, dimensions and values. In 

configure() method, the mean vectors are initialized to the required number. Each vector is then 

configured to have a required dimension and finally its vector components are one-by-one set to 

the specific values. The configuration steps are similar for covariance and priorProb which the 

details are omitted to simplify the figure. The perform() method unpacks input OSA-CBM data 

events and re-packages the data into the format required by the classification algorithm. The 

number of input data events is determined by the configurable nFeatures parameter. 

VibUtils.bayesClassify(...) is then called to execute the classification process, and its return output 

is finally packaged into the OSA-CBM data format. In this example, a generic algorithm (i.e. 

VibUtils.bayesClassify(...)) is wrapped to create a highly generic configurable BayesFunction 

component which can be reused in different IVHM data processes. 
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Fig. 15.  Implementation Example of Algorithm Wrapper – BayesFunction. 

 

 

 

import ivhm.VibUitls; 
import org.apache.commons.math.linear.*; 
 
class BayesFunction extends DataProcessingFunction { 

private int nFeatures; // dimension of input  vector 
private int nClasses; // number of classes 
private RealVector[] mean; // mean vectors 
private RealMatrix[] covariance; // covariance matrices 
private RealVector[] priorProb; // prior probabilities 
 
// Bayes-specific configuration, i.e. dimension, number of classes, mean,  
// covariance and prior probabilities are the algorithm parameters 
@override public void configure() { 
 nClasses = algorithm.inputInts.get(0).value; // setting vector dimension 
 nFeatures = algorithm.inputInts.get(0).value; // setting number of classes 
  

// setting mean of each classes 
mean = new RealVector[nClasses]; 
for (int i=0; i<nClasses; i++) { 
 mean[i] = new ArrayRealVector(nFeatures); 
 For (int j=0; j<nFeatures; j++) { 
  int idx = i*nFeatures + j; 
  mean[i].setEntry(j, algorithm.inputReals.get(idx).value); 
 } 
} 

 ... 
} 
 
// Bayes-specific data process, i.e. classification based on probabilities 
@override public void perform() { 
 ... 
 // unpackage OSA-CBM input data into a feature vector 
 RealVector features = new ArrayRealVector(nFeatures); 
 for (int i=0; i<nFeatures; i++) { 
  features.setEntry(i, ((DMReal)dataEvents[i]).value); 

} 
 ... 
 // determine which class based on given features and statistical properties  

// of the based data.   
int damageLevel = VibUtils.bayesClassify(features, mean, covariance, priorPob);  

 ... 
 // package output state into an OSA-CBM data format 
 ((SDInt)levelDEfilteredDE).value = damageLevel; 
 ... 
} 
... 

} 
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Fig. 16 shows the network setup of the distributed IVHM system. The objective of this system 

is to partition the IVHM data processing chain described in IV.A and to distribute the algorithms 

to form a hierarchical IVHM system. In this setup, the OSA-CBM module #1 hosts the 

ReceiveFunction, NiDAQmxFunction, FilterFunctions, DcOffsetFunction, TsaFunction and 

SendFunction. It runs on the sensor node which is an Intel Atom D510 single-board computer 

attached to NI data acquisition board and has Windows XP Embedded, Java SE 6 and NI 

DAQmx C library installed. This OSA-CBM sensor node is for acquiring the tacho and vibration 

signals and to perform low-level data processing from filtering up until TSA. In this phase of 

data processing, for each 20 s batch data, the vibration information is compressed from 500,000 

samples of tacho signal and 500,000 samples of acceleration signal to a TSA signal of 4,096 

double data points. 

 

       

Fig. 16. Distributed Gearbox Health Monitoring System.  

 

The OSA-CBM module #2 hosts the ReceiveFunction, KurtosisFunction, ResidualFunction, 

Ena4Function, FftFunction, BayesFunction and SendFunction. It runs in the health reasoner 

which is a Freescale MPC8641D flight- worthy single-board computer and has a pre-compiled 
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Linux file system from the Embedded Linux Development Kit (ELDK) version 4.2 and 

OpenJDK 6 installed. The health reasoner extracts the Kurtosis and NA4* features from the TSA 

data generated by the sensor node and determine the current health state of the gearbox. 

At each OSA-CBM module start time, the module specific binary configuration file is loaded 

and the module is created by means of runtime instantiation and configuration of the pre-

compiled Functions. The configuration file contains the module description, a description of 

algorithms (incl. parameters) used for data processing and lists of individual algorithms‟ inputs 

and outputs. 

