
Copyright © 2001 by the Center for Reliable Computing, Stanford University.
All rights reserved, including the right to reproduce this report, or portions thereof, in any form.

Center for
Reliable
Computing

TECHNICAL
REPORT

Software-Implemented EDAC Protection Against SEUs

Philip P. Shirvani, Nirmal R. Saxena, and Edward J. McCluskey

01-3 Center for Reliable Computing
Gates Room # 239, MC 9020

Gates Building 2A
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University

May 2001 Stanford, California 94305

Abstract:
In many computer systems, the contents of memory are protected by an error detection and

correction (EDAC) code. Bit-flips caused by single event upsets (SEUs) are a well-known problem
in memory chips and EDAC codes have been an effective solution to this problem. These codes are
usually implemented in hardware using extra memory bits and encoding-decoding circuitry. In
systems where EDAC hardware is not available, the reliability of the system can be improved by
providing protection through software. Codes and techniques that can be used for software
implementation of EDAC are discussed and compared. We look at the implementation requirements
(including multiple error correction) and issues, and present some solutions.

The technique presented in this report was implemented and used effectively in an actual space
experiment. We have demonstrated that software-implemented EDAC is a low-cost solution that can
provide protection for code segments and can significantly enhance the availability of a system in a
low-radiation space environment. This reliability improvement is demonstrated through both a
satellite experiment and analytic estimates which are based on parameter values that closely match the
environment of the satellite experiment.

Funding:
This work was supported in part by the Ballistic Missile Defense Organization, Innovative

Science and Technology (BMDO/IST) Directorate and administered through the Department of the
Navy, Office of Naval Research under Grant Nos. N00014-92-J-1782 and N00014-95-1-1047.

Imprimaturi: Subhasish Mitra and Nahmsuk Oh

i

Software-Implemented EDAC Protection Against SEUs

Philip P. Shirvani, Nirmal R. Saxena and Edward J. McCluskey

CRC Technical Report No. 01-3

May 2001

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University, Stanford, California 94305

Abstract

In many computer systems, the contents of memory are protected by an error

detection and correction (EDAC) code. Bit-flips caused by single event upsets (SEUs)

are a well-known problem in memory chips and EDAC codes have been an effective

solution to this problem. These codes are usually implemented in hardware using extra

memory bits and encoding-decoding circuitry. In systems where EDAC hardware is not

available, the reliability of the system can be improved by providing protection through

software. Codes and techniques that can be used for software implementation of EDAC

are discussed and compared. We look at the implementation requirements (including

multiple error correction) and issues, and present some solutions.

The technique presented in this report was implemented and used effectively in an

actual space experiment. We have demonstrated that software-implemented EDAC is a

low-cost solution that can provide protection for code segments and can significantly

enhance the availability of a system in a low-radiation space environment. This reliability

improvement is demonstrated through both a satellite experiment and analytic estimates

which are based on parameter values that closely match the environment of the satellite

experiment.

Key Words and Phrases: EDAC, ECC, software-implemented, memory

protection, single-event upset, SEU, soft errors, error detection and correction, low-cost

fault tolerance, transient error, COTS in space, memory bit-flips.

ii

Table of Contents

1. Introduction.. 1

2. Previous Work ... 2

3. General Considerations.. 4

3.1 Systematic Codes .. 4

3.2 Checkpoints and Scrubbing... 5

3.3 Overhead ... 6

4. Code Selection ... 7

4.1 Vertical vs. Horizontal Codes ... 7

4.2 Coding Schemes.. 9

4.3 Overhead Comparison... 11

5. Multiple Error Correction .. 13

5.1 System-Level Structure ... 13

5.2 Chip-Level Structure ... 15

5.3 Interleaving.. 17

6. Implementation .. 19

7. Self-Repairing and Recovery Mechanism ... 21

8. Experimental Results ... 24

9. Scrubbing Interval and Reliability Analysis .. 25

10. Discussion.. 29

11. Summary.. 30

Acknowlegments ... 31

References ... 32

1

1. INTRODUCTION

Transient errors and permanent faults in memory chips are well-known reliability

issues in computer systems. Error detection and correction (EDAC) codes — also called

error-correcting codes (ECCs) — are the prevailing solution to this problem [Chen 84].

Typically, the memory bus architecture is extended to accommodate extra bits, and

encoding and checking circuitry is added to detect and correct memory errors. This

additional hardware is sometimes omitted due to its cost. If a computer is to be designed

using commercial-off-the-shelf (COTS) components that do not have EDAC hardware for

memory, the reliability problem has to be addressed with another form of redundancy.

Hardware redundancy techniques, such as duplication or triple modular redundancy

(TMR) [Siewiorek 92], can be one solution, but they are very expensive. When hardware

redundancy is not feasible, we have to resort to software solutions.

This report discusses the implementation of EDAC in software and presents a

technique for a system that does not have hardware EDAC but requires protection for

code and data that reside in the main memory. The goal is to provide protection against

transient errors (soft errors) that manifest themselves as bit-flips in memory. These errors

can be caused by single event upsets (SEUs) [Koga 84][Worley 90], power fluctuations or

electromagnetic interference. Handling permanent faults (hard errors) in memory is

discussed in elsewhere [Chen 84] [Rao 89] and is not the focus of this report.

The motivation for this work came from an actual space experiment called the

Stanford ARGOS project [Shirvani 98]. ARGOS (Advanced Research and Global

Observations Satellite) is an experimental satellite that carries several experiments, one of

which is the USA experiment [Wood 94]. The USA (Unconventional Stellar Aspect)

experiment includes a computing test-bed that has two processor boards. These boards

are used for observing the behavior of computer systems in a radiation environment. One

processor board uses a radiation-hardened processor chip set, has redundant processors

(as a self-checking pair), and has EDAC hardware. The other board uses only COTS

components and does not have EDAC hardware. The experiment involves collecting the

errors that occur during the execution of programs in an actual space environment and

comparing the performance of the two boards. We observed that SEUs corrupt the

2

operating system or the main control program of the board which does not have EDAC

hardware, forcing a system reset. In order to carry out our experiments effectively, these

critical programs have to be protected against SEUs. The objective of our experiment is

to see whether software-implemented hardware fault-tolerance — which can include

software-implemented EDAC — can provide sufficient reliability for COTS hardware to

make it usable in low-radiation space applications.

Power fluctuation and electromagnetic interference may cause bit-flips in memories.

It has been observed that radiation-induced transient errors also occur at ground level

[O’Gorman 94][Ziegler 96a]. Therefore, the technique presented in this report can also

be useful for terrestrial applications.

Previous discussions of software-implemented EDAC concentrate on

communications and secondary storage systems [Paschburg 74][Whelan 77][Whiting 75]

[Sarmate 88][Feldmeier 95][Hodgart 92]. In Sec. 2, we review some of these previous

studies. In Sec. 3, we look at the problem in more detail and discuss the requirements of

a software-implemented EDAC scheme. Four different example EDAC coding schemes

were implemented in software. These schemes are compared in Sec. 4. Issues that have

to be considered for handling multiple errors and solutions to them are discussed in Sec.

5. We discuss how the EDAC program can be integrated into the whole system and

present our implementation in ARGOS in Sec. 6. Section 7 described a self-repairing

mechanism for the EDAC program. Experimental results of using software EDAC in the

ARGOS project is presented in Sec. 8. The reliability improvement of an application in a

space environment is estimated in Sec. 9. We conclude the report with a discussion in

Sec. 10 and a summary in Sec. 11.

This report is an extended version of the paper “Software-Implemented EDAC

Protection Against SEUs,” published in the IEEE Transactions on Reliability, September

2000 issue [Shirvani 00b].

2. PREVIOUS WORK

Error control coding is a well-developed field [Rao 89] [Wicker 95]. EDAC codes

are used to protect digital data against errors that can occur in storage media or

3

transmission channels. The encoding and decoding of data can be done in hardware,

software or a combination of both. For example, in the memory management unit

(MMU) of a HaL microprocessor, error detection is done by hardware but correction is

done by software, because hardware correction would increase the clock cycle time

[Saxena 95].

