Center for TECHNICAL
Computing REPORT

Softwar e-lmplemented EDAC Protection Against SEUs

Philip P. Shirvani, Nirmal R. Saxena, and Edward J. McCluskey

01-3 Center for Reliable Computing
Gates Room # 239, MC 9020
Gates Building 2A
Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
May 2001 Stanford, California 94305

Abstract:

In many computer systems, the contents of memory are protected by an error detection and
correction (EDAC) code. Bit-flips caused by single event upsets (SEUs) are a well-known problem
in memory chips and EDAC codes have been an effective solution to this problem. These codes are
usually implemented in hardware using extra memory bits and encoding-decoding circuitry. In
systems where EDAC hardware is not available, the reliability of the system can be improved by
providing protection through software. Codes and techniques that can be used for software
implementation of EDAC are discussed and compared. We look at the implementation requirements
(including multiple error correction) and issues, and present some solutions.

The technique presented in this report was implemented and used effectively in an actual space
experiment. We have demonstrated that software-implemented EDAC is alow-cost solution that can
provide protection for code segments and can significantly enhance the avail ability of asystemina
low-radiation space environment. This reliability improvement is demonstrated through both a
satellite experiment and analytic estimates which are based on parameter values that closely match the
environment of the satellite experiment.

Funding:
Thiswork was supported in part by the Ballistic Missile Defense Organization, Innovative
Science and Technology (BMDO/IST) Directorate and administered through the Department of the
Navy, Office of Naval Research under Grant Nos. N00014-92-J-1782 and N0O0014-95-1-1047.

Imprimaturi: Subhasish Mitraand Nahmsuk Oh

Copyright © 2001 by the Center for Reliable Computing, Stanford University.
All rights reserved, including the right to reproduce this report, or portions thereof, in any form.

Softwar e-lmplemented EDAC Protection Against SEUs

Philip P. Shirvani, Nirmal R. Saxena and Edward J. McCluskey

CRC Technical Report No. 01-3

May 2001

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University, Stanford, California 94305

Abstract

In many computer systems, the contents of memory are protected by an error
detection and correction (EDAC) code. Bit-flips caused by single event upsets (SEUS)
are awell-known problem in memory chips and EDAC codes have been an effective
solution to this problem. These codes are usually implemented in hardware using extra
memory bits and encoding-decoding circuitry. In systemswhere EDAC hardwareis not
available, thereliability of the system can be improved by providing protection through
software. Codes and techniques that can be used for software implementation of EDAC
are discussed and compared. We look at the implementation requirements (including
multiple error correction) and issues, and present some solutions.

The technique presented in this report was implemented and used effectively in an
actual space experiment. We have demonstrated that software-implemented EDAC isa
low-cost solution that can provide protection for code segments and can significantly
enhance the availability of a system in alow-radiation space environment. Thisreliability
improvement is demonstrated through both a satellite experiment and analytic estimates
which are based on parameter values that closely match the environment of the satellite

experiment.

Key Words and Phrases. EDAC, ECC, software-implemented, memory
protection, single-event upset, SEU, soft errors, error detection and correction, low-cost

fault tolerance, transient error, COTS in space, memory bit-flips.

Table of Contents

I 1 01 oo (3o 1o o TSP PSPPSR PRSP 1
2. PreVioUSWOTK ..ot e 2
3. General CONSIUEIAIONS.ccurreeeiirrerreesie e nne s 4
IC TR MRS VS (= 07 1 ol 0 o =S 4
3.2 Checkpoints and SCrubbiNg..........ccooueieriirenireseseeeee e 5
3.3 OVENEAD ... 6
N oo (S 1= ot (o] [OOSR 7
4.1 Vertical vS. HONMzZontal COUEScooueiiiiirieiesiesieneeee s 7
4.2 COUING SCREIMES.......eiiiieieie ettt enes 9
4.3 Overhead COomMPariSON........cccuriiiriiriieiiererie et 11
T \V 1V 1] o [=1 = o @ @0 4 £ oi o] o HUN TSPV 13
51 SySteM-LeVel SITUCIUIcoiiieieieierieste ettt 13
52 Chip-Level SITUCIUIE.........coeiieieeeeee e 15
5.3 INETEAVING. ... eiiiieieie ettt 17
6. IMPIEMENTALION ..ottt bbb 19
7. Self-Repairing and Recovery MeChaniSmc.ccoeveeieieienienesee e 21
8. EXPerimental RESUITS........ccoiiiiiiiiiieieeee e 24
9. Scrubbing Interval and Reliability ANalYSIS........ccovriiiiiiceee e, 25
1O, DISCUSSION.....ueiiitesiistieieeiiee ettt sttt sttt e et e s b b sb e bt saeeae e e e b e be st et e nbe bt eaeeneenes 29
L1 SUMIME@IY ..ottt e bt e s e s b e s e e se e b e e nnenneenneennenneennens 30
ACKNOWIEOMENTS. ...ttt ettt b e b e b n e se e 31
REFEIEINCES ...ttt bbbt 32

1. INTRODUCTION

Transient errors and permanent faults in memory chips are well-known reliability
issues in computer systems. Error detection and correction (EDAC) codes — aso called
error-correcting codes (ECCs) — are the prevailing solution to this problem [Chen 84].
Typically, the memory bus architecture is extended to accommodate extra bits, and
encoding and checking circuitry is added to detect and correct memory errors. This
additiona hardware is sometimes omitted due to its cost. If acomputer isto be designed
using commer cial-off-the-shelf (COTS) components that do not have EDAC hardware for
memory, the reliability problem has to be addressed with another form of redundancy.
Hardware redundancy techniques, such as duplication or triple modular redundancy
(TMR) [Siewiorek 92], can be one solution, but they are very expensive. When hardware
redundancy is not feasible, we have to resort to software solutions.

This report discusses the implementation of EDAC in software and presents a
technique for a system that does not have hardware EDAC but requires protection for
code and data that reside in the main memory. The goal isto provide protection against
transient errors (soft errors) that manifest themselves as bit-flips in memory. These errors
can be caused by single event upsets (SEUs) [Koga 84][Worley 90], power fluctuations or
electromagnetic interference. Handling permanent faults (hard errors) in memory is
discussed in elsewhere [Chen 84] [Rao 89] and is not the focus of this report.

The motivation for this work came from an actual space experiment called the
Stanford ARGOS project [Shirvani 98]. ARGOS (Advanced Research and Global
Observations Satellite) is an experimental satellite that carries several experiments, one of
which isthe USA experiment [Wood 94]. The USA (Unconventional Stellar Aspect)
experiment includes a computing test-bed that has two processor boards. These boards
are used for observing the behavior of computer systemsin aradiation environment. One
processor board uses a radiation-hardened processor chip set, has redundant processors
(as aself-checking pair), and has EDAC hardware. The other board uses only COTS
components and does not have EDAC hardware. The experiment involves collecting the
errors that occur during the execution of programsin an actual space environment and

comparing the performance of the two boards. We observed that SEUs corrupt the

operating system or the main control program of the board which does not have EDAC
hardware, forcing a system reset. In order to carry out our experiments effectively, these
critical programs have to be protected against SEUs. The objective of our experiment is
to see whether software-implemented hardware fault-tolerance — which can include
software-implemented EDAC — can provide sufficient reliability for COTS hardware to
make it usable in low-radiation space applications.

Power fluctuation and el ectromagnetic interference may cause bit-flips in memories.
It has been observed that radiation-induced transient errors also occur at ground level
[O’ Gorman 94][Ziegler 96a]. Therefore, the technique presented in this report can aso
be useful for terrestrial applications.

Previous discussions of software-implemented EDAC concentrate on
communications and secondary storage systems [Paschburg 74][Whelan 77][Whiting 75]
[Sarmate 88][Feldmeier 95][Hodgart 92]. In Sec. 2, we review some of these previous
studies. In Sec. 3, welook at the problem in more detail and discuss the requirements of
a software-implemented EDAC scheme. Four different example EDAC coding schemes
were implemented in software. These schemes are compared in Sec. 4. Issues that have
to be considered for handling multiple errors and solutions to them are discussed in Sec.
5. Wediscuss how the EDAC program can be integrated into the whole system and
present our implementation in ARGOS in Sec. 6. Section 7 described a self-repairing
mechanism for the EDAC program. Experimental results of using software EDAC in the
ARGOS project is presented in Sec. 8. The reliability improvement of an applicationin a
space environment is estimated in Sec. 9. We conclude the report with adiscussion in
Sec. 10 and asummary in Sec. 11.

