
Software Issues in Digital Forensics

J. Todd McDonald, Yong C. Kim
∗ †

Air Force Institute of Technology
Dept. of Electrical and Computer Engineering

WPAFB, OH 45433, USA
{jmcdonal,ykim}@afit.edu

Alec Yasinsac
‡

Florida State University
Dept. of Computer Science
Tallahassee, FL 32306, USA
yasinsac@cs.fsu.edu

ABSTRACT
Whether we accept it or not, computer systems and the op-
erating systems that direct them are at the heart of major
forms of malicious activity. Criminals can use computers as
the actual target of their malicious activity (stealing funds
electronically from a bank) or use them to support the con-
duct of criminal activity in general (using a spreadsheet to
track drug shipments). In either case, law enforcement needs
the ability (when required) to collect evidence from such
platforms in a reliable manner that preserves the fingerprints
of criminal activity. Though such discussion touches on pri-
vacy issues and rules of legal veracity, we focus purely on
technological support in this paper. Specifically, we examine
and set forth principles of operating system (OS) design that
may significantly increase the success of (future) forensic col-
lection efforts. We lay out several OS design attributes that
synergistically enhance forensics activities. Specifically, we
pose the use of circuit encryption techniques to provide an
additional layer of protection above hardware-enforced ap-
proaches. We conclude by providing an overarching frame-
work to incorporate these enhancements within the context
of OS design.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Privacy Protec-
tion; K.6.5 [Computing Milieux]: Management of Com-
puting and Information Systems—invasive software, unau-
thorized access, physical security

General Terms
Operating systems, digital forensics

Keywords
Forensic software, operating system extensions, security, ev-
idence collection, circuit encryption, obfuscation

∗The views expressed in this article are those of the author
and do not reflect the official policy or position of the United
States Air Force, Department of Defense, or the U.S. Gov-
ernment
†This material is based upon work supported in part by
the U.S. Air Force Office of Scientific Research under grant
number F1ATA07337J001
‡This material is based upon work supported in part by
the U.S. Army Research Laboratory and the U.S. Army Re-
search Office under grant number DAAD19-02-1-0235

1. INTRODUCTION
Because of the modern rise in computer-related and computer-
supported criminal activity, a shift in thinking has occurred
in the realm of computer systems design. Currently, we may
rightly view any given computer system as a possible collec-
tion platform for forensic evidence. The future of modern
operating systems design can support this trend by adding
extensible, integrated capabilities for identifying, collecting,
preserving, examining, and analyzing digital evidence.

With the presence of super-privileged malware such as rootk-
its that have capacity to deceive even the underlying OS,
establishing a hardware-based low-level root of trust may
be the only possible solution that provably guarantees soft-
ware protection. Such trusted components are not part of
standard processor design currently, but several security-
based extensions are finding their way into modern systems.
Hardware in the form of secure co-processors, tamper-proof
evidence collection storage devices, or built-in high-speed in-
trusion detection will also require future operating system
support.

To the degree that we can design cohesive protective soft-
ware components, end-to-end support for digital forensics
will also require a revolution in how we design software com-
ponents for operating systems. In this particular work, we
consider this future software direction and address areas of
common interest for both practitioners and researchers. We
show how software protection mechanisms based on circuit
encryption techniques offer an added layer of security for
protecting forensic evidence.

2. FORENSIC FRIENDLY OS
We may consider the technical aspects of digital forensics as
mundane in terms of the actual requirements: the job boils
down to data capture, storage, and analysis. However, the
adversarial use of counter-forensic software and purposed
tampering [9, 10] give impetus for more robust integration
between forensic software and operating system. Future op-
erating systems need the ability to support integrated tools
with capability for secure static (and live) system/hardware
collection. Whether we use independent forensic tools, a
security-based middleware, distributed cooperating compo-
nents, or some combination of these, we envision software
designed with a conscience purpose to enhance ”possible”
future investigations.

Tamper-resistant and obfuscation techniques [14, 13, 3, 18]
will profoundly impact future forensic software design and
should guide the development of resilient protective software
architectures such as intrusion detection systems (IDS). The
ability for the operating system to report on its own activ-
ities presumes that, at some point, the operating system
itself may be overridden or compromised. Much like a gov-
ernmental balance of checks and powers between branches,
architectural support for forensics must assume a similar
system of checks (internally and externally), between the
operating system, user applications, and built-in forensics
software/hardware.

Obfuscation’s goal is to prevent an adversary from using
program code to better understand an original program’s in-
tent. Context reveals a large amount of information regard-
ing code function and intent, however obfuscation cannot
prevent such contextual understanding. Even though this
somewhat lessens the usefulness of obfuscation for forensic
component protection, we can still reason about normal at-
tack vectors for defeating program obfuscation: black-box
and white-box analysis. These attacks are independent in
that one need not exercise one in order to leverage the other
and complementary in the sense that they can be used to-
gether to identify program properties and intent. We charac-
terize intent-protection schemes based upon black-box and
white-box definitions.

The systematic application of obfuscation primitives via cir-
cuit encryption offers one possibility for end-to-end integra-
tion with various OS components and forensic support struc-
tures. In order to consider principles for forensic software
protection using this approach, we consider first a measure-
ment framework for understanding programmatic intent.

2.1 Black-box and White-box Intent
A traditional problem of security by obfuscation is the in-
ability to characterize both what kind of information and
how much information leaks from a program after it has
been obfuscated. In order to reason about adversarial capa-
bility, we define three different levels of program protection:
black-box, white-box, and any combined. At the heart of
black-box understanding, an adversary would like to be able
to predict (based on their understanding of a program) what
particular input is needed to achieve a known or desired out-
put. In terms of forensic component protection, an adver-
sary may like to cover their tracks by altering the output
of various logging features or override security checks. We
capture this intuition in Definition 1 as the ability of an ad-
versary to predict the input to a program given an arbitrary
element of the range. The adversary has some polynomial
size history of input/output pairs to base their prediction
on.

Definition 1. An adversary understands the black-box in-
tent of a program P → {X, Y } if and only if, given an ar-
bitrarily large set of pairs IO = {xi, yi | yi = P (xi)} and
given yj an arbitrary element of Y such that ((·, yj) �∈ IO),
the adversary can efficiently (in polynomial time) compute
xj such that yj = P (xj) on the length of P with with greater
than negligible probability. Otherwise, we say P is black-
box intent protected.