Since special hardware for a coding system can be expensive, researchers have

studied the feasibility of using general-purpose microprocessors for software

implementation of EDAC codes [Paschburg 74] [Whelan 77]. Efficient software

methods have been devised to do Cyclic Redundancy Checking (CRC) using table look-

up [Whiting 75] [Sarmate 88]. A comparison of fast implementation of different CRC

codes is given in [Feldmeier 95]. CRC codes are used for detecting multiple-bit errors in

communication systems where correction can be done by retransmission. In storage

systems, a coding scheme with correction capability is used. There are many different

codes used in hard disks and tape backup systems. Some of these codes can be used for

protecting data residing in memory chips. For example, a software implementation of a

(255, 252) Reed-Solomon code that can do single-byte error correction is proposed in

[Hodgart 92] for protecting RAM discs of satellite memories. However, there are

differences between memory and secondary storage systems that need to be addressed in

order to choose an appropriate EDAC scheme for memories.

The contributions of this work are:

• Identifying the issues in implementing EDAC in software.

• Illustrating the options and differences in coding schemes by comparing four example

codes that may be considered for EDAC.

• Devising a technique that addresses all the requirements of software EDAC including

multiple-bit error correction independent of system-level and chip-level structures.

• Designing a self-repairing and recovery mechanism for the software-implemented

EDAC program that provides protection for the program itself and also recovers from

hang-ups in this program.

• Analyzing the reliability of a system with software EDAC for main memory.

4

• Presenting an implementation and demonstrating its effectiveness in an actual

experiment.

3. GENERAL CONSIDERATIONS

This section discusses the requirements for an EDAC scheme that is to be

implemented in software. Software EDAC is an alternative to hardware-implemented

EDAC. Our goal is to provide the protection capabilities of hardware EDAC in software.

3.1 Systematic Codes

A coding scheme provides a mapping of input data words to what are called

codewords. A codeword contains extra check bits that are used for error detection and

correction. Consider a 64-bit data word represented by the row matrix]...[6310 dddD . A

single-error-correcting, double-error-detecting (SEC-DED) Hamming code adds 8 check

bits to these 64 bits and create 72-bit codewords]......[7106310 cccdddC —denoted as a (72,

64) code. In this coding scheme, the data bits are not changed and are separable from the

check bits. This type of code is called a systematic (or separable) code. In non-

systematic codes, the data bits are not preserved and are mixed with check bits.

In a communication system, input data are given to the EDAC encoder and the

check bits are calculated. The produced codewords are transmitted through the channel

and given to the EDAC decoder at the receiving end. After checking for possible errors

and correcting them, the decoded data is ready to be used. Similarly, in a secondary

storage system such as a hard disk, the encoded data on the storage media is decoded

when it is retrieved into a memory buffer for use. Modifications are also made to the

decoded data in the memory buffer and the data is re-encoded for storage. In these cases,

the codewords are not accessed directly; they are always decoded before being used.

Therefore, the coding scheme used in these applications does not have to be systematic.

In contrast, for the application considered here, a systematic code should be used.

As mentioned in the introduction, our objective is to devise a scheme to protect the

data residing in main memory. For this application, the data that are protected by

software EDAC are fetched and used by the processor in the same way as unprotected

5

data are fetched and used. The EDAC program should run as a background task and be

transparent to other programs running on the processor. The protected data bits have to

remain in their original form, to make the scheme transparent to the rest of the system.

This requires the use of a systematic code.

3.2 Checkpoints and Scrubbing

In memories with hardware EDAC, each word of memory is encoded separately1.

The encoding is checked on each read operation and new codewords are generated on

each write operation. In addition, the contents of memory are read periodically and all the

correctable errors are corrected. This latter operation is called periodic scrubbing and

avoids accumulation of errors, thereby reducing the probability of multiple errors that

might not be correctable.

If the same protection that is provided by hardware is to be provided by software,

each read and write operation done by the processor has to be intercepted. However, this

interception is infeasible because it imposes a large overhead in program execution time.

Therefore, we chose to do only periodic scrubbing for software-implemented EDAC. If

memory bit-flip errors are not corrected by the periodic scrubbing before a program is

executed, we rely on other software-implemented error detection techniques (e.g.,

assertions, Error-Detection by Duplicated Instructions [Oh 01a], or Control-Flow

Checking by Software Signatures [Oh 01b]) to detect the errors. When an error is

detected, a scrub operation is enforced before the program is restarted.

The EDAC program is given the address and size of the memory block that needs to

be protected. It requests another block from the OS to be used for the check bits. Then, it

calculates the check bits (encoding) and stores them in the allocated block. On request, it

checks the block for errors (decoding) and corrects them if possible. The content of the

memory block may be fixed or variable. If it is fixed, the encoding is done once and the

check bits remain constant. However, if the memory block is written to by the processor,

the check bits have to be recalculated. There are two main types of information stored in

1 In “chipkill-correct” EDAC protected memories that are mainly used in server computers, the codewords
may expand over several words [Dell 97] and therefore, single-word write operations are done in a Read-
Modify-Write fashion. This is all done in hardware using store buffers and is transparent to software.

6

a memory: code and data. Code segments contain instructions, and data segments contain

the data that is used or produced in computations. After a program has been loaded and

linked by the operating system, the contents of the code segment are not changed (with

the exception of self-modifying codes that are not considered here). Therefore, a fixed set

of check bits can be calculated for code segments.

Generally, the processor reads and writes to data segments and, as mentioned two

paragraphs before, it is not feasible to intercept all the write operations to update the

check bits because the interceptions will incur significant performance overhead.

However, for data that does not change, e.g., read-only data segments, or some

calculation results that are stored for later use, EDAC protection can be provided in

software. Application Program Interfaces (APIs) can be defined so that the programmer

can make function calls to the EDAC program and request protection for a specific data

segment (an example API is given in Sec. 6). In this case, protection can also be provided

for writable data segments. Read and write operations on these segments will be done

through the APIs in blocks of words. However, this method is not transparent to the

application programs and the programmer must control of the reads and writes to the

protected data and minimize the execution overhead.

3.3 Overhead

The space used for check bits reduces the amount of memory available for programs

and data. Therefore, the overhead introduced by the check bits must be as low as

possible. The simplest code is a parity code that is formed by adding a single bit to data

bits such that the total number of 1’s in the resulting codeword is even (or odd for odd

parity). This code can detect only odd numbers of errors and cannot correct any errors.

Correction can be done by keeping a second copy of the parity-protected data but EDAC

codes can provide correction capability with fewer check bits. It is desirable to handle

more than one error, because multiple errors may occur between scrub intervals. Codes

that have more capability (correction and multiple detection), add more check bits (check-

bit overhead) and tend to have more complex encoding and decoding algorithms,

increasing both performance overhead and program size overhead. A code should be

7

selected that can be implemented by a fast and small program and provides correction for

multiple errors. If the program is fast, it imposes low overhead on system performance.

More importantly, a fast program is less vulnerable to transient errors that can occur in

the processor during execution of the program. Similarly, small program size is

important not just because it takes less memory space that could be used for other

programs, but more importantly because, it makes the EDAC program less vulnerable to

SEUs that may corrupt its own program. In Sec. 7, we discuss how the EDAC program

can be protected.

The check-bit overhead of hardware EDAC is the extra memory chips that are

added to the memory system to contain the check bits. There is no program size overhead

for hardware EDAC but there can be some performance overhead if the latency of EDAC

circuitry increases the access time of the memory. With hardware EDAC, the check bits

are fetched from memory at the same time the corresponding data bits are accessed.

However, with software EDAC, extra memory accesses are needed to fetch the check

bits. In addition, there will be some memory accesses for fetching the EDAC program

into the processor cache. Therefore, the total memory bandwidth used by software EDAC

is more than that of hardware EDAC.

4. CODE SELECTION

4.1 Vertical vs. Horizontal Codes

In memory systems with hardware EDAC, the memory width is extended to

accommodate the check bits. Figure 4.1(a) shows a diagram for a 32-bit memory word

that is augmented with seven check bits. Each set of check bits is calculated based on the

bits of one word corresponding to one address. We refer to this type of coding as a

horizontal code. When a horizontal code is implemented in software, each word is

encoded separately and the check bits are concatenated to form a word. This check word

is saved in a separate address (Fig. 4.1(b)).

