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ABSTRACT 
A three-year study collected information bearing on the question 
of whether studying mathematics improves programming skills. 
An analysis of the data revealed significant differences in the 
programming effectiveness of two populations of students: 
(1) those who studied discrete mathematics through examples 
focused on reasoning about software and (2) those who studied 
the same mathematical topics illustrated with more traditional 
examples. Functional programming played a central role in the 
study because it provides a straightforward framework for the 
presentation of concepts such as predicate logic and proof by 
induction. Such topics can be covered in depth, staying almost 
entirely within the context of reasoning about software. The 
intricate complexities in logic that mutable variables carry with 
them need not arise, early on, to confuse novices struggling to 
understand new ideas. In addition, because functional languages 
provide useful and compact ways to express mathematical 
concepts, and because the choice of notation in mathematics 
courses is often at the discretion of the instructor (in contrast to 
the notational restrictions often fiercely guarded by the faculty in 
programming courses), discrete mathematics courses, as they are 
found in most computer science programs, provide an easy 
opportunity to enhance the education of students by exposing 
them to functional programming concepts. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 
correctness proofs, formal methods. K.3.2. [Computers and 
Education]: Computer and Information Science Education – 
computer science education, curriculum. 

General Terms 
Design, Languages, Verification. 

Keywords 
Functional programming, discrete mathematics, predicate logic, 
correctness proofs, formal methods, software engineering. 

1. INTRODUCTION 
Educators have long argued about the value of mathematics in the 
study of computing. What the various participants in the argument 
mean by “mathematics,” while not firmly tied down, generally 
boils down to the use of mathematical reasoning to prove 
theorems. In this sense, most computer science programs include 
very little real mathematics. Students do not learn much about 
constructing proofs when they study infinitesimal calculus for 
science and engineering, or when they study other mathematical 
subjects such as differential equations, linear algebra, statistical 
methods, and numerical analysis. Most computing programs 
require courses in most of these topics, and in taking these courses 
students learn important methods for solving certain kinds of 
problems, but they do not learn to construct mathematical proofs. 
They do not learn to think like mathematicians. 

Should they? Should computing students learn to think like 
mathematicians? If so, why? To appreciate their cultural legacy? 
To support their study of computing? To make them more 
employable? All of these reasons have value, but the argument 
often focuses on how the study of mathematics affects the 
practice of software development. Observations of such effects 
bring substance to the argument. One of the goals of the Beseme 
Project (three syllables, all rhyming with “eh”) is to provide 
observations of this kind. 

2. PROJECT 
The Beseme Project offers educational material for courses in 
discrete mathematics or more specialized topics, such as 
mathematical logic, along with some evidence of the effectiveness 
of the material. Most of the usual topics of an elementary discrete 
mathematics course are discussed in the Beseme materials, with a 
special emphasis on the concept of mathematical proof. The 
lecture notes elucidate several dozen proofs, and homework 
projects and examination questions provide opportunities for 
students to succeed in constructing their own proofs. 

The intent is for students to gain experience with the thought 
processes of mathematicians. Because these thought processes 
apply in many problem areas, there is a wide range of interesting 
examples to choose from, many of which can illustrate, equally 
well, the basic ideas. Examples in the Beseme material come 
primarily from the realm of reasoning about properties of 
software artifacts. 
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It happens that almost all of these software artifacts are expressed 
in the form of inductive equations. That is, they are functional 
programs, and that makes it possible for functional programming 
concepts to play a central role in the study of discrete 
mathematics. 



The project also provides data about the performance of students 
who have studied the Beseme materials and compares their 
performance to that of students who have studied the same topics 
from another point of view. The data lends credence to the idea 
that studying real mathematics benefits the practice of software 
development, and that the benefits are greater when students are 
allowed to see how the mathematical ideas they are studying 
apply to software artifacts. 

The topics covered in discrete mathematics courses are fairly 
standard: logic, sets, relations, functions, proof methods including 
induction, combinatorics, discrete probability, graphs, trees, and 
recursion. Section 4 of this paper provides details about the 
coverage of these topics in the Beseme materials. 

At the University of Oklahoma, where the Beseme Project has 
been conducted, discrete mathematics is a prerequisite for a 
course in data structures and algorithms. The data structures 
course addresses primarily implementation issues, and the course 
in discrete mathematics focuses on theoretical issues, with 
structures such as trees and graphs, and algorithmic concepts such 
as recursion figuring prominently in the coverage. One could 
view the discrete mathematics course as the theoretical framework 
for the data structures course. 

