
Fenton, Krause and Neil

1

Software Measurement: Uncertainty and Causal Modelling
Norman Fenton1, Paul Krause2 and Martin Neil1

1Queen Mary, University of London and Agena Ltd.
Mile End Road
London E1 4NS

2Philips Research Laboratories
Crossoak Lane

Redhill
Surrey RH1 5HA

1st March 2001

Abstract
Software measurement has the potential to play an important role in risk management during
product development. Metrics incorporated into predictive models can give advanced warning of
potential risks. However, the common approach of using simple regression models, notably to
predict software defects, can lead to inappropriate risk management decisions. These naïve models
should be replaced with predictive models incorporating genuine cause-effect relationships. We
show how these can be built using Bayesian networks; a powerful graphical modelling technique.
We describe how a Bayesian network for software quality risk management is providing accurate
predictions of software defects in a range of real projects. As well as their use for prediction,
Bayesian networks can also be used for performing a range of “what if” scenarios to identify
potential problems and possible improvement actions. This really is the dawn of an exciting new
era for software measurement.

Introduction
Although “risk” tends to be associated most with safety critical systems, many now recognise that there
will be uncontrolled risks to an organisation’s reputation or profitability unless software development is
carefully managed. We believe that software metrics are typically used in a way that militates against
effective risk management. In this paper we will explain why this is so, and discuss what can be done to
improve the situation.
Two specific roles of software measurement are quality control and effort estimation. Both of these fit
under the general umbrella of risk management: what is the risk in terms of field call rates of releasing a
product; and what is the risk of committing to a project given certain resources and certain commercial
deadlines? Normally, these risks will have to be assessed and managed using predictive models. However,
we argue that inappropriate risk management decisions will be made unless these models are based on
sound causal relationships.
First, let us concentrate on software quality. Using the widely accepted definitions in [Fenton and Pfleeger,
1996], there are two different viewpoints of software quality. The first, the external product view, looks at
the characteristics and sub-characteristics that make up the user’s perception of quality in the final product
– this is often called quality-in-use. Quality-in-use is determined by measuring external properties of the
software, and hence can only be measured once the software product is complete. For instance quality here
might be defined as freedom from defects or the probability of executing the product, failure free, for a
defined period.

Fenton, Krause and Neil

2

The second viewpoint, the internal product view, involves criteria that can be used to control the quality of
the software as it is being produced and can form early predictors of external product quality. Good
development processes and well-qualified staff working on a defined specification are just some of the pre-
requisites for producing a defect free product. If we can ensure that the process conditions are right, and
can check intermediate products to ensure this is so, then we can perhaps produce high quality products in a
repeatable fashion.
Unfortunately the relationship between the quality of the development processes applied and the resulting
quality of the end products is not deterministic. Software development is a profoundly intellectual and
creative design activity with vast scope for error and for differences in interpretation and understanding of
requirements. The application of even seemingly straightforward rules and procedures can result in highly
variable practices by individual software developers. Under these circumstances the relationships between
internal and external quality are uncertain.
Typically informal assessments of critical factors will be used during software development to assess
whether the end product is likely to meet requirements:

• Complexity measures: A complex product may indicate problems in the understanding of the actual
problem being solved. It may also show that the product is too complex to be easily understood, de-
bugged and maintained.

• Process maturity: Development processes that are chaotic and rely on the heroic efforts of individuals
can be said to lack maturity and will be less likely to produce quality products, repeatedly.

• Test results: Testing products against the original requirements can give some indication of whether
they are defective or not. However the results of the testing are likely only to be as trustworthy as the
quality of the testing done.

The above types of evidence are often collected in a piece-meal fashion and used to inform the project or
quality manager about the quality of the final product. However, there is often no formal attempt in practice
to combine such evidence together into a single quality model. Instead, there is a focus on using “naïve”
regression models as predictors of quality in use.

The problem with regression models
A holy grail of risk management could be the identification of one simple measurement that provides an
advanced warning of there being a high likelihood that a potential hazard will be realised. In some cases, an
established causal relationship is available. For example, current scientific and epidemiological evidence
has established the link from smoking to lung cancer beyond all reasonable doubt. Thus a doctor can
predict with some confidence that a smoker runs a relatively high risk of developing lung cancer compared
to a non-smoker. Equally, a smoker can manage this risk by giving up smoking. Unfortunately, in software
engineering the causal relationships are rarely so straightforward. We will illustrate this with one simple
example. More detailed analyses of naïve regression models for software engineering can be found in
Fenton and Neil [2000], and Fenton and Ohlsson [2000].
Suppose we have a product that has been developed using a set of software modules. A certain number of
defects will have been found in each of the software modules during testing. Perhaps we might assume that
those modules that have the highest number of defects during testing would have the highest risk of causing
a failure once the product was in operation? That is, we might expect to see a relationship similar to that
shown in figure 1.