8

32-bit data words 7 check bits

(a)

32-bit words

(b)

data words

check word

Figure 4.1 A horizontal code over bits of a word: (a) hardware implementation; (b) organization of bits
when the code is implemented in software.

Another type of coding is shown in Fig. 4.2. Each set of check bits is calculated

over the bits corresponding to one bit-slice of a block of words in consecutive addresses.

This type of coding is used in some tape back-up systems [Patel 74] and we refer to it as a

vertical code. This type of code matches well with the bitwise logical operations that are

present in all common instruction set architectures (ISAs). When we discuss different

codes in Sec. 4.2, we will see that the logical ‘xor’ operation is used in the

implementation of most of the error detecting codes. Many shifts and logical operations

are required for encoding each word in a horizontal code. In contrast, vertical codes lend

themselves into very efficient algorithms that can encode all the bit-slices in parallel —

similar to the parallelism in a single-instruction multiple-data (SIMD) machine.

Therefore, a vertical code is preferred for a software-implemented EDAC scheme.

32-bit words

.

.

.

8 check bits

64 data bits
(one bit-slice of

64 words)

.

..

Figure 4.2 A vertical code over bit-slices of words.

9

Another aspect of these two types of codes is their handling of multiple errors. Let

us assume that a SEC-DED code is used for both types of codes. If two bit- flips occur in

one word, the horizontal code cannot correct it; but, since each bit-flip belongs to a

different bit-slice, the vertical code will be able to correct both errors. On the other hand,

if two bit-flips occur in one bit-slice of a block, a horizontal code will correct both, while

a vertical code will fail. Section 5 treats the occurrence and handling of multiple faults.

Some coding schemes are not quite horizontal or vertical. An advantage of

implementing EDAC in software is that it is very flexible and the designer can mix

various techniques and codes that would be expensive or infeasible in hardware.

4.2 Coding Schemes

In this section, we look at four different codes and compare them. These codes

were chosen to illustrate the options, the differences, and the facts that need to be

considered in choosing a coding scheme. The designer of a software-implemented EDAC

scheme may choose a code depending on the application.

1) Scheme 1 is a (72, 64) Hamming code implemented as a vertical code over a

block of 64 data words with eight check-bit words. The parity generation matrix was

optimized to have minimum-weight columns. For example, the equation for the first

check bit 0c is:

636261605651504847454338

35343129262019161513127600

dddddddddddd

ddddddddddddddc

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
(1)

where ⊕ denotes the xor operation. This equation can be used directly in the C program

that implements the EDAC algorithm. By defining each ic and id in (1) as a 32-bit

word, a vertical code can be implemented as shown in Fig. 4.2. Using the bitwise ‘xor’

instruction, 32 xor’s will be done in parallel. In other words, the encoding of all the 32

bit-slices can be done in parallel. The decoding process is done in a similar way.

This Hamming code can correct single errors and detect double errors. Therefore,

in this scheme, a single bit error can be independently corrected in each bit-slice. Thus,

as many as 32 bit-flips can be corrected as long as each of them is in a different bit-slice

(this includes a single word correction).

10

2) Scheme 2 is a vertical code with the same size as scheme 1, but uses a cyclic

code instead of a Hamming code. The (72, 64) cyclic code is based on the primitive

polynomial: 1)(278 +++= XXXXP . The polynomial division used in this code is

done by implementing the Linear Feedback Shift Register (LFSR) shown in Fig. 4.3, in

software. Similar to Scheme 1, the encoding/decoding process of the 32 bit-slices is done

in parallel. The correction capability of this scheme is the same as that of Scheme 1.

Figure 4.3 The LFSR corresponding to polynomial 1)(278 +++= XXXXP .

3) Scheme 3 uses a (1088, 1024) 2-dimentional parity code similar to a rectangular

code. For simplicity, let us consider a block of four 4-bit words, 40−d . Figure 4.4(a)

shows a rectangular code where parity bits are calculated over each word (horizontal

parity) and each bit-slice (vertical parity). A single error in the block will cause one

horizontal and one vertical parity error which will indicate the location of the error. As

mentioned in Sec. 4.1, calculating the horizontal parities in software is not as fast as

calculating the vertical parities. Therefore, in Scheme 3, the horizontal parity is replaced

with diagonal parity (similar to the scheme in [Patel 85]) which is essentially the same but

translates to a more efficient software implementation (Fig. 4.4.(b)). The block size in

our implementation is 32 words, because of 32 bits in each word hence a n=k+64,

k=32×32 code.

d0
d1
d2
d3

V

d0
d1
d2
d3

V
D

H

(a) (b)
Figure 4.4 Parity codes: (a) vertical + horizontal (rectangular); (b) vertical + diagonal.

11

4) Scheme 4 uses a (66, 64) Reed-Solomon (RS) code in)2(32GF . The polynomial

used for this code is: 1)(22232 ++++= XXXXXP . The equations for the check-bit

words are:

∑=∑=∑= 2
210 ,, αα iii dcdcdc

where α is the field generator (the ∑ translates to the bitwise xor operation in a C

program). 0c is simply the vertical parity. 1c and 2c are calculated by a software

implementation of a Multiple-Input Signature Register (MISR) [Patel 74]. The efficiency

of software implementation of this scheme is similar to Schemes 2 and 3. With 0c and

1c , the distance of the code (d) is 3 and a single word error can be corrected (SbEC).

With 0c , 1c and 2c , the distance is 4 and in addition to SbEC, double word errors are

also detected (DbED). However, this extra coverage will be at the expense of a larger

EDAC code and longer execution time. The block size for this code can be up to 1232 −

words, including the check-bit words. Therefore, this code can have a very low check-bit

overhead. However, the probability of multiple errors increases as the block becomes

larger. We keep the block size for this scheme at 64 words; the same as those of schemes

1 and 2.

4.3 Overhead Comparison

We implemented the four schemes described in the previous section in software and

measured their performance on a 200MHz UltraSPARC-I microprocessor. Table 4.1

shows the results. Column 2 shows the size of the code segment of the program that does

the encoding and the error detection and correction. Column 3 shows the overhead of the

check bits. For Scheme 4, the block size can be larger and the overhead can be reduced

as long as the probability of multiple errors in the block remains below the specifications.

The decoding (error detection) speed mainly determines the performance overhead of

each scheme because decoding is done more often than encoding or correction. The

decoding speed, DS, of each scheme in terms of megabytes per second is shown in

column 4. Given the size of memory that is being protected, Smem, and the scrubbing

12

interval, Tscrub, the performance overhead, OHperf, can be calculated using the following

formula:

DSST

DSS
OH

memscrub

mem
perf −

= .

Column 5 summarizes the error detection and correction capability of each scheme.

Table 4.1 Comparison of program size, check-bit overhead and decoding (error detection) speed of the four
coding schemes.

Scheme Program
Size (bytes)

Check-bit Overhead =
check-bit/data (words)

Decoding
Speed (MB/s)

Detection/Correction
Capability

Hamming 14,307 8/64=12.5% 187.80 bit-slice SEC-DED per block
Cyclic 6,731 8/64=12.5% 29.24 bit-slice SEC-DED per block
Parity 6,747 2/32=6.25% 34.68 SEC-DED per block
RS (d=3) 6,723 2/64=3.125% 24.41 SbEC per block

Notice that column 2 shows only the size of the core part of the EDAC program that

implements the encoding and decoding of the codewords (including correction). There

are other parts of the program that maintain the list of memory segments that are

scrubbed, implement the interleaving technique (discussed in Sec. 5.3), communicate

with other programs, etc. The size of these parts, which is not included in column 2,

depends on the features of the EDAC program and is the same for all the coding schemes.

In our implementation, these parts were about 15,000 bytes in size. The differences in the

core size are small compared to the size of the whole EDAC program. Therefore, when

comparing the coding schemes, the core program size is a minor factor.

Scheme 1 has the highest decoding speed but also has the largest program size.

Large program size is a minor disadvantage as discussed in the previous paragraph.

Scheme 2 has the same check-bit overhead and detection/correction capability as Scheme

1, but has a much lower decoding speed (this speed may be acceptable depending on the

application). Schemes 3 and 4 have lower check-bit overhead at the expense of less

detection/correction capability.

