
ARITH18 1

Software Implementation of the
IEEE 754R Decimal Floating-
Point Arithmetic Using the
Binary Encoding Format

Marius Cornea, Cristina Anderson, John Harrison, Peter
Tang, Eric Schneider, Evgeny Gvozdev, Charles Tsen

June 25, 2007

ARITH18 2

Decimal Floating-Point Applications

• Applications that involve financial computations: banking,
telephone billing, tax calculation, currency conversion,
insurance, accounting in general

• Current feedback indicates that decimal computations
take a small fraction of the total execution time

• No indication that scientific computation will migrate to
decimal arithmetic in the near future

• IEEE 754R addresses the need for good quality decimal
arithmetic, and defines three basic formats: _Decimal32,
_Decimal64, _Decimal128

ARITH18 3

Decimal Floating-Point Applications

• Example of decimal floating-point computation,
performed with the Intel IEEE 754R Decimal Floating-
Point BID library from GCC 4.3:

float f1 = 7.0, f2 = 10.E3, f3;
_Decimal32 d1 = 7.0, d2 = 10.E3, d3;
f3 = f1 / f2; f3 = f2 * f3;
printf ("f3 = 0x%8.8x = %f\n", *(unsigned int *)&f3, f3);
d3 = d1 / d2; d3 = d2 * d3;
printf ("d3 = 0x%8.8x = %f\n", *(unsigned int *)&d3, d3);

f3 = 0x40dfffff = 7.000000 (6.9999997504 with other compilers)
d4 = 0x32000046 = 7.000000

ARITH18 4

IEEE 754R Decimal Floating-Point
Encoding Methods

• For example _Decimal64 numerical values are:
v = (-1)s · significand·10exponent

(up to 16 digits; exp. range = [-383,384], bias = 398)

• Decimal Encoding Method: based on the Densely Packed Decimal
(DPD) method - up to three decimal digits are encoded in 10-bit
fields named declets (non-linear mapping)
– the encoding is “s G E T”:
– s = 1-bit sign
– G = 5-bit combination field: encodes the leading decimal digit and

the top two exponent bits
– E = 8-bit exponent field - the lower 8 bits of the biased exponent
– T = 50 lower bits of the coefficient (significand), consisting of 5

declets

ARITH18 5

IEEE 754R Decimal Floating-Point
Encoding Methods

• Binary Encoding Method: based on Binary Integer Decimal (BID);
the coefficient C (significand, scaled up) is a binary integer
– the encoding is “s E C52-0” if the coefficient C = d0d1…d15

represented as a binary integer fits in 53 bits
– the encoding is “s 11 E C50-0” otherwise, and C53-51 = 100
– The biased exponent field E takes 10 bits

• The BID format does not require a costly conversion to/from binary
format on binary hardware, which matters especially when the
decimal arithmetic is implemented in software

ARITH18 6

Rounding Binary Integers to a Given
Number of Decimal Digits

• Occurs in addition, subtraction, multiplication, fused-multiply add,
and conversions that use the BID encoding

• Example: round the decimal value
C = 1234567890123456789

stored as a binary integer, from q = 19 to p = 16 decimal digits;
need to round off x = 3 digits

• Straightforward method
• Better: multiply by 10–3

• If k3 ≈ 10–3 is calculated with sufficient accuracy and rounded up,
then

floor (C · k3) = 1234567890123456
with certainty

ARITH18 7

Rounding Binary Integers to a Given
Number of Decimal Digits

• Method 1: Calculate k3 ≈ 10–3, y-bit approximation of 10–3 rounded
up

floor (C · k3) = 1234567890123456 = floor (C/103)

• Method 1a: Calculate h3 ≈ 5–3, y-bit approximation of 5–3 rounded up
floor ((C · h3) · 2–3) = 1234567890123456 = floor (C/103)

• Method 2: Calculate h3 ≈ 5–3, y-bit approximation of 5–3 rounded up
floor (floor (C · 2–3) · h3) = 1234567890123456 = floor (C/103)

• Method 2a: Calculate h3 ≈ 5–3, y-bit approximation of 5–3 rounded up
floor (floor (C · h3) · 2–3) = 1234567890123456 = floor (C/103)

ARITH18 8

Basic Property for Decimal FP
Arithmetic on Binary Hardware

• Property 1: Let q ∈ N, q > 0, C ∈ N, 10q−1 ≤ C < 10q−1,
x ∈ {1, 2, 3, . . . , q−1}, and ρ = log210.

If y ∈ N, y ≥ ceiling ({ρ · x} + ρ · q) and kx is a y-bit
approximation of 10−x rounded up, i.e.

kx = (10−x)RP,y = 10−x · (1 + ε), 0 < ε < 2−y+1

then
floor (C · kx) = floor (C / 10x)

ARITH18 9

Correction Step for Rounding to
Nearest

• Property 2: Let q ∈ N, q > 0, x ∈ {1, 2, 3, . . . , q − 1},
C ∈ N, 10q−1 ≤ C < 10q −1, C = 10x · H + L,
H, L ∈ N, H ∈ [10q−x−1, 10q−x − 1], L ∈ [0, 10x − 1],
f = C · kx − floor (C · kx),
ρ = log210, y ∈ N,
y ≥ 1 + ceiling (ρ · q),
kx = 10−x · (1 + ε) 0 < ε < 2−y+1

