
Software is Discrete Mathematics

Rex L Page
University of Oklahoma

School of Computer Science
Norman OK 73019 USA

+1 405-325-5408
page@ou.edu

ABSTRACT
A three-year study collected information bearing on the question
of whether studying mathematics improves programming skills.
An analysis of the data revealed significant differences in the
programming effectiveness of two populations of students:
(1) those who studied discrete mathematics through examples
focused on reasoning about software and (2) those who studied
the same mathematical topics illustrated with more traditional
examples. Functional programming played a central role in the
study because it provides a straightforward framework for the
presentation of concepts such as predicate logic and proof by
induction. Such topics can be covered in depth, staying almost
entirely within the context of reasoning about software. The
intricate complexities in logic that mutable variables carry with
them need not arise, early on, to confuse novices struggling to
understand new ideas. In addition, because functional languages
provide useful and compact ways to express mathematical
concepts, and because the choice of notation in mathematics
courses is often at the discretion of the instructor (in contrast to
the notational restrictions often fiercely guarded by the faculty in
programming courses), discrete mathematics courses, as they are
found in most computer science programs, provide an easy
opportunity to enhance the education of students by exposing
them to functional programming concepts.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
correctness proofs, formal methods. K.3.2. [Computers and
Education]: Computer and Information Science Education –
computer science education, curriculum.

General Terms
Design, Languages, Verification.

Keywords
Functional programming, discrete mathematics, predicate logic,
correctness proofs, formal methods, software engineering.

1. INTRODUCTION
Educators have long argued about the value of mathematics in the
study of computing. What the various participants in the argument
mean by “mathematics,” while not firmly tied down, generally
boils down to the use of mathematical reasoning to prove
theorems. In this sense, most computer science programs include
very little real mathematics. Students do not learn much about
constructing proofs when they study infinitesimal calculus for
science and engineering, or when they study other mathematical
subjects such as differential equations, linear algebra, statistical
methods, and numerical analysis. Most computing programs
require courses in most of these topics, and in taking these courses
students learn important methods for solving certain kinds of
problems, but they do not learn to construct mathematical proofs.
They do not learn to think like mathematicians.

Should they? Should computing students learn to think like
mathematicians? If so, why? To appreciate their cultural legacy?
To support their study of computing? To make them more
employable? All of these reasons have value, but the argument
often focuses on how the study of mathematics affects the
practice of software development. Observations of such effects
bring substance to the argument. One of the goals of the Beseme
Project (three syllables, all rhyming with “eh”) is to provide
observations of this kind.

2. PROJECT
The Beseme Project offers educational material for courses in
discrete mathematics or more specialized topics, such as
mathematical logic, along with some evidence of the effectiveness
of the material. Most of the usual topics of an elementary discrete
mathematics course are discussed in the Beseme materials, with a
special emphasis on the concept of mathematical proof. The
lecture notes elucidate several dozen proofs, and homework
projects and examination questions provide opportunities for
students to succeed in constructing their own proofs.

The intent is for students to gain experience with the thought
processes of mathematicians. Because these thought processes
apply in many problem areas, there is a wide range of interesting
examples to choose from, many of which can illustrate, equally
well, the basic ideas. Examples in the Beseme material come
primarily from the realm of reasoning about properties of
software artifacts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICFP’03, August 25-29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-756-7/03/0008…$5.00.

It happens that almost all of these software artifacts are expressed
in the form of inductive equations. That is, they are functional
programs, and that makes it possible for functional programming
concepts to play a central role in the study of discrete
mathematics.

The project also provides data about the performance of students
who have studied the Beseme materials and compares their
performance to that of students who have studied the same topics
from another point of view. The data lends credence to the idea
that studying real mathematics benefits the practice of software
development, and that the benefits are greater when students are
allowed to see how the mathematical ideas they are studying
apply to software artifacts.

The topics covered in discrete mathematics courses are fairly
standard: logic, sets, relations, functions, proof methods including
induction, combinatorics, discrete probability, graphs, trees, and
recursion. Section 4 of this paper provides details about the
coverage of these topics in the Beseme materials.

At the University of Oklahoma, where the Beseme Project has
been conducted, discrete mathematics is a prerequisite for a
course in data structures and algorithms. The data structures
course addresses primarily implementation issues, and the course
in discrete mathematics focuses on theoretical issues, with
structures such as trees and graphs, and algorithmic concepts such
as recursion figuring prominently in the coverage. One could
view the discrete mathematics course as the theoretical framework
for the data structures course.