There are many other EDAC codes and the proper code is chosen depending on

application specifications. A scheme that has smaller program size, lower check-bit

overhead and higher decoding speed is preferred. The last decision factor is the capability

of the codes in handling multiple errors.

13

5. MULTIPLE ERROR CORRECTION

Multiple errors occur in two ways: (1) multiple SEUs can occur before the memory

is scrubbed for errors, or (2) a single SEU causes a multiple-bit upset (MBU). In the

former case, the scrubbing frequency needs to be adjusted according to the SEU rate to

avoid exceeding the correction capability of the utilized EDAC code with a high level of

confidence. The latter case has to be approached differently.

It has been observed that a single particle can affect multiple adjacent memory cells

and cause multiple bit-flips [O’Gorman 94] [Ziegler 96b] [Liu 97] [Reed 97] [Hosken

97]. MBUs occurred in 1-10% of SEUs in a set of satellite experiments [Underwood 97]

[Oldfield 98] [Shirvani 00a]. The fact that these multiple errors correspond to memory

cells that are physically adjacent should be considered when designing an EDAC scheme.

If the design is such that the physically adjacent bits belong to separate codewords, these

errors can be corrected. To achieve this, the designer of the EDAC scheme needs to

know the mapping of physical bits of the memory structure, to the logical bits in memory

address space (location of the bits in a programmer’s view of the memory). This mapping

is determined by the system-level structure and the chip-level structure. We look at each

of these separately.

5.1 System-Level Structure

Consider a system with 2MB of memory and a 32-bit data bus. Each memory chip

that is used to build this memory can have 1, 4 or 8 data outputs, usually denoted as a ×1,

×4 or ×8 chip, respectively. For example, if 512K×1 chips are used, each chip provides

one data bit of the bus and 32 chips make 2MB of memory. If 512K×8 chips are used,

each chip will provide 8 data bits of the bus and four chips are enough to make 2MB of

memory. In systems with hardware EDAC, the ×1 chips have the advantage that if one

whole chip becomes faulty, a SEC-DED code can compensate for this failure. To tolerate

chip failures of the wider chips, more advanced EDAC designs have to be used these

codes are beyond the scope of this report; for a good discussion of this subject the reader

is referred to [Dell 97].

14

The errors caused by SEUs are independent in each memory chip. This fact can be

used when designing EDAC for chips with a specified output width. For example, if ×8

chips are used with Scheme 4, it is beneficial to implement the Reed-Solomon code in

)2(8GF and have the check-bits over each 8-bit byte portion of a 32-bit word (byte-slices

as shown in Fig. 5.1). This code will be capable of correcting multiple errors that do not

necessarily align in one word of the address space. Therefore, the fact that multiple

dependent errors (caused by one SEU) do not cross the byte borders, can be used to

enhance to capability of the code in correcting multiple independent errors. This is

achieved with the same check-bit overhead, but with a more complicated code for doing

the encoding and decoding. In addition, the size of the block can now be increased only

up to 128 − words.

32-bit words

c0
c1
c2

x

x

x

x

Figure 5.1 A byte-slice implementation of an EDAC code. An example of a multiple error that can be
corrected is shown with the marked bytes.

Similarly, the vertical code shown in Fig. 4.2 can handle multiple independent

errors caused by multiple SEUs in different ×1 chips. With ×1 chips, multiple errors that

are caused by a single SEU (MBUs) are all in one bit-slice (not necessarily in consecutive

word addresses). A horizontal code has SEC-DED capability for each 32-bit word can

easily handle these MBUs. However, a vertical code will fail if these errors map to the

words of the same block. This mapping depends on the internal structure of the memory

chip. Even with wider chips such as ×4 or ×8 chips, one needs to look at the structure

inside the memory chips to know where these physically adjacent errors will be in the

logical memory address space.

15

5.2 Chip-Level Structure

In this section, several possible implementations of a 512K×8 memory chip are

analyzed. Figure 5.2 shows three different implementations of such a memory taken from

the data sheets of Cypress Semiconductor Corporation [Cypress 99].

512K × 8
ARRAY

Column Decoder

A0 - A10

A11 - A18

R
ow

D
ec

od
er

(a)

D0 - D7

128K × 8
ARRAY

1 of 4
Decoder

A0 - A16

A17, A18

128K × 8
ARRAY

128K × 8
ARRAY

128K × 8
ARRAY

D0 - D7

256K × 4
ARRAY

1 of 2
Decoder

A0 - A17

A18

256K × 4
ARRAY

256K × 4
ARRAY

256K × 4
ARRAY

D4 - D7

(b)

(c)

D0 - D3

Figure 5.2 Three different implementation of a 512K×8 memory chip: (a) one ×8 array (Cypress
CY62128), (b) four ×8 arrays (CYM1465), (c) four ×4 arrays (CYM1464).

With the structure in Fig. 5.2(b), errors in the four arrays are independent. If the

structure in Fig. 5.2(c) is used, then errors in each nibble (4 bits) of a word are

independent of errors in the other nibbles. An EDAC design can take advantage of this

16

fact and enhance its correction capability in the same way as discussed for the example of

Fig. 5.1.

An important thing that the data sheets do not show is the mapping (physical

connection) of external address bits to internal address bits. For example, it is not

necessarily the case that in Fig. 5.2(a), address bits A0 to A10 are connected to the row

decoder and in that order.

To completely derive the physical to logical mapping of the bits inside a memory

chip, we looked at the actual physical implementation of the four arrays in Fig. 5.2(b).

Each 128K×8 module is divided into 8 subarrays (groups). Each subarray has 1024 rows

and 128 columns — not counting the redundant rows and columns that are used for yield

enhancement (defect tolerance). Let us indicate the address bits connected to the group,

row and column decoders with AG, AR and AC, respectively. The mapping of external

address bits (A0-A16) to these bits is shown in Table 5.1.

Table 5.1 Mapping of external to internal address bits in the 128K×8 array.

Internal Address Bits External Address Bits

AG 0,1,2 A 15,16,10

AR 0-9 A 4,5,6,7,8,9,11,12,13,14

AC 0-3 A 0,1,2,3

The order of the data bits that come out of each group also differs for each group. If

we look at a small portion of one subarray, it will look like Fig. 5.3(b). Bit 2 and bit 6 are

physically adjacent. The number in each cell corresponds to the logical address of the

word that contains that bit. This correspondence is illustrated in Fig. 5.3(a) where the

same bits are numbered in a logical view of the memory. Let us consider bit 2 of address

18. This bit is physically adjacent to bit 2 of addresses 01, 02, 03, 17, 19, 33, 34 and 35

(we refer to this as type 1 adjacency)— if the geometries are small enough, we may have

to consider adjacency with a larger radius [Hosken 97]. For a more interesting example,

consider bit 6 of address 16. This bit is physically adjacent with bit 6 of addresses 00, 01,

17, 32 and 33 (type 1), and with bit 2 of addresses 15, 31 and 47 (we refer to this as type 2

adjacency); which is something not quite expected. Adjacencies of type 2 are in different

bit-slices and vertical codes can correct MBUs of this type. However, type 1 adjacencies

17

are in the same bit-slice and vertical codes may fail to correct the corresponding MBUs.

To handle type 1 adjacencies with a vertical code, a technique called interleaving can be

used (Sec. 5.3).

Notice that a horizontal code can correct the MBUs corresponding to both types of

adjacencies. In other words, the internal structure of some memories (like the examples

in Fig. 5.2) is such that hardware EDAC works well for all MBUs. However, this is not

always true. For example, the internal structure of a ×8 memory chip from Texas

Instruments is such that MBUs can occur within individual words [Underwood 92]. Such

single-word multiple-bit upsets (SMUs) [Koga 93][Johansson 99] will defeat a SEC-DED

horizontal code. Therefore, in this case, a well-designed software EDAC can be more

effective than a hardware EDAC.

00 01 02 03 04 05 15

16 17 18 19 20 21 31

32 33 34 35 36 37 47

48 49 50 51 52 53 63

...

...

...

...

Bit #2

00 01 02 03 04 05 15

16 17 18 19 20 21 31

32 33 34 35 36 37 47

48 49 50 51 52 53 63

...

...

...

...

Bit #6

00

01

02

03

63

00

01

02

03

63

.