Most of the work in the data structures course involves software 
development, and the grades students earn in this course depend 
heavily on their programming skills. For this reason, it seems 
reasonable to expect a correlation between effectiveness in 
software development and grades in the data structures course. 
One could use the data structures grades of students as estimates 
of their programming abilities. 

The discrete mathematics course is taught in two sections. For the 
past six semesters, one of the sections has taken a traditional 
approach, as exemplified in the text of Rosen [12]. Here, for 
example, proof by induction is used to verify number theoretic 
results, such as the formula for the sum of the first n natural 
numbers. 

Applications in the traditional course have a “pure math” flavor. 
When software is discussed at all, projects call for writing small 
programs, not reasoning about them. The study of logic and proof 
by induction comprises about a third of the material, and none of 
it involves reasoning about software artifacts. The other two-
thirds concerns sets, combinatorics, probability, graphs, and trees, 
and the emphasis is on traditional aspects of these topics. 
Theorems about properties of trees would be more likely choices 
for examples than, say, theorems about applications of trees in 
software contexts, even though either choice might equally well 
illustrate the same mathematical concept. 

The other section of discrete mathematics, the Beseme section, 
reverses the ratio. Logic and proof by induction comprise about 
two-thirds of the material, and the other topics about one-third. A 
variation in emphasis of this magnitude among the topics in a 
required course is not unusual at the university level. Different 
instructors have different interests and ideas about the relative 
importance of topics. Their courses reflect those interests. 

In the Beseme course, almost every example in predicate logic 
and proof by induction involves reasoning about a software 
artifact, usually concerning a correctness-related property, but 
sometimes a property related to the software’s use of resources. 

Beseme students study the traditional mathematical methods and 
concepts, but the examples they see as illustrations of these 
concepts come from a non-traditional collection. 

Students see many examples of software, and all but a few of 
them are expressed as functional programs. The programming 
language chosen for the project is Haskell, but could just as well 
have been another language based on lambda calculus, such as 
ML, Scheme, or a host of others. 

The fact that the software artifacts used in these examples are 
functional programs is not a primary point of emphasis. They are 
presented as inductive equations, and justified on the basis that 
any function meeting certain computational requirements would 
have to satisfy the equations. 

For example, most students find it obvious that an operator (++) 
for concatenating two lists would have to satisfy the following 
equations. 

(x : xs) ++  ys  =  x : (xs ++ ys) 
[ ] ++  ys  =  ys 

In these equations, colon (:) denotes insertion of a new element at 
the beginning of a list, square brackets delimit lists (used here to 
denote the empty list), x stands for an element of a list, and xs and 
ys stand for arbitrary lists. 

The equations express certain properties of concatenation, and 
they are used as a starting point to confirm other properties of the 
operation. The fact that the equations provide a complete 
definition of concatenation is not the main point. The objective is 
to explore properties that the equations entail. 

The focus is not directly on programming, but the students see 
dozens of inductive definitions of this sort, and the idea that they 
act as complete definitions of functions in useful software 
gradually emerges. Students gain some facility with elementary 
functional programming concepts, and their interest is piqued. 
Some of them later complain in the data structures course about 
the gratuitous difficulty of implementing, in a language like C++, 
the simple ideas they learned in discrete mathematics. 

The software artifacts that become targets for the application of 
the principles of logic in the Beseme section include definitions of 
many reduction operations, such as computing the sum of a list of 
numbers, Boolean logic operations on lists, concatenation, list 
length, computing the maximum value in a list, and other 
reductions. They also include sorting, exponentiation in 
logarithmic time, vector addition, inner product, sequence 
reversal, building and searching AVL trees, and other important 
computations. 