The notion of white-box protection stems from the desire
to measure the static analysis capabilities of an adversary:
what can be learned about a program given access only to
some form or representation of its source code? Many real-
world static analysis tools exist including compilers, code
formatters, disassemblers, and decompilers. White-box in-
tent captures an adversary’s understanding of the input/output
relationships of a program that are only derived from analyz-
ing source code (whether at the high-level, assembly, or ma-
chine level). Following our Definition 1, we would describe
this capability as the ability to compute a program input cor-
responding to some arbitrarily chosen output, based solely
on non-simulating analysis of the source code. This would
roughly correspond, for example, to an adversary who looks
for a code within a program in order to override an activa-
tion question or possibly a credentials check.

In the real world, adversarial analysis of source code rarely
takes place without corresponding input/output analysis or
without incremental simulation of code statements. Like-
wise, real world program analysis may only need to focus on
understanding internal portions of a program rather than
the whole. Suffice to say, we need a better definition for char-
acterizing white-box intent as it makes no sense to consider
white-box analysis alone. However, it may be useful from
a theoretic viewpoint to measure or understand how much
information leaks from source code if only static (structural)
analysis is allowed. We consider these ideas under the notion
of full intent protection using the random program model.

2.2 Intent Protection
The notion of intentioned manipulation precisely captures
an important intrusion category and limits blind disruption
to sophisticated intruders. It also captures a large number of
attacks against forensic-based OS components. In [18, 13],
we outline the random program model as a basis for char-
acterizing combined black-box and white-box intent. This
model uses unbiased selection as a measure for randomness
and appeals to both notions of intent. An adversary should
not be able to learn anything about program intent by an-
alyzing the static code structure or by observing program
execution.

A securely obfuscated version of a program should make
the code and all possible execution paths that it produces
display random program properties. Unless the obfuscated
version hides the I/O properties of the original program,
black-box intent may be divulged by a reasonably equipped
adversary. In Definition 2 we give a formal measure for
full-intent program protection based on the existence of a
random program oracle. The notion of a random program
oracle is an oracle that reliably produces random programs
given some program size and I/O bound. The oracle also is
also used to obfuscate any program that it is given according
to some underlying algorithm.

To summarize the model, we provide a basis for comparison
between an original program (P) and an alternate version
of that program (P ′). Obfuscators (O(·)) produce alternate
program versions (P ′ = O(P)) in order to prevent reverse
engineering and effectively disrupt dynamic and static anal-
ysis. The alternate version P ′ is (hopefully) a more confused
version of P that prevents such adversarial actions but that

still provides the same functionality of P . The analytic in-
tuition of such alternate versions in the random program
model is straightforward: if the black-box I/O behavior and
the white-box structure of P ′ cannot be distinguished from
a randomly chosen program PR of the same size category,
then there is no correlation between P ′ and P (or at least no
more correlation than between P and a completely random
program).

Definition 2. Given access to a random program oracle
which transforms any program P using obfuscating algo-
rithm O(P) into an alternate version P ′, and given full ac-
cess to any obfuscated program P ′

x: After knowing any n
pairs of original and encrypted programs {(P1, P

′
1), (P2, P

′
2),

..., (Pn−1, P
′
n−1), (Pn, P ′

n)}, an adversary that supplies a
subsequent program Pn+1 will receive P ′

n+1 from the ora-
cle which is either: a random program (PR) or the obfus-
cated version of the program P ′

n+1 = O(Pn+1). The pro-
gram O(P) provides (full) intent protection if and only if
the probability that an adversary is able to distinguish the
obfuscated version (P ′

n+1) from a random program (PR) is
1
2

+ ǫ where ǫ is negligible.

Given this notion for measuring intent protection, we discuss
now two properties of forensic components that may increase
their resilience to alteration and malicious corruption. Both
of these concepts have a role within the context of circuit
encryption, which we present in the next section.

2.3 Black-box Components
In forensic evidence collection, investigators seek to know
what system compromise has occurred and where the insti-
gator accomplished the activity. Strategically, the operating
system can leverage tamper resistant techniques to accom-
plish several goals: decrease likelihood of intentioned alter-
ations, localize where future violations may occur, and help
articulate what adversaries may learn or accomplish. Such
coordination will require designers to explore the bounds of
specific tamper-resistant methods.

Software, by virtue of its use in generalized Turing-machine
based processors, is inherently non-opaque. A highly prized
goal of security research centers on the ability to securely
hide or protect the intent of programs that run in plain
view of underlying (untrusted) computational environments.
This goal becomes even higher when we consider the actions
of malicious parties manipulating operating system software
components in order to hide nefarious activity. The more
opaque we can create such components, the less likely that
an adversary can understand or manipulate those compo-
nents for their purposes.

Apart from specific functional classes like point functions, we
can only achieve general obfuscation in the ”perfect” sense
by using the truth table look up values for a given function
f(x). Truth table values and the programs/circuits we cre-
ate directly from them offer no notion of white-box intent
at all (there are no intermediate calculations or data flow:
only I/O). In [14], we explore possibilities for protecting soft-
ware components with small input size using constructions
based on two-level truth table reduction and semantically

Figure 1: Perfect Obfuscation for Small Input-Size

Modules

secure data encryption algorithms (illustrated in Figure 1).
Even though the approach is not practical for the general
case (program size grows exponentially with input size), it
is the only known general method to achieve a semantically
secure black-box effect of underlying algorithms and their
functionalities. By reducing certain segments and modules
of operating system code (with appropriate input size) to
their black-box, lookup-table functional equivalents, we can
effectively shield either the white-box or black-box aspects
of underlying components.

As Figure 1 depicts, we can replace a function f(x) with its
truth table (TT) lookup equivalent. When we compose the
original function f(x) with a semantically strong encryption
algorithm (E(y, K)), we can provide a truth table version
of the resulting function f ′(x) that has (recoverable) secure
output. With the recovery option, we may hide the full
functional intent completely where with no recovery we may
hide the code (white-box) intent of the function f(x). Table
lookups (in either case) give no notion of intent and may offer
great promise in strategically arranging OS components for
future forensic support.