.

.

.

.

.

7 6 5 4 3 2 1 0

1 Byte

(b)

(a)

Figure 5.3 Bit positions for a small portion of the memory array of Fig. 5.2(b): (a) logical positions, (b)
physical positions.

5.3 Interleaving

It was illustrated in the previous section that multiple errors can occur in one bit-

slice of a block of words protected by a vertical EDAC code. If a SEC-DED code is used,

these errors cannot be corrected. One solution is to use a code that can correct more

errors in a codeword. However, codes with higher correction capability have higher

check-bit, performance and program size overhead. Another solution is to logically

18

separate the adjacent bits so that each error occurs in a different codeword. This can be

done by interleaving the words that belong to the protected blocks. Interleaving is a

technique where logically adjacent bits are mapped to bits of the communication channel

or storage media that are not physically adjacent. This technique is used for handling

burst errors. For example, audio CDs employ the Cross-Interleaved Reed-Solomon Code

(CIRC) to overcome burst errors due to scratches and dust particles. CD-ROMs use a

two-dimensional version of CIRC. Figure 5.4 shows a 4-way interleaved EDAC scheme

that has 64 data words and 8 check-bit words. Starting from address 0, the words of a

protected block belong to memory addresses 0, 4, 8, 12, 16,…, 252. Looking at Fig.

5.3(b), we see that having address 0 and 16 in the same block is not desirable. Any i-way

interleaving scheme, where i is of the form ki 2= (a power of 2), 12 −= ki or 12 += ki ,

has the same issue. Therefore, when choosing an interleaving factor, it is best to avoid

these numbers. By doing so, the scheme will be independent of the internal structure of

the memory chips because for any internal structure, the adjacencies will have a relation

that has these three forms (with different k’s).

The geometrical model for multiple upsets presented in [Hosken 97], assumes that a

memory cell will be upset if an ion comes within a distance R from its assumed center;

this distance is the sensitive radius of adjacency. Notice that if R > 1, the interleaving

factor has to be chosen more carefully. In our project, we assumed this radius is one and

we used 6=i for our application.

(a) (b)

32-bit words

.

.

.

4*8 check bits

32-bit words

.

.

.

.

.

.

4*64 data

8 check bits

64 data

8 check bits

64 data

.

...
..

.

..

Figure 5.4 Logical mapping of words in a 4-way interleaving technique: (a) blocks of EDAC protected data
and the corresponding check-bit words; (b) the location of these words in memory address space.

19

6. IMPLEMENTATION

We assume that the target system has a multi-tasking OS. As mentioned in Sec.

3.2, the EDAC program is an independent task that is executed periodically. Timers can

be used to wake up the EDAC task periodically. The task should also have higher

priority than normal programs so that it is executed at its fixed frequency, independent of

the load on the system. Because this task has high priority, it runs to completion (one

sweep of memory) before usual programs are resumed.

The EDAC program needs to access the data and code segments of other tasks.

Direct access to the address space of another task is not always granted to a usual task.

The operating system in our system is VxWorks with a flat address space and no

protection option activated. However, in many operating systems, for example, Unix, the

address space of a task is protected from being accessed by other tasks using hardware

and software mechanisms. Only the operating system has unrestricted access to the

whole memory. Therefore, in this case, the EDAC program has to be run at kernel level

or given proper access rights.

We used APIs to interface application programs to the EDAC program. An

example set of APIs is shown in Table 6.1. Since the EDAC program is a separate task,

the function parameters are sent to it through message passing. The first time each

application program is loaded into memory, it sends the address of its first and last

instructions to the EDAC program using the EDAC_add_block function. Using the same

mechanism, a program can also ask for protection of a data segment. The read and write

functions are used for data segments.

Table 6.1 An example set of APIs for software EDAC.

Function Name and Parameters Description

EDAC_add_block(StartAddr, EndAddr) Add the block between ‘StartAddr’ and ‘EndAddr’ to
the list of blocks to be scrubbed periodically.

EDAC_delete_block(StartAddr) Delete the protected block that starts at ‘StartAddr’.

EDAC_read(ReadAddr, Size, &Buffer) Read ‘Size’ words into ‘Buffer’ starting at ‘ReadAddr’
from the corresponding protected block. The data
are checked for errors before copying into ‘Buffer’.

EDAC_write(WriteAddr, Size, Buffer) Write ‘Size’ words from ‘Buffer’ to locations starting
at ‘WriteAddr’. New check bits are calculated for the
corresponding protected block.

20

Almost all modern microprocessors use caches to compensate for the slow access to

the main memory. In a split cache architecture, the data and instruction caches are

separate. When the EDAC program checks the code segment of another program for

errors, it reads the instructions of that program. These instructions go through the data

cache because they are data for the EDAC program. If any correction is done on these

instructions, the correction is written into the data cache. Therefore, the EDAC program

should invalidate the instruction cache (if the corrected address exists in cache) and flush

the data cache after a correction is done. This forces the correct instruction to be fetched

from memory and into the instruction cache the next time that address is accessed.

During a normal sweep of the memory by the EDAC program (no errors detected),

all the checked addresses are accessed only once. Therefore, there is no benefit in

caching these addresses. Moreover, they will replace all the active lines of the cache.

These replacements degrade the performance of the system by causing many cache misses

after the EDAC program finishes one scrub operation. Therefore, it is better to treat the

data accesses of the EDAC program as non-cacheable addresses so that they do not

pollute the data cache. Even in this case, the cache has to be invalidated if a correction is

done on an address that exists in the cache.

The EDAC program resides in memory and therefore it is vulnerable to errors itself.

Read-only memories (ROMs) are less susceptible to SEUs hence, running the EDAC

program out of ROM is one way of protecting it against bit-flips in its code segment.

However, ROMs are not immune to SEUs and they are slower than RAMs. In some

cases (for example, our ARGOS project) adding EDAC may be an after-thought in

project design, so it is not possible to put the EDAC program in ROM. SEUs that occur

in the processor can also result in miscalculations in the EDAC program. Therefore, in

any case, some sort of redundancy is needed to ensure the correctness of this process.

Time-redundancy (multiple executions) can be used to check for SEUs that occur in the

processor. However, if an SEU corrupts the code segment of the EDAC program, it

needs to be corrected so that it does not produce a wrong result repeatedly. This code

segment can be protected by EDAC, similar to other programs that are being protected.

However, a corrupt code cannot be trusted to correct itself. Therefore, a second copy of

21

the EDAC program should exist. Each copy can do checking and correction on the other

one (cross-checking). Another possibility is to have a second copy in ROM, and correct

the errors simply by copying the image. At any time, there should be a healthy copy of

the EDAC program that can be trusted to correct a possibly corrupted one.

For the ARGOS project, we use the two copies scheme with cross-checking. This

self-repairing mechanism is described in the next section.

7. SELF-REPAIRING AND RECOVERY MECHANISM

To correct the errors in the code and data segment of the EDAC software, two

copies of the EDAC program are executed, EDAC1 and EDAC2. We assume that at each

point in time only one copy may be corrupt. Each copy has a self-check routine that is

executed before scrubbing any blocks. The self-check routine exercises the encoding and

decoding functions on a fixed small block that is designated for this task. First, the block

is filled with a certain pattern (e.g., all ones) and the encoding function is called. Upon

completion, we check that the generated check bits are correct by comparing with

expected values stored in the program. Then the error detection (decoding) function is

called. This function should find no errors (we assume that during this short time, no bit-

flips will occur in this small block). Then a single error is injected in the block and the

error detection function is called. This time this function should find one error. After

calling the error correction function, we check that all the data and check-bit words are

correct again. Figure 7.1 shows the flowchart of the self-check routine.

The result of the self-check routine determines which copy scrubs the other copy

first. If the self-check routine of EDAC1 returns “OK”, EDAC1 scrubs EDAC2, and then

EDAC2 scrubs EDAC1. If this routine returns “ERROR”, the cross scrubbing is done in

reverse order.

22

Start

Error?
y

n

Fill block with all 0s

Return ERROR

Error Detection Function

Encoding Function

All check bits
are zero?

Return ERROR
n

y

Write one 1 in block Error Detection Function

Error?
n

Return ERROR

Error Correction Function
y

All data and check
bits are zero?