There are significant differences between the Beseme and the 
traditional sections of the discrete mathematics course in terms of 
concepts emphasized, and even more significant differences in 
terms of examples used to illustrate the concepts. Therefore, the 
subsequent data structures course is taken by two different 
populations of students:  those who have studied discrete 
mathematics with an emphasis on reasoning about software (the 
Beseme group) and those who have seen a more traditional 
collection of examples in their study of discrete mathematics (the 
traditional group). One might be able to assess some of the effects 
of the two approaches by comparing the performance of these two 
groups of students in the data structures course. And, since the 



0

1

2

3

4

1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

DSG 
GPA 

             Above-Median Students
                Avg GPA         Avg DSG 
Beseme       3.70                 3.76 
Traditional   3.75                 3.49 
 

2% event 
statistically significant 

             Below-Median Students
                Avg GPA         Avg DSG 
Beseme         2.90                2.02 
Traditional     2.93                 2.18 
 

30% event 
not statistically significant 

Beseme 
Traditional 

Median GPA 
3.42

Figure 1. Grade Point Average vs. Data Structures Grade for Beseme and Traditional Students 

data structures course has a heavy programming component, one 
might reasonably interpret affects on performance in the data 
structures course as effects on the programming skills of the 
students. 

These enrollment patterns mean that there is a lag of one or two 
semesters from the time the students complete the discrete 
mathematics course to the time they complete the data structures 
course. Data presently available consists of the records of 144 
students who have passed both courses. This paper takes that point of view. That is, it uses grades in the 

data structures course as estimates of the programming skills of 
students. Claims in the paper about programming skills are, more 
precisely, claims about grades in the data structures course. 

Figure 1 compares the performance of the Beseme and traditional 
groups. In this chart, student GPAs are plotted along the 
horizontal axis, and their grades in the data structures course are 
plotted along the vertical axis. GPAs are computed to three 
significant figures, but grades in data structures fall into only five 
categories (A, B, C, D, and F), so there is much less resolution 
along the vertical axis than the horizontal. Vertical bands in the 
chart contain data for students with similar GPAs. Not much can 
be perceived from this presentation of the data, but statistical 
computations yield some interesting results. 

3. STATISTICS 
A common statistical method for comparing the average values of 
two random variables is to compute Student’s t statistic from the 
data and to check how far out in the tails of its statistical 
distribution this measurement falls. Common standards call for 
rejecting the hypothesis that the two random variables have the 
same average value (the “null hypothesis”) when the likelihood of 
the observed t-statistic (under the assumption that null hypothesis 
is true) is less than 5%. 

It happens that the 144 students are evenly divided between the 
Beseme group and the traditional group. This makes it possible to 
divide both groups into two subgroups and still maintain adequate 
populations for stable statistics within each of the resulting four 
subgroups.  The reliability of a statistical decision to reject the null hypothesis 

depends, in part, on the sizes of the populations of the two groups 
being compared. When both groups have populations exceeding 
30, conclusions tend to be more consistently reliable than with 
smaller populations. 

The 72 students in the database from the traditional sections of 
discrete mathematics have an average GPA of 3.35 on a 4.00-
point scale. These GPAs are computed for individual students 
upon completion of the data structures course by averaging all the 
grades they earned at the university, weighting each grade by the 
number of credits awarded for the course in which the grade was 
earned. A GPA of 4.00 indicates a grade of A in all classes taken 
by the student. 

On the average, about eighty students per semester enroll in the 
data structures course at the University of Oklahoma. About two-
thirds of these students have taken the discrete mathematics 
course during the previous semester, and another ten to fifteen 
percent have taken it two or more semesters prior to enrolling in 
data structures. A small percentage of students gain the right to 
enroll in data structures without having taken the discrete 
mathematics course. 

The 72 students in the Beseme group had an average GPA of 
3.25. This was slightly lower than the 3.35 of the traditional 
group, but the difference is not statistically significant according 
to the t-statistic criterion discussed earlier. 



Those are the average GPAs. With regard to the median, half of 
the 144 students in the database had a GPA exceeding 3.42. 

The average grade earned in the data structures course by the 144 
students in the database was 2.81 on a 4.00-point scale. The 
average data structures grade for the 72 students in the traditional 
group was 2.84, compared to 2.79 for the 72 Beseme students. 
This difference, like the difference in average GPAs for the two 
groups, is not statistically significant. 

However, when the groups are divided into subgroups of more 
uniform ability (as estimated by GPA), statistical analysis yields 
more definitive conclusions. 

Of the better half of the students, that is the 73 students with 
GPAs exceeding the median grade of 3.42, there were 39 from the 
traditional group and 34 from the Beseme group. The average 
GPA of the 39 above-median traditional students was 3.75. That 
figure for the Beseme students was 3.70, which is a little lower 
than the traditional group, but it is not a statistically significant 
difference. This means that the innate talent of the students in the 
two groups can be regarded as about the same. 