Note that the current experimental setup can be extended by having a high-level IVHM system 

take more pre-processed data from other local sensor nodes (e.g. another current sensor and 

processing node attached to the motor). The high-level module can then fuse all the data 

available and perform a more thorough system-level condition monitoring, for example, an 

overall drive-train system condition monitoring. 

 

 

V. Demonstration 

To display the output data from the OSA-CBM embedded nodes, we create a small MATLAB 

GUI displays shown in Fig. 14. The m-files are compiled into deployable Java classes using 

MATLAB Builder JA (for Java language). The Java display module integrates the deployable 

Java classes (i.e. compiled MATLAB GUI components) for the graph plotting and text updating 

functionalities and also implements the standardized OSA-CBM DataEventReceiver interface for 

interoperability with the OSA-CBM modules. 

In this setup, a static executive module (a small Java console program) is used to manage the 

data subscription or un-subscription between the OSA-CBM module #1, OSA-CBM module #2 

and display program. The subscription and data updating mechanisms follow the design pattern 

shown in Fig. 9. 

 

The CM data process operates at the fixed rate schedule of 20 s timeframe. The mean elapsed 

time between the point when the raw tacho and acceleration data are acquired and the condition 

level of the gearbox is computed is <1 s, which is specifically less than the timeframe required 
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for real-time operation. Note that this level of computational power is typical for the embedded 

single-board computers used in aerospace vehicles. 

The data subscription or un-subscription between the OSA-CBM module #1 and #2 can be 

established dynamically at any time during the operation, through the addDataEventObserver(...) 

and removeDataEventObserver(...) APIs. Once a connection is established, the module #1 

pushes the updated data to the module #2, and the module #2 responses to the arriving data 

events generated by the module #1. On the other hand, once the un-subscription is requested, the 

module #1 stops sending the updated data to the module #2. The module #2 effectively becomes 

idle, waiting for the incoming data events.  

 

 

VI. Performance Overhead 

In this framework, the requirements of interoperability, rapid prototyping and data processing 

reconfiguration are met through the use of common software structure, configurable software 

components and OSA-CBM interface. However, despite the benefits of the framework, what is 

the performance overhead added by using such a framework? This question is often asked by 

IVHM implementers when considering alternative approaches to developing IVHM applications. 

One fundamental measure of the computation platform is speed. In this paper, speed means the 

elapse time to perform an IVHM data processing task. The IVHM data process shown in Fig. 14 

is used in the test. Three configurations are considered (see Table 1): 1. The IVHM data process 

is implemented as a Java program. 2. The whole IVHM data process is wrapped in one Function 

and then packaged in an OSA-CBM module. The ComboFunction used in the configuration #2 

cannot be reused and configured. 3. Wrappers are created for the individual algorithms and then 

packaged in an OSA-CBM module. This configuration gives maximum reusability and 

configurability. 
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Table 1 

CPU Overhead 

 

           Note: Trapezoidal – an instantiation of Function class shown in Fig. 12. <Elapse Time> are results from 

           averaging over 1,000 data processing cycles. <Overhead> are results from averaging over 1,000,000  

           iterations of (un-)packaging between raw and OSA-CBM data formats.  

 

 

The speed test results shown in Table 1 are obtained using the Intel Atom D510 single-board 

computer running Windows XP, but this result is found to be counter intuitive. The elapse time 

for configuration #1 should be the lowest followed by configuration #2.  Nevertheless, the 

differences are very small, i.e. ~2.5% of each configuration. This indicates a very small overhead 

added by the framework. In this case, the fluctuation caused by the JVM garbage collection and 

XP OS have more effect on the computation than the framework. 

To determine precisely the size of the overhead, a program to package and un-package data 

and metadata between their raw and OSA-CBM formats was created. For the configuration #2, 

only the gear health level (an integer) is packaged into an SDInt data. For configuration #3, data 

are packaged when the Functions output the data and unpackaged when the Functions receive the 

data. The overhead are 0.003 and 0.199 ms for configurations #2 and #3, respectively. It only 

costs 0.05% of the total CPU time to obtain maximum reusability and configurability, i.e. 

Configuration <Elapse Time> <Overhead>

1. 427.075 ms N/A

2. 418.136 ms 0.003 ms

3. 416.817 ms 0.199 ms
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configuration #3. The CPU overhead added by the framework is negligible in this case.  