Return ERROR
n

y Return OK

Figure 7.1 Flowchart of the self-check routine.

Figure 7.2 shows the simplified flowchart of our scheme. When the timer for

EDAC1 signals the beginning of a scrub operation, EDAC1 resumes execution and does a

self-check. If no error is detected, it scrubs its data structure (which contains the address

of protected blocks including EDAC2) and then scrubs EDAC2. Then, EDAC1 activates

EDAC2 by sending it a message and waits for a completion signal from EDAC2. EDAC2

resumes execution, runs a self-check and if there were no errors, it scrubs EDAC1. It then

sends a completion signal to EDAC1 and waits for the next message. When EDAC1

receives the signal, it starts its main job which is scrubbing the blocks that it is protecting.

If during the initial self-check EDAC1 finds an error, it resumes EDAC2 to correct the

error. After EDAC1 is scrubbed, it runs another self-check to make sure it has been

corrected. If there is an error again, we decide that the error is not correctable and quit

the EDAC1 task.

23

Timer Wake-up

EDAC 1

Self Check

EDAC 2

Error?

Self Check

Self Check

Error?

Scrub EDAC 1

Exit

Error?

Scrub Data

Scrub EDAC 2

Scrub Blocks

Wait for Message

Self Check

Error?

Scrub EDAC 1

y

n

y

y

y

n

n

n

Figure 7.2 Simplified flowchart of the self-repairing EDAC software showing the interaction between
EDAC1 (left half) and EDAC2 (right half).

SEUs could cause hang-up errors in these two tasks. We use timers to detect a

hang-up and recover from it in the following way. Similar to EDAC1, EDAC2 has a

timer that resumes its operation upon timeout. The timeout for EDAC2 is set to 4 times

that of EDAC1. In error-free operation, EDAC2 is activated by a special message

received from EDAC1. A semaphore is used for the completion signal from EDAC2 to

EDAC1. If EDAC1 cannot get the semaphore within a certain time, it will kill EDAC2,

scrub it for errors and restart it. Similarly, if EDAC2 does not receive a message from

EDAC1 before timeout, it will kill EDAC1, scrub it and restart it. To avoid the

information on the protected blocks (addresses, etc.) from getting lost when either of the

copies is restarted, a global variable is set when a restart is initiated. In the initialization

routine of each copy, this variable is checked and if it indicates a restart, the data

24

structures are not initialized. Fault injection experiments show that both copies can

correctly recover from errors (including hang-up errors) and resume their previous job.

After cross-checking is completed, EDAC1 can scrub the rest of the system. We

assume that EDAC1 scrubs the protected blocks correctly using the fact that the

probability of a bit-flip occurring in EDAC1 during its short execution is very low. An

extended version of this scheme can have both copies scrub the protected blocks and

compare their results. This avoids possible miscorrections by EDAC1.

In the next section, we describe the results of using software EDAC on board the

ARGOS satellite.

8. EXPERIMENTAL RESULTS

The self-repairing software EDAC described in this report was implemented for the

ARGOS project using the cyclic code (Scheme 2) with interleave factor 6 and 30 second

scrub interval. This software was executed on the satellite and proved to be effective in

enhancing the availability of the system. Here are two examples where we observed the

effects.

After a system reset, we uploaded some programs and ran them. Then, a few days

later, we uploaded some new programs. Without software EDAC, the second uploads

failed, sometimes causing exceptions or system reset. We attributed the failure to the

accumulated bit-flips in the OS code that handles the uploading and linking, and in the

global symbol table — the global symbol table holds the addresses of global variables and

functions and is used in the linking process. When the EDAC program was uploaded and

run with the first set of programs (shortly after a reset), the bit-flips in code segments of

the OS were scrubbed periodically. In this case, most of the second uploads were

successful — the failures could be due to bit-flips in the global symbol table (which is a

data segment and was not protected against SEUs), or bit-flips in the OS code that had

occurred since the last scrub operation.

Another issue was the time it took for the system to halt after a fresh start (total

reset). Without software EDAC, the errors accumulated in the code segments of the OS

and our programs; after some time, the system got an exception, for example, due to an

25

illegal instruction (caused by a bit-flip in an instruction). This was a code that was

running correctly and stopped because of a transient error in hardware and not a software

bug. When software EDAC was added, the frequency of these errors was significantly

reduced and the system could operate correctly for a longer period before it halted.

The observations explained in the previous two paragraphs show that, in the

absence of hardware EDAC, system availability can be improved by software EDAC.

The software EDAC was run on the ARGOS satellite for 329 days protecting about

450KB of memory (including OS code segments). Without software EDAC, the system

would survive only for an average of 2 days. After the addition of software EDAC, the

average period was extended to 20 days, which is an order of magnitude improvement. In

the next section, we quantify the reliability obtained by software EDAC for programs

running in SEU prone environments. As a reference for comparison, reliability estimates

are derived for programs running with both no EDAC and hardware EDAC support. We

also quantify the sensitivity of program reliability to scrubbing interval.

9. SCRUBBING INTERVAL AND RELIABILITY ANALYSIS

Several papers [Abraham 83] [Saleh 90] [Goodman 91] [Yang 95] present

reliability analysis for memory systems using hardware EDAC and scrubbing. Building

on this prior work, the analysis presented in this section provides a framework for

comparing hardware and software EDAC methods from the standpoint of program

reliability. The environment assumed for this analysis closely matches the environment

for the ARGOS experiment.

Any program alternates between two states: run and dormant. In the run state, the

program instructions are fetched and executed. In the dormant state, the program

instructions reside in memory and the program waits in this state until it is scheduled by

the OS to the run state. With EDAC and scrubbing, the program has an additional scrub

state. During the scrub state, the program instructions are read and rewritten (upon

detection of correctable errors) with corrected data using hardware or software EDAC

methods. The time between two successive scrub states is the scrubbing interval. By

definition, the scrubbing interval will be the sum of run, dormant and scrub state times.

26

The lifetime of a program, with EDAC and scrubbing, is a renewal event comprising a

repetition of the sequence of run, dormant, and scrub states. Table 9.1 lists the

parameters used in the reliability analysis.

Table 9.1 Program environment parameter definitions and typical values.

Parameter Description
u Upset rate (probability of single-bit upset in a cycle). The units are upset/bit-

cycle. Typical value assumed is 5.52 x 10-19/bit-cycle. This is derived from 10
upsets/Mbyte-day using a clock rate of 25 MHz.

Tr
Number of cycles the program is in the run state. Typical value assumed is 109

cycles.

Td
Number of cycles the program is in the dormant state. Typical value assumed is
6.5 x 109 cycles.

Ts
Number of cycles it takes to scrub the program data. For hardware EDAC, the
typical value is 1.25x105 cycles. For software EDAC, the typical value is 2.5 x
107. The scrubbing interval is Tr+Td+Ts (5 minutes in 25MHz clock rate cycles).

n Horizontal bit width of program data. Typical values assumed are n=32 for no
EDAC or software EDAC and n=39 for hardware EDAC.

m Number of words in a block of vertical code (for software EDAC). Typical value
assumed is 72 (64 data words + 8 check-bit words).

S Number of program words protected by EDAC. Typical value assumed is
131,072 (program size = 0.5 Mbyte).

S' S plus number of check-bit words needed for S (S' = S x 72/64).

Let us begin by estimating the reliability of a program running with no EDAC

protection. Without EDAC protection, the lifetime of a program is a renewal event

comprising repetition of the sequence of run and dormant states. The probability that a

program will survive one sequence of run and dormant states is given by:

)(
)1(dr TTnS

u
+− .

Using the values in Table 9.1, the reliability (probability that a program will survive

multiple sequences of run and dormant states) as a function of time (in minutes) is given

in Table 9.2.

Table 9.2 Survival probability of a program with no EDAC support.

Time (in Minutes) Reliability
10 0.97
20 0.93
30 0.90
40 0.87

1 day 0.0067

27

Table 9.2 shows that without EDAC support, the probability of a program surviving

even for a day is very small. Therefore, the necessity of protecting programs with EDAC

is demonstrated for these assumptions. With SEC-DED hardware EDAC support, the

probability that a program survives one sequence of run, dormant, and scrub states is the

same as the probability that there is no more than a single-bit error in any program word

(horizontal codeword). Simple combinatorial analysis shows this probability as:

STTTnnTTT
sdrsdr unun])1)(1()1([

)()1)((++−++
−−−− .