2.4 Variation, Mutation, and Randomness
The use of variation has been recognized as a key tenet for
defensive programming schemes for quite some time. Cohen
[8], for example, offers one of the earliest frameworks to con-
sider Shannon’s concepts of diffusion and confusion in the
context of code variation. The goal of such security through
obscurity focuses on making the difficulty of adversarial ac-
tions too costly to succeed. Cohen details several program
evolution techniques such as using equivalent instruction se-
quences, instruction reordering, variable substitution, jump
addition/removal, call addition/removal, garbage insertion,
program encoding, redundancy, program interleaving, and
anti-debugger mutations. These techniques have all found
their way into more modern obfuscation tools and research.

As Cohen points out, the right mixture and interleaving of
these (program mutating) operations in all aspects of oper-
ating system development, deployment, and execution may
drive the cost of automated attack up to acceptable lev-
els. We envision the use of variation and randomness in
generating operating system components to harden forensic

components in a like manner.

As a further enhancement, other researchers are exploring
the benefit of self-modifying code to enhance software-based
protection mechanisms [12]. We can design code that is
not only probabilistically structured (via randomized white-
box mutations), we can also design code to probabilistically
change itself in a predetermined manner. Such variability
can provide the engine for incremental changes in structural
descriptions of forensic-based components. These changes
add yet another degree of probabilistic analysis an attacker
must face in the process of discovering underlying forensic
intent.

We contend that an obfuscator that retains semantic equiv-
alence to the original program cannot obfuscate a program
that reveals its intent through black box analysis. That is,
no matter how scrambled the code, any reasonable adversary
can reveal the program’s intent.

3. UTILIZING CIRCUIT ENCRYPTION
In [13, 18], we investigate how engineering randomness in
program design may offer hope for more general, efficient
intent protection for modules with larger input size. In the
case of components that are not efficiently distilled via look-
up table versions, we appeal to systematic use of code-based
obfuscation primitives (code/circuit confusion and code/circuit
diffusion). We can compare this technique roughly to sym-
metric data cipher algorithms that strategically combine dif-
fusion/confusion primitives to offer strong protection.

The application of both randomization and canonical truth
table reductions in system design may help pinpoint the ac-
tivity of future intruders: namely, investigators will know
more precisely ”where” to look for the sources of compromise
and evidence collection. If we can know that certain compo-
nents offer no opportunity for malicious activity, operating
systems of the future may help support forensic activity just
by virtue of their design.

We can properly view the process of circuit encryption [13]
as a set selection mechanism operation. Specifically, if we
need to provide an alternate (albeit more confused) version
of a program or circuit, then we can view an obfuscating
transformation as a mechanism that selects equivalent ver-
sions of programs/circuits from a set of functionally equiv-
alent possibilities. We believe circuit/program obfuscators
that choose replacements in a uniformly random manner
offer the best possibility for tamper resistance and intent
protection. In this view, we more properly relate the mea-
sure of security to the degree of randomness in the white
box structure of a program or circuit. Randomizing ob-
fuscators (if they are possible to create) therefore produce
probabilistic (functionally-equivalent) versions of programs
with discernible properties of structural randomness.

As Figure 2 depicts, we let P be a program or circuit that
we want to intent protect. δ is a set of programs or circuits
with a common input/output size [X, Y] and a bounded size
[S] (gates, lines of code, etc.). δP is a subset of programs
or circuits with the same signature (functional behavior /
truth table) as P . An obfuscating transformation, O(·), at
best can only select an equivalent program/circuit from the

Figure 2: Obfuscation as Set Selection

same set (C|X|−|Y |−[S]) or a set with a larger (polynomially-
bounded) size (C|X|−|Y |−[f(S)]). Figure 2 also depicts that
a randomly selected program (PR) is chosen from the same
I/O class set as P ; such a selection becomes a valid basis for
comparing candidate versions of replacement for P .

As we discuss previously, changing only the internal (white-
box) structure of a program/circuit does nothing to hide its
black-box intent. We also see this sentiment established in
classical theoretical obfuscation results: general, secure, and
efficient protection in the Virtual Black Box (VBB) [4] sense
is not possible if the obfuscating transformation preserves
the same I/O behavior, though no impossibility results are
known if the possibility of changing black-box behavior is
granted. Under a VBB-based comparison, it can be easily
shown that certain programs or circuits have no alternative
representation (i.e., regardless of the amount of confusion)
that will not leak information when compared to a black-
box simulator of the original program. What this means for
certain functions is that any version (or variant) of certain
programs will leak more information relative to the infor-
mation obtained from having only simulator access to the
program itself.

Since we limit our focus to purposeful manipulation, we
avoid certain results related to general obfuscation and leave
open the possibility that full intent protection may be achiev-
able. Circuit encryption uses a two-pronged approach: first,
we transform the input and output behavior of a candi-
date program/circuit and second, we introduce entropy into
the transformed version by iterative, randomizing white-box
sub-circuit replacements. As we allude to in Figure 1, trans-
formations that provide recoverability offer hope for hiding
intent of a candidate program/circuit, while retaining usable
functionality. We envision two distinct methods currently
that provide a recoverable means of changing input/output
behavior: black-box refinement and semantic transforma-
tion. By combining these two methods in efficient proba-
bilistic algorithms and incorporating white-box randomiza-
tion, we believe that obfuscators may exist that can meet the
full intent protection criteria of the random program model.

Figure 3 depicts that I/O based transformations map a can-
didate program P to another set of functional possibilities.
This mapping is considered secret-knowledge, much like a
secret key in normal data ciphers. In this example, P is a
simple 3−input, 1−output, 8−gate circuit with a truth table

Figure 3: Black-box Transformation

relationship seen as the vector [01010111], representing the
23 possible output values based on canonical input ordering
(000 → 0, 001 → 1, 010 → 0, 011 → 1, etc.). The I/O trans-
formation in this case does not change either the number of
input bits or output bits and is based on a one-way trans-
formation (for 1-bit functions, there are only 2 possibilities:
invert all bits or keep all bits the same). The transformation
also illustrates the we can recover the output of P when we
executed P ′. Figure 3 represents a semantic transformation
that places O(P) = P ′ into a functionally different I/O set
(C[10101000]) and introduces one of the two means we can
use to achieve recoverable I/O transformation. We discuss
each method and their differences next and finish up with a
discussion on white-box randomization.