Most of the work in the data structures course involves software
development, and the grades students earn in this course depend
heavily on their programming skills. For this reason, it seems
reasonable to expect a correlation between effectiveness in
software development and grades in the data structures course.
One could use the data structures grades of students as estimates
of their programming abilities.

The discrete mathematics course is taught in two sections. For the
past six semesters, one of the sections has taken a traditional
approach, as exemplified in the text of Rosen [12]. Here, for
example, proof by induction is used to verify number theoretic
results, such as the formula for the sum of the first n natural
numbers.

Applications in the traditional course have a “pure math” flavor.
When software is discussed at all, projects call for writing small
programs, not reasoning about them. The study of logic and proof
by induction comprises about a third of the material, and none of
it involves reasoning about software artifacts. The other two-
thirds concerns sets, combinatorics, probability, graphs, and trees,
and the emphasis is on traditional aspects of these topics.
Theorems about properties of trees would be more likely choices
for examples than, say, theorems about applications of trees in
software contexts, even though either choice might equally well
illustrate the same mathematical concept.

The other section of discrete mathematics, the Beseme section,
reverses the ratio. Logic and proof by induction comprise about
two-thirds of the material, and the other topics about one-third. A
variation in emphasis of this magnitude among the topics in a
required course is not unusual at the university level. Different
instructors have different interests and ideas about the relative
importance of topics. Their courses reflect those interests.

In the Beseme course, almost every example in predicate logic
and proof by induction involves reasoning about a software
artifact, usually concerning a correctness-related property, but
sometimes a property related to the software’s use of resources.

Beseme students study the traditional mathematical methods and
concepts, but the examples they see as illustrations of these
concepts come from a non-traditional collection.

Students see many examples of software, and all but a few of
them are expressed as functional programs. The programming
language chosen for the project is Haskell, but could just as well
have been another language based on lambda calculus, such as
ML, Scheme, or a host of others.

The fact that the software artifacts used in these examples are
functional programs is not a primary point of emphasis. They are
presented as inductive equations, and justified on the basis that
any function meeting certain computational requirements would
have to satisfy the equations.

For example, most students find it obvious that an operator (++)
for concatenating two lists would have to satisfy the following
equations.

(x : xs) ++ ys = x : (xs ++ ys)
[] ++ ys = ys

In these equations, colon (:) denotes insertion of a new element at
the beginning of a list, square brackets delimit lists (used here to
denote the empty list), x stands for an element of a list, and xs and
ys stand for arbitrary lists.

The equations express certain properties of concatenation, and
they are used as a starting point to confirm other properties of the
operation. The fact that the equations provide a complete
definition of concatenation is not the main point. The objective is
to explore properties that the equations entail.

The focus is not directly on programming, but the students see
dozens of inductive definitions of this sort, and the idea that they
act as complete definitions of functions in useful software
gradually emerges. Students gain some facility with elementary
functional programming concepts, and their interest is piqued.
Some of them later complain in the data structures course about
the gratuitous difficulty of implementing, in a language like C++,
the simple ideas they learned in discrete mathematics.

The software artifacts that become targets for the application of
the principles of logic in the Beseme section include definitions of
many reduction operations, such as computing the sum of a list of
numbers, Boolean logic operations on lists, concatenation, list
length, computing the maximum value in a list, and other
reductions. They also include sorting, exponentiation in
logarithmic time, vector addition, inner product, sequence
reversal, building and searching AVL trees, and other important
computations.

There are significant differences between the Beseme and the
traditional sections of the discrete mathematics course in terms of
concepts emphasized, and even more significant differences in
terms of examples used to illustrate the concepts. Therefore, the
subsequent data structures course is taken by two different
populations of students: those who have studied discrete
mathematics with an emphasis on reasoning about software (the
Beseme group) and those who have seen a more traditional
collection of examples in their study of discrete mathematics (the
traditional group). One might be able to assess some of the effects
of the two approaches by comparing the performance of these two
groups of students in the data structures course. And, since the

0

1

2

3

4

1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

DSG
GPA

 Above-Median Students
 Avg GPA Avg DSG
Beseme 3.70 3.76
Traditional 3.75 3.49

2% event
statistically significant

 Below-Median Students
 Avg GPA Avg DSG
Beseme 2.90 2.02
Traditional 2.93 2.18

30% event
not statistically significant

Beseme
Traditional

Median GPA
3.42

Figure 1. Grade Point Average vs. Data Structures Grade for Beseme and Traditional Students

data structures course has a heavy programming component, one
might reasonably interpret affects on performance in the data
structures course as effects on the programming skills of the
students.