Note that the effort to package/un-package between raw data and metadata and OSA-CBM 

data format will depend on the data structures used to store the information. For example, 

RealWaveform uses an array of double data type to store waveform data. If an algorithm also 

produces a double array as an output, then we can expect a very small overhead. For a contrary 

example, CmplxFrqSpect uses two double arrays to store a spectrum data. If an FFT algorithm 

generates an array of Complex (a data structure for complex numbers used in Apache Commons 

Mathematics Library), then we have to un-wrap the real and imaginary double values from each 

Complex value in the array and then store them in two arrays of double data. We then expect a 

higher overhead (but not excessive) for this example. 

Other important measures of performance are bandwidth and latency. In this paper, latency 

means the amount of time it takes for a client to invoke a data notification method in a server. 

The sending of TSA data events from the OSA-CBM module #1 to the OSA-CBM module #2 is 

considered. Three data notification settings are used in this test (see Table 2): 1. Only TSA 

waveform information, which is an array of 4096 double data points, is being sent. 2. TSA 

waveform and metadata are being sent. 3. RealWaveform data containing both TSA and 

metadata is being sent, i.e. data communication between OSA-CBM modules. This setting gives 

interoperability to the data. 

The bandwidth and latency test results shown in Table 2 are obtained using the Intel Atom 

D510 and Freescale 8641 PowerPC single-board computers. The client-server configuration is as 

shown in Fig. 16. For the setting #1 and #2, a client and server programs is created to perform 

the task. For the setting #1 and #3, the average bandwidth and latency are similar. The OSA-

CBM overhead is 0.086 kbits/s for the bandwidth and 0.003 ms for the latency, which are 

equivalent to 0.66% and 2.59% respectively. However, the overhead is significant higher if the 

metadata to be sent separately. The setting #2 has the overhead of 0.215 kbits/s bandwidth and 

0.084 ms latency, which are 1.64% and 72.41% respectively. In each distributed method 

invocation, there is a header added to the data packet and a connection to establish. Hence, a 

significant overhead is incurred for the second setting.  It can be seen that the bandwidth and 

latency overhead of data interoperability is very small. In fact, the OSA-CBM data model used in 

our framework helps to reduce bandwidth and latency if having to send both data and its 

metadata. 
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Table 2 

Bandwidth Overhead 

 

            Note: The experiments were carried out on a Gigabit Ethernet link. <Latency> are results from  

            averaging over 1,000 iterations. <Bandwidth> are  captured using WireShark. The results are  

            average bandwidth of continuing runs of 20s data notification cycle. 

 

 

In addition to latency and bandwidth, how responsive of an OSA-CBM module is to an 

incoming data event is another performance related metric. However, this is not an OSA-CBM 

performance overhead but it is worth discussing for completeness. The responsiveness will 

depend on computational load of the OSA-CBM module. In this example, ~0.417 s is the time 

that takes to compute a 20s batch data event. The data process can be completed ~19.5 s before a 

new data event arrives, and hence ~0 s waiting time is expected. In our case, the available CPU 

resource could allow other 40 more of similar IVHM data processes to be packaged in the OSA-

CBM module. In this framework, data events are processed in a sequential manner. While a data 

event is being processed, other incoming data events will be buffered in the message queue. For 

simplicity, let consider an OSA-CBM module with 40 data processes, each of which takes 0.417 

s to complete. In this framework, data events are processed on a first come, first serve (FCFS) 

basis, therefore on average it will take  

Data <Bandwidth> <Latency>

1. 13.032 kbits/s 0.116 ms

2. 13.247 kbits/s 0.200 ms

3. 13.118 kbits/s 0.119 ms

+id : unsigned int

-time : OsacbmTime

-xAxisStart : double

+xAxisDelta : double

#realValues : double

RealWaveform

+id : unsigned int

-time : OsacbmTime

+xAxisDelta : double

#realValues : double

RealWaveform

#realValues : double

-time : OsacbmTime

+xAxisDelta : double

+id : unsigned int

#realValues : double
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for an incoming data event to be processed. The maximum waiting time however will simply be 

(40-1)×0.417 = 16.263 s. In this simple example, it can be seen that how responsive a module is 

will depend on a number of data processing tasks and their required CPU loads. However, for 

non-identical data processes, scheduling and how to configure an OSA-CBM module in a limited 

resource environment will require substantial further research which can be an area of expansion 

in the future.  

 

  

VII. Conclusion and Discussion 

A standard like OSA-CBM benefits in easing integration of multiple vendors‟ IVHM software 

components. The interoperability issue is addressed through the common standardized interface 

and data model. To the IVHM application developers, OSA-CBM saves considerable time and 

effort required to develop an architecture and related data classes. The developer can make use of 

the already well designed API and data model. 