Thisreport is an extended version of the paper “ Software-Implemented EDAC
Protection Against SEUs,” published in the IEEE Transactions on Reliability, September
2000 issue [Shirvani 00b].

2. PREVIOUS WORK
Error control coding is awell-developed field [Rao 89] [Wicker 95]. EDAC codes

are used to protect digital data against errors that can occur in storage media or

transmission channels. The encoding and decoding of data can be done in hardware,
software or a combination of both. For example, in the memory management unit
(MMU) of aHalL microprocessor, error detection is done by hardware but correction is
done by software, because hardware correction would increase the clock cycle time
[Saxena 95].

Since specia hardware for a coding system can be expensive, researchers have
studied the feasibility of using general-purpose microprocessors for software
implementation of EDAC codes [Paschburg 74] [Whelan 77]. Efficient software
methods have been devised to do Cyclic Redundancy Checking (CRC) using table look-
up [Whiting 75] [Sarmate 88]. A comparison of fast implementation of different CRC
codesisgivenin [Feldmeier 95]. CRC codes are used for detecting multiple-bit errorsin
communication systems where correction can be done by retransmission. In storage
systems, a coding scheme with correction capability isused. There are many different
codes used in hard disks and tape backup systems. Some of these codes can be used for
protecting data residing in memory chips. For example, a software implementation of a
(255, 252) Reed-Solomon code that can do single-byte error correction is proposed in
[Hodgart 92] for protecting RAM discs of satellite memories. However, there are
differences between memory and secondary storage systems that need to be addressed in
order to choose an appropriate EDAC scheme for memories.

The contributions of this work are:

e |dentifying the issuesin implementing EDAC in software.

e |llustrating the options and differences in coding schemes by comparing four example
codes that may be considered for EDAC.

e Devising atechnique that addresses all the requirements of software EDAC including
multiple-bit error correction independent of system-level and chip-level structures.

e Designing a self-repairing and recovery mechanism for the software-implemented
EDAC program that provides protection for the program itself and also recovers from
hang-ups in this program.

e Anayzing thereliability of a system with software EDAC for main memory.

e Presenting an implementation and demonstrating its effectivenessin an actua

experiment.

3. GENERAL CONSIDERATIONS

This section discusses the requirements for an EDAC scheme that isto be
implemented in software. Software EDAC is an alternative to hardware-implemented

EDAC. Our goal isto provide the protection capabilities of hardware EDAC in software.

3.1 Systematic Codes
A coding scheme provides a mapping of input data words to what are called
codewords. A codeword contains extra check bits that are used for error detection and

correction. Consider a 64-bit data word represented by the row matrix D[d,d;...dg]. A

single-error-correcting, double-error-detecting (SEC-DED) Hamming code adds 8 check

bits to these 64 bits and create 72-bit codewords C[d,d,...d,C,C,...c,] —denoted as a (72,

64) code. In this coding scheme, the data bits are not changed and are separable from the
check bits. Thistype of codeis called a systematic (or separable) code. In non-
systematic codes, the data bits are not preserved and are mixed with check bits.

In a communication system, input data are given to the EDAC encoder and the
check bits are calculated. The produced codewords are transmitted through the channel
and given to the EDAC decoder at the receiving end. After checking for possible errors
and correcting them, the decoded datais ready to be used. Similarly, in a secondary
storage system such as a hard disk, the encoded data on the storage mediais decoded
when it isretrieved into a memory buffer for use. Modifications are aso made to the
decoded data in the memory buffer and the datais re-encoded for storage. In these cases,
the codewords are not accessed directly; they are always decoded before being used.
Therefore, the coding scheme used in these applications does not have to be systematic.
In contrast, for the application considered here, a systematic code should be used.

As mentioned in the introduction, our objective isto devise a scheme to protect the
dataresiding in main memory. For this application, the data that are protected by

software EDAC are fetched and used by the processor in the same way as unprotected

data are fetched and used. The EDAC program should run as a background task and be
transparent to other programs running on the processor. The protected data bits have to
remain in their original form, to make the scheme transparent to the rest of the system.

This requires the use of a systematic code.

3.2 Checkpoints and Scrubbing

In memories with hardware EDAC, each word of memory is encoded separately™.
The encoding is checked on each read operation and new codewords are generated on
each write operation. In addition, the contents of memory are read periodically and al the
correctable errors are corrected. This latter operation is called periodic scrubbing and
avoids accumulation of errors, thereby reducing the probability of multiple errors that
might not be correctable.

If the same protection that is provided by hardware is to be provided by software,
each read and write operation done by the processor hasto be intercepted. However, this
interception isinfeasible because it imposes a large overhead in program execution time.
Therefore, we chose to do only periodic scrubbing for software-implemented EDAC. If
memory bit-flip errors are not corrected by the periodic scrubbing before a program is
executed, we rely on other software-implemented error detection techniques (e.g.,
assertions, Error-Detection by Duplicated Instructions [Oh 01a], or Control-Flow
Checking by Software Sgnatures [Oh 01b]) to detect the errors. When an error is
detected, a scrub operation is enforced before the program is restarted.

The EDAC program is given the address and size of the memory block that needs to
be protected. It requests another block from the OS to be used for the check bits. Then, it
calculates the check bits (encoding) and stores them in the allocated block. On request, it
checks the block for errors (decoding) and corrects them if possible. The content of the
memory block may be fixed or variable. If it isfixed, the encoding is done once and the
check bits remain constant. However, if the memory block is written to by the processor,

the check bits have to be recalculated. There are two main types of information stored in

Y In “chipkill-correct” EDAC protected memories that are mainly used in server computers, the codewords
may expand over several words [Dell 97] and therefore, single-word write operations are done in a Read-
Modify-Write fashion. Thisisall done in hardware using store buffers and is transparent to software.

amemory: code and data. Code segments contain instructions, and data segments contain
the datathat is used or produced in computations. After a program has been loaded and
linked by the operating system, the contents of the code segment are not changed (with
the exception of self-modifying codes that are not considered here). Therefore, afixed set
of check bits can be calculated for code segments.

Generally, the processor reads and writes to data segments and, as mentioned two
paragraphs before, it is not feasible to intercept al the write operations to update the
check bits because the interceptions will incur significant performance overhead.
However, for data that does not change, e.g., read-only data segments, or some
calculation results that are stored for later use, EDAC protection can be provided in
software. Application Program Interfaces (APIs) can be defined so that the programmer
can make function callsto the EDAC program and request protection for a specific data
segment (an example APl isgivenin Sec. 6). In this case, protection can also be provided
for writable data segments. Read and write operations on these segments will be done
through the APIsin blocks of words. However, this method is not transparent to the
application programs and the programmer must control of the reads and writes to the

protected data and minimize the execution overhead.

3.3 Overhead

The space used for check bits reduces the amount of memory available for programs
and data. Therefore, the overhead introduced by the check bits must be aslow as
possible. The simplest codeis aparity code that is formed by adding a single bit to data
bits such that the total number of 1’sin the resulting codeword is even (or odd for odd
parity). This code can detect only odd numbers of errors and cannot correct any errors.
Correction can be done by keeping a second copy of the parity-protected data but EDAC
codes can provide correction capability with fewer check bits. It is desirable to handle
more than one error, because multiple errors may occur between scrub intervals. Codes
that have more capability (correction and multiple detection), add more check bits (check-
bit overhead) and tend to have more complex encoding and decoding algorithms,

increasing both performance overhead and program size overhead. A code should be

selected that can be implemented by afast and small program and provides correction for
multiple errors. If the program isfast, it imposes low overhead on system performance.
More importantly, afast program is less vulnerable to transient errors that can occur in
the processor during execution of the program. Similarly, small program sizeis
important not just because it takes less memory space that could be used for other
programs, but more importantly because, it makes the EDAC program less vulnerable to
SEUs that may corrupt its own program. In Sec. 7, we discuss how the EDAC program
can be protected.

The check-bit overhead of hardware EDAC is the extra memory chips that are
added to the memory system to contain the check bits. Thereis no program size overhead
for hardware EDAC but there can be some performance overhead if the latency of EDAC
circuitry increases the access time of the memory. With hardware EDAC, the check bits
are fetched from memory at the same time the corresponding data bits are accessed.
However, with software EDAC, extra memory accesses are needed to fetch the check
bits. In addition, there will be some memory accesses for fetching the EDAC program
into the processor cache. Therefore, the total memory bandwidth used by software EDAC
is more than that of hardware EDAC.