These enrollment patterns mean that there is a lag of one or two
semesters from the time the students complete the discrete
mathematics course to the time they complete the data structures
course. Data presently available consists of the records of 144
students who have passed both courses. This paper takes that point of view. That is, it uses grades in the

data structures course as estimates of the programming skills of
students. Claims in the paper about programming skills are, more
precisely, claims about grades in the data structures course.

Figure 1 compares the performance of the Beseme and traditional
groups. In this chart, student GPAs are plotted along the
horizontal axis, and their grades in the data structures course are
plotted along the vertical axis. GPAs are computed to three
significant figures, but grades in data structures fall into only five
categories (A, B, C, D, and F), so there is much less resolution
along the vertical axis than the horizontal. Vertical bands in the
chart contain data for students with similar GPAs. Not much can
be perceived from this presentation of the data, but statistical
computations yield some interesting results.

3. STATISTICS
A common statistical method for comparing the average values of
two random variables is to compute Student’s t statistic from the
data and to check how far out in the tails of its statistical
distribution this measurement falls. Common standards call for
rejecting the hypothesis that the two random variables have the
same average value (the “null hypothesis”) when the likelihood of
the observed t-statistic (under the assumption that null hypothesis
is true) is less than 5%.

It happens that the 144 students are evenly divided between the
Beseme group and the traditional group. This makes it possible to
divide both groups into two subgroups and still maintain adequate
populations for stable statistics within each of the resulting four
subgroups. The reliability of a statistical decision to reject the null hypothesis

depends, in part, on the sizes of the populations of the two groups
being compared. When both groups have populations exceeding
30, conclusions tend to be more consistently reliable than with
smaller populations.

The 72 students in the database from the traditional sections of
discrete mathematics have an average GPA of 3.35 on a 4.00-
point scale. These GPAs are computed for individual students
upon completion of the data structures course by averaging all the
grades they earned at the university, weighting each grade by the
number of credits awarded for the course in which the grade was
earned. A GPA of 4.00 indicates a grade of A in all classes taken
by the student.

On the average, about eighty students per semester enroll in the
data structures course at the University of Oklahoma. About two-
thirds of these students have taken the discrete mathematics
course during the previous semester, and another ten to fifteen
percent have taken it two or more semesters prior to enrolling in
data structures. A small percentage of students gain the right to
enroll in data structures without having taken the discrete
mathematics course.

The 72 students in the Beseme group had an average GPA of
3.25. This was slightly lower than the 3.35 of the traditional
group, but the difference is not statistically significant according
to the t-statistic criterion discussed earlier.

Those are the average GPAs. With regard to the median, half of
the 144 students in the database had a GPA exceeding 3.42.

The average grade earned in the data structures course by the 144
students in the database was 2.81 on a 4.00-point scale. The
average data structures grade for the 72 students in the traditional
group was 2.84, compared to 2.79 for the 72 Beseme students.
This difference, like the difference in average GPAs for the two
groups, is not statistically significant.

However, when the groups are divided into subgroups of more
uniform ability (as estimated by GPA), statistical analysis yields
more definitive conclusions.

Of the better half of the students, that is the 73 students with
GPAs exceeding the median grade of 3.42, there were 39 from the
traditional group and 34 from the Beseme group. The average
GPA of the 39 above-median traditional students was 3.75. That
figure for the Beseme students was 3.70, which is a little lower
than the traditional group, but it is not a statistically significant
difference. This means that the innate talent of the students in the
two groups can be regarded as about the same.

The above-median students in the traditional group had an
average grade in the data structures course of 3.49, compared with
3.76 for the above-median students in the Beseme group.
According to the distribution of the t-statistic, there is less than a
2% likelihood that a difference this large would occur if the two
groups represented samples from statistical populations with the
same average grade in data structures.

Furthermore, since the students in this data set all had grade point
averages exceeding 3.42, one would be very surprised if the
average grade in data structures fell below 3.00. Since the
probable range of the average is 3.00 to 4.00, the observed
difference in the averages of the two groups, 0.27, seems
significant in an intuitive sense.

