# Software Implementation of the IEEE 754R Decimal Floating-Point Arithmetic Using the Binary Encoding Format

Marius Cornea, Cristina Anderson, John Harrison, Peter Tang, Eric Schneider, Evgeny Gvozdev, Charles Tsen

June 25, 2007

ARITH18

#### Decimal Floating-Point Applications

- Applications that involve financial computations: banking, telephone billing, tax calculation, currency conversion, insurance, accounting in general
- Current feedback indicates that decimal computations take a small fraction of the total execution time
- No indication that scientific computation will migrate to decimal arithmetic in the near future
- IEEE 754R addresses the need for good quality decimal arithmetic, and defines three basic formats: \_Decimal32, \_Decimal64, \_Decimal128

#### Decimal Floating-Point Applications

 Example of decimal floating-point computation, performed with the Intel IEEE 754R Decimal Floating-Point BID library from GCC 4.3:

```
float f1 = 7.0, f2 = 10.E3, f3;

_Decimal32 d1 = 7.0, d2 = 10.E3, d3;

f3 = f1 / f2; f3 = f2 * f3;

printf ("f3 = 0x%8.8x = %f\n", *(unsigned int *)&f3, f3);

d3 = d1 / d2; d3 = d2 * d3;

printf ("d3 = 0x%8.8x = %f\n", *(unsigned int *)&d3, d3);

f3 = 0x40dfffff = 7.000000 (6.9999997504 with other compilers)

d4 = 0x32000046 = 7.000000
```

# IEEE 754R Decimal Floating-Point Encoding Methods

For example \_Decimal64 numerical values are:

```
v = (-1)^s · significand · 10^{exponent}
(up to 16 digits; exp. range = [-383,384], bias = 398)
```

- Decimal Encoding Method: based on the Densely Packed Decimal (DPD) method - up to three decimal digits are encoded in 10-bit fields named declets (non-linear mapping)
  - the encoding is "s G E T":
  - -s = 1-bit sign
  - G = 5-bit combination field: encodes the leading decimal digit and the top two exponent bits
  - E = 8-bit exponent field the lower 8 bits of the biased exponent
  - T = 50 lower bits of the coefficient (significand), consisting of 5 declets

ARITH18

# IEEE 754R Decimal Floating-Point Encoding Methods

- Binary Encoding Method: based on Binary Integer Decimal (BID);
   the coefficient C (significand, scaled up) is a binary integer
  - the encoding is "s E  $C_{52-0}$ " if the coefficient C =  $d_0d_1...d_{15}$  represented as a binary integer fits in 53 bits
  - the encoding is "s 11 E  $C_{50-0}$ " otherwise, and  $C_{53-51} = 100$
  - The biased exponent field E takes 10 bits
- The BID format does not require a costly conversion to/from binary format on binary hardware, which matters especially when the decimal arithmetic is implemented in software

# Rounding Binary Integers to a Given Number of Decimal Digits

- Occurs in addition, subtraction, multiplication, fused-multiply add, and conversions that use the BID encoding
- Example: round the decimal value

```
C = 1234567890123456789
```

stored as a binary integer, from q = 19 to p = 16 decimal digits; need to round off x = 3 digits

- Straightforward method
- Better: multiply by 10<sup>-3</sup>
- If  $k_3 \approx 10^{-3}$  is calculated with sufficient accuracy and rounded up, then

```
floor (C · k_3) = 1234567890123456 with certainty
```

# Rounding Binary Integers to a Given Number of Decimal Digits

- Method 1: Calculate k<sub>3</sub> ≈ 10<sup>-3</sup>, y-bit approximation of 10<sup>-3</sup> rounded up
   floor (C · k<sub>3</sub>) = 1234567890123456 = floor (C/10<sup>3</sup>)
- Method 1a: Calculate  $h_3 \approx 5^{-3}$ , y-bit approximation of  $5^{-3}$  rounded up floor  $((C \cdot h_3) \cdot 2^{-3}) = 1234567890123456 = floor <math>(C/10^3)$
- Method 2: Calculate  $h_3 \approx 5^{-3}$ , y-bit approximation of  $5^{-3}$  rounded up floor (floor (C ·  $2^{-3}$ ) ·  $h_3$ ) = 1234567890123456 = floor (C/10<sup>3</sup>)
- Method 2a: Calculate  $h_3 \approx 5^{-3}$ , y-bit approximation of  $5^{-3}$  rounded up floor (floor (C ·  $h_3$ ) ·  $2^{-3}$ ) = 1234567890123456 = floor (C/10<sup>3</sup>)

# Basic Property for Decimal FP Arithmetic on Binary Hardware

• Property 1: Let  $q \in N$ , q > 0,  $C \in N$ ,  $10^{q-1} \le C < 10^q-1$ ,  $x \in \{1, 2, 3, ..., q-1\}$ , and  $\rho = \log_2 10$ .