4. CODE SELECTION

4.1 Vertical vs. Horizontal Codes

In memory systems with hardware EDAC, the memory width is extended to
accommodate the check bits. Figure 4.1(a) shows adiagram for a 32-bit memory word
that is augmented with seven check bits. Each set of check bitsis calculated based on the
bits of one word corresponding to one address. We refer to thistype of coding as a
horizontal code. When a horizontal code isimplemented in software, each word is
encoded separately and the check bits are concatenated to form aword. This check word
issaved in aseparate address (Fig. 4.1(b)).

32-bit data words 7 check bits
4t —p4—»

I — —
(@

32-bit words

A
v

data words

- check word

(b)
Figure 4.1 A horizontal code over bits of aword: (a) hardware implementation; (b) organization of bits
when the code isimplemented in software.

Another type of coding isshown in Fig. 4.2. Each set of check bitsis calculated
over the bits corresponding to one bit-slice of ablock of wordsin consecutive addresses.
Thistype of coding is used in some tape back-up systems [Patel 74] and werefer toit asa
vertical code. Thistype of code matches well with the bitwise logical operations that are
present in all common instruction set architectures (ISAs). When we discuss different
codesin Sec. 4.2, we will seethat thelogical ‘xor’ operationisused in the
implementation of most of the error detecting codes. Many shifts and logical operations
are required for encoding each word in ahorizontal code. In contrast, vertical codes lend
themselves into very efficient algorithms that can encode all the bit-slices in parallel —
similar to the parallelism in a single-instruction multiple-data (SIMD) machine.

Therefore, avertical codeis preferred for a software-implemented EDAC scheme.

32-bit words

64 data bits
(one bit-slice of
64 words)

8 check bits

Figure 4.2 A vertical code over bit-slices of words.

Another aspect of these two types of codesis their handling of multiple errors. Let
us assume that a SEC-DED code is used for both types of codes. If two bit- flips occur in
one word, the horizontal code cannot correct it; but, since each bit-flip belongsto a
different bit-slice, the vertical code will be able to correct both errors. On the other hand,
if two bit-flips occur in one bit-slice of ablock, ahorizontal code will correct both, while
avertica code will fail. Section 5 treats the occurrence and handling of multiple faults.

Some coding schemes are not quite horizontal or vertical. An advantage of
implementing EDAC in software isthat it is very flexible and the designer can mix

various techniques and codes that would be expensive or infeasible in hardware.

4.2 Coding Schemes

In this section, we look at four different codes and compare them. These codes
were chosen to illustrate the options, the differences, and the facts that need to be
considered in choosing a coding scheme. The designer of a software-implemented EDAC
scheme may choose a code depending on the application.

1) Scheme 1isa (72, 64) Hamming code implemented as a vertical code over a
block of 64 data words with eight check-bit words. The parity generation matrix was
optimized to have minimum-weight columns. For example, the equation for the first
check bit ¢, is:

c,=d,ed,@od,@d,, @dls@dls@dm@dlg@dzo@d%@d29®d31®d34®d35®(1)
dyed,ed,od,edy,od,@d,, @d,®d, @d, @d,, @dg,
where ® denotes the xor operation. This equation can be used directly in the C program

that implements the EDAC algorithm. By defining each ¢ and d, in (1) asa32-bit

word, avertical code can be implemented as shown in Fig. 4.2. Using the bitwise ‘xor’
instruction, 32 xor’swill bedonein parallel. In other words, the encoding of all the 32
bit-slices can be donein parallel. The decoding processis donein asimilar way.

This Hamming code can correct single errors and detect double errors. Therefore,
in this scheme, asingle bit error can be independently corrected in each bit-slice. Thus,
as many as 32 bit-flips can be corrected as long as each of them isin adifferent bit-slice

(thisincludes a single word correction).

2) Scheme 2 isavertical code with the same size as scheme 1, but uses a cyclic

code instead of aHamming code. The (72, 64) cyclic code is based on the primitive
polynomial: P(X) = X%+ X"+ X?+1. The polynomial division used in this code is
done by implementing the Linear Feedback Shift Register (LFSR) showninFig. 4.3, in
software. Similar to Scheme 1, the encoding/decoding process of the 32 bit-dicesis done

in parallel. The correction capability of this scheme is the same as that of Scheme 1.

A A A

Figure 4.3 The LFSR corresponding to polynomial P(X) = X®+ X7 + X2 +1.

3) Scheme 3 uses a (1088, 1024) 2-dimentional parity code similar to arectangular

code. For smplicity, let us consider ablock of four 4-bit words, d,, ,. Figure 4.4(a)

shows arectangular code where parity bits are calculated over each word (horizontal
parity) and each bit-dlice (vertical parity). A single error in the block will cause one
horizontal and one vertical parity error which will indicate the location of the error. As
mentioned in Sec. 4.1, calculating the horizontal paritiesin softwareis not asfast as
calculating the vertical parities. Therefore, in Scheme 3, the horizontal parity is replaced
with diagonal parity (similar to the schemein [Patel 85]) which is essentially the same but
trand ates to a more efficient software implementation (Fig. 4.4.(b)). Theblock sizein

our implementation is 32 words, because of 32 bits in each word — hence a n=k+64,

k=32x32 code.
do do
di di1
d2 d2
d3 d3
Vv Vv
(a)

@00O0TxI

D O @ O O
(b)
Figure 4.4 Parity codes:. (a) vertical + horizontal (rectangular); (b) vertical + diagonal.

10

4) Scheme 4 uses a (66, 64) Reed-Solomon (RS) code in GF (2*). The polynomial
used for thiscodeis. P(X) = X*+ X%+ X?+ X +1. The equations for the check-bit
words are:

c,=>d,c=Yda,c,=Yda’
where « isthefield generator (the . trandatesto the bitwise xor operationinaC
program). c,issimply the vertical parity. ¢, and c, are calculated by a software

implementation of a Multiple-Input Signature Register (MISR) [Patel 74]. The efficiency

of software implementation of this schemeis similar to Schemes 2 and 3. With ¢, and
C,, the distance of the code (d) is 3 and a single word error can be corrected (SbEC).
With c,, ¢, and c,, thedistanceis 4 and in addition to SbEC, double word errors are
also detected (DbED). However, this extra coverage will be at the expense of alarger

EDAC code and longer execution time. The block size for this code can be up to 2% -1
words, including the check-bit words. Therefore, this code can have a very low check-bit
overhead. However, the probability of multiple errorsincreases as the block becomes
larger. We keep the block size for this scheme at 64 words; the same as those of schemes
land 2.

4.3 Overhead Comparison

We implemented the four schemes described in the previous section in software and
measured their performance on a 200MHz UltraSPARC-I microprocessor. Table 4.1
shows the results. Column 2 shows the size of the code segment of the program that does
the encoding and the error detection and correction. Column 3 shows the overhead of the
check bits. For Scheme 4, the block size can be larger and the overhead can be reduced
as long as the probability of multiple errorsin the block remains below the specifications.
The decoding (error detection) speed mainly determines the performance overhead of
each scheme because decoding is done more often than encoding or correction. The
decoding speed, DS, of each scheme in terms of megabytes per second is shownin

column 4. Given the size of memory that is being protected, Syem, and the scrubbing

11

interval, Tsrun, the performance overhead, OHpef, Can be calculated using the following

formula:

__ Sw/DS
Pt Tscrub - S‘nem/DS .

Column 5 summarizes the error detection and correction capability of each scheme.

OH

Table 4.1 Comparison of program size, check-bit overhead and decoding (error detection) speed of the four
coding schemes.

Scheme Program Check-bit Overhead = Decoding Detection/Correction
Size (bytes) | check-bit/data (words) | Speed (MB/s) Capability

Hamming 14,307 8/64=12.5% 187.80 bit-slice SEC-DED per block

Cyclic 6,731 8/64=12.5% 29.24 bit-slice SEC-DED per block

Parity 6,747 2/32=6.25% 34.68 SEC-DED per block

RS (d=3) 6,723 2/64=3.125% 24.41 SbEC per block

Notice that column 2 shows only the size of the core part of the EDAC program that
implements the encoding and decoding of the codewords (including correction). There
are other parts of the program that maintain the list of memory segments that are
scrubbed, implement the interleaving technique (discussed in Sec. 5.3), communicate
with other programs, etc. The size of these parts, which is not included in column 2,
depends on the features of the EDAC program and is the same for all the coding schemes.
In our implementation, these parts were about 15,000 bytesin size. The differencesin the
core size are small compared to the size of the whole EDAC program. Therefore, when
comparing the coding schemes, the core program size is a minor factor.