A reasonable statistical interpretation of this result would be to
reject the null hypothesis that the observations come from random
variables with the same average. This means that one can, at a
confidence level of 98%, accept the alternative that the better
performance of the above-median students in the Beseme group is
an effect arising from differences in the groups, not a random
event. Using the data structures grade as an estimate of software
development skills, as discussed earlier, one would interpret this
to mean that Beseme students become better software developers
than traditional students.

The average data structures grade for the below-median Beseme
students was 2.02. Their average GPA was 2.90. This compares
with an average data structures grade of 2.18 for the traditional
students, who had an average GPA of 2.93. The distribution of
grades in data structures for below-median students is more
spread out than for above-median students. Because of the higher
variance and the smaller difference between the average grades of
the two groups, the difference is not significant statistically. That
is, it is not a large enough difference to reject the null hypothesis
at the 5% level. It is, in fact, a 30% event, which places it near the
middle of the distribution, so it seems likely to be a random
effect.

What factors explain the differences in the software development
success of Beseme students compared with students of

comparable talent in the traditional group? Three factors that
might contribute to the observed differences include:

• material studied in discrete mathematics
• effectiveness of the discrete math instructor
• innate talent of individual students

With regard to innate talent, the average GPA of the Beseme
students is slightly below that of the traditional students. The two
groups are, apparently, more or less the same in terms of innate
talent. So, innate talent is not a convincing explanation of the
difference.

How about the instructor factor? As the instructor for the Beseme
sections of discrete mathematics, I would like to claim instructor
effectiveness as a reason for the better performance of the above-
median Beseme students in the data structures course. However,
students think otherwise. Near the end of each semester, students
complete a questionnaire giving their assessment of various
aspects of the quality of instruction. Their overall ratings of my
teaching effectiveness in the discrete mathematics course
averaged 2.17 on a 4.00-point scale (4.00 being the best rating).
The ratings of the instructors for the traditional sections averaged
2.83.

Many instructors believe that student assessments of the
performance of instructors are strongly influenced by the grades
they award to students. This view holds that students will give
better evaluations to instructors who award higher grades. The
average grade awarded in discrete mathematics to the Beseme
students was 2.83, compared with 2.96 for the traditional students.
This difference falls near the middle of the distribution of the t-
statistic. It is insignificant, statistically — probably a random
event.

 So, grading effects do not appear to explain the difference in
instructor ratings. I have to accept the fact that students regard me
as a less effective instructor than other members of the faculty
who teach discrete mathematics. It’s a bitter pill, but it means that
the instructor effect fails to stand as a convincing explanation of
the relative performance in the data structures course of students
in the Beseme group compared with students in the traditional
group.
That leaves course content in discrete mathematics as the primary
suspect in the investigation of factors contributing to the better
performance of Beseme students in the software development
tasks required in the data structures course. Many explanations
are possible, but this analysis suggests low credibility for the
influence of two of them (innate student ability and instructor
effectiveness). It seems reasonable to accept course content as an
important factor contributing to the software development success
of Beseme students.

4. MATERIAL
The Beseme course materials include over 350 animated slides.
Many of the slides seem busy when viewed in isolation, at the end
of the animation sequence, but the animation steps add
information gradually, so that a step-by-step presentation can
proceed at a comfortable pace. A typical slide, presented at a
prudent pace through the animation sequence, with time for
interactions with students along the way, takes five to ten minutes
to discuss in a lecture.

The materials also include examinations (over 150 exam
questions in all, with solutions), more than a hundred homework
exercises and solutions, lesson plans, reading assignments, and
software that checks proofs in propositional logic for correctness.
(This software is an extension of tools provided with a textbook
by Hall and O’Donnell [7]). All of the Beseme course materials
are available to instructors through the Beseme website [9]. The
website is password protected in the hope that instructors will feel
comfortable using the materials in their courses. Selected
materials may be viewed without a password and are provided to
help instructors decide whether to request access to the full
website.
In the Beseme course, all examples illustrating proof by induction
are chosen from the realm of properties satisfied by software
artifacts. Most of the analyzed properties confirm relationships
between function inputs and results (that is, correctness issues).
For example, early examples discuss properties of concatenation
of lists, such as length-conservation and associativity. Later
examples include verifying that a key present in an AVL tree will
be found through binary search, with dozens of other examples in
between.
Some examples discuss termination and performance properties.
Those include, among other things, the logarithmic performance
of the Russian peasant algorithm for exponentiation, the n log(n)
performance of merge-sort, and the logarithmic performance of
AVL tree insertion.
In all, over two-dozen proofs by induction are carried out in
lectures, and dozens more are required in homework and exams,
all of which concern properties of software artifacts. About a third
of these proofs use ordinary mathematical induction,
(P(0) ∧ ∀n.P(n)→P(n+1)) → ∀n.P(n), to verify that if a piece of
software satisfies a few given equations, it must also have certain
other desirable properties, which are stated in the theorem being
proved.
Another third of the examples rely on strong induction,
(∀n.(∀m < n.P(m))→P(n)) → ∀n.P(n). Induction on tree
structures, and a form of induction on loops based on Floyd-
Hoare logic are also illustrated in lectures, homework problems
and exam questions.
Most of these examples involve reasoning based on a few
equations that comprise an inductive definition of a function. The
function might be selection of the maximum value in a sequence
or merging two sequences, or some other useful computation.
Proofs by induction are used to show that a function satisfying a
few basic equations must also have other important properties.
The basic equations of an inductive definition are presented as
reasonable properties that any function with the intended purpose
would have to satisfy if it worked properly. The concatenation
function mentioned in Section 2 provides an example. The basic
equations that concatenation satisfies are repeated here with labels
to facilitate referring to them in proofs.