The above-median students in the traditional group had an 
average grade in the data structures course of 3.49, compared with 
3.76 for the above-median students in the Beseme group. 
According to the distribution of the t-statistic, there is less than a 
2% likelihood that a difference this large would occur if the two 
groups represented samples from statistical populations with the 
same average grade in data structures. 

Furthermore, since the students in this data set all had grade point 
averages exceeding 3.42, one would be very surprised if the 
average grade in data structures fell below 3.00. Since the 
probable range of the average is 3.00 to 4.00, the observed 
difference in the averages of the two groups, 0.27, seems 
significant in an intuitive sense. 

A reasonable statistical interpretation of this result would be to 
reject the null hypothesis that the observations come from random 
variables with the same average. This means that one can, at a 
confidence level of 98%, accept the alternative that the better 
performance of the above-median students in the Beseme group is 
an effect arising from differences in the groups, not a random 
event. Using the data structures grade as an estimate of software 
development skills, as discussed earlier, one would interpret this 
to mean that Beseme students become better software developers 
than traditional students. 

The average data structures grade for the below-median Beseme 
students was 2.02. Their average GPA was 2.90. This compares 
with an average data structures grade of 2.18 for the traditional 
students, who had an average GPA of 2.93. The distribution of 
grades in data structures for below-median students is more 
spread out than for above-median students. Because of the higher 
variance and the smaller difference between the average grades of 
the two groups, the difference is not significant statistically. That 
is, it is not a large enough difference to reject the null hypothesis 
at the 5% level. It is, in fact, a 30% event, which places it near the 
middle of the distribution, so it seems likely to be a random 
effect. 

What factors explain the differences in the software development 
success of Beseme students compared with students of 

comparable talent in the traditional group? Three factors that 
might contribute to the observed differences include: 

• material studied in discrete mathematics 
• effectiveness of the discrete math instructor 
• innate talent of individual students 

With regard to innate talent, the average GPA of the Beseme 
students is slightly below that of the traditional students. The two 
groups are, apparently, more or less the same in terms of innate 
talent. So, innate talent is not a convincing explanation of the 
difference. 

How about the instructor factor? As the instructor for the Beseme 
sections of discrete mathematics, I would like to claim instructor 
effectiveness as a reason for the better performance of the above-
median Beseme students in the data structures course. However, 
students think otherwise. Near the end of each semester, students 
complete a questionnaire giving their assessment of various 
aspects of the quality of instruction. Their overall ratings of my 
teaching effectiveness in the discrete mathematics course 
averaged 2.17 on a 4.00-point scale (4.00 being the best rating). 
The ratings of the instructors for the traditional sections averaged 
2.83. 

Many instructors believe that student assessments of the 
performance of instructors are strongly influenced by the grades 
they award to students. This view holds that students will give 
better evaluations to instructors who award higher grades. The 
average grade awarded in discrete mathematics to the Beseme 
students was 2.83, compared with 2.96 for the traditional students. 
This difference falls near the middle of the distribution of the t-
statistic. It is insignificant, statistically — probably a random 
event. 

 So, grading effects do not appear to explain the difference in 
instructor ratings. I have to accept the fact that students regard me 
as a less effective instructor than other members of the faculty 
who teach discrete mathematics. It’s a bitter pill, but it means that 
the instructor effect fails to stand as a convincing explanation of 
the relative performance in the data structures course of students 
in the Beseme group compared with students in the traditional 
group. 
That leaves course content in discrete mathematics as the primary 
suspect in the investigation of factors contributing to the better 
performance of Beseme students in the software development 
tasks required in the data structures course. Many explanations 
are possible, but this analysis suggests low credibility for the 
influence of two of them (innate student ability and instructor 
effectiveness). It seems reasonable to accept course content as an 
important factor contributing to the software development success 
of Beseme students. 

4. MATERIAL 
The Beseme course materials include over 350 animated slides. 
Many of the slides seem busy when viewed in isolation, at the end 
of the animation sequence, but the animation steps add 
information gradually, so that a step-by-step presentation can 
proceed at a comfortable pace. A typical slide, presented at a 
prudent pace through the animation sequence, with time for 
interactions with students along the way, takes five to ten minutes 
to discuss in a lecture. 