Scheme 1 has the highest decoding speed but also has the largest program size.
Large program size is aminor disadvantage as discussed in the previous paragraph.
Scheme 2 has the same check-bit overhead and detection/correction capability as Scheme
1, but has a much lower decoding speed (this speed may be acceptable depending on the
application). Schemes 3 and 4 have lower check-bit overhead at the expense of less
detection/correction capability.

There are many other EDAC codes and the proper code is chosen depending on
application specifications. A scheme that has smaller program size, lower check-bit
overhead and higher decoding speed is preferred. The last decision factor is the capability

of the codes in handling multiple errors.

12

5. MULTIPLE ERROR CORRECTION

Multiple errors occur in two ways: (1) multiple SEUs can occur before the memory
is scrubbed for errors, or (2) asingle SEU causes a multiple-bit upset (MBU). Inthe
former case, the scrubbing frequency needs to be adjusted according to the SEU rate to
avoid exceeding the correction capability of the utilized EDAC code with ahigh level of
confidence. The latter case has to be approached differently.

It has been observed that a single particle can affect multiple adjacent memory cells
and cause multiple bit-flips [O’ Gorman 94] [Ziegler 96b] [Liu 97] [Reed 97] [Hosken
97]. MBUs occurred in 1-10% of SEUs in a set of satellite experiments [Underwood 97]
[Oldfield 98] [Shirvani 00a]. The fact that these multiple errors correspond to memory
cells that are physically adjacent should be considered when designing an EDAC scheme.
If the design is such that the physically adjacent bits belong to separate codewords, these
errors can be corrected. To achieve this, the designer of the EDAC scheme needs to
know the mapping of physical bits of the memory structure, to the logical bitsin memory
address space (location of the bitsin aprogrammer’ s view of the memory). This mapping
is determined by the system-level structure and the chip-level structure. Welook at each
of these separately.

5.1 System-Level Structure

Consider a system with 2MB of memory and a 32-bit data bus. Each memory chip
that is used to build this memory can have 1, 4 or 8 data outputs, usually denoted as a x1,
x4 or x8 chip, respectively. For example, if 512Kx1 chips are used, each chip provides
one data bit of the bus and 32 chips make 2MB of memory. If 512K x8 chips are used,
each chip will provide 8 data bits of the bus and four chips are enough to make 2MB of
memory. In systems with hardware EDAC, the x1 chips have the advantage that if one
whole chip becomes faulty, a SEC-DED code can compensate for thisfailure. To tolerate
chip failures of the wider chips, more advanced EDAC designs have to be used — these
codes are beyond the scope of this report; for a good discussion of this subject the reader
isreferred to [Dell 97].

13

The errors caused by SEUs are independent in each memory chip. Thisfact can be
used when designing EDAC for chips with a specified output width. For example, if x8
chips are used with Scheme 4, it is beneficia to implement the Reed-Solomon code in
GF (2°) and have the check-bits over each 8-bit byte portion of a 32-bit word (byte-slices

asshownin Fig. 5.1). Thiscode will be capable of correcting multiple errors that do not
necessarily align in one word of the address space. Therefore, the fact that multiple
dependent errors (caused by one SEU) do not cross the byte borders, can be used to
enhance to capability of the code in correcting multiple independent errors. Thisis
achieved with the same check-bit overhead, but with a more complicated code for doing

the encoding and decoding. In addition, the size of the block can now be increased only

up to 2% —1words.

32-bit words

X

Co
C1
C2

Figure 5.1 A byte-slice implementation of an EDAC code. An example of amultiple error that can be
corrected is shown with the marked bytes.

Similarly, the vertical code shown in Fig. 4.2 can handle multiple independent
errors caused by multiple SEUs in different x1 chips. With x1 chips, multiple errors that
are caused by asingle SEU (MBUSs) are all in one bit-slice (not necessarily in consecutive
word addresses). A horizontal code has SEC-DED capability for each 32-bit word can
easily handle these MBUs. However, avertical code will fail if these errors map to the
words of the same block. This mapping depends on the internal structure of the memory
chip. Even with wider chips such as x4 or x8 chips, one needs to |ook at the structure
inside the memory chips to know where these physically adjacent errors will be in the

logical memory address space.

14

5.2 Chip-Level Structure
In this section, several possible implementations of a 512Kx8 memory chip are
analyzed. Figure 5.2 shows three different implementations of such a memory taken from

the data sheets of Cypress Semiconductor Corporation [Cypress 99].

)
°
o
3 512K x 8
3
x
Column Decoder
All-A18
@
A0 - A16
| 128K x 8 | 128K x 8
| ARRAY | ARRAY
A A
128K x 8 128K x 8
lofa ARRAY ARRAY
0 ™ ,—>
Al7, A18 —b Decoder 'y A
» DO - D7
(b)
A0 - A17
| 256K x 4 | 256K x 4
| ARRAY | ARRAY
A T
256K x 4 256K x 4
ARRAY ARRAY
lof2 — ’ ’
Al8 —» X
Decoder * T » DO - D3
» D4 - D7

(c)
Figure 5.2 Three different implementation of a 512K x8 memory chip: (a) one x8 array (Cypress
CY62128), (b) four x8 arrays (CY M 1465), (c) four x4 arrays (CY M 1464).

With the structurein Fig. 5.2(b), errorsin the four arrays are independent. If the
structure in Fig. 5.2(c) is used, then errors in each nibble (4 bits) of aword are

independent of errorsin the other nibbles. An EDAC design can take advantage of this

15

fact and enhance its correction capability in the same way as discussed for the example of
Fig. 5.1.

An important thing that the data sheets do not show is the mapping (physical
connection) of external address bits to internal address bits. For example, it is not
necessarily the case that in Fig. 5.2(a), address bits A0 to A10 are connected to the row
decoder and in that order.

To completely derive the physical to logical mapping of the bits inside a memory
chip, we looked at the actual physical implementation of the four arraysin Fig. 5.2(b).
Each 128Kx8 moduleis divided into 8 subarrays (groups). Each subarray has 1024 rows
and 128 columns — not counting the redundant rows and columns that are used for yield
enhancement (defect tolerance). Let usindicate the address bits connected to the group,
row and column decoders with AG, AR and AC, respectively. The mapping of external
address bits (A0-A16) to these bitsis shown in Table 5.1.

Table 5.1 Mapping of external to internal address bits in the 128Kx8 array.

Internal Address Bits | External Address Bits

AG 0,1,2 A 15,16,10
AR 0-9 A 4,5,6,7,8,9,11,12,13,14
AC 0-3 A0,1,23

The order of the data bits that come out of each group also differs for each group. If
we look at asmall portion of one subarray, it will look like Fig. 5.3(b). Bit 2 and bit 6 are
physicaly adjacent. The number in each cell corresponds to the logical address of the
word that contains that bit. This correspondenceisillustrated in Fig. 5.3(a) where the
same bits are numbered in alogical view of the memory. Let us consider bit 2 of address
18. Thishit isphysically adjacent to bit 2 of addresses 01, 02, 03, 17, 19, 33, 34 and 35
(werefer to this as type 1 adjacency)— if the geometries are small enough, we may have
to consider adjacency with alarger radius [Hosken 97]. For a more interesting example,
consider bit 6 of address 16. Thisbit is physically adjacent with bit 6 of addresses 00, 01,
17, 32 and 33 (type 1), and with bit 2 of addresses 15, 31 and 47 (we refer to this astype 2
adjacency); which is something not quite expected. Adjacencies of type 2 are in different

bit-slices and vertical codes can correct MBUs of thistype. However, type 1 adjacencies

16

are in the same bit-dlice and vertical codes may fail to correct the corresponding MBUSs.
To handle type 1 adjacencies with a vertical code, atechnique called interleaving can be
used (Sec. 5.3).

Notice that a horizontal code can correct the MBUSs corresponding to both types of
adjacencies. In other words, the internal structure of some memories (like the examples
in Fig. 5.2) is such that hardware EDAC works well for all MBUs. However, thisis not
awaystrue. For example, theinternal structure of ax8 memory chip from Texas
Instruments is such that MBUSs can occur within individual words [Underwood 92]. Such
single-word multiple-bit upsets (SMUs) [Koga 93][Johansson 99] will defeat a SEC-DED
horizontal code. Therefore, in this case, a well-designed software EDAC can be more
effective than a hardware EDAC.