3.1 Black-box Refinement
We have two goals with I/O transformations that are part of
the circuit encryption process. First, P ′ must have different
functional output than P . If we let x and y represent the
input size and output size accordingly, then we describe a
program/circuit P as P : 0, 1|x| → 0, 1|y|. If we let x′ and y′

represent the input size and output size P ′ = O(P), which

is the obfuscated version of P , then P ′ : 0, 1|x| → 0, 1|y|. In
this regard, we can also state that ∀(x) : P (x) �= P ′(x). For
the second goal, we must have some capability to recover
the original functional output of P : ∀(x) : P (x) = S(P ′(x)).

One way of hiding or masking input/output relationships
is to do so in plain sight. For a circuit, we can visualize
this rather easily and also point to current work where the
technique is applied. In [7], for example, Christiansen et al.
present a method for creating decoy information pathways
through circuits by adding both fake inputs and fake out-
puts. Interconnections between the input and output gates
are generated accordingly. We refer to such techniques as a
black-box refinement of the original program P and illustrate
its algorithmic description in Figure 4. From the viewpoint
of a circuit and its corresponding truth table, we can visu-
alize at least five distinct operations that may be part of
a black-box refinement and we envision that all five would
be applied in a probabilistic manner based on configurable
properties found in a secret key.

First, if we let X represent the domain of the original P
and confine it to a fixed number of bits, a black-box refine-

Figure 4: Black-box Refinement

ment may add input bits so that a new domain with a larger
possible bit string X ′ is created. Second, we may introduce
a random permutation on the input bits themselves which
results in a virtual reordering of the bits. Third, we may
introduce intermediate gates that would result in new truth
table columns for P ′. These intermediate gates will need to
randomly take input signals from at least every new input
gate and some random number of the original input signals
of P . Intermediate gates may also be part of connecting new
inputs to new outputs which provide a different functional
flow within the circuit. Fourth, we can introduce some ran-
dom number of output gates. Output gates are distinguished
intermediate gates and we can therefore use some random
selection of newly created intermediate gates or specifically
create new gates and backward connect them to the exist-
ing circuit or parts of the newly created circuit. Finally,
the fifth possible black-box refinement technique involves a
random permutation of the output bits themselves, once we
introduce any new output gates. As with the domain, we
introduce with such operations a possibly new domain Y ′

which represents a larger bit string that comes as the out-
put of P ′.

As Figure 4 depicts, a black-box refinement transformation
s(p, k, X, Y) = q, p′, X ′, Y ′ produces a 4-tuple consisting of
a resolution algorithm q, the obfuscated program p′, a new
domain X ′, and a new range description Y ′. X and Y are
the domain and range description of p while k represents
secret information that drives the probabilistic behavior of s
(a seed to a pseudo-random number generator for example).
Program p′ now takes input x′ from domain X ′, uses any
new intermediate gate logic, and produces output y′ which is
part of the range Y ′. Given the obfuscated program output
p′(x′) = y′, we can then use the resolution algorithm q which
takes as input y′ and any key information (k) relative to the
probabilistic choices made by s.

This algorithm meets both of our requirements for trans-
formation as laid out previously (∀(x) : P (x) �= P ′(x) and
∀(x) : P (x) = S(P ′(x))), but there are no absolute security
statements that may be assumed between x/x′ and y/y′.
The fact that the original input and output bits of P still
exist in the form of x′ and y′ which are used and produced by
P ′ does not semantically produce black-box intent protec-
tion as we require from Definition 1. However, it does add a

Figure 5: Semantic Transformation

layer of confusion which provides impetus to further white-
box randomization on the structure of P ′ and also provides
a more general method to mask input/output relationships
of specialized programs such as point functions. In order to
provide a one-way relationship in the black-box properties of
a candidate P , we apply semantic transformation techniques
after performing black-box refinement.

3.2 Semantic Transformation
In [15, 18, 14] we outline an approach for transforming
input/output relationships that we allude to in Figure 1
and now depict more accurately in 5. We let algorithm
t(p, k) = (p′, r) be a process that creates program p′ so that
it has a strongly one-way input/output with an original pro-
gram p. Although other transformations may be possible,
we explore transformations that compose the output of pro-
gram p to the input of strong data encryption algorithms (e).
Because semantically secure algorithms are black-box intent
protected under Definition 1, it follows that program com-
positions with a semantically secure algorithm are black-box
intent protected as well.

As Figure 5 illustrates, the composition process t(p, k) takes
as input both the original program p and also a key k that
embodies secret knowledge and points to a one-way identity.
In our approach, we embed the key so that ∀x ∈ X, p′(x) =
e(p(x), k). The output of the obfuscation process t(p, k) gen-
erates a new program (p′) and a recovery program (r) with
the property p(x) = r(p′(x), k−1), where r is efficiently com-
putable and the output of p′(x) = y′ is simple to invert given
knowledge of special information (k−1). The obfuscation
process uses a key that provides security control and allows
correlation with data encryption paradigms. To be crypto-
graphically strong, the obfuscation method must be public
and its strength dependent only on knowledge of the key.
Though we do not show it, semantic transformation may
also increase the output bit size of the resulting p′ as it will
correspond to the output size of the encryption algorithm
e. We also do not discuss the difference between the output
size of p in bits (|py|) and the possible input size of e in bits
(|ex|) as there are three possibilities: |py| < |ex|, |py| = |ex|,
and |py| < |ex|. Where the sizes are not equal, we must ei-
ther pad the output of p or provide a means to handle larger
input size with multiple encryption algorithms.

Figure 6: Randomizing White-box Transformation

Referring back to our example [3 − 1 − 8] circuit in Fig-
ure 3, the semantic transformation, though trivial (a 1-bit
XOR), illustrates the composition and resulting change in
I/O behavior. Figure 3 shows that our composed program
(P ′ = P + E) resides in its own (different but recoverable)
functionality class δP ′ . We note also that the new super
set of circuits under consideration (C3−1−9) is composed
of circuits with larger total gate size than the original P
(which was size 8). As indicated in the figure, the new fam-
ily of |3| − |1| − [9] circuits has 99,157 members (assuming a
NAND-only circuit basis Ω and assuming we create the set
by fully enumerating all possible gate combinations up to the
given total size bound). As program and input size grow, the
number of possible program replacements also grows super-
exponentially.