The materials also include examinations (over 150 exam 
questions in all, with solutions), more than a hundred homework 
exercises and solutions, lesson plans, reading assignments, and 
software that checks proofs in propositional logic for correctness. 
(This software is an extension of tools provided with a textbook 
by Hall and O’Donnell [7]). All of the Beseme course materials 
are available to instructors through the Beseme website [9]. The 
website is password protected in the hope that instructors will feel 
comfortable using the materials in their courses. Selected 
materials may be viewed without a password and are provided to 
help instructors decide whether to request access to the full 
website. 
In the Beseme course, all examples illustrating proof by induction 
are chosen from the realm of properties satisfied by software 
artifacts. Most of the analyzed properties confirm relationships 
between function inputs and results (that is, correctness issues). 
For example, early examples discuss properties of concatenation 
of lists, such as length-conservation and associativity. Later 
examples include verifying that a key present in an AVL tree will 
be found through binary search, with dozens of other examples in 
between. 
Some examples discuss termination and performance properties. 
Those include, among other things, the logarithmic performance 
of the Russian peasant algorithm for exponentiation, the n log(n) 
performance of merge-sort, and the logarithmic performance of 
AVL tree insertion. 
In all, over two-dozen proofs by induction are carried out in 
lectures, and dozens more are required in homework and exams, 
all of which concern properties of software artifacts. About a third 
of these proofs use ordinary mathematical induction, 
(P(0) ∧ ∀n.P(n)→P(n+1)) → ∀n.P(n), to verify that if a piece of 
software satisfies a few given equations, it must also have certain 
other desirable properties, which are stated in the theorem being 
proved. 
Another third of the examples rely on strong induction, 
(∀n.(∀m < n.P(m))→P(n)) → ∀n.P(n). Induction on tree 
structures, and a form of induction on loops based on Floyd-
Hoare logic are also illustrated in lectures, homework problems 
and exam questions. 
Most of these examples involve reasoning based on a few 
equations that comprise an inductive definition of a function. The 
function might be selection of the maximum value in a sequence 
or merging two sequences, or some other useful computation. 
Proofs by induction are used to show that a function satisfying a 
few basic equations must also have other important properties. 
The basic equations of an inductive definition are presented as 
reasonable properties that any function with the intended purpose 
would have to satisfy if it worked properly. The concatenation 
function mentioned in Section 2 provides an example. The basic 
equations that concatenation satisfies are repeated here with labels 
to facilitate referring to them in proofs. 

(x : xs) ++  ys  =  x : (xs ++ ys)                       {++ :} 
[ ] ++  ys  =  ys                                               {++ [ ]} 

As noted before, the fact that these equations happen to form a 
complete definition of concatenation is not the main point. In fact, 
it is hardly mentioned. The goal is to show, through the 
application of logic, that the properties specified in these 

equations imply other properties of the concatenation operation, 
such as length conservation, associativity, etc. 
One approach to verifying properties implied by these equations 
relies on induction over list structures. However, ordinary 
induction over the natural numbers can also be used, at least when 
the lists involved have finite length. Ordinary mathematical 
induction happens to be the topic of study at the time these 
equations appear in the Beseme course, so that is the method used 
to prove properties of concatenation. The following sketch of a 
proof along these lines illustrates the approach taken in the 
Beseme materials. 
Prior to discussing the associativity of concatenation, a length 
conservation property is proved: 

length(xs ++ ys) = length xs + length ys 
Associativity is then proved through induction on the length of xs 
in the equation expressing associativity: 

xs ++ (ys ++ zs)  =  (xs ++ ys) ++ zs 
The inductive case in the proof of associativity shown in Figure 2 
makes use of equational reasoning. Reasons justifying each step 
in the sequence of equations are noted on the right-hand side of 
the figure. The argument applies in the case when the leftmost 
operand is nonempty. The proof for an empty leftmost operand is 
shorter. It consists of two applications of the {++ [ ]} equation, 
with no need to cite the induction hypothesis. In the Beseme 
materials, most proofs of properties derived from inductive 
definitions make use of syntax-driven substitution in equations as 
illustrated in this example. 

Most students are familiar with reasoning based on equations 
from their experience in high-school algebra. This much comes to 
them easily. In fact, one of the few examples in the course that 
does not involve a piece of software is a proof that the product of 
two negative numbers is a positive number. 