76 543210

00 00
01 01
02 02
03 03
63 63
- hd
1 Byte
(@)
48|a9|50|51|52|53] - |63|48|49|50(51|52[53] - |63
32|33|34|35|36(37| - [47|32|33|34|35[36[37] - |47
16(17|18[19[20(21| - |[31|16|17|18]19]20]22] - |31
00/01|02|03|04|05| - |15|00|01|02[03[04|05] - |15
A
Bit #2 Bit #6

Figure 5.3 Bit positions for a small portion of the(rbriemory array of Fig. 5.2(b): (a) logica positions, (b)
physical positions.
5.3 Interleaving
It was illustrated in the previous section that multiple errors can occur in one bit-
slice of ablock of words protected by avertical EDAC code. If a SEC-DED codeis used,
these errors cannot be corrected. One solution is to use a code that can correct more
errorsin acodeword. However, codes with higher correction capability have higher

check-bit, performance and program size overhead. Another solution isto logically

17

separate the adjacent bits so that each error occursin adifferent codeword. This can be
done by interleaving the words that belong to the protected blocks. Interleavingisa
technique where logically adjacent bits are mapped to bits of the communication channel
or storage mediathat are not physically adjacent. Thistechniqueis used for handling
burst errors. For example, audio CDs employ the Cross-Interleaved Reed-Solomon Code
(CIRC) to overcome burst errors due to scratches and dust particles. CD-ROMs use a
two-dimensional version of CIRC. Figure 5.4 shows a 4-way interleaved EDAC scheme
that has 64 datawords and 8 check-bit words. Starting from address O, the words of a
protected block belong to memory addresses 0, 4, 8, 12, 16,..., 252. Looking at Fig.
5.3(b), we see that having address 0 and 16 in the same block is not desirable. Any i-way
interleaving scheme, wherei is of the form i = 2¢ (apower of 2), i =2 -1 or i = 2" +1,
has the sameissue. Therefore, when choosing an interleaving factor, it is best to avoid
these numbers. By doing so, the scheme will be independent of the internal structure of
the memory chips because for any internal structure, the adjacencies will have arelation
that has these three forms (with different k's).

The geometrical model for multiple upsets presented in [Hosken 97], assumes that a
memory cell will be upset if an ion comes within adistance R from its assumed center;
this distance is the sensitive radius of adjacency. Noticethat if R> 1, the interleaving
factor has to be chosen more carefully. In our project, we assumed this radius is one and
we used i =6 for our application.

32-bit words 32-bit words

>
___________ > 4
/ﬂ
64 data . \,71*
" —
4*64 data
8 check bitsI
64 data . v
« A
e 4
||
. 4*8 check bits
8 check bits .
v

(@ (b)
Figure 5.4 Logical mapping of wordsin a4-way interleaving technique: (a) blocks of EDAC protected data
and the corresponding check-bit words; (b) the location of these words in memory address space.

18

6. IMPLEMENTATION

We assume that the target system has a multi-tasking OS. As mentioned in Sec.
3.2, the EDAC program is an independent task that is executed periodically. Timers can
be used to wake up the EDAC task periodically. The task should also have higher
priority than normal programs so that it is executed at its fixed frequency, independent of
the load on the system. Because this task has high priority, it runs to completion (one
sweep of memory) before usual programs are resumed.

The EDAC program needs to access the data and code segments of other tasks.
Direct access to the address space of another task is not always granted to a usual task.
The operating system in our system is VxWorks with aflat address space and no
protection option activated. However, in many operating systems, for example, Unix, the
address space of atask is protected from being accessed by other tasks using hardware
and software mechanisms. Only the operating system has unrestricted access to the
whole memory. Therefore, in this case, the EDAC program has to be run at kernel level
Or given proper access rights.

We used APIs to interface application programs to the EDAC program. An
example set of APIsisshown in Table6.1. Sincethe EDAC program is a separate task,
the function parameters are sent to it through message passing. Thefirst time each
application program is loaded into memory, it sends the address of itsfirst and last
instructions to the EDAC program using the EDAC_add_block function. Using the same
mechanism, a program can also ask for protection of a data segment. The read and write

functions are used for data segments.
Table 6.1 An example set of APIsfor software EDAC.

Function Name and Parameters Description

EDAC_add_block(StartAddr, EndAddr) | Add the block between ‘StartAddr’ and ‘EndAddr’ to
the list of blocks to be scrubbed periodically.

EDAC_delete_block(StartAddr) Delete the protected block that starts at ‘StartAddr’.

EDAC_read(ReadAddr, Size, &Buffer) Read ‘Size’ words into ‘Buffer’ starting at ‘ReadAddr’
from the corresponding protected block. The data
are checked for errors before copying into ‘Buffer’.

EDAC_write(WriteAddr, Size, Buffer) Write ‘Size’ words from ‘Buffer’ to locations starting
at ‘WriteAddr’. New check bits are calculated for the
corresponding protected block.

19

Almost all modern microprocessors use caches to compensate for the slow access to
the main memory. In asplit cache architecture, the data and instruction caches are
separate. When the EDAC program checks the code segment of another program for
errors, it reads the instructions of that program. These instructions go through the data
cache because they are data for the EDAC program. If any correction is done on these
instructions, the correction is written into the data cache. Therefore, the EDAC program
should invalidate the instruction cache (if the corrected address exists in cache) and flush
the data cache after a correction isdone. This forces the correct instruction to be fetched
from memory and into the instruction cache the next time that address is accessed.

During anormal sweep of the memory by the EDAC program (no errors detected),
al the checked addresses are accessed only once. Therefore, thereis no benefit in
caching these addresses. Moreover, they will replace all the active lines of the cache.
These replacements degrade the performance of the system by causing many cache misses
after the EDAC program finishes one scrub operation. Therefore, it is better to treat the
data accesses of the EDAC program as non-cacheabl e addresses so that they do not
pollute the data cache. Evenin this case, the cache hasto beinvalidated if a correctionis
done on an address that exists in the cache.

The EDAC program resides in memory and therefore it is vulnerable to errorsitself.
Read-only memories (ROMSs) are less susceptible to SEUs hence, running the EDAC
program out of ROM is one way of protecting it against bit-flipsin its code segment.
However, ROMs are not immune to SEUs and they are slower than RAMs. In some
cases (for example, our ARGOS project) adding EDAC may be an after-thought in
project design, so it is not possible to put the EDAC program in ROM. SEUSs that occur
in the processor can aso result in miscalculations in the EDAC program. Therefore, in
any case, some sort of redundancy is needed to ensure the correctness of this process.
Time-redundancy (multiple executions) can be used to check for SEUs that occur in the
processor. However, if an SEU corrupts the code segment of the EDAC program, it
needs to be corrected so that it does not produce awrong result repeatedly. This code
segment can be protected by EDAC, similar to other programs that are being protected.

However, a corrupt code cannot be trusted to correct itself. Therefore, a second copy of

20

the EDAC program should exist. Each copy can do checking and correction on the other
one (cross-checking). Another possibility isto have a second copy in ROM, and correct
the errors ssimply by copying theimage. At any time, there should be a healthy copy of
the EDAC program that can be trusted to correct a possibly corrupted one.

For the ARGOS project, we use the two copies scheme with cross-checking. This

self-repairing mechanism is described in the next section.

7. SELF-REPAIRING AND RECOVERY MECHANISM

To correct the errorsin the code and data segment of the EDAC software, two
copies of the EDAC program are executed, EDAC1 and EDAC2. We assume that at each
point in time only one copy may be corrupt. Each copy has a self-check routine that is
executed before scrubbing any blocks. The self-check routine exercises the encoding and
decoding functions on afixed small block that is designated for thistask. First, the block
isfilled with acertain pattern (e.g., all ones) and the encoding function is called. Upon
completion, we check that the generated check bits are correct by comparing with
expected values stored in the program. Then the error detection (decoding) function is
called. Thisfunction should find no errors (we assume that during this short time, no bit-
flipswill occur in this small block). Then asingle error isinjected in the block and the
error detection functionis called. Thistime this function should find one error. After
calling the error correction function, we check that all the data and check-bit words are
correct again. Figure 7.1 shows the flowchart of the self-check routine.