If  $y \in N$ ,  $y \ge$  ceiling ( $\{\rho \cdot x\} + \rho \cdot q\}$ ) and  $k_x$  is a y-bit approximation of  $10^{-x}$  rounded up, i.e.

$$k_x = (10^{-x})_{RP,y} = 10^{-x} \cdot (1 + \epsilon),$$
  $0 < \epsilon < 2^{-y+1}$  then

floor (C · 
$$k_x$$
) = floor (C /  $10^x$ )

## Correction Step for Rounding to Nearest

```
• Property 2: Let q \in N, q > 0, x \in \{1, 2, 3, ..., q - 1\}, C \in N, 10^{q-1} \le C < 10^q - 1, C = 10^x \cdot H + L, C \in N, C \in
```

Then the following are true:

- (a) C  $\cdot$  10<sup>-x</sup> = H iff 0 < f < 10<sup>-x</sup>
- (b)  $H < C \cdot 10^{-x} < (H + 1/2)$  iff  $10^{-x} < f < 1/2$
- (c) C ·  $10^{-x}$  = (H + 1/2) iff  $1/2 < f < 1/2 + 10^{-x}$
- (d)  $(H + 1/2) < C \cdot 10^{-x} < (H + 1)$  iff  $1/2 + 10^{-x} < f < 1$

ARITH18

9

#### Reducing the Length of Constants k<sub>x</sub>

- Property 2 also helps reduce the length of some of the constants k<sub>x</sub>
- Reduce the accuracy of k<sub>x</sub> one bit at a time, and verify that for H = 10<sup>q-x</sup> - 1:

(a) 
$$H \cdot 10^{x} \cdot k_{x} < H + 10^{-x}$$
  
(b)  $(H + 1/2 - 10^{-x}) \cdot 10^{x} \cdot k_{x} < H + 1/2$   
(c)  $(H + 1/2) \cdot 10^{x} \cdot k_{x} < H + 1/2 + 10^{-x}$   
(d)  $(H + 1 - 10^{-x}) \cdot 10^{x} \cdot k_{x} < H + 1$ 

For example k<sub>3</sub> is reduced from y = 65 to y = 62 bits

## Software Implementation of the IEEE 754R Decimal FP Arithmetic

- The values  $k_x$  for all x of interest are pre-calculated and are stored as pairs  $(K_x, e_x)$  with  $K_x$  and  $e_x$  positive integers, and  $k_x = K_x \cdot 2^{-ex}$ .
- The algorithms and operations presented here represent the core of a generic implementation in C of the IEEE 754R decimal floating-point arithmetic
- Test runs for several hardware configurations, operating systems, compilers, little/big endian, build options

## Software Implementation of the IEEE 754R Decimal FP Arithmetic

- Several decimal floating-point operations, in particular addition, subtraction, multiplication, fused multiply-add, and most conversions could be implemented efficiently using operations in the integer domain
- An important property is that when rounding the exact result to p digits, the information necessary to determine whether the result is exact (in the IEEE 754 sense) or perhaps a midpoint, is available in the product C · k<sub>x</sub> itself
- For division and square root, the algorithms are based on scaling the operands so as to bring the results into desired integer ranges, in conjunction with a few floatingpoint operations and one or two refinement iterations

Example: Decimal floating-point multiplication with rounding to nearest using hardware for binary operations. From  $n1 = C1 \cdot 10^{e1}$  and  $n2 = C2 \cdot 10^{e2}$  the product  $n = (n1 \cdot n2)_{RN,p} = C \cdot 10^{e}$  is calculated.



## Software Implementation of the IEEE 754R Decimal FP Arithmetic

- Mixed-format floating-point operations, e.g. with operands of precision N0 and result of precision N (N0 > N), are replaced by:
  - similar, existing operation with operands of precision N0 and result of precision N0
  - conversion from precision N0 to precision N
  - logic to avoid double rounding errors
- Conversions between binary and decimal floating-point formats
  - There is a finite, and relatively small number of (decimal, binary)
     exponent pairs that can occur in conversions
  - For each pair use continued fractions to show that the relative error when a binary floating-point number is approximated by a decimal one (or vice-versa) for inexact conversions, has a lower bound which sets an upper bound on the intermediate precision needed to achieve correct IEEE conversion

### Performance Results - Clock Cycle Counts for a Subset of Decimal FP Arithmetic Functions (Intel Xeon 5100)

| Oper.   | Min | Max  | Med    |  |
|---------|-----|------|--------|--|
| add64   | 14  | 140  | 80     |  |
| mul64   | 22  | 140  | 40/130 |  |
| fma64   | 61  | 307  | 200    |  |
| div64   | 58  | 269  | 170    |  |
| sqrt64  | 35  | 192  | 180    |  |
| add128  | 80  | 224  | 150    |  |
| mul128  | 121 | 655  | 550    |  |
| fma128  | 299 | 1036 | 650    |  |
| div128  | 157 | 831  | 550    |  |
| sqrt128 | 227 | 947  | 900    |  |

| Operation         | Min | Max | Med |
|-------------------|-----|-----|-----|
| bid64_to_bid128   | 8   | 12  | 8   |
| bid128_to_bid64   | 125 | 174 | 145 |
| dbl_to_bid128     | 123 | 375 | 375 |
| bid128_to_dbl     | 160 | 185 | 160 |
| int64_to_bid128   | 5   | 5   | 5   |
| bid128_to_int64   | 31  | 138 | 121 |
| bid64_quiet_less  | 31  | 69  | 34  |
| bid128_quiet_less | 8   | 114 | 60  |

#### Conclusion

- Beta version available for download at <a href="http://www3.intel.com/cd/software/products/asmo-na/eng/219861.htm">http://www3.intel.com/cd/software/products/asmo-na/eng/219861.htm</a>
- Next release in July 2007
- Opportunity for improving performance exists
- Possible future work:
  - Implement optional parts of IEEE 754R
  - Implement specific operations required by C/C++
     Standards TRs on Decimal Floating-Point Arithmetic
  - Optimize