Once we know that an adversary cannot discern intent from
the I/O behavior itself, we can then concern ourselves with
the traditional goal of both practical and theoretic obfusca-
tion: providing a replacement program that is functionally
equivalent. By combining both black-box refinement and se-
mantic transformation, we meet not only the requirements
for black-box intent protection in Definition 1 but also pro-
vide high probability that an adversary can not recover the
original I/O relationships of a candidate program P based
on the I/O relationships of P ′. These preliminary trans-
formations form the (required) foundation for considering
white-box structural randomization, discussed next.

3.3 White-box Randomization
Once we accomplish I/O transformation of the original pro-
gram P , we consider the goal of selecting an alternate (but
equivalent) version of this intermediate form from a func-
tionally equivalent family. This process, as we mention pre-
viously, reduces to an intelligently directed set selection op-
eration. Figure 6 illustrates based on our example, how the
specific subset that (P ′ = P + E) belongs to has 480 ele-
ments, based on identical truth table signature. We may
consider candidate P ′ replacements from this set and evalu-
ate obfuscators based on how random and uniform the selec-
tion process is (or is not). In order to achieve a target level
of randomization, the overhead will indeed require circuits
with larger total gate size as a result or programs with larger
lines of code. Candidate P ′ circuits with measurable prop-
erties of structural randomness will more than likely come

only from (considerably) larger circuit family sets of the form
C3−1−S’, where S′ > S. We are currently investigating ob-
fuscators that efficiently choose versions of programs and
circuits based on these semantic black-box and randomizing
white-box transformations.

Figure 7 shows the traditional meaning of obfuscation as
understood in both theoretical and practical study: a trans-
formation w(p, k) = p′ takes as input a program p with
some (possibly) probabilistic information embodied in a key
k. The output of w is a program p′ that remains func-
tionally equivalent to the original program p and represents
a different version (albeit a more confused variant) of the
original. Current obfuscation research centers around the
transformation algorithm w, in whatever form it takes. We
have created a foundational architecture with which to study
our approach to white-box change in the context of combi-
national logic circuits. In our current approach, we have
developed algorithms that take a circuit and iteratively in-
troduce random circuit structures (intermediate gates) by
replacing (very) small sub-circuits with functionally equiva-
lent sub-circuits. Our current algorithms are exploring the
replacement of a single gate with multiple gate variations,
selected uniformly and randomly from (efficiently) small cir-
cuit family libraries.

In order to reach the goal of full intent protection (as out-
lined in Definition 2, our final circuit must be indistinguish-
able from a completely random circuit of the same (relative)
size and I/O category. There are many open questions to
this problem which will have major ramifications for tradi-
tional obfuscation approaches unrelated to circuit encryp-
tion. Three questions we currently consider involve the na-
ture of the algorithm itself that induces structural entropy:

1. Are there white-box structural metrics that reveal or
indicate randomness or entropy?

2. Are there algorithms which diffuse control flow of a
circuit more efficiently than others?

3. Will a polynomially-sized version of a circuit be ca-
pable of demonstrating structural randomness in com-
parison to a completely random one?

Figure 8 illustrates the end-to-end nature of our circuit en-
cryption algorithm. It incorporates both black-box refine-
ment, semantic transformation, and white-box randomiza-
tion. This algorithm at a minimum meets the black-box
intent protection specified by Definition 1 and we continue
to experiment with algorithms that focus on white-box only
transformations. We believe this technique holds great promise
for forensic protection possibilities within OS design, which
we discuss next.

4. APPLIED FORENSIC PROTECTION
Our circuit encryption approach offers yet another way to
view program variation via systematic and random appli-
cation of structural function-preserving mutations. It also
provides a unique viewpoint for generating polymorphic pro-
grams used for security-based OS purposes. The ability
to efficiently create probabilistically different versions of an

Figure 7: White-box Randomization

original software component provides defensive protection
qualities which creators of malicious programs already use
extensively. In this light, we can help improve resilience of
forensic-based OS components by leveraging applications of
circuit encryption techniques.

4.1 Protected Logging Functions
In order to provide sufficient incident response, investigators
need the ability to preserve the digital crime scene and guar-
antee integrity of data. Log files provide a basic mechanism
(currently) to dust for electronic fingerprints of adversarial
activity. If we protect all (or even selected) log functions
via circuit encryption techniques, an intruder cannot ma-
nipulate log creation. Because semantic transformation and
its resulting I/O manipulation changes the true output of
the logging process, an adversary will not be able to de-
termine what specific information is being logged. Though
other methods exist to defeat logs beyond deletion and re-
placement, preventing primitive manipulation closes certain
avenues of attack and reduces the OS attack surface.

Moreover, if an attacker cannot efficiently determine the spe-
cific information logs that are recorded, the idea of log re-
placement loses its appeal. Even in the presence of strong
adversarial activity (i.e., via root-kit hypervisor/administrator
alteration), logs processed via circuit encryption techniques
give kernel functions greater resilience. The highest value
evidence for forensic collection, which depends on kernel in-
tegrity and unbiased operation, can therefore be isolated
from probably adversarial mitigation. As a result of this
approach, even the executing system cannot determine the
program intent of log file.

4.2 Recoverable Functionality
Besides logging functions themselves, the general techniques
related to circuit encryption may hold promise for protecting
or enhancing protection of a wide range of OS-related soft-
ware components. In order to realize such possibilities, we
must consider how outputs of protected components (that
create encrypted output) might be either used locally or used
in conjunction with (other) protected operations.

This particular problem draws many parallels with how tra-
ditional mobile agent paradigms have grappled with secu-

Figure 8: Circuit Encryption Process

rity. Specifically, mobile agents have several security issues
when executing on malicious host platforms. As in these
environments, we need the ability to use protected (or en-
crypted) output in the presence of possibly malicious exe-
cution environments (hardware or other corrupted OS ser-
vices/components). Researchers in previous work have given
approaches for computing secure functions in adversarial en-
vironments via encrypted circuits. Abadi and Feigenbaum
[1], for example, describe a multi-round technique while
Cachin et al. [5] describe a single-round secure multi-party
computation algorithm. Algesheimer and colleagues [2] con-
sider as a follow-on question how the result of the encrypted
computation might be used by the mobile agent on the pos-
sibly malicious server via use of a semi-trusted third party
(a trusted computation service).