The result of the self-check routine determines which copy scrubs the other copy
first. If the self-check routine of EDACL returns “OK”, EDAC1 scrubs EDAC2, and then
EDAC?2 scrubs EDAC1. If thisroutine returns “ERROR”, the cross scrubbing is donein

reverse order.

21

Fill block with all Os » Encoding Function

Return ERROR

»| Error Detection Function

Write one 1 in block | Error Detection Function

| Error Correction Function

All data and check
bits are zero?

I
Return ERROR
Return OK

Figure 7.1 Flowchart of the self-check routine.

Figure 7.2 shows the simplified flowchart of our scheme. When the timer for
EDACI1 signals the beginning of a scrub operation, EDAC1 resumes execution and does a
self-check. If no error is detected, it scrubs its data structure (which contains the address
of protected blocks including EDAC2) and then scrubs EDAC2. Then, EDACI activates
EDAC2 by sending it a message and waits for a completion signal from EDAC2. EDAC2
resumes execution, runs a self-check and if there were no errors, it scrubs EDAC1. It then
sends a completion signal to EDACL and waits for the next message. When EDAC1
receives the signal, it starts its main job which is scrubbing the blocks that it is protecting.
If during the initial self-check EDAC1 finds an error, it resumes EDAC2 to correct the
error. After EDAC1 is scrubbed, it runs another self-check to make sureit has been
corrected. If thereisan error again, we decide that the error is not correctable and quit

the EDACL task.

22

EDAC 1 EDAC 2

Timer Wake-up

Self Check

Q&% L | Self Check

n

Self Check [« Scrub EDAC 1

Scrub Data .
¢ Exit
Scrub EDAC 2 P Self Check
Scrub Blocks [« Scrub EDAC 1

Wait for Message

Figure7.2 Simplified flowchart of the self-repairing EDAC software showing the interaction between
EDACI (left half) and EDAC2 (right half).

SEUs could cause hang-up errors in these two tasks. We use timers to detect a
hang-up and recover from it in the following way. Similar to EDACL, EDAC2 has a
timer that resumes its operation upon timeout. The timeout for EDAC2 is set to 4 times
that of EDACL. In error-free operation, EDAC?2 is activated by a special message
received from EDACL. A semaphoreis used for the completion signal from EDAC2 to
EDACL. If EDAC1 cannot get the semaphore within a certain time, it will kill EDAC2,
scrub it for errors and restart it. Similarly, if EDAC2 does not receive a message from
EDAC1 before timeout, it will kill EDAC1, scrub it and restart it. To avoid the
information on the protected blocks (addresses, etc.) from getting lost when either of the
copiesisrestarted, aglobal variableis set when arestart isinitiated. Intheinitialization

routine of each copy, thisvariable is checked and if it indicates arestart, the data

23

structures are not initialized. Fault injection experiments show that both copies can
correctly recover from errors (including hang-up errors) and resume their previous job.

After cross-checking is completed, EDACL can scrub the rest of the system. We
assume that EDAC1 scrubs the protected blocks correctly using the fact that the
probability of a bit-flip occurring in EDAC1 during its short execution isvery low. An
extended version of this scheme can have both copies scrub the protected blocks and
compare their results. This avoids possible miscorrections by EDACL.

In the next section, we describe the results of using software EDAC on board the
ARGOS satellite.

8. EXPERIMENTAL RESULTS

The self-repairing software EDAC described in this report was implemented for the
ARGOS project using the cyclic code (Scheme 2) with interleave factor 6 and 30 second
scrub interval. This software was executed on the satellite and proved to be effectivein
enhancing the availability of the system. Here are two examples where we observed the
effects.

After a system reset, we uploaded some programs and ran them. Then, afew days
later, we uploaded some new programs. Without software EDAC, the second uploads
failed, sometimes causing exceptions or system reset. We attributed the failure to the
accumulated bit-flipsin the OS code that handles the uploading and linking, and in the
global symbol table — the global symbol table holds the addresses of global variables and
functions and is used in the linking process. When the EDAC program was uploaded and
run with the first set of programs (shortly after areset), the bit-flips in code segments of
the OS were scrubbed periodically. In this case, most of the second uploads were
successful — the failures could be due to bit-flipsin the global symbol table (whichisa
data segment and was not protected against SEUS), or bit-flips in the OS code that had
occurred since the last scrub operation.

Another issue was the time it took for the system to halt after afresh start (total
reset). Without software EDAC, the errors accumulated in the code segments of the OS

and our programs;, after some time, the system got an exception, for example, due to an

24

illegal instruction (caused by abit-flip in an instruction). Thiswas a code that was
running correctly and stopped because of atransient error in hardware and not a software
bug. When software EDAC was added, the frequency of these errors was significantly
reduced and the system could operate correctly for alonger period before it halted.

The observations explained in the previous two paragraphs show that, in the
absence of hardware EDAC, system availability can be improved by software EDAC.
The software EDAC was run on the ARGOS satellite for 329 days protecting about
450K B of memory (including OS code segments). Without software EDAC, the system
would survive only for an average of 2 days. After the addition of software EDAC, the
average period was extended to 20 days, which is an order of magnitude improvement. In
the next section, we quantify the reliability obtained by software EDAC for programs
running in SEU prone environments. As areference for comparison, reliability estimates
are derived for programs running with both no EDAC and hardware EDAC support. We

also quantify the sensitivity of program reliability to scrubbing interval.

9. SCRUBBING INTERVAL AND RELIABILITY ANALYSIS

Several papers [Abraham 83] [Saleh 90] [Goodman 91] [Y ang 95] present
reliability analysis for memory systems using hardware EDAC and scrubbing. Building
on this prior work, the analysis presented in this section provides aframework for
comparing hardware and software EDAC methods from the standpoint of program
reliability. The environment assumed for this analysis closely matches the environment
for the ARGOS experiment.

Any program alternates between two states: run and dormant. In therun state, the
program instructions are fetched and executed. In the dormant state, the program
instructions reside in memory and the program waits in this state until it is scheduled by
the OS to the run state. With EDAC and scrubbing, the program has an additional scrub
state. During the scrub state, the program instructions are read and rewritten (upon
detection of correctable errors) with corrected data using hardware or software EDAC
methods. The time between two successive scrub states is the scrubbing interval. By

definition, the scrubbing interval will be the sum of run, dormant and scrub state times.

25

The lifetime of a program, with EDAC and scrubbing, isarenewal event comprising a

repetition of the sequence of run, dormant, and scrub states. Table 9.1 liststhe

parameters used in the reliability analysis.

Table 9.1 Program environment parameter definitions and typical values.

Parameter | Description

u Upset rate (probability of single-bit upset in a cycle). The units are upset/bit-
cycle. Typical value assumed is 5.52 x 10'19/bit-cycle. This is derived from 10
upsets/Mbyte-day using a clock rate of 25 MHz.

T, Nurlnber of cycles the program is in the run state. Typical value assumed is 10°
cycles.

Td Numbergof cycles the program is in the dormant state. Typical value assumed is
6.5 x 10" cycles.

Ts Number of cycles it takes to scrub the program data. For hardware EDAC, the
typical value is 1.25x10° cycles. For software EDAC, the typical value is 2.5 x
10". The scrubbing interval is T,+T4+T, (5 minutes in 25MHz clock rate cycles).

n Horizontal bit width of program data. Typical values assumed are n=32 for no
EDAC or software EDAC and n=39 for hardware EDAC.

m Number of words in a block of vertical code (for software EDAC). Typical value
assumed is 72 (64 data words + 8 check-bit words).

S Number of program words protected by EDAC. Typical value assumed is
131,072 (program size = 0.5 Mbyte).

S Splus number of check-bit words needed for S(S = Sx 72/64).

Let us begin by estimating the reliability of a program running with no EDAC

protection. Without EDAC protection, the lifetime of a program is arenewal event

comprising repetition of the sequence of run and dormant states. The probability that a

program will survive one sequence of run and dormant statesis given by:

(1_ u) nS(T, +T,) .

Using the valuesin Table 9.1, the reliability (probability that a program will survive

multiple sequences of run and dormant states) as a function of time (in minutes) is given

in Table9.2.

Table 9.2 Survival probability of a program with no EDAC support.