<Figure 1 about here>

Fenton, Krause and Neil

3

What actually happens? It is hard to be categorical. However, two published studies indicate quite the
opposite effect – those modules that were most problematic pre-release had the least number of faults
associated with them post-release. Indeed, many of the modules with a high number of defects pre-release
showed zero defects post-release. This effect was first demonstrated by Adams [1984], and replicated by
Fenton and Ohlsson [2000]. Figure 2 is an example of the sort of results they both obtained.

<Figure 2 about here>
So, how can this be? The simple answer is that faults found pre-release gives absolutely no indication of the
level of residual faults unless the prediction is moderated by some measure of test effectiveness. In both of
the studies referenced, those modules with the highest number of defects pre-release had had all their
defects “tested out”. In contrast, many of the modules that had few defects recorded against them pre-
release clearly turned out to have been poorly tested – they were significant sources of problems in the final
implemented system.

Starting to think about causality
An extreme example of the difficulties that can arise through the use of naïve regression models is what is
known as Simpson’s paradox. This was first recognised in 1899 by Karl Pearson. He noticed that a
statistical relationship between two parameters could be reversed by the inclusion of an additional factor in
the analysis. For example, suppose we have data that indicates that students who smoke obtain higher
grades than students who don’t smoke. Does this really express a causal relationship? If a student is at risk
of failing an exam, should we encourage them to smoke?

<Table 1 about here>
The same set of data can support quite a different conclusion if age is taken into consideration, see Table 1.
In general, older students tend to smoke more. In addition, the more mature students tend to score higher
grades. Thus, age “causes” smoking, and age “causes” higher grades. However, for any fixed age group,
smokers may obtain lower grades than non-smokers. Now if we have a student who is at risk of failing an
exam, this model would suggest the advice that they take a maturer attitude to their studying.

Eliciting the “correct” causal model purely from statistical data is an unsolved problem in general.
However, we can often use science and reason to identify the causal influences in a problem of interest. We
believe that this is an important first step that has so far almost always been overlooked when producing
predictive models in software engineering. The example from the preceding section is a case in point. We
cannot make judgements of the quality of software from defect data alone. We must also take into account,
at least, the effectiveness with which the software has been tested.

<Figure 3 about here>
Figure 3 provides a slightly more comprehensive model. “Defects Present”, is the attribute we are
interested in. This will have a causal influence on the number of “Defects Detected” during testing. “Test
Effectiveness” will also have a causal influence on the number of defects detected and fixed. As we will see
later, this will turn out to be a fragment of a much larger model, with the node representing defects present
being a synthesis of a number of factors including, for example, review effectiveness, developer’s skill
level, quality of input specifications and resource availability.
For this discussion, we will assign two states to each node; “low” and “high”. We can now think of the
qualitative behaviour that we would expect from such a model. Straightforward reasoning from cause to
effect is possible. So, if Test Effectiveness is “low” then Defects Detected would also be “low”. But
Defects Detected would also be low if Defects Present was “low”.
One of the beauties of the causal models that we are building is that they enable us to reason in both a
“forward” and a “reverse” direction. That is, we can identify the possible causes given the observation of

Fenton, Krause and Neil

4

some effect. In this case, if the number of defects detected is observed to be “low” the model will tell us
that low test effectiveness and a low number of defects present are both possible explanations (perhaps with
an indication as to which one is the most likely explanation). The concept of “explaining away” can also be
modelled. For example, if we also have independent evidence that there are indeed a low number of defects
present, then this will provide sufficient explanation of the observed value for defects detected and the
likelihood that test effectiveness was low will be reduced.

Making the models work
So far we have only provided a static description of a causal model, and then a qualitative description of its
dynamic behaviour. We clearly need to augment the graphical model with a calculus that enables us to
update the model as new evidence is obtained. We do this by assigning probability tables to the nodes in
the graphical model, and then using Bayes’ theorem to revise the probabilities as we obtain new
information about a specific problem.