With software EDAC support, the program is unprotected against SEUs during the run

state. Therefore for a program to survive, with a software SEC-DED EDAC support, the

program must not encounter any error during the run state and no more than a single-bit

error in any vertical codeword during the dormant and scrub states. For the sake of

simplicity in analysis, we assume that the EDAC program is error-free. We also assume

that due to physical locality of memory references, only 10% of the program code is used

in each scrubbing interval. Using simple combinatorial analysis, the following expression

quantifies the reliability of a program for one sequence of run, dormant, and scrub states:

)/()()1)((10])1)(1()1([)1(mSnTTmmTTT
S

n
sdsd

r
umumu ′+−+

−−−−− .

Again using the values in Table 9.1, Table 9.3 shows the reliability values for a program

with software EDAC and hardware EDAC. If reliability of a program with no EDAC

protection is R1 and reliability of a program with software EDAC is R2, then reliability

improvement provided by the software EDAC can be defined as the ratio of the

unreliabilities of the two programs: (1-R1)/(1-R2). The second column of Table 9.2 and

the second column of Table 9.3 show the reliabilities for the same environment. The

numbers show that software EDAC improves the reliability of a program that has no

EDAC protection by several orders of magnitude2.

Reliability of a program with no EDAC, with hardware EDAC, and with software

EDAC is shown in Fig. 9.1 for a period of 48 hours. The time axis is the sum of Tr and

Td and therefore the graph shows the reliability comparison for equal amount of work.

2 The reliability improvement in the ARGOS experiment was lower because we could not provide
protection for the data segments of the operating system.

28

Since Ts < 0.01×(Tr + Td) in both hardware and software EDAC, total times (Tr + Td + Ts)

are almost the same.

Table 9.3 Software and hardware EDAC reliability comparison.

Time (in Days) Reliability with
Software EDAC

Reliability with
Hardware EDAC

1 0.9355 ~1.0
2 0.8752 0.999999
3 0.8187 0.999999
4 0.7659 0.999998

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40Hours

R
el

ia
bi

lit
y

No EDAC

Hardware EDAC

Software EDAC

Figure 9.1 Reliability comparison using the parameters in Table 9.1.

The sensitivity of program reliability to the scrubbing interval and the upset rate is

shown in Table 9.4. This analysis shows that for low-radiation environments, the

scrubbing interval can be increased (thereby reducing the performance overhead) without

appreciably affecting reliability.

Table 9.4 Software and hardware EDAC reliability sensitivity to scrubbing interval.

Reliability for a Period of One Day
Software EDAC Hardware EDAC

Scrubbing
Interval

u = 5.52 x 10-19 u = 5.52 x 10-18 u = 5.52 x 10-19 u = 5.52 x 10-18

10 minutes 0.935506 0.513345 0.999999 0.999904
20 minutes 0.935504 0.513274 0.999998 0.999808
30 minutes 0.935503 0.513202 0.999997 0.999712
40 minutes 0.935502 0.513130 0.999996 0.999617

1 day 0.935319 0.503198 0.999862 0.986297

29

10. DISCUSSION

Solid-state memories, such as RAMs, are used for the main memory, secondary

storage, and processor caches in a computer system. In this report, we present a software-

implemented EDAC technique for protecting memories. Let us consider EDAC

protection for main memory. With software EDAC, the data that is read from main

memory may be erroneous, if the error occurs after the last scrub operation and before the

time of reading. In other words, single-bit errors may cause failures. In contrast,

hardware EDAC checks all the data that is read from memory, and corrects single-bit

errors. Therefore, hardware EDAC provides better reliability and, when possible, should

be the first choice for protecting the main memory. When hardware EDAC is not

available or affordable, software EDAC can be used as a low-cost solution for enhancing

the system reliability.

For cases where data is read and written in blocks of words rather than individual

words, software EDAC may be a better choice than hardware EDAC. For example, when

solid-state memories are used for secondary storage (such as in satellites), the processor

can access the data through a buffer in main memory rather than directly from the

secondary storage (in this case, there is no need to restrict ourselves to systematic codes).

For this secondary storage memory, EDAC protection can be provided in software by

periodic scrubbing and APIs (as explained in Sec. 3.2). All read operations are checked

for errors, and single-bit errors in this memory will not cause failures. Therefore,

assuming that the execution of the EDAC program is error-free, software EDAC can

provide the same reliability as hardware EDAC if the same coding scheme is used.

Considering the flexibility of software EDAC, it is possible to implement more capable

coding schemes that are infeasible in hardware, and thereby provide better reliability

through software. Moreover, as mentioned in Sec. 5.2, there are cases of MBUs where

hardware EDAC fails but software EDAC can correct the errors. Therefore, software

EDAC could be a better choice for such applications.

30

11. SUMMARY

In many computer systems, the contents of memory are protected by an error

detection and correction (EDAC) code. Bit-flips caused by single event upsets (SEUs)

are a well-known problem in memory chips and EDAC codes have been an effective

solution to this problem. These codes are usually implemented in hardware using extra

memory bits and encoding-decoding circuitry. In systems where EDAC hardware is not

available, the reliability of the system can be improved by providing protection through

software. Codes and techniques that can be used for software implementation of EDAC

are discussed and compared.

We look at the implementation requirements and issues, and present some

solutions. We discuss in detail how system-level and chip-level structures relate to

multiple error correction. A simple solution is presented to make the EDAC scheme

independent of these structures.

The technique presented in this report was implemented and used effectively in an

actual space experiment. We have observed that SEUs corrupt the operating system or

programs of a computer system that does not have any EDAC for memory, forcing us to

frequently reset the system. Protecting the entire memory (code and data) may not be

practical in software. However, we have demonstrated that software-implemented EDAC

is a low-cost solution that can provide protection for code segments and can significantly

enhance the availability of a system in a low-radiation space environment. We also show

this reliability improvement through analytical estimates. These estimates are based on

parameter values that closely match the environment of our satellite experiment.

For applications where read and write operations are done in blocks of words, such

as secondary storage systems made of solid-state memories (RAM discs), software-

implemented EDAC could be a better choice than hardware EDAC, because it can be

used with a simple memory system and it provides the flexibility of implementing more

complex coding schemes.

31

ACKNOWLEGMENTS

This work was supported in part by the Ballistic Missile Defense Organization,

Innovative Science and Technology (BMDO/IST) Directorate and administered through

the Department of the Navy, Office of Naval Research under Grant Nos. N00014-92-J-

1782 and N00014-95-1-1047. The authors wish to thank Dr. Bella Bose for his valuable

suggestions, SunilKumar Koduru from Cypress Semiconductor for the information on

Cypress memory chips, and also Samy Makar, Santiago Fernandez-Gomez, Subhasish

Mitra and Nahmsuk Oh for their helpful comments. The ARGOS experiment is a

collaborative project with the Naval Research Laboratory (NRL) USA experiment group

lead by Dr. Kent Wood as the principal investigator.

32

REFERENCES

[Abraham 83] Abraham, J.A., E.S. Davidson and J.H. Patel, “Memory System Design for
Tolerating Single Event Upsets,” IEEE Trans. Nucl. Sci., Vol. 30, No. 6, pp. 4339-44,
Dec. 1983.

[Chen 84] Chen, C.L., and M.Y. Hsiao, “Error-Correcting Codes for Semiconductor
Memory Applications: A State-of-the-Art Review,” IBM J. Res. Develop., Vol. 28,
pp. 124-134, Mar. 1984.

[Cypress 99] Data Sheets of Cypress Semiconductor Corp. SRAMs,
http://www.cypress.com/design/datasheets/index.html, Cypress Semiconductor Corp.,
1999.

[Dell 97] Dell, T.J., “A White Paper on the Benefits of Chipkill-Correct ECC for PC
Server Main Memory,”
http://www.chips.ibm.com:80/products/memory/chipkill/chipkill.html, IBM
Microelectronics Division, Rev. 11/19/97.