(x : xs) ++ ys = x : (xs ++ ys) {++ :}
[] ++ ys = ys {++ []}

As noted before, the fact that these equations happen to form a
complete definition of concatenation is not the main point. In fact,
it is hardly mentioned. The goal is to show, through the
application of logic, that the properties specified in these

equations imply other properties of the concatenation operation,
such as length conservation, associativity, etc.
One approach to verifying properties implied by these equations
relies on induction over list structures. However, ordinary
induction over the natural numbers can also be used, at least when
the lists involved have finite length. Ordinary mathematical
induction happens to be the topic of study at the time these
equations appear in the Beseme course, so that is the method used
to prove properties of concatenation. The following sketch of a
proof along these lines illustrates the approach taken in the
Beseme materials.
Prior to discussing the associativity of concatenation, a length
conservation property is proved:

length(xs ++ ys) = length xs + length ys
Associativity is then proved through induction on the length of xs
in the equation expressing associativity:

xs ++ (ys ++ zs) = (xs ++ ys) ++ zs
The inductive case in the proof of associativity shown in Figure 2
makes use of equational reasoning. Reasons justifying each step
in the sequence of equations are noted on the right-hand side of
the figure. The argument applies in the case when the leftmost
operand is nonempty. The proof for an empty leftmost operand is
shorter. It consists of two applications of the {++ []} equation,
with no need to cite the induction hypothesis. In the Beseme
materials, most proofs of properties derived from inductive
definitions make use of syntax-driven substitution in equations as
illustrated in this example.

Most students are familiar with reasoning based on equations
from their experience in high-school algebra. This much comes to
them easily. In fact, one of the few examples in the course that
does not involve a piece of software is a proof that the product of
two negative numbers is a positive number.

 (x: xs) ++ (ys ++ zs)
 = x: (xs ++ (ys ++ zs)) {++ :}
 = x: ((xs ++ ys) ++ zs) induction hypothesis
 = (x: (xs ++ ys)) ++ zs {++ :}
 = ((x: xs) ++ ys) ++ zs {++ :}

Figure 2. Associativity of Concatenation, Inductive Case

This proof serves to introduce the idea of equational reasoning,
and it has a profound effect. Most students have no idea why
negative-times-negative is positive, and they are delighted to
learn that this rule is only a few equations away from more basic
rules of arithmetic such as the associative and distributive laws.
They see from this example how a formal argument based on
equations can be constructed, and they learn to apply this idea
with new equations and strange operations like list-insertion and
concatenation, just as they formerly applied the ideas with more
familiar operations, such as the addition and multiplication of
numbers.
What does not come so easily to most students is the idea of proof
by induction. This takes a lot of thinking and experience, and that
is why the concept is presented in four guises (ordinary, strong,
tree, and loop) with a couple dozen examples in lectures, and
many more than that in homework and exams. Gradually, students

AVL tree insertion is more complicated than concatenation.
However, there is a straightforward, entirely formal (that is,
mechanical) translation of the usual rotation diagrams into
inductive equations. The simple case for left rotation is illustrated
in Figure 3. The equations in this figure use a tree constructor T,
which builds a tree from its root key, height, and left and right
subtrees. (T is too cryptic. The Beseme presentation uses more
descriptive names. Shorter names are used here to make the
equations fit in one column of the required document style.) The
function ht in these equations extracts the height component from
a tree structure.