        (x: xs) ++ (ys ++ zs)                                
     = x: (xs ++ (ys ++ zs))                                                   {++ :} 
     =  x: ((xs ++ ys) ++ zs)                            induction hypothesis 
     =  (x: (xs ++ ys)) ++ zs                                                  {++ :} 
     =   ((x: xs) ++ ys)  ++ zs                                                {++ :}

Figure 2. Associativity of Concatenation, Inductive Case 

This proof serves to introduce the idea of equational reasoning, 
and it has a profound effect. Most students have no idea why 
negative-times-negative is positive, and they are delighted to 
learn that this rule is only a few equations away from more basic 
rules of arithmetic such as the associative and distributive laws. 
They see from this example how a formal argument based on 
equations can be constructed, and they learn to apply this idea 
with new equations and strange operations like list-insertion and 
concatenation, just as they formerly applied the ideas with more 
familiar operations, such as the addition and multiplication of 
numbers. 
What does not come so easily to most students is the idea of proof 
by induction. This takes a lot of thinking and experience, and that 
is why the concept is presented in four guises (ordinary, strong, 
tree, and loop) with a couple dozen examples in lectures, and 
many more than that in homework and exams. Gradually, students 



AVL tree insertion is more complicated than concatenation. 
However, there is a straightforward, entirely formal (that is, 
mechanical) translation of the usual rotation diagrams into 
inductive equations. The simple case for left rotation is illustrated 
in Figure 3. The equations in this figure use a tree constructor T, 
which builds a tree from its root key, height, and left and right 
subtrees. (T is too cryptic. The Beseme presentation uses more 
descriptive names. Shorter names are used here to make the 
equations fit in one column of the required document style.) The 
function ht in these equations extracts the height component from 
a tree structure. 

begin to grasp both induction and the idea of formal proof based 
on syntactic substitution in equations. 
Equational reasoning and proof by induction comprise about 
thirty-five percent of the Beseme material, but it is not the only 
basis for reasoning that the students see. About thirty percent of 
the material focuses on natural deduction with Gentzen-style 
inference rules in propositional and predicate logic.  
Software involving mutable variables provides another way for 
the students to gain experience in the process of conjuring up 
proofs, in this case relying on a form of induction for looping 
software based on Floyd-Hoare logic. A little less than ten percent 
of the material is devoted to this topic. Since the more complex rotations amount to a composition of 

simple rotations, they are equally easy to derive from diagrams. 
Given this information, and an understanding of how to use left 
and right rotation (l and r) to ensure AVL balancing, most 
students can derive the five-case equation for AVL tree insertion 
(^:) shown in Figure 4. 

The different forms of induction reinforce each other. Students 
end up getting a lot of experience with inductive reasoning, and it 
helps them understand other concepts related to induction, such as 
recursion, numeric recurrence equations, and loop invariants. 
The basic operations of set theory (union, intersection, difference, 
power sets, and so on) are discussed along with proofs about 
properties of sets. Functions and relations are discussed in set 
theoretic terms, along with special attributes (injective, surjective, 
reflexive, symmetric, transitive, etc.) and analytic tools (image, 
inverse image, etc.). These ideas comprise about fifteen percent of 
the lecture material, and they emerge repeatedly in other parts of 
the course, usually in a software context. 
The idea of comparing asymptotic rates of growth (f = O(g)) helps 
describe algorithmic complexity, and several examples in this 
area serve to illustrate the estimation of algorithmic performance 
and solving recurrence equations. This coverage comprises a little 
more than ten percent of the material. 

Induction on AVL trees (yet another kind of induction) is used to 
verify that a tree that is balanced before insertion remains 
balanced after insertion, that the time required for insertion is 
proportional to the height of the tree, and that the number of 
nodes in a balanced tree is exponential, compared with its height. 
This leads to the conclusion that AVL insertion requires 
computation time proportional to the logarithm of the number of 
keys in the tree. Recurrence equations needed for these arguments 
match the structure of the inductive equations for insertion. 