The notion of conditional probability is fundamental to this approach. We will write the probability of some
event E, given some condition C, as: p(E | C). Typically, these probabilities are easiest to elicit if C
represents some cause and E represents some effect of that cause. For example, the cause might be measles,
and the effect red spots. The “likelihood” p(red spots | measles) could be elicited by counting all those
patients with measles who exhibit red spots. It might seem a little paradoxical to assign a probability, a
measure of uncertainty, to a causal relationship. After all, causality is usually seen as deterministic.
However, these causal rules are being expressed at a macroscopic level. The microscopic details of
exceptional events, interruptions to the flow of causality, are in effect summarised out by assigning this
numerical probability that gives a measure of how likely this inference is to be valid.
For simplicity, we will look at only one branch of the model in Figure 3. Let variable DD represent
“Defects Detected” and variable TE represent “Test Effectiveness”. Suppose that we had elicited the
likelihood p(DD = “high” | TE = “high”) = 0.8. What we are now interested in is the “posterior probability”
p(TE = “high” | DD = “high”)? That is, if we observe that a large number of defects have been detected,
what is the probability that the software item has been effectively tested? To calculate this, we need two
additional pieces of information. Firstly, the “prior” probability p(TE = “high”) – a measure of what is
typically the case. We will take p(TE = “high”) = 0.2 in this example. Secondly, we need p(DD = “high”),
again a measure of what is typically the case. Just for illustration, in this case we might express a degree of
ignorance and say, “well it is just as likely for the number of defects detected to be high as low”. That is,
p(DD = “high”) = 0.5.
Now, suppose we observe that for a specific product, the number of defects detected is “high”. What is the
probability in this case, that the product was well tested? This can now be calculated using Bayes’ rule.
This is stated in general terms as:

)(
)()|()|(

Cp
EpECpCEp =

In our example,

)""(
)""()""|""()""|""(highDDp

highTEphighTEhighDDphighDDhighTEp =
======

32.05.0
2.08.0 =×=

We see that the definite observation of a high number of defects has increased the probability that the
product was effectively tested, although not by a dramatic amount.

Fenton, Krause and Neil

5

This approach can be generalised to update evidence over sets of variables, not just the two used in this
simple example. In addition, variables with more than two discrete states, or even continuous variables, are
permissible. However, two major difficulties needed to be overcome before these Bayesian Networks, the
combination of causal graphical models with node probability tables, could become a useable tool. Firstly,
Bayesian updating as outlined above is extremely computationally intensive in the general case. Secondly,
eliciting all the node probability tables is an intractable knowledge elicitation problem for anything but the
most trivial of problems.
Fortunately, a number of breakthroughs have been made in the last twenty years that address both of these
problems. Firstly, fast update algorithms have been developed that exploit topological properties of the
graphical models to reduce the computational complexity [Lauritzen & Spiegelhalter, 1988; Pearl, 1988].
These are available in a number of commercial inference engines. Secondly, techniques for modularising
large Bayesian Networks together with graphical tools for editing the probability distributions in the node
probability tables, enable the knowledge elicitation to be performed using limited resources [Neil, Fenton
and Nielson, 2000].

A Bayesian Network for defect prediction
We have built a module level defect prediction model in order to explore these ideas further. The resulting
Bayesian Network takes into account a range of product and process factors from throughout the lifecycle
of a software model. It has been evaluated against real project data, and a detailed description of the model
together with the results of the evaluation can be found in [Fenton, Krause and Neil, submitted for
publication]. What we propose to do here is to demonstrate the tool in action to illustrate how it handles the
relationship between defects detected during test, and residual defects delivered.
The tool is called AID, for Assess, Improve, Decide. The “Intrinsic Complexity” of the problem being
solved is included amongst the attributes represented in the Bayesian Network. This has five states, ranging
from “very simple” to “very complex”. We will first take a look at how the number of defects detected
during unit test varies as the intrinsic complexity is altered between these two extremes. Figure 4 shows the
prior probability distribution for defects detected and fixed. The horizontal axis is labelled with interval
values for the number of defects detected and fixed. The vertical axis indicates the probability that the
number of defects will fall within a certain interval. This distribution has a median of 90 (the distributions
in this example are skewed, so we will take the median value as the most appropriate summary statistic).
Note that as we have not entered any information about a specific module, the distribution indicates a very
wide range of possible values.