begin to grasp both induction and the idea of formal proof based
on syntactic substitution in equations.
Equational reasoning and proof by induction comprise about
thirty-five percent of the Beseme material, but it is not the only
basis for reasoning that the students see. About thirty percent of
the material focuses on natural deduction with Gentzen-style
inference rules in propositional and predicate logic.
Software involving mutable variables provides another way for
the students to gain experience in the process of conjuring up
proofs, in this case relying on a form of induction for looping
software based on Floyd-Hoare logic. A little less than ten percent
of the material is devoted to this topic. Since the more complex rotations amount to a composition of

simple rotations, they are equally easy to derive from diagrams.
Given this information, and an understanding of how to use left
and right rotation (l and r) to ensure AVL balancing, most
students can derive the five-case equation for AVL tree insertion
(^:) shown in Figure 4.

The different forms of induction reinforce each other. Students
end up getting a lot of experience with inductive reasoning, and it
helps them understand other concepts related to induction, such as
recursion, numeric recurrence equations, and loop invariants.
The basic operations of set theory (union, intersection, difference,
power sets, and so on) are discussed along with proofs about
properties of sets. Functions and relations are discussed in set
theoretic terms, along with special attributes (injective, surjective,
reflexive, symmetric, transitive, etc.) and analytic tools (image,
inverse image, etc.). These ideas comprise about fifteen percent of
the lecture material, and they emerge repeatedly in other parts of
the course, usually in a software context.
The idea of comparing asymptotic rates of growth (f = O(g)) helps
describe algorithmic complexity, and several examples in this
area serve to illustrate the estimation of algorithmic performance
and solving recurrence equations. This coverage comprises a little
more than ten percent of the material.

Induction on AVL trees (yet another kind of induction) is used to
verify that a tree that is balanced before insertion remains
balanced after insertion, that the time required for insertion is
proportional to the height of the tree, and that the number of
nodes in a balanced tree is exponential, compared with its height.
This leads to the conclusion that AVL insertion requires
computation time proportional to the logarithm of the number of
keys in the tree. Recurrence equations needed for these arguments
match the structure of the inductive equations for insertion.

sL

vR uL vL

u

u

v

v

vR

sL(T u h uL (T v i vL vR))
 = T v j (T u k uL vL) vR
 where
 j = 1 + max k (ht vR)
 k = 1 + max (ht uL) (ht vL)

ht(T u h v w) = h

vL

uL

 z ^: (T u h uL uR) =
 if z < u && (ht vL) <= (ht uR)+1 then T u i vL uR
 else if z < u && (ht vL) > (ht uR)+1 then r(T u i vL uR)
 else if z > u && (ht vR) <= (ht uL)+1 then T u j uL vR
 else if z > u && (ht vR) > (ht uL)+1 then l(T u j uL vR)
 else error “key already present”
 where
 vL = z ^: uL
 i = 1 + max (ht vL) (ht uR)
 vR = z ^: uR
 j = 1 + max (ht uL) (ht vR)

Figure 4. AVL Tree Insertion

Figure 3. Simple Left Rotation

Inductive equations are common in mathematics, and the fact that
these happen to be presented within the syntax of a programming
language might be viewed as more-or-less incidental. In practice,
however, it is more than incidental because students can run
programs directly from the equations. They also begin to see how
significant pieces of software can be constructed from inductive
equations. That is, they acquire some experience with functional
programming. It occurs as if by osmosis, but statistical analysis of
the Beseme data suggests that it has a significant, positive effect,
at least on the upper half of the students.

Of the traditional list of topics in discrete mathematics courses
(logic, sets, relations, functions, proof methods including
induction, combinatorics, discrete probability, graphs, trees, and
recursion), only probability is entirely missing from the Beseme
materials, although combinatorics gets short shrift. This is only
fifteen-week, three-credit course, after all.
Because most of the software artifacts presented to illustrate the
use of logic in the Beseme course are expressed in the form of
inductive equations, they tend to be short. Most of them are two
or three lines long. They exceed six lines in only one case. That
case is AVL tree insertion. The equations for AVL tree insertion
cover eleven lines. They are short lines. They fit on a standard
slide to be displayed with an ordinary video projector. They are
readable from the back of the room, so they use large print, which
means that the lines have to be short.