To enable reuse, data process partitioning with configurable and rapid deployment, a 

development framework like the one described in III is required. The proposed component model 

eases the IVHM implementation process as the common/generic IVHM tasks are handled by the 

framework and the developed OSA-CBM algorithm wrappers can be reused in a new 

application. Developers can concentrate on the application logic, i.e. IVHM data processing and 

resource allocation, rather than being concerned about the details of software implementation 

and data communication. With pre-existing OSA-CBM algorithm libraries, the task of creating a 

new IVHM application could be simplified to a matter of writing the OSA-CBM module 

configuration files. 

Interoperability and rapid prototyping are key requirements in this paper. The framework 

addresses the interoperability requirement through its underlying OSA-CBM data model and 

OSA-CBM remote interface. In this framework, algorithms are formatted into standardized 

configurable Functions, which form a reusable OSA-CBM algorithm library. Moreover, OSA-

CBM modules developed using this framework share a common software structure. Since the 
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software structure is known in advance and its components are standardized, hence a rapid 

prototyping is possible. Based on a given configuration information, a configuration software can 

be used to dynamically configure/instantiate an OSA-CBM module (as used in this paper) or 

auto-generate static code to be further compiled into an executable OSA-CBM module. In the 

gearbox example, the interoperability and rapid prototyping are demonstrated. For this particular 

test example, the empirical evaluation shows small performance overhead in terms of CPU, 

bandwidth and latency. In particular, bandwidth and latency are actually improved if the data and 

metadata are packaged and sent in the OSA-CBM data format.  

In this paper, the framework is demonstrated through a gearbox example. However, this is only 

one example, and hence the question that follows would then be “How generic can the 

framework be?”. In generic sense, most (if not all) IVHM data processes can be constructed 

using multiple discrete generic/specialized algorithms. These algorithms are connected forming a 

data processing flow which will probably be similar to the diagram shown in Fig. 14. In this way, 

specialized Functions can be created (or reused) for the algorithms in the data process as 

similarly shown in Fig. 12. These Functions are then packaged into an OSA-CBM module and 

configured according to the specified input/output and parameter information. Therefore, if an 

IVHM data processing flow is transparent in terms of algorithms and relationships between 

them, then it is likely that the proposed framework will be applicable. 

If an IVHM network is relatively fixed, then connections between OSA-CBM modules are 

usually pre-configured and run-time data (un-)subscriptions are then redundant. However, IVHM 

is still a relatively immature area, and hence insertion of IVHM technologies is likely to be 

incremental based on availability of resources or technologies. Moreover, proof-of-concept 

activities are expected to be integrated and carried out with an existing IVHM system. In a 

dynamic changing IVHM network, if a need of rework for affected OSA-CBM modules is to be 

minimized, then dynamic data subscriptions will become a necessary feature. The remote 

interface like OSA-CBM facilitates proof-of-concept activities and dynamic connections of a 

new OSA-CBM module or other IVHM-related devices (e.g. Portable Maintenance Aid). Note 

that IVHM systems gear towards maintenance purposes. The requirements can be less stringent 

than what is required in the safety critical systems (SCSs). Hence, dynamic data subscriptions, 

which do not exist in SCSs, could be a possible attribute in the IVHM systems.  

In this paper, Java is used to implement the proposed framework primary due to its 
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productivity. However, C++ is a widely used programming language in the development of 

embedded applications. Hence, “Can this framework be implemented using C++?” is worth 

discussing. Within OSA-CBM module, data events (or references) are passed between Entry 

Points, Message Queues, Blackboard and Functions. There is no centralized component that will 

keep track the usage of data events. This will in general create a memory leak in C++ unless a 

garbage collection is used. However, in order to utilize the garbage collection, additional related 

smart pointer classes must be implemented either by coding manually or auto-generated 

depending on the employed middleware. If ICE is the underlying middleware technology, then 

the associated smart pointer classes are auto-generated together with the OSA-CBM C++ classes. 

Hence, in terms of memory, it will be straightforward to implement this framework in C++. 

In addition, reflection is not supported in C++. In Java, reflection enables Class information of 

an object to be easily identified. Now, let consider the remote method notifyDataEvent(in 

dataEvent : DataEvent) in Fig. 3. “How do we make correct type-casting of a DataEvent?” is 

another issue if C++ is to be used. Port is a class within OSA-CBM‟s Configuration data classes 

for storing module (or algorithm)‟s input/output information (e.g. id, OsacbmDataType) [11]. An 

OSA-CBM module (or a Function object) can appropriately typecast a receiving DataEvent 

object using the pre-supplied input/output configuration information. This way, a highly generic 

Function class can be developed to allow multiple input/output data event types.  
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