[Feldmeier 95] Feldmeier, D.C., “Fast Software Implementation of Error Detection
Codes,” IEEE/ACM Trans. Networking, Vol. 3, No. 6, pp. 640-651, Dec. 1995.

[Goodman 91] Goodman, R.M., et al., “The Reliability of Semiconductor RAM
Memories with On-Chip Error-Correction Coding,” IEEE Trans. on Information
Theory, Vol. 37, No. 3, pp. 884-96, May 1991.

[Hodgart 92] Hodgart, M.S., “Efficient Coding and Error Monitoring for Spacecraft
Digital Memory,” Int’l J. Electronics, Vol. 73, No. 1, pp. 1-36, 1992.

[Hosken 97] Hosken, R., et al., “Investigation of Non-Independent Single Event Upsets in
the TAOS GVSC Static RAM,” IEEE Radiation Effects Data Workshop, pp. 53-60,
July 1997.

[Johansson 99] Johansson, K., et al., “Neutron Induced Single-word Multiple-bit Upset in
SRAM,” IEEE Trans. on Nuclear Science, Vol. 46, No. 6, pp. 1427-1433, Dec. 1999.

[Koga 84] Koga, R., and W.A. Kolasinski, “Heavy Ion-Induced Single Event Upsets of
Microcircuits: A Summary of the Aerospace Corporation Test Data,” IEEE Trans. on
Nuclear Science, Vol. 31, No. 6, pp. 1190-1195, Dec. 1984.

[Koga 93] Koga, R., et al., “Single-word Multiple-bit Upsets in Static Random Access
Devices,” IEEE Trans. on Nuclear Science, Vol. 40, No. 6, pp. 1941-1946, Dec.
1993.

[Liu 97] Liu, J., et al., “Heavy Ion Induced Single Event Effects in Semiconductor
Device,” 17th Int’l. Conf. on Atomic Collisions in Solids (in Nucl. Instrum. & Methods
in Physics Res.), Sec. B, Vol. 135, No. 1-4, pp. 239-243, 1997.

[O’Gorman 94] O’Gorman, T.J., “The Effect of Cosmic Rays on the Soft Error Rate of a
DRAM at Ground Level,” IEEE Trans. Electron Devices, Vol. 41, No. 4, pp. 553-
557, April 1994.

[Oh 01a] Oh, N., P.P. Shirvani and E.J. McCluskey, “Error Detection by Duplicated
Instruction in Superscalar Microprocessors,” IEEE Trans. Reliability, (scheduled to
appear in the issue 2001 Sep.).

33

[Oh 01b] Oh, N., P.P. Shirvani and E.J. McCluskey, "Control-Flow Checking by
Software Signatures,” IEEE Trans. Reliability, (scheduled to appear in the issue 2001
Sep.).

[Oldfield 98] Oldfield, M.K., and C.I. Underwood, “Comparison Between Observed and
Theoretically Determined SEU Rates in the TEXAS TMS4416 DRAMs and On-
Board the UoSAT-2 Microsatellite,” IEEE Trans. on Nuclear Science, Vol. 45, No. 3,
pp. 1590-1594, June 1998.

[Paschburg 74] Paschburg, R.H., “Software Implementation of Error-Correcting Codes,”
Univ. Illinois, Urbana, (AD-786 542), Aug. 1974.

[Patel 74] Patel, A.M., and S.J. Hong, “Optimal Rectangular Code for High Density
Magnetic Tapes,” IBM J. Res. Develop., Vol. 18, pp. 579-88, November 1974.

[Patel 85] Patel, A.M., “Adaptive Cross-Parity (AXP) Code for a High-Density Magnetic
Tape Subsystem,” IBM J. Res. Develop., Vol. 29, pp. 546-62, November 1985.

[Rao 89] Rao, T.R.N., and E. Fujiwara, Error-Control Coding for Computer Systems,
Prentice Hall, 1989.

[Reed 97] Reed, R., et al., “Heavy Ion and Proton-Induced Single Event Multiple Upset,”
IEEE Trans. Nucl. Sci., Vol. 44, No. 6, pp. 2224-9, July 1997.

[Saleh 90] Saleh, A.M., et al., “Reliability of Scrubbing Recovery-Techniques for
Memory Systems,” IEEE Trans. on Reliability, Vol. 39, No. 1, pp. 114-22, April
1990.

[Sarmate 88] Sarwate, D.V., “Computation of Cyclic Redundancy Checks via Table
Look-up,” Communications of the ACM, Vol. 31, No. 8, pp. 1008-13, Aug. 1988.

[Saxena 95] Saxena, N.R., et al., “Fault-Tolerant Features in the HaL Memory
Management Unit,” IEEE Trans. Comp., Vol. 44, No. 2, pp.170-179, February 1995.

[Shirvani 98] Shirvani, P.P., and E.J. McCluskey, “Fault-Tolerant Systems in a Space
Environment: The CRC ARGOS Project, ” CRC-TR 98-2, Stanford University,
December 1998.

[Shirvani 00a] Shirvani, P.P., N. Oh, E.J. McCluskey, D. Wood and K.S. Wood,
"Software-Implemented Hardware Fault Tolerance Experiments; COTS in Space,"
Proc. International Conference on Dependable Systems and Networks (FTCS-30 and
DCCA-8), Fast Abstracts, pp. B56-7, New York, NY, June 25-28, 2000.

[Shirvani 00b] Shirvani, P.P., N. Saxena and E.J. McCluskey, “Software-Implemented
EDAC Protection Against SEUs,” IEEE Trans. on Reliability, Special Section on
Fault-Tolerant VLSI Systems, Vol. 49, No. 3, pp. 273-284, Sep. 2000.

[Siewiorek 92] Siewiorek, D.P., and R.S. Swarz, Reliable Computer Systems, Burlington,
Digital Press, 1992.

[Underwood 92] Underwood, C.I., et al., “Observation of Single-Event Upsets in Non-
Hardened High-Density SRAMs in Sun Synchronous Orbit,” IEEE Trans. Nucl. Sci.,
Vol. 39, No. 6, pp. 1817-1827, Dec. 1992.

[Underwood 97] Underwood, C.I., “The Single-Event-Effect Behavior of Commercial-
Off-The-Shelf Memory Devices – A Decade in Low-Earth Orbit,” Proc. 4th European

34

Conf. on Radiation and Its Effects on Components and Systems, pp. 251-8, Palm
Beach, Cannes, France, Sep. 1997.

[Whelan 77] Whelan, J.W., “Error Correction with a Microprocessor,” Proc. IEEE
National Aerospace and Electronics Conf., pp. 1317-23, 1977.

[Whiting 75] Whiting, J.S., “An Efficient Software Method for Implementing Polynomial
Error Detection Codes,” Computer Design, Vol. 14, No. 3, pp. 73-7, Mar. 1975.

[Wicker 95] Wicker, S.B., Error Control Systems for Digital Communications and
Storage, Englewood Cliffs, N.J., Prentice Hall, 1995.

[Wood 94] K.S. Wood, et al., “The USA Experiment on the ARGOS Satellite: A Low
Cost Instrument for Timing X-Ray Binaries,” Published in EUV, X-Ray, and Gamma-
Ray Instrumentation for Astronomy V, ed. O.H. Siegmund & J.V. Vellerga, SPIE
Proc., Vol. 2280, pp. 19-30, 1994.

[Worley 90] Worley, E., R. Williams, A. Waskiewicz, and J. Groninger, “Experimental
and Simulation Study of the Effects of Cosmic Particles on CMOS/SOS RAMs,”
IEEE Trans. on Nuclear Science, Vol. 37, No. 6, pp. 1855-1860, Dec. 1990.

[Yang 95] Yang, G.-C., et al., “Reliability of Semiconductor RAMs with Soft-Error
Scrubbing Techniques,” IEE Proc. – Computers and Digital Techniques, Vol. 142,
No. 5, pp. 337-44, Sept. 1995.

[Ziegler 96a] J.F. Ziegler, et al., IBM J. Res. Develop., Vol. 40, No. 1, (all articles), Jan.
1996.

[Ziegler 96b] Ziegler, J.F., et al., “IBM Experiments in Soft Fails in Computer
Electronics (1978-1994),” IBM J. Res. Develop., Vol. 40, No. 1, pp. 4, Jan. 1996.