5. RELATED AND FUTURE WORK
The Beseme Project is one of many efforts emphasizing the use of
logic in software development. Dean and Hinchey [3] edited a
collection of papers presenting projects with goals related to those
of the Beseme Project. There are also several textbooks that, to

varying extents, discuss applications of logic to reasoning about
software ([2], [4], [5], [6], [7], [8]).
The TeachLogic Project [1] based at Rice University is
developing materials similar to those of the Beseme Project, using
Scheme as the notation for inductive definitions instead of
Haskell, which is the notation used in the Beseme Project. The
TeachLogic Project aims to provide two- to four-week modules
that can be used in mainstream computing courses, such as
programming languages, databases, artificial intelligence, and
discrete mathematics, while the Beseme project focuses on an
extensive treatment in one of these areas. Both projects share the
goal of presenting logic to students in the context of software
development.
The Beseme Project has, so far, assessed results only in terms of
grades in the data structures course. As the students progress
further through the curriculum, it will be interesting to see if a
larger pattern of effects can be observed by looking at grades in
other courses.
Part of the motivation of the Beseme Project is to provide
materials that can help instructors introduce functional
programming to students in ways that can benefit them. The
expectation would be that students with this background might be
inclined to make use of it later, and that might lead to substantial
improvements in software quality.
Barriers to the use of functional programming for developing
software in industry are not as high as many suppose. Many
software development groups have license to choose their
implementation tools [10]. Support for functional programming in
terms of libraries and communication with other software is
manageable in a practical way for many projects.
So, why don’t software developers choose functional languages
more often for their projects? There are many answers to this
question [13], one of which is that only a tiny percentage of
software developers receive any serious exposure to functional
programming in their education. What they are unfamiliar with,
they are unlikely to choose.
The Beseme Project provides at least a little material to fill some
gaps. It is part of a larger plan that envisions a core curriculum for
a programming-oriented baccalaureate that might be dubbed
“hard-core software engineering.”
Dictionaries and engineering organizations define “engineering”
as the use of mathematics and science to design useful artifacts. A
straightforward extension of this definition would imply that
software engineering is the use of mathematics and science to
design software. However, that is neither the general
understanding of the term “software engineering,” nor does it well
describe the usual practice of software engineering.
The hard-core software engineering curriculum will appeal to
those who think software engineering would be better practiced if
it, like other engineering disciplines, consisted primarily in the
application of mathematical principles to the design of useful
artifacts, which in this case would be software rather than bridges
or radios or other useful things.
A software engineering program at McMaster University [11] has
similar goals to those of the program envisioned as an extension
of the Beseme Project. In the Beseme version of this approach, six

courses occurring in three, closely coupled pairs, would form the
core of the curriculum.
Within each pair, there would be a mathematics course and a
programming course. Students would enroll in the two courses
during the same term, and the material of each of the courses
would complement that of the other. All of the mathematics
would be illustrated in terms of the software concepts being
discussed in the programming course, and all of the ideas in the
programming course would be explained in terms of the
principles being discussed in the mathematics course.
The first pair would be a functional programming course, together
with a discrete mathematics course along the lines of the Beseme
materials. The second pair would cover aspects of graph theory
and abstract algebra in the mathematics component, and would
cover data structures in the programming component, using,
initially, functional programming, but gradually introducing
conventional programming techniques.
The third pair of courses would cover a formal model for
concurrency, such as Milner’s pi calculus, in the mathematics
component, and would cover the design and architecture of
operating systems in the programming component. The programs
in the operating systems course would be written in a
conventional programming language.
These six courses would form a basis for the rest of the computing
curriculum, which could consist of a selection of more-or-less
standard, upper division, computer science courses. The core
courses would place students on a firm footing for their study of
the software enterprise, including both the theoretical and the
practical aspects of computing. The program is envisioned as a
software-oriented one, and the degree title “software engineering”
seems appropriate, even if the core material does not have the
generally accepted shape of software engineering as commonly
understood and practiced.
The first integrated pair, discrete mathematics and introductory
functional programming, is scheduled to be offered at the
University of Oklahoma in the coming academic year. Progress
on the other two pairs awaits the time and energy required for
their development, and depends, in part, on success in the delivery
of the first pair.