<Figure 4 about here>
Now, we enter the information that the intrinsic complexity of the software module is “very complex”.
Figure 5a shows the new distribution for the number of defects detected during unit test. Note that the
distribution has shifted to the left, and the median value has dropped to 30. At first sight this seems counter
intuitive. Especially when this is compared with Figure 5b, which shows the prediction for a “very simple”
module. In the latter case, the distribution shifts to the right, with the median increasing to 125.

<Figure 5 about here>
The explanation is that the more complex modules are harder to test than the simpler modules. With their
greater ability to “hide” faults, fewer faults will be detected unless there is a compensating increase in the
effectiveness with which the module is tested. No such compensation has been applied in this case and the
low prediction for defects detected and fixed for the “very complex” case indicates that typically such
modules are relatively poorly tested.

Fenton, Krause and Neil

6

This is borne out when we look at the respective figures for residual defects delivered (Figure 6). Now we
see a reversal. The prediction for the “very complex” module indicates that it will contain more residual
defects than the “very simple” module (a median of 70, compared to a median of 30). So our model
naturally produces the qualitative behaviour of the real world data from our earlier experiment. That is, the
better-tested modules yield more defects during unit test and deliver fewer defects. For the more poorly
tested modules, the converse is the case.

<Figure 6 about here>

Conclusion
Although software measurements play an important role in process control and risk management, their full
potential has yet to be realised. Part of the reason for this is the reliance that is placed on the use of simple
regression models that fail to take into account the major causal influences on the quality goals of a project.
 We have shown that there really is no longer any excuse against building predictive models that can
support effective risk management decisions. Bayesian networks can be used to construct models that
encapsulate causal influences on a development project. As well as their use for prediction, they can also be
used for performing “what if” scenarios in order to identify potential hazards if some aspect of a process
underperforms, or to identify possible improvement actions if a current prediction fails to meet a target.
This really is the dawn of an exciting new era for software measurement.

References
E. Adams, “Optimizing preventive service of software products”, IBM Research Journal, 28(1), 2-14,
1984.
N.E. Fenton and S.L. Pfleeger, Software Metrics: A Rigorous and Practical Approach, (2nd Edition), PWS
Publishing Company, 1997.
N.E. Fenton and M. Neil “A Critique of Software Defect Prediction Research”, IEEE Trans. Software Eng.,
25, No.5, 1999.
N.E. Fenton and N. Ohlsson “Quantitative analysis of faults and failures in a complex software system”,
IEEE Trans. Software Eng., 26, 797-814, 2000.
N.E. Fenton, P.J. Krause and M. Neil, “A Probabilistic Model for Software Defect Prediction”, submitted
for publication, 2001.
S.L. Lauritzen and D.J. Spiegelhalter, “Local computations with probabilities on graphical structures and
their application to expert systems (with discussion)” J. Roy. Stat. Soc. Ser B 50, pp. 157-224, 1988.
M. Neil, N. Fenton and L. Nielson, “Building large-scale Bayesian Networks”, Knowledge Engineering
Review, to appear 2000.
J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference Morgan
Kauffman, 1988 (Revised in 1997).

Fenton, Krause and Neil

7

Biographical sketches and Full Contact Details

Norman Fenton
Department of Computer Science,
Queen Mary, University of London,
Mile End Road, London E1 4NS
United Kingdom
Tel: +44 (0) 20 7882 7860
Fax: +44 (0) 1223 263899
E-mail: norman@dcs.qmw.ac.uk

and
Agena Ltd.
11 Main Street, Caldecote,
Cambridge CB3 7NU

Norman Fenton is Professor of Computing at Queen Mary (University of London) and is also Managing
Director of Agena, a company that specialises in risk management for critical systems. Between 1989 and
March 2000 he was Professor of Computing Science at the Centre for Software Reliability, City University.
Norman is a Chartered Engineer (member of the IEE) and a Chartered Mathematician (Fellow of the IMA).
He has been project manager and principal researcher in many major collaborative projects in the areas of:
software metrics; formal methods; empirical software engineering; software standards, and safety critical
systems. His recent research projects, however, have focused on the use of Bayesian Belief nets (BBNs)
and Multi-Criteria Decision Aid for risk assessment. Also, Agena has been building BBN-based decision
support systems for a range of major clients. Norman's books and publications on software metrics and
formal methods are widely known in the software engineering community. Norman is a member of the
Editorial Board of both the Software Quality Journal and the Journal of Empirical Software Engineering,
and is on the Advisory Board of Q-Labs.