Time (in Minutes) Reliability
10 0.97
20 0.93
30 0.90
40 0.87
1 day 0.0067

26

Table 9.2 shows that without EDAC support, the probability of a program surviving
even for aday isvery small. Therefore, the necessity of protecting programs with EDAC
is demonstrated for these assumptions. With SEC-DED hardware EDAC support, the
probability that a program survives one sequence of run, dormant, and scrub statesis the
same as the probability that there is no more than a single-bit error in any program word

(horizontal codeword). Simple combinatorial analysis shows this probability as:

(T, +T4+T)(n-1) 3

[n(l— u) r n(Tr +Td +TS) S.

(n-H(1-u)
With software EDAC support, the program is unprotected against SEUs during the run
state. Therefore for aprogram to survive, with a software SEC-DED EDA C support, the
program must not encounter any error during the run state and no more than a single-bit
error in any vertical codeword during the dormant and scrub states. For the sake of
simplicity in analysis, we assume that the EDAC program is error-free. We aso assume
that due to physical locality of memory references, only 10% of the program code is used
in each scrubbing interval. Using ssimple combinatorial analysis, the following expression
guantifies the reliability of a program for one sequence of run, dormant, and scrub states:

S
T

- u)nl_O r (1 u)(Td +T)(m-1)

~(m-pa-u)" TSI,
Again using the valuesin Table 9.1, Table 9.3 shows the reliability values for a program
with software EDAC and hardware EDAC. If reliability of a program with no EDAC
protection is Ry and reliability of a program with software EDAC is R;, then reliability
improvement provided by the software EDAC can be defined as the ratio of the
unreliabilities of the two programs: (1-R;)/(1-R;). The second column of Table 9.2 and
the second column of Table 9.3 show the reliabilities for the same environment. The
numbers show that software EDAC improves the reliability of a program that has no
EDAC protection by several orders of magnitude®.

Reliability of a program with no EDAC, with hardware EDAC, and with software
EDAC isshownin Fig. 9.1 for aperiod of 48 hours. Thetime axisisthe sum of T, and

Tq and therefore the graph shows the reliability comparison for equal amount of work.

2 The reliability improvement in the ARGOS experiment was lower because we could not provide
protection for the data segments of the operating system.

27

Since Ts < 0.01x(T, + Ty) in both hardware and software EDAC, total times (T, + Tq+ Ty)

are dmost the same.

Table 9.3 Software and hardware EDAC reliability comparison.

Time (in Days) Reliability with Reliability with
Software EDAC Hardware EDAC
1 0.9355 ~1.0
2 0.8752 0.999999
3 0.8187 0.999999
4 0.7659 0.999998
1 N Hardware EDAC
0.8 1
> Software EDAC
Z 0.6 1
©
o
T 04
No EDAC
0.2 1 /
O T T T T
0 10 20 Hours 30 40

Figure 9.1 Reliability comparison using the parametersin Table 9.1.

The sengitivity of program reliability to the scrubbing interval and the upset rateis
shown in Table 9.4. Thisanalysis shows that for low-radiation environments, the
scrubbing interval can be increased (thereby reducing the performance overhead) without
appreciably affecting reliability.

Table 9.4 Software and hardware EDAC reliability sensitivity to scrubbing interval.

Scrubbing Reliability for a Period of One Day
Interval Software EDAC Hardware EDAC
_ -19 _ -18 _ -19 _ -18

u=5.52x10 u=5.52x10 u=5.52x10 u=5.52x10
10 minutes 0.935506 0.513345 0.999999 0.999904
20 minutes 0.935504 0.513274 0.999998 0.999808
30 minutes 0.935503 0.513202 0.999997 0.999712
40 minutes 0.935502 0.513130 0.999996 0.999617
1 day 0.935319 0.503198 0.999862 0.986297

10. DISCUSSION

Solid-state memories, such as RAMS, are used for the main memory, secondary
storage, and processor caches in acomputer system. In thisreport, we present a software-
implemented EDAC technique for protecting memories. Let us consider EDAC
protection for main memory. With software EDAC, the datathat is read from main
memory may be erroneous, if the error occurs after the last scrub operation and before the
time of reading. In other words, single-bit errors may cause failures. In contrast,
hardware EDAC checks all the data that is read from memory, and corrects single-bit
errors. Therefore, hardware EDAC provides better reliability and, when possible, should
be the first choice for protecting the main memory. When hardware EDAC is not
available or affordable, software EDAC can be used as alow-cost solution for enhancing
the system reliability.

For cases where datais read and written in blocks of words rather than individual
words, software EDAC may be a better choice than hardware EDAC. For example, when
solid-state memories are used for secondary storage (such asin satellites), the processor
can access the data through a buffer in main memory rather than directly from the
secondary storage (in this case, thereis no need to restrict ourselves to systematic codes).
For this secondary storage memory, EDAC protection can be provided in software by
periodic scrubbing and APIs (as explained in Sec. 3.2). All read operations are checked
for errors, and single-bit errors in this memory will not cause failures. Therefore,
assuming that the execution of the EDAC program is error-free, software EDAC can
provide the same reliability as hardware EDAC if the same coding schemeis used.
Considering the flexibility of software EDAC, it is possible to implement more capable
coding schemes that are infeasible in hardware, and thereby provide better reliability
through software. Moreover, as mentioned in Sec. 5.2, there are cases of MBUs where
hardware EDAC fails but software EDAC can correct the errors. Therefore, software

EDAC could be a better choice for such applications.

29

11. SUMMARY

In many computer systems, the contents of memory are protected by an error
detection and correction (EDAC) code. Bit-flips caused by single event upsets (SEUS)
are awell-known problem in memory chips and EDAC codes have been an effective
solution to this problem. These codes are usually implemented in hardware using extra
memory bits and encoding-decoding circuitry. In systemswhere EDAC hardwareis not
available, thereliability of the system can be improved by providing protection through
software. Codes and techniques that can be used for software implementation of EDAC
are discussed and compared.

We look at the implementation requirements and issues, and present some
solutions. We discussin detaill how system-level and chip-level structuresrelate to
multiple error correction. A simple solution is presented to make the EDAC scheme
independent of these structures.

The technique presented in this report was implemented and used effectively in an
actual space experiment. We have observed that SEUs corrupt the operating system or
programs of a computer system that does not have any EDAC for memory, forcing us to
frequently reset the system. Protecting the entire memory (code and data) may not be
practical in software. However, we have demonstrated that software-implemented EDAC
isalow-cost solution that can provide protection for code segments and can significantly
enhance the availability of a system in alow-radiation space environment. We also show
this reliability improvement through analytical estimates. These estimates are based on
parameter values that closely match the environment of our satellite experiment.

For applications where read and write operations are done in blocks of words, such
as secondary storage systems made of solid-state memories (RAM discs), software-
implemented EDAC could be a better choice than hardware EDAC, because it can be
used with a simple memory system and it provides the flexibility of implementing more

complex coding schemes.

30

ACKNOWLEGMENTS

Thiswork was supported in part by the Ballistic Missile Defense Organization,
Innovative Science and Technology (BMDO/IST) Directorate and administered through
the Department of the Navy, Office of Naval Research under Grant Nos. NO0014-92-J-
1782 and N00014-95-1-1047. The authors wish to thank Dr. BellaBose for his valuable
suggestions, SunilKumar Koduru from Cypress Semiconductor for the information on
Cypress memory chips, and also Samy Makar, Santiago Fernandez-Gomez, Subhasish
Mitraand Nahmsuk Oh for their helpful comments. The ARGOS experiment isa
collaborative project with the Naval Research Laboratory (NRL) USA experiment group
lead by Dr. Kent Wood as the principal investigator.

31

REFERENCES

[Abraham 83] Abraham, J.A., E.S. Davidson and J.H. Patel, “Memory System Design for
Tolerating Single Event Upsets,” IEEE Trans. Nucl. <ci., Vol. 30, No. 6, pp. 4339-44,
Dec. 1983.

[Chen 84] Chen, C.L., and M.Y. Hsiao, “Error-Correcting Codes for Semiconductor
Memory Applications: A State-of-the-Art Review,” IBM J. Res. Develop., Vol. 28,
pp. 124-134, Mar. 1984.

[Cypress 99] Data Sheets of Cypress Semiconductor Corp. SRAMS,
http://www.cypress.com/design/datasheets/index.html, Cypress Semiconductor Corp.,
1999.

[Dell 97] Ddll, T.J., “A White Paper on the Benefits of Chipkill-Correct ECC for PC
Server Main Memory,”
http://www.chips.ibm.com:80/products/memory/chipkill/chipkill.html, IBM
Microelectronics Division, Rev. 11/19/97.