6. CONCLUSION
The Beseme Project has delivered a body of materials for courses
in discrete mathematics. The materials include lecture notes,
lesson plans, reading assignments, homework (and solutions),
exam questions (and solutions), and software tools that have been
tested across six semesters of use in the classroom. The material
focuses on reasoning about software, and most of that software is
expressed using the functional programming paradigm. The
approach provides an example of exposing students to functional
programming concepts at a point in the curriculum that provides
an excellent, but often overlooked, target of opportunity.
Functional programming is a crucial element in the process.
Without it, things get too complicated, too fast, and students tend
to miss the point. Functional programming provides a context in
which student interest remains high as the course progresses and
in which most students can succeed.
Beseme Project results support the conjecture that experience in
the direct application of logic to reasoning about software leads to

increased effectiveness in the practice of software development. A
statistical analysis of data on student performance in software
development projects indicates that students whose educational
background includes experience in applying mathematical logic to
the problem of reasoning about properties of software get better
grades in a subsequent, programming-intensive course than
students who studied mathematical logic in more traditional
contexts.
The data supports this conclusion at a 98% confidence level for
students in the upper half of the distribution of academic talent.
No statistically significant effect was observed for below-median
students. This outcome was observed through data collected from
a population of 144 students in two courses, one in discrete
mathematics and the other in data structures. Half of the students
studied discrete mathematics with an emphasis on logic applied to
reasoning about software, and the other half took a traditional
discrete mathematics course. All of the students went on to study
implementations of data structures in a course with a heavy
software development component.
Performance in the software development course was used to
estimate the software development abilities of the students. Fac-
tors such as innate academic ability and the quality of instruction
in the courses on which the study was based appear to have
played no significant role in the outcome.
A single study of the impact of particular choices of educational
materials requires reinforcement from other quarters if it is to
have an influence on computing education. If the results of this
study make it easier for other educators to introduce reasoning
about software in their own courses, then the Beseme Project may
contribute to the goal of better software engineering through
mathematics education.

7. ACKNOWLEDGMENTS
This material is based on work supported by the National Science
Foundation under Grant No. EIA 0082849. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the
views of the National Science Foundation.
I am grateful to John Canning for sharing in the design of the
Beseme Project and the writing of the proposal that led to
funding, even though he was not able to join the project when it
got underway. I am also grateful to Jeffrey Sharp, who wrote the
software for the database of statistics used in this work, to Justin
Beitelspacher, who maintained the database software and
developed the Beseme website, and to Shauna Singleton for

entering the data and providing it to the research staff, stripped of
all student identification information.

Two students deserve credit for extending the proof-checking
software provided with the Hall-O’Donnell textbook: Pierre
Lemaire added the ability to cite proven theorems in proofs by
natural deduction, and Jonathan Cast added the ability to check
equational proofs, in addition to the support for natural deduction
provided in the original software. Finally, I want to thank the
referees, all of whom made suggestions that improved the quality
of this paper.

8. REFERENCES
[1] Barland, I., Felleisen, M. Kolaitis, P., and Vardi, M.

TeachLogic Project, http://www.cs.rice.edu/~tlogic

[2] Broda, K. Eisenbach, S. Khoshnevisan, H., and Vickers, S.
Reasoned Programming, Prentice Hall, 1994.

[3] Dean, C., and Hinchey, M. (eds.) Teaching and Learning
Formal Methods, Academic Press, 1996.

[4] Grassman, W., and Tremblay, J-P. Logic and Discrete
Mathematics: A Computer Science Perspective, Prentice
Hall, 1996.

[5] Gries, D., and Schneider, F. A Logical Approach to Discrete
Math, Springer-Verlag, 1993.

[6] Hein, J. Discrete Structures, Logic, and Computability, 2nd
Edition, Jones and Bartlett, 2003.

[7] Hall, C., and O’Donnell, J. Discrete Mathematics Using a
Computer, Springer, 2000.

[8] Huth, M., and Ryan, M. Logic in Computer Science:
Modelling and Reasoning about Systems, Cambridge
University Press, 2000.

[9] Page, R. Beseme Project, http://www.cs.ou.edu/~beseme

[10] Page, R. Functional programming ... and where you can put
it, ACM SIGPLAN Notices 36, 9 (September 2001) 19-24.

[11] Parnas, D. A software engineering program of lasting value,
in Proceedings of AMAST 2000 (Iowa City IA, May 2000),
Lecture Notes in Computer Science 1816, Springer, 2000.

[12] Rosen, K. Discrete Mathematics and Its Applications,
McGraw-Hill, 1999.

[13] Wadler, P. Why no one uses functional languages, ACM
SIGPLAN Notices 33, 8 (August 1998) 23-27.

	INTRODUCTION
	PROJECT
	STATISTICS
	MATERIAL
	RELATED AND FUTURE WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