Paul Krause
Philips Research Laboratories,
Crossoak Lane, Redhill
Surrey RH1 5HA
Tel: +44 (0) 1293 815298
Fax: +44 (0) 1293 815500
E-mail: paul.krause@philips.com

Paul Krause has a varied background in software engineering. His areas of expertise include requirements
management, formal specification, theoretical aspects of artificial intelligence, and software process and
product quality assessment and improvement. He now works in the Specification and Testing Cluster of the
Software Engineering and Applications Group at Philips Research Laboratories, Redhill, UK. Current
projects address automatic test case execution for embedded systems, requirements management using the
UML methodology, and software reliability prediction. Paul is also on the British Computer Society’s

Fenton, Krause and Neil

8

ISEB Software Testing Board. At the beginning of 2001, Paul was appointed to work part of his time as
Research Professor in Software Engineering at the Department of Computer Science, Surrey University.
Paul is a Chartered Mathematician (Fellow of the IMA).

Martin Neil
Department of Computer Science,
Queen Mary, University of London,
Mile End Road, London E1 4NS
United Kingdom
Tel: +44 (0) 20 7882 5221
Fax: +44 (0) 1223 263899
E-mail: martin@dcs.qmw.ac.uk
and
Agena Ltd.
11 Main Street, Caldecote,
Cambridge CB3 7NU

Martin Neil is a Lecturer in the Computer Science Department of Queen Mary and Westfield College,
University of London. He holds a degree in 'Mathematics for Business Analysis' from Glasgow Caledonian
University and a PhD in ‘Statistical Analysis of Software Metrics’ jointly from South Bank University and
Strathclyde University. From 1996 - 1999 he spent four years at the Centre for Software Reliability, City
University (London) and from 1992 - 1995 worked for Lloyd's Register as a consultant. His interests cover
applications and theory in software metrics, Bayesian probability, reliability and the software process.
Martin is a Charted Engineer (IEE), a member of the CSR Council, the IEEE Computer Society and the
ACM. Martin is also a director of Agena, a consulting company specialising in decision support and risk
assessment of safety and business critical systems: www.agena.co.uk. (Contact: martin@agena.co.uk)

Fenton, Krause and Neil

9

Figures

10

20

30

20 40 60 80 100
Pre-release defects

Post-
release
defects

Figure 1: A hypothetical plot of pre-release against post-release
defects for a range of modules. Each dot represents a module.

Fenton, Krause and Neil

10

10

20

30

20 40 60 80 100
Pre-release defects

Post-
release
defects

Figure 2: Actual plot of pre-release against post-release defects for
a range of modules.

Fenton, Krause and Neil

11

Figure 3: A simple graphical model that provides greater explanatory
power than a naïve regression model.

Test
Effectiveness

Defects
Present

Defects
Detected

Fenton, Krause and Neil

12

Non-smoker Smoker

High Marks 1095 5050

Low Marks 9005 5950
Table 1a: With the above grouping of data, approximately 50% of smokers get high marks, whilst only
10% of non-smokers do.

Age 1 Age 2

Non-smoker Smoker Non-smoker Smoker

High Marks 1000 50 95 5000

Low Marks 9000 950 5 5000
Table 1b: However, a very different picture emerges if we take into account the age structure. Here, we
take a simple classification with Age 1 < Age 2. Now we see that for age group 1, approximately 5% of
smokers get high marks but 10% of non-smokers do. Similarly, for age group 2, 50% of smokers get
high marks but a significantly larger 95% of non-smokers get high marks. So for both groups, non-
smokers significantly outperform smokers. The data in Table 1a was dominated by the massive increase
in smoking in age group 2. Although this is a simple manufactured example, the same effect can easily
be observed with real data.

Table 1: Two different ways of clustering the same data

Fenton, Krause and Neil

13

Figure 4: Prior distribution for defects detected and fixed during
unit test.

Fenton, Krause and Neil

14

(a) (b)
Figure 5: Distribution for defects detected at unit test for a “very complex” module (a),
compared with that for a “very simple” module (b).

Fenton, Krause and Neil

15

(a) (b)
Figure 6: Distribution for residual defects delivered for a “very complex” module (a),
compared with that for a “very simple” module (b).