As an initial approach to describe how components protected
via circuit encryption may use encrypted output, we appeal
to the use of composition with appropriate recovery algo-
rithms. Consider for example two software components f1()
and f2() in which f2 uses the output of f1: f2(f1(·)). Since
we cannot present a protected function’s output in the clear
during the composition process (it becomes subject to I/O
analysis), we incorporate a decryption step for candidate
functions that require use of local services.

Using semantic transformation techniques, we can semanti-
cally protect f1 by replacing it with f ′

1 as follows:

∀x : y′ = f ′
1(x) = eK(f1(x)) (1)

If we decrypt y′ and use it as input to f1(·) via recovery
function dK−1(·), we essentially setup a pipeline composi-
tion: (1) decrypt the input (y′); (2) conduct function f2(·);
and (3) encrypt the output (seen as y”). We compose the
decryption, function (f1), and encryption and then use a
randomized white-box replacement (f ′

2) to complete the cir-
cuit encryption process.

∀x : y” = f ′
2(f

′
1(x)) = eK(f2(dK−1(f

′
1(x))))) (2)

Functions designed to accept only encrypted input will help
to strengthen existing operating system components from
adversarial alteration. By injecting entropy (engineering
randomness) into both input and output of components them-
selves, we provide cryptographically software-based strength

into the forensic shielding process.

4.3 Configurable Key Management
If we introduce key-embedded algorithms to provide I/O
protection of important forensic-relevant operating system
components, we also induce traditional key management is-
sues at the same time. For composed P + E constructions,
the encryption algorithm (E) may use either asymmetric
or symmetric keys: in either case, we use E to protect the
black-box intent of an underlying functional software com-
ponent (P). The encryption component itself can provide
either a parameterized key or an embedded key option, but
we envision predominantly embedded key versions.

As with all cryptographic schemes, key management remains
the most problematic issue. We believe that future support
of circuit encrypted components will require routine and se-
cure update services, much like automated OS component
updates occur currently (Microsoft Windows update feature,
for example). Such updates may come more naturally in the
form of native circuit definitions and our approach fits best
using native circuit description formats.

4.4 Hardware/Software Protection
Because of current trends in the architectural world, the line
between software and hardware has become less clear. As
Vahid [16] points out, a modern computation platform often
requires support by supplementary coprocessors or acceler-
ators. With a new sophisticated video and audio encryp-
tion and decryption algorithms, a reconfigurable component
like field programmable gate arrays (FPGAs) can configure
a particular circuit merely by downloading a particular se-
quence of bits. Hence Vahid claims a circuit implemented
on an FPGA is literally software. A reconfigurable comput-
ing platform like FPGAs have hundred of thousands of small
lookup tables. These configurable lookup tables can be com-
bined together through use of multiplexors and can be feed
into flip-flops to virtually any arbitrary logics. A program-
mer can implement a desired circuit on an FPGA by writing
the proper bits to each lookup tables, routing multiplexors,
and flip-flops. Use of such FPGA system can significantly
speed up operations hundreds or even thousands of times
faster than a generalized microprocessors.

To this point we have left the definition of software and hard-
ware security somewhat up in the air. All computer systems
contain a mix of hardware and software and only a limited
amount is accomplished with purely hardware. To create a
security system purely in hardware would significantly ham-

Figure 9: Basic Combinational Logic Circuit

per the flexibility and modifiability of such a system reducing
the number of future attacks to which a system could poten-
tially respond. Solutions such as an FPGA can be used to
extend software flexibility into hardware, though it does re-
quire performance tradeoffs to add protection is not pivotal
to this aspect of our discussion.

However, a pure hardware solution is not our goal when
we talk about hardware-based security. The key component
of hardware-based security is the communication between
the production system and the security system. Whether
a specific monitor is pure hardware, a FPGA, or software
running on some combination of hardware that remains sep-
arate from the production system hardware, what qualifies
a security component as hardware-based is that connection
back to the production system.

As forensic-based components need both black-box and white-
box protection, circuit encryption techniques offer an ideal
solution while keeping the native representation in a circuit-
based domain. The integration of FPGAs to embody such
functionality also provides an opportunity for consistent and
regular updates of key-based components. At a minimum,
such configurability provides a way to recover from key-
disclosure or key-discovery vulnerabilities without physical
replacement of hardware components.

5. QUALITATIVE ASSESSMENT
In order to illustrate the overhead or measurement of cir-
cuit encryption techniques, we consider a simple example of
small circuit functionality with an appropriate measurement
technique. We follow with specific results from a sample test
case. Simple combinational logic can easily represent pro-
grammatic decisions such as checking or validating a value
or computing arithmetic values based on input.

5.1 Rudimentary Example
Consider a circuit chosen from the C5−2−11−NAND family.
In particular, this circuit (c17) is a well known part of the
ISCAS-85 benchmark suite of circuits. Figure 9 illustrates
the gate structure and textual netlist for this circuit. In
many cases, the actual part of a program or circuit that
we want to protect (from adversarial intent manipulation)
is only a small part of some overall larger library or circuit.
We can let this circuit (and its associated function) repre-

Figure 10: Example Black-Box Refinement

sent some piece of logic that is important for forensic data
gathering or protection.

Based on our notional construction for circuit encryption
depicted in Figure 8, we first change the original I/O class
of the circuit via a black-box refinement process, seen in
Figure 10. This process adds one fake input bit, 2 fake
output bits, and 2 fake intermediate gates to the original
circuit, placing it now in the C6−4−16−NAND family. We in-
troduce these gates via combined pseudo-random/directed
algorithm which normalizes the overall gate structure. By
knowing which input and output bits are not applicable, we
can recover the intended output (easily). However, we pro-
vide a greater analysis task for an adversary to understand
the input/output relationships of the original circuit. For
larger circuits, the black-box refinement process would cre-
ate random numbers of inputs, outputs, and intermediate
gates (even for the same circuit).

After black-box refinement, we can apply a white-box ran-
domization algorithm to the circuit. This process effectively
diffuses random structural changes throughout the entire cir-
cuit. We are developing several algorithms and correspond-
ing evaluation metrics currently, but all of which involve two
basic steps: selection and replacement. The white-box selec-
tion process may be random or directed and the replacement
process may be random or directed as well, giving us four
possibilities for algorithm experimentation. We illustrate
the effect of a two-gate random selection and random re-
placement algorithm on the black-box refined version of the
circuit in Figure 11.