sL 

vR uL vL 

u 

u 

v

v

vR 

sL(T u h uL (T v i vL vR)) 
  =  T v j (T u k uL vL) vR 
  where 
    j = 1 + max k (ht vR) 
    k = 1 + max (ht uL) (ht vL) 
 
ht(T u h v w) = h 

vL 

uL 

 

 z ^: (T  u  h  uL  uR) = 
   if         z < u  &&  (ht vL) <= (ht uR)+1 then  T u i vL uR 
   else if  z < u  &&  (ht vL) > (ht uR)+1   then r(T u i vL uR) 
   else if  z > u  &&  (ht vR) <= (ht uL)+1 then  T u j uL vR 
   else if  z > u  &&  (ht vR) > (ht uL)+1   then  l(T u j uL vR) 
   else  error “key already present” 
   where 
        vL  =  z ^: uL 
        i  =  1 + max (ht vL) (ht uR) 
        vR  =  z ^: uR 
        j  =  1 + max (ht uL) (ht vR) 

Figure 4. AVL Tree Insertion 

Figure 3. Simple Left Rotation 

Inductive equations are common in mathematics, and the fact that 
these happen to be presented within the syntax of a programming 
language might be viewed as more-or-less incidental. In practice, 
however, it is more than incidental because students can run 
programs directly from the equations. They also begin to see how 
significant pieces of software can be constructed from inductive 
equations. That is, they acquire some experience with functional 
programming. It occurs as if by osmosis, but statistical analysis of 
the Beseme data suggests that it has a significant, positive effect, 
at least on the upper half of the students. 

Of the traditional list of topics in discrete mathematics courses 
(logic, sets, relations, functions, proof methods including 
induction, combinatorics, discrete probability, graphs, trees, and 
recursion), only probability is entirely missing from the Beseme 
materials, although combinatorics gets short shrift. This is only 
fifteen-week, three-credit course, after all. 
Because most of the software artifacts presented to illustrate the 
use of logic in the Beseme course are expressed in the form of 
inductive equations, they tend to be short. Most of them are two 
or three lines long. They exceed six lines in only one case. That 
case is AVL tree insertion. The equations for AVL tree insertion 
cover eleven lines. They are short lines. They fit on a standard 
slide to be displayed with an ordinary video projector. They are 
readable from the back of the room, so they use large print, which 
means that the lines have to be short. 

5. RELATED AND FUTURE WORK 
The Beseme Project is one of many efforts emphasizing the use of 
logic in software development. Dean and Hinchey [3] edited a 
collection of papers presenting projects with goals related to those 
of the Beseme Project. There are also several textbooks that, to 



varying extents, discuss applications of logic to reasoning about 
software ([2], [4], [5], [6], [7], [8]). 
The TeachLogic Project [1] based at Rice University is 
developing materials similar to those of the Beseme Project, using 
Scheme as the notation for inductive definitions instead of 
Haskell, which is the notation used in the Beseme Project. The 
TeachLogic Project aims to provide two- to four-week modules 
that can be used in mainstream computing courses, such as 
programming languages, databases, artificial intelligence, and 
discrete mathematics, while the Beseme project focuses on an 
extensive treatment in one of these areas. Both projects share the 
goal of presenting logic to students in the context of software 
development. 
The Beseme Project has, so far, assessed results only in terms of 
grades in the data structures course. As the students progress 
further through the curriculum, it will be interesting to see if a 
larger pattern of effects can be observed by looking at grades in 
other courses. 
Part of the motivation of the Beseme Project is to provide 
materials that can help instructors introduce functional 
programming to students in ways that can benefit them. The 
expectation would be that students with this background might be 
inclined to make use of it later, and that might lead to substantial 
improvements in software quality. 
Barriers to the use of functional programming for developing 
software in industry are not as high as many suppose. Many 
software development groups have license to choose their 
implementation tools [10]. Support for functional programming in 
terms of libraries and communication with other software is 
manageable in a practical way for many projects. 
So, why don’t software developers choose functional languages 
more often for their projects? There are many answers to this 
question [13], one of which is that only a tiny percentage of 
software developers receive any serious exposure to functional 
programming in their education. What they are unfamiliar with, 
they are unlikely to choose. 
The Beseme Project provides at least a little material to fill some 
gaps. It is part of a larger plan that envisions a core curriculum for 
a programming-oriented baccalaureate that might be dubbed 
“hard-core software engineering.” 
Dictionaries and engineering organizations define “engineering” 
as the use of mathematics and science to design useful artifacts. A 
straightforward extension of this definition would imply that 
software engineering is the use of mathematics and science to 
design software. However, that is neither the general 
understanding of the term “software engineering,” nor does it well 
describe the usual practice of software engineering. 
The hard-core software engineering curriculum will appeal to 
those who think software engineering would be better practiced if 
it, like other engineering disciplines, consisted primarily in the 
application of mathematical principles to the design of useful 
artifacts, which in this case would be software rather than bridges 
or radios or other useful things. 
A software engineering program at McMaster University [11] has 
similar goals to those of the program envisioned as an extension 
of the Beseme Project. In the Beseme version of this approach, six 