Then the following are true:
(a) C · 10−x = H iff 0 < f < 10−x

(b) H < C · 10−x < (H + 1/2) iff 10−x < f < 1/2
(c) C · 10−x = (H + 1/2) iff 1/2 < f < 1/2 + 10−x

(d) (H + 1/2) < C · 10−x < (H +1) iff 1/2 +10−x < f < 1

ARITH18 10

Reducing the Length of Constants kx

• Property 2 also helps reduce the length of some of the
constants kx

• Reduce the accuracy of kx one bit at a time, and verify
that for H = 10q−x − 1 :

(a) H · 10x · kx < H + 10−x

(b) (H + 1/2 − 10−x) · 10x · kx < H + 1/2
(c) (H + 1/2) · 10x · kx < H + 1/2 + 10−x

(d) (H + 1 − 10−x) · 10x · kx < H + 1

• For example k3 is reduced from y = 65 to y = 62 bits

ARITH18 11

Software Implementation of the IEEE
754R Decimal FP Arithmetic

• The values kx for all x of interest are pre-calculated and
are stored as pairs (Kx, ex) with Kx and ex positive
integers, and kx = Kx · 2–ex.

• The algorithms and operations presented here represent
the core of a generic implementation in C of the IEEE
754R decimal floating-point arithmetic

• Test runs for several hardware configurations, operating
systems, compilers, little/big endian, build options

ARITH18 12

Software Implementation of the IEEE
754R Decimal FP Arithmetic

• Several decimal floating-point operations, in particular
addition, subtraction, multiplication, fused multiply-add,
and most conversions could be implemented efficiently
using operations in the integer domain

• An important property is that when rounding the exact
result to p digits, the information necessary to determine
whether the result is exact (in the IEEE 754 sense) or
perhaps a midpoint, is available in the product C ÿ kx
itself

• For division and square root, the algorithms are based
on scaling the operands so as to bring the results into
desired integer ranges, in conjunction with a few floating-
point operations and one or two refinement iterations

ARITH18 13

Example: Decimal floating-point multiplication with rounding to nearest
using hardware for binary operations. From n1 = C1 · 10e1 and n2 =

C2 · 10e2 the product n = (n1 · n2)RN,p = C · 10e is calculated.

ARITH18 14

Software Implementation of the IEEE
754R Decimal FP Arithmetic

• Mixed-format floating-point operations, e.g. with operands of
precision N0 and result of precision N (N0 > N), are replaced by:
– similar, existing operation with operands of precision N0 and

result of precision N0
– conversion from precision N0 to precision N
– logic to avoid double rounding errors

• Conversions between binary and decimal floating-point formats
– There is a finite, and relatively small number of (decimal, binary)

exponent pairs that can occur in conversions
– For each pair use continued fractions to show that the relative

error when a binary floating-point number is approximated by a
decimal one (or vice-versa) for inexact conversions, has a lower
bound which sets an upper bound on the intermediate precision
needed to achieve correct IEEE conversion

ARITH18 15

Performance Results - Clock Cycle Counts for a Subset of
Decimal FP Arithmetic Functions (Intel Xeon 5100)

Oper. Min Max Med
add64 14 140 80
mul64 22 140 40/130
fma64 61 307 200
div64 58 269 170
sqrt64 35 192 180
add128 80 224 150
mul128 121 655 550
fma128 299 1036 650
div128 157 831 550
sqrt128 227 947 900

Operation Min Max Med
bid64_to_bid128 8 12 8
bid128_to_bid64 125 174 145
dbl_to_bid128 123 375 375
bid128_to_dbl 160 185 160
int64_to_bid128 5 5 5
bid128_to_int64 31 138 121
bid64_quiet_less 31 69 34
bid128_quiet_less 8 114 60

ARITH18 16

Conclusion
• Beta version available for download at

http://www3.intel.com/cd/software/products/asmo-
na/eng/219861.htm

• Next release in July 2007
• Opportunity for improving performance exists
• Possible future work:

– Implement optional parts of IEEE 754R
– Implement specific operations required by C/C++

Standards TRs on Decimal Floating-Point Arithmetic
– Optimize

http://www3.intel.com/cd/software/products/asmo-na/eng/219861.htm
http://www3.intel.com/cd/software/products/asmo-na/eng/219861.htm

	Software Implementation of the IEEE 754R Decimal Floating-Point Arithmetic Using the Binary Encoding Format
	Decimal Floating-Point Applications
	Decimal Floating-Point Applications
	IEEE 754R Decimal Floating-Point Encoding Methods
	IEEE 754R Decimal Floating-Point Encoding Methods
	Rounding Binary Integers to a Given Number of Decimal Digits
	Rounding Binary Integers to a Given Number of Decimal Digits
	Basic Property for Decimal FP Arithmetic on Binary Hardware
	Correction Step for Rounding to Nearest
	Reducing the Length of Constants kx
	Software Implementation of the IEEE 754R Decimal FP Arithmetic
	Software Implementation of the IEEE 754R Decimal FP Arithmetic
	Example: Decimal floating-point multiplication with rounding to nearest using hardware for binary operations. From n1 = C1 · 1
	Software Implementation of the IEEE 754R Decimal FP Arithmetic
	Performance Results - Clock Cycle Counts for a Subset of�Decimal FP Arithmetic Functions (Intel Xeon 5100)
	Conclusion