Based on this version of the original circuit, we now ap-
ply a semantic transformation technique which will create
a one-way permutation on the output bits of the circuit.
Since our C6−4−16−NAND circuit has 4 outputs, we must
(at minimum) provide a 4-bit to 4-bit permutation circuit
with strong semantically secure properties. For actual em-
bedded circuits, we would choose to transform the circuit
output into a much larger possible output space (128-bit,
64-bit, etc.) and use semantically secure encryption algo-
rithms. We would also consider a probabilistic encryption
scheme where the input/output pairs of the cipher are not
predictable based on the same input. For this example, we
simply create a 4-bit permutation circuit and apply another

Figure 11: Example White-Box Randomization

Figure 12: Example Semantic Transformation

round of white-box randomization to create an encryption
padding circuit, E.

We now finish the semantic transformation by composing
the current version of our c17 circuit with the encryption al-
gorithm, illustrated in Figure 12. This version of the circuit
is now candidate for a much more extensive series of white-
box randomization algorithms. For simplicity, we illustrate
only circuits create from our 2-gate random selection and
replacement algorithm. Figure 15 shows the final version
of the circuit after 200 rounds of iterative selection and re-
placement with a summary of changes to size, input, and
output.

5.2 Case Study Analysis
For a more appropriate case study example, we consider a
generalized comparator to illustrate how a software program
can be mapped on hardware, such as an FPGA. We show the
results of experiments using circuit encryption techniques in
regards to specific metrics that reflect obfuscation proper-
ties. Figure 15 shows a generalized comparator for checking
a 4-bit key, A3A2A1A0, against a code generated by some
program or user supplied data, B3B2B1B0. A higher num-
ber of bit key is often used such as a 256-bit key, but the 4-bit
example suffices to show how this circuit may be vulnera-
ble to both black-box and white-box attacks without any
additional protection. Normally, to compare two numbers
we subtract their values and compare to zero. The circuit

Figure 13: Full Intent Protection

Figure 14: Final Candidate Version of P’

in Figure 15 thus represents a subtractor-based comparator
here the value of A−B is first computed. The result is then
checked against zero, which corresponds to a wide range
of forensic-based authentication and validation tests within
the operating system. The output of the zero flag controls a
2-to-1 multiplexor, which assigns the value 1 or 0 to the en-
able signal. This 1-bit output represents the authentication
result.

The notions of controllability and observability of signals in
a circuit originate in automatic control theory. Controllabil-
ity for a digital circuit is defined as the difficulty of setting
a particular logic signal to a 0 or a 1. Observability for
a signal circuit is defined as the difficulty of observing the
state of a logic signal. We consider these metrics important
for measuring the strength of circuit encryption techniques
because while there are methods of observing the internal
signals of a circuit, they are prohibitively expensive. Elec-
tron beam testing, for example, can actually scan the VLSI
chip-under-test and produce a picture of the chip layout [6].
The signal at logic 0 will appear one color in the image, and
those charged to logic 1 appear as another color. However,
this testing method is used only for a localized area of circuit
and is not practical for larger area due to larger number of
transistors. Therefore, an adversary must instead set inter-
nal signals by setting signals at primary inputs to primary
outputs.

The controllability and observability measures are useful be-
cause they approximately quantify how hard it is to set and

Figure 15: Case Study Comparator Schematic

observe internal signals of a circuit relative to manipulat-
ing white-box intent. Testability measures, which combine
both controllability and observability, have two significant
attributes. First, they involve topological circuit analysis,
without requiring test generation. Testability is also a static
type of analysis that can provide an useful measure for the
white-box protection of the circuit. Second, it has linear
complexity, because otherwise testability analysis is point-
less and one might as well use automatic test pattern genera-
tion (ATPG) or fault simulation. A linear estimator is useful
and preferred since ATPG is a fairly expensive process that
involves significant commitments for both time and cost due
to the NP-complete nature of test generation algorithms.

Goldstein developed the SCOAP testability measures [11]
and contributed a linear complexity algorithm to compute
them. Although SCOAP is not absolutely accurate due to
reconvergent fan-outs, it is fairly effective in predicting rela-
tive coverage levels of the entire circuit fault sets. A number
of faults in a circuit under investigation is an effective indi-
cator of how many points of interest exist for a given circuit
for probing. More faults often means more places to probe
and higher number of detected faults means more about the
circuits can be understood since potential monitoring loca-
tions (fault sites) can be set to desired value of 1 or 0. A
fault coverage shows the percent of faults that can detected.

Figure 16 shows the summary of statistics for testability
measures, number of faults, number of detected faults, and
fault coverage (seen as a percentage) in the original com-
parator circuit (depicted in Figure 15) plus four obfuscated
versions of the circuit with resulting sizes 2.1x, 4.1x, 6.2x,
and 8.6x, respectively. We include the testability measure
(t) for each circuit as well. For this study, we note that
the two-gate random selection and random replacement al-
gorithm (mentioned in our rudimentary example) causes an
exponential increase in testability after only a 6x increase
in gate size. As we increase the level of obfuscation, we
observe exponential growth in testability measures and a
corresponding drop in fault coverage. These measures give
us a more qualitative insight into effectiveness of our circuit
encryption approach: higher testability measures reflect the
difficulty of monitoring and controlling a circuit.

Figure 16: Case Study Findings

6. SECURITY SPECIFIC SOFTWARE
In forensic evidence collection, investigators seek to know
what system compromise has occurred and where the insti-
gator accomplished the activity. Strategically, the operating
system can leverage tamper resistant techniques to accom-
plish several goals:

6.1 Forensic Software Components
Many tools currently exist to assist computer forensic pro-
cesses. There exist efforts currently (OCFA 1 for example) to
develop environments where forensic tools and libraries may
be easily inserted-we envision these approaches implemented
at the operating system level. Future operating systems will
need the ability to support tools that provide static (a pos-
teriori) and live analysis. When things go bad, we need
the operating system to readily ”interface” with such tools,
but yet shut such investigatory channels off from normal use.
Operations such as file carving, write blocking, disk imaging,
file analysis, and memory imaging are strong candidates for
O/S integration. Forensic components may reduce threats
by identifying malicious behavior or proactively assisting in-
vestigators. We envision operating systems that have cryp-
tographically protected parts of the operating system that
may only be ”opened” (with proper legal authorization) by
investigators. These parts may include run time library ex-
tensions and the ability to dynamically insert forensic soft-
ware tools with kernel-level permissions. Protection of the
secrecy and integrity of these hooks of course require further
analysis and specification.