courses occurring in three, closely coupled pairs, would form the 
core of the curriculum. 
Within each pair, there would be a mathematics course and a 
programming course. Students would enroll in the two courses 
during the same term, and the material of each of the courses 
would complement that of the other. All of the mathematics 
would be illustrated in terms of the software concepts being 
discussed in the programming course, and all of the ideas in the 
programming course would be explained in terms of the 
principles being discussed in the mathematics course. 
The first pair would be a functional programming course, together 
with a discrete mathematics course along the lines of the Beseme 
materials. The second pair would cover aspects of graph theory 
and abstract algebra in the mathematics component, and would 
cover data structures in the programming component, using, 
initially, functional programming, but gradually introducing 
conventional programming techniques. 
The third pair of courses would cover a formal model for 
concurrency, such as Milner’s pi calculus, in the mathematics 
component, and would cover the design and architecture of 
operating systems in the programming component. The programs 
in the operating systems course would be written in a 
conventional programming language. 
These six courses would form a basis for the rest of the computing 
curriculum, which could consist of a selection of more-or-less 
standard, upper division, computer science courses. The core 
courses would place students on a firm footing for their study of 
the software enterprise, including both the theoretical and the 
practical aspects of computing. The program is envisioned as a 
software-oriented one, and the degree title “software engineering” 
seems appropriate, even if the core material does not have the 
generally accepted shape of software engineering as commonly 
understood and practiced. 
The first integrated pair, discrete mathematics and introductory 
functional programming, is scheduled to be offered at the 
University of Oklahoma in the coming academic year. Progress 
on the other two pairs awaits the time and energy required for 
their development, and depends, in part, on success in the delivery 
of the first pair. 

6. CONCLUSION 
The Beseme Project has delivered a body of materials for courses 
in discrete mathematics. The materials include lecture notes, 
lesson plans, reading assignments, homework (and solutions), 
exam questions (and solutions), and software tools that have been 
tested across six semesters of use in the classroom. The material 
focuses on reasoning about software, and most of that software is 
expressed using the functional programming paradigm. The 
approach provides an example of exposing students to functional 
programming concepts at a point in the curriculum that provides 
an excellent, but often overlooked, target of opportunity. 
Functional programming is a crucial element in the process. 
Without it, things get too complicated, too fast, and students tend 
to miss the point. Functional programming provides a context in 
which student interest remains high as the course progresses and 
in which most students can succeed. 
Beseme Project results support the conjecture that experience in 
the direct application of logic to reasoning about software leads to 



increased effectiveness in the practice of software development. A 
statistical analysis of data on student performance in software 
development projects indicates that students whose educational 
background includes experience in applying mathematical logic to 
the problem of reasoning about properties of software get better 
grades in a subsequent, programming-intensive course than 
students who studied mathematical logic in more traditional 
contexts. 
The data supports this conclusion at a 98% confidence level for 
students in the upper half of the distribution of academic talent. 
No statistically significant effect was observed for below-median 
students. This outcome was observed through data collected from 
a population of 144 students in two courses, one in discrete 
mathematics and the other in data structures. Half of the students 
studied discrete mathematics with an emphasis on logic applied to 
reasoning about software, and the other half took a traditional 
discrete mathematics course. All of the students went on to study 
implementations of data structures in a course with a heavy 
software development component. 
Performance in the software development course was used to 
estimate the software development abilities of the students. Fac-
tors such as innate academic ability and the quality of instruction 
in the courses on which the study was based appear to have 
played no significant role in the outcome. 
A single study of the impact of particular choices of educational 
materials requires reinforcement from other quarters if it is to 
have an influence on computing education. If the results of this 
study make it easier for other educators to introduce reasoning 
about software in their own courses, then the Beseme Project may 
contribute to the goal of better software engineering through 
mathematics education. 
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