[Feldmeier 95] Feldmeier, D.C., “Fast Software Implementation of Error Detection
Codes,” IEEE/ACM Trans. Networking, Vol. 3, No. 6, pp. 640-651, Dec. 1995.

[Goodman 91] Goodman, R.M., et al., “ The Reliability of Semiconductor RAM
Memories with On-Chip Error-Correction Coding,” IEEE Trans. on Information
Theory, Vol. 37, No. 3, pp. 884-96, May 1991.

[Hodgart 92] Hodgart, M.S., “Efficient Coding and Error Monitoring for Spacecraft
Digital Memory,” Int’l J. Electronics, Vol. 73, No. 1, pp. 1-36, 1992.

[Hosken 97] Hosken, R., et dl., “Investigation of Non-Independent Single Event Upsetsin
the TAOS GV SC Static RAM,” |EEE Radiation Effects Data Workshop, pp. 53-60,
July 1997.

[Johansson 99] Johansson, K., et a., “Neutron Induced Single-word Multiple-bit Upset in
SRAM,” |EEE Trans. on Nuclear Science, Vol. 46, No. 6, pp. 1427-1433, Dec. 1999.

[Koga 84] Koga, R., and W.A. Kolasinski, “Heavy lon-Induced Single Event Upsets of
Microcircuits: A Summary of the Aerospace Corporation Test Data,” |EEE Trans. on
Nuclear Science, Vol. 31, No. 6, pp. 1190-1195, Dec. 1984.

[Koga 93] Koga, R., €t al., “ Single-word Multiple-bit Upsets in Static Random Access
Devices,” IEEE Trans. on Nuclear Science, Val. 40, No. 6, pp. 1941-1946, Dec.
1993.

[Liu97] Liu, J,, et d., “Heavy lon Induced Single Event Effects in Semiconductor
Device,” 17" Int’|. Conf. on Atomic Collisionsin Solids (in Nuc!. Instrum. & Methods
in Physics Res.), Sec. B, Val. 135, No. 1-4, pp. 239-243, 1997.

[O’ Gorman 94] O’ Gorman, T.J., “The Effect of Cosmic Rays on the Soft Error Rate of a
DRAM at Ground Level,” IEEE Trans. Electron Devices, Vol. 41, No. 4, pp. 553-
557, April 1994.

[Oh 01a] Oh, N., P.P. Shirvani and E.J. McCluskey, “Error Detection by Duplicated
Instruction in Superscalar Microprocessors,” |EEE Trans. Reliability, (scheduled to
appear in the issue 2001 Sep.).

32

[Oh 01b] Oh, N., P.P. Shirvani and E.J. McCluskey, "Control-Flow Checking by
Software Signatures,” |EEE Trans. Reliability, (scheduled to appear in the issue 2001
Sep.).

[Oldfield 98] Oldfield, M.K., and C.I. Underwood, “Comparison Between Observed and
Theoretically Determined SEU Ratesin the TEXAS TMS$4416 DRAMs and On-
Board the UoSAT-2 Microsatellite,” IEEE Trans. on Nuclear Science, Val. 45, No. 3,
pp. 1590-1594, June 1998.

[Paschburg 74] Paschburg, R.H., “ Software Implementation of Error-Correcting Codes,”
Univ. lllinois, Urbana, (AD-786 542), Aug. 1974.

[Patel 74] Patel, A.M., and S.J. Hong, “ Optimal Rectangular Code for High Density
Magnetic Tapes,” IBM J. Res. Develop., Vol. 18, pp. 579-88, November 1974.

[Patel 85] Patel, A.M., “Adaptive Cross-Parity (AXP) Code for a High-Density Magnetic
Tape Subsystem,” IBM J. Res. Develop., Vol. 29, pp. 546-62, November 1985.

[Rao 89] Rao, T.R.N., and E. Fujiwara, Error-Control Coding for Computer Systems,
Prentice Hall, 1989.

[Reed 97] Reed, R., et a., “Heavy lon and Proton-Induced Single Event Multiple Upset,”
|[EEE Trans. Nucl. <ci., Vol. 44, No. 6, pp. 2224-9, July 1997.

[Saleh 90] Saleh, A.M., et a., “Reliability of Scrubbing Recovery-Techniques for
Memory Systems,” |EEE Trans. on Reliability, Vol. 39, No. 1, pp. 114-22, April
1990.

[Sarmate 88] Sarwate, D.V ., “Computation of Cyclic Redundancy Checksvia Table
Look-up,” Communications of the ACM, Voal. 31, No. 8, pp. 1008-13, Aug. 1988.

[Saxena 95] Saxena, N.R., et al., “Fault-Tolerant Featuresin the HaL. Memory
Management Unit,” IEEE Trans. Comp., Val. 44, No. 2, pp.170-179, February 1995.

[Shirvani 98] Shirvani, P.P., and E.J. McCluskey, “Fault-Tolerant Systemsin a Space
Environment: The CRC ARGOS Project, ” CRC-TR 98-2, Stanford University,
December 1998.

[Shirvani 00a] Shirvani, P.P., N. Oh, E.J. McCluskey, D. Wood and K.S. Wood,
" Software-Implemented Hardware Fault Tolerance Experiments; COTS in Space,”
Proc. International Conference on Dependable Systems and Networks (FTCS-30 and
DCCA-8), Fast Abstracts, pp. B56-7, New York, NY, June 25-28, 2000.

[Shirvani 00b] Shirvani, P.P., N. Saxena and E.J. McCluskey, “ Software-lmplemented
EDAC Protection Against SEUS,” |EEE Trans. on Reliability, Special Section on
Fault-Tolerant VLS Systems, Vol. 49, No. 3, pp. 273-284, Sep. 2000.

[Siewiorek 92] Siewiorek, D.P., and R.S. Swarz, Reliable Computer Systems, Burlington,
Digital Press, 1992.

[Underwood 92] Underwood, C.I., et a., “Observation of Single-Event Upsetsin Non-
Hardened High-Density SRAMs in Sun Synchronous Orbit,” IEEE Trans. Nucl. Sci.,
Vol. 39, No. 6, pp. 1817-1827, Dec. 1992.

[Underwood 97] Underwood, C.I., “The Single-Event-Effect Behavior of Commercial-
Off-The-Shelf Memory Devices— A Decade in Low-Earth Orbit,” Proc. 4™ European

33

Conf. on Radiation and Its Effects on Components and Systems, pp. 251-8, Palm
Beach, Cannes, France, Sep. 1997.

[Whelan 77] Whelan, JW., “Error Correction with a Microprocessor,” Proc. IEEE
National Aerospace and Electronics Conf., pp. 1317-23, 1977.

[Whiting 75] Whiting, J.S., “An Efficient Software Method for Implementing Polynomial
Error Detection Codes,” Computer Design, Vol. 14, No. 3, pp. 73-7, Mar. 1975.

[Wicker 95] Wicker, S.B., Error Control Systems for Digital Communications and
Sorage, Englewood Cliffs, N.J., Prentice Hall, 1995.

[Wood 94] K.S. Wood, et d., “The USA Experiment on the ARGOS Satellite: A Low
Cost Instrument for Timing X-Ray Binaries,” Published in EUV, X-Ray, and Gamma-
Ray Instrumentation for Astronomy V, ed. O.H. Siegmund & J.V. Vellerga, SPIE
Proc., Vol. 2280, pp. 19-30, 1994.

[Worley 90] Worley, E., R. Williams, A. Waskiewicz, and J. Groninger, “ Experimental
and Simulation Study of the Effects of Cosmic Particles on CMOS/SOS RAMSs,”
|EEE Trans. on Nuclear Science, Vol. 37, No. 6, pp. 1855-1860, Dec. 1990.

[Yang 95] Yang, G.-C., et a., “Reliability of Semiconductor RAMs with Soft-Error
Scrubbing Techniques,” 1EE Proc. — Computers and Digital Techniques, Vol. 142,
No. 5, pp. 337-44, Sept. 1995.

[Ziegler 96a] J.F. Ziegler, et a., IBM J. Res. Develop., Vol. 40, No. 1, (all articles), Jan.
1996.

[Ziegler 96b] Ziegler, J.F., et d., “IBM Experimentsin Soft Failsin Computer
Electronics (1978-1994),” IBM J. Res. Develop., Val. 40, No. 1, pp. 4, Jan. 1996.