6.2 Protective Software Components
Tamper resistance attempts to prevent modifications to soft-
ware for malicious purposes. While these approaches may
defend against outside threats from malicious software, in-
sider threats remain the more serious and damaging threat
in terms of forensic data discovery. Protective software com-
ponents such as intrusion detection systems may provide the
best solution for detecting or preventing anomalous behavior-
regardless of the source from inside or outside. As such,
future operating systems may need the ability to offer open-

1http://ocfa.sourceforge.net: Open Computer Forensics Ar-
chitecture (OCFA) is a modular computer forensics frame-
work being used by the Dutch National Police Agency.

source or modular choices for built-in intrusion detection
libraries.

6.3 User Application Design
Most instances of software exploitation are really software
failure. In [19, 17], we present several arguments regarding
software assurance and protection from the perspective of
educational paradigm shifts. Even though we cannot elimi-
nate vulnerability from modern information systems, we can
reduce exploitable code long term with sound, robust devel-
opment practices. By starting at the ”root cause” for sys-
tem vulnerability, we may be able to also influence how and
where adversarial action may take place. Future applica-
tion design should not only be security aware, but also be
focused towards identifying adversarial action. In the same
way that knowing where to point a camera may specifically
reveal a point of intrusion, we would like to know where at-
tacks will most likely come from by virtue of our software
design. Education, in large ways, may be the best way to
influence future application design in this regard.

6.4 Defending Against Malware and Counter-

Forensic Tools
An adversary (one that uses a computer for criminal activ-
ity) may use the same tamper-resistant methods and obfus-
cation approaches that are used to protect ”good”software in
order to hide their trail or disguise their actions. An aware-
ness of these techniques may also help identify (and pin-
point) the location of activity. Depending on the resilience
of the methods used, we may not be able to understand
adversarial action by examining malicious code. However,
the very use of such techniques with counter-forensic tools
may be the primary ”evidence” of wrong-doing or an (early)
indication of wrong-doing.

7. CONCLUSIONS
By making use of strategic techniques in different areas of
software design, we can achieve a level of support for digital
forensics. We foresee a more synergistic approach for soft-
ware components in the future that not only directly sup-
port investigatory practices (when required), but also give
an awareness of how operating systems are defended and
where possible vulnerabilities exist and are most likely to be
exploited. We present here an end-to-end approach to foren-
sic software protection at the operating system level based
on circuit encryption techniques.

8. REFERENCES
[1] M. Abadi and J. Feigenbaum. Secure circuit

evaluation: A protocol based on hiding information
from an oracle. Journal of Cryptology, 2(1):1–12, 1990.

[2] J. Algesheimer, C. Cachin, J. Camenisch, and
G. Karjoth. Cryptographic security for mobile code. In
Proc of the 2001 IEEE Symposium on Security and
Privacy, pages 2–11, May 2001.

[3] D. Aucsmith. Tamper-resistant software: an
implementation. Lecture Notes in Computer Science,
1174:317–333, 1996.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In Proc. of

the 21st Annual Intl Cryptology Conf on Advances in
Cryptology (CRYPTO ’01), pages 1–18, 19-23 Aug
2001.

[5] C. Cachin, J. Camenisch, J. Kilian, and J. Muller.
One-round secure computation and secure
autonomous mobile agents. In Automata, Languages
and Programming, pages 512–523, 2000.

[6] B. D. Christiansen, Y. C. Kim, R. W. Bennington,
and C. J. Ristich. Decoy circuits for fpga design
protection. In IEEE Intl Conf on Field Programmable
Technology (FPT 2006), volume 9, pages 373–376,
December 2006.

[7] B. D. Christiansen, Y. C. Kim, R. W. Bennington,
and C. J. Ristich. Decoy circuits for fpga design
protection. IEEE Conf on Field Programmable
Technology (FPT 2006), pages 373–376, Dec. 2006.

[8] F. B. Cohen. Operating system protection through
program evolution. Comput. Secur., 12(6):565–584,
1993.

[9] J. P. Craiger, J. Swauger, and C. Marberry. Digital
evidence obfuscation: recovery techniques. In Sensors
and C3I Technologies for Homeland Security/Defense
IV, volume 5778, pages 587–594. Intl Society for
Optical Engineering, May 2005.

[10] M. Geiger. Evaluating commercial counter-forensic
tools. In Proc of the 2005 Digital Forensic Research
Workshop (DFRWS), 2005.

[11] L. H. Goldstein. Controllability/observability analysis
of digital circuits. IEEE Trans on Circuits and
Systems, CAS-26(9):685–693, September 1979.

[12] Y. Kanzaki, A. Monden, M. Nakamura, and K. ichi
Matsumoto. Exploiting self-modification mechanism
for program protection. In COMPSAC, pages 170–181,
2003.

[13] J. T. McDonald and A. Yasinsac. Program intent
protection using circuit encryption. In Proc of the 8th
Intl Symposium on System and Information Security.
IEEE Computer Society, 8-10 Nov 2006.

[14] J. T. McDonald and A. Yasinsac. Applications for
provably secure intent protection with bounded
input-size programs. In Proc of the Intl Conf on
Availability, Reliability and Security (ARES 2007).
IEEE Computer Society, 10-13 April 2007.

[15] W. Thompson, A. Yasinsac, and J. T. McDonald.
Symmetric encryption transformation scheme. In Intl
Workshop on Security in Parallel and Distr. Systems
(PDCS 2004), 14-17 September 2004 2004.

[16] F. Vahid. It’s time to stop calling circuits ḧardwarë.
Computer, 40(9):106–108, September 2007.

[17] A. Yasinsac, R. F. Erbacher, D. G. Marks, M. M.
Pollitt, and P. M. Sommer. Computer forensics
education. IEEE Security and Privacy, pages 15–23,
July/August 2003.

[18] A. Yasinsac and J. T. McDonald. Of unicorns and
random programs. In Proc of the 3rd IASTED Intl
Conf on Communications and Computer Networks
(IASTED/CCN), 8-10 Nov 2005.

[19] A. Yasinsac and J. T. McDonald. Foundations for
security aware software development education. In
Proc of the 39th Hawaii Intl Conference on System
Sciences (HICSS ’06), volume 9, page 219c, 2